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Abstract

Type checkers have been specified in ASF+SDF for many languages, using a variety of specification styles. Several
mechanisms for tracking positional information have been proposed, each with shortcomings and/or restrictions on
specifications. We propose the use of dynamic dependence tracking for tracking positional information. In this
approach, a slice of the program being type checked is associated with each type error. This slice contains precisely
those program fragments that caused the type error under consideration. Our approach is completely language-
independent, imposes no restrictions on ASF+SDF specifications, and has been applied successfully to a significant
subset of Pascal. We report on several experiments that have shown an interesting correlation between the amount
of nondeterminism in the specification, and the accuracy of the slices associated with type errors. Generally, more
accurate error locations are obtained as the specification gets less deterministic.

1 Introduction

The effectiveness of a type checking tool strongly depends on the quality of the positional information associated
with type errors reported by the tool. In a previous paper [11], we presented a framework in which type checkers are
specified by way of a set of conditional equations, and where the location of a type errore is provided by way of a
slicePe of the programP being type checked. Here,Pe is a program that contains precisely those constructs inP

“responsible” for type-errore, in the sense that type checkingPe is guaranteed to produce the same errore.
We applied this approach to a specification of CLaX, a realistic Pascal-like language, using the ASF+SDF Meta-

Environment [15]. Figure 1 shows a snapshot of a type checking tool generated from the CLaX specification; the
top window shows a program editor with two buttons attached to it for invoking the type checker and the interpreter,
respectively. The middle window shows a list of four error messages reported by the type checker. After selecting
an error message in this window, the user may press the “Slice” button to obtain the associated slice. In the figure,
the error message “in-call expected-arg VAR INTEGER found-arg REAL ” is selected, indicating that
there is a mismatch between the types of formal and actual parameters in a procedure call. The bottom window shows
the slice computed by the system for this error message. This slice contains all program components that contributed
to the selected type error. The ‘<?> ’ symbols in the slice denote placeholders for program constructs not contributing
to the error message.

The CLaX language was originally developed as the demonstration language of the ESPRIT-II Compare (Com-
piler Generation for Parallel Machines) project [1]. Since then, CLaX has been used as a basis for various software
tools, including type checkers, interpreters, and debuggers [10, 8, 9, 23, 21], as well as a test-bed for origin-tracking
techniques [7, 5, 14].

Several experiments with the ClaX specification revealed that the accuracy of the computed slices depends on a
number of specification factors. In particular, we found that decreasing the amount of determinism in the specification
improved slice accuracy. The present paper describes the involved engineering aspects for this case study.

The remainder of this paper is organized as follows. In Section 2, we give an overview of earlier work on CLaX,
and techniques used for obtaining positional information. We assume the reader to be somewhat familiar with equa-
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Figure 1: The CLaX environment. The top window is a program editor with two buttons attached to it for invoking a type
checker and an interpreter, respectively. The middle window shows a list of four type errors reported by the type checker, in which
the error message “in-call expected-arg VAR INTEGER found-arg REAL” is selected, indicating a mismatch between formal and
actual parameter types in a procedure call. The bottom window shows the slice computed for this error message, containing all
program components that contributed to the selected type error. The ‘<?> ’ symbols in the slice denote placeholders for program
constructs not contributing to the error message.
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tional specifications and their execution through term rewriting, but some of the idiosyncrasies of ASF+SDF that are
relevant for the present paper will be discussed briefly in Section 3. For a more detailed overview, the reader is re-
ferred to [23]. Section 4 presents a high-level overview of the specification of the ClaX type checker specification.
Section 5 reviews dynamic dependence tracking, the technique used in this paper for computing slices. In Section 6,
we report on some of the more interesting changes we made to the ClaX specification, and how these changes affected
the computed slices. Finally, in Section 7, we present conclusions and plans for future work.

2 Historical Perspective

The present paper is closely related to earlier work by the same authors. In this section, we give a brief overview of
the history of this work.

The CLaX language [10] was originally developed as the demonstration language of the COMPARE (compiler
generation for parallel machines) project [1], which was part of the European Union’s ESPRIT-II program. Part of
CWI’s contribution to COMPARE consisted of an algebraic specification of the CLaX language, and the development
of a number of programming tools, including a type checker and an interpreter, for CLaX [10].

In both the CLaX type checker and the CLaX interpreter, a mechanism for correlating results to source-text posi-
tions was required. To this end, we initially usedorigin tracking, a method specifically developed for this purpose by
van Deursen, Klint, and Tip [7]. As defined originally in [7], origin tracking is a relation on a sequence of terms in
a rewriting process, and has the property that only “equal” terms are related: if a (sub)terms occurs in the origin of
a (sub)termt, thens rewrites tot in zero or more rewriting steps. This property implies that a term only has mean-
ingful origins if it literally occurred in the source term, and was “moved around” but not “erased” in the course of the
rewriting process. In the case of the CLaX interpreter, the current term contains a list of statements that remains to be
executed. Since these statements originate directly from the program’s abstract syntax tree in original term, only a few
trivial changes to the specification were required to obtain meaningful origins in all cases. In general, origin tracking
is capable of providing useful positional information for “syntax-directed” algebraic specifications that effectively
perform a traversal of a program’s abstract syntax tree.

The situation was different, however, in the case of the CLaX type checker, which is written in an abstract inter-
pretation style, as will be discussed in Section 4. In many cases, the error messages produced by the type checker did
not contain fragments of the program’s source, and consequently meaningful origins were only available in a limited
number of cases. At the time, our solution to this problem was to modify the specification in a number of ways to
improve the performance of origin tracking. The most significant of these changes consisted of:

Tokenization. Some of the origin information that is lost can be recovered by adapting the specification. A straight-
forward adaptation consists of transforming the syntax to an applicative form (for details, see Appendix C). This
allows access to parts of the concrete syntax as these are now effectively arguments to an abstract application
function. We refer to this modification astokenization. This slight redefinition of the syntax to its applicative
variant, makes it possible to write the specification such that some origin information is obtainable [8].

Other changes. Since origin tracking only maintains relationships between equal subterms, we manipulated the
specification in such a way that the resulting error messages always contain source tokens. In general, this is may
be a hard thing to do as object language and the source language have not many tokens in common. In the case
of the CLaX type checker this turned out to be feasible, although some contrived manipulations were need. For
example, we needed to turn an error message “cannot-assign-to-label ” into “ cannot-assign-to
LABEL in := ”, such that the “LABEL” and “:= ”-token in the error message have non-empty origins (e.g.,
“ := ”-token would have as origin the assignment where the error occurred).

Making these changes to the specification resulted in accurate and useful positional information. However, we consider
this solution to be unsatisfactory because the style in which a specification is written should not be dictated by an
implicit mechanism for tracking positional information. In addition, it was not always easy to understand why a
particular origin relation was or was not established, and what needed to be changed to create the desired origin
relations.
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Later work by van Deursen [6, 5] sought to alleviate some of the problems with origin tracking by relaxing
the requirement that origin tracking only establishes relationships between equal terms. In this work, van Deursen
distinguishes between two kinds of function symbols: language symbols (i.e., symbols occurring in abstract syntax
trees), and symbols of functions that “process” language constructs. This additional structure allows one to create
meaningful relationships in cases where one language symbol is transformed into another language symbol, or where
auxiliary functions are used to process language constructs. A drawback of this method is that it requires additional
information in a specification. For certain specification styles, such as the abstract interpretation style used in the
present paper, van Deursen’s syntax-directed origins are unlikely to create very precise origins.

The dynamic dependence relation used in this paper was developed by Field and Tip [14, 20] with the intention
to use it in tools forprogram slicing. A program slice[24, 25, 22] is usually defined as the set of statements in a
programP that may affect the values computed at theslicing criterion, a designated point of interest inP . Two
kinds of program slices are usually distinguished.Staticprogram slices are computed using compile-time dependence
information, i.e., without making assumptions about a program’s inputs. In contrast,dynamicprogram slices are
computed for a specific execution of a program. An overview of program slicing techniques can be found in [22]. By
applying dependence tracking to different rewriting systems, various kinds of program slices can be obtained. In [13]
programs are translated to an intermediate graph representation named PIM [12, 2]. An equational logic defines the
optimization/simplification and (symbolic) execution of PIM-graphs. Both the translation to PIM and the equational
logic for simplification of PIM-graphs are implemented as rewriting systems, and dependence tracking is used to obtain
program slices for selected program values. By selecting different PIM-subsystems, different kinds of slices can be
computed, allowing for various cost/accuracy tradeoffs to be made. In [21], dynamic program slices are obtained by
applying dependence tracking to a previously written specification for a CLaX-interpreter.

The slice notion presented in the current paper differs from the traditional program slice concept in the following
way. In program slicing, the objective is to determine a projection of a program that preserves part of itsexecution
behavior. By contrast, the slice notion we have used here is a projection of the program for which part of another
program property—type checkerbehavior—is preserved.

3 ASF+SDF Idiosyncrasies

In the remainder of this paper, we will assume the reader to be familiar with algebraic specifications, and the exe-
cution of algebraic specifications by term rewriting. We refer the uninitiated reader to [3] for details on algebraic
specifications, and to [16] for a detailed overview of term rewriting techniques.

The specification discussed in this paper relies on some of ASF+SDF’s more interesting features, such as the use
of concrete syntax in equations, list functions and list matching, and default equations. The current section briefly
reviews these features to the extent that they are used in the CLaX specification. For an overview of the ASF+SDF
specification formalism and the ASF+SDF Meta-environment, we refer the reader to [15, 23].

3.1 Lexical Syntax

Lexical tokens can be described using regular expressions. Regular expressions may contain strings, sort names,
character classes, or repetition operators. For example, the following specification fragment:

sorts ID

lexical syntax
[a-zA-Z] [a-zA-Z0-9]* -> ID
"%%" ˜ [\n] * "\n" -> LAYOUT

defines identifier lexicals that begin with an upper case or lower case letter, followed by zero or more alphanumerical
characters.LAYOUTis a special sort in ASF+SDF, using which one can specify white space. Here, we define a
comment convention that everything between ‘%%’ and an end-of-line character ‘\n ’ is a comment (white space).
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3.2 Lists and Injections

Description of the repetition of a syntactic notion or of list structures (with or without separators) containing a syntactic
notion is done using ASF+SDF lists. Lists can be with or without separators:S* andS+ define zero or more repetitions
of sortS, and one or more repetitions of sortS, without separators, respectively Similarly,{S SEP}* and{S SEP}+
define lists separated by the literalSEP.

In CLaX, DECL-LIST , a list of declarations, is defined as follows:

sorts ID DECL TYPE
lexical syntax

[a-zA-Z] [a-zA-Z0-9]* -> ID
context-free syntax

ID ":" "LABEL" -> LABEL-DECL
LABEL-DECL -> DECL
VAR-DECL -> DECL
{ DECL ";" }* -> DECL-LIST

The functionLABEL-DECL -> DECL is an injection of one sort into another. Here, a declarationDECLcan
either be a label declarationLABEL-DECLor a variable declarationVAR-DECL.

3.3 Default Rules

When the prefix ‘default- ’ is used in the label of an equation, the equation is considered only after considering all
other equations. For example, in Appendix B.5 we see:

[C0] check(_LabelList, _Stat;_StatSeq) =
check(_LabelList, _Stat) & check(_LabelList, _StatSeq)

[C1] check(_LabelList, _AssignStat) = true
[C2] check(_LabelList, _TestStat) = true
[C3] check(_LabelList, _InOutStat) = true
[C4] check(_LabelList, _ProcStat) = true
[C5] check(_LabelList, _EmptyStat) = true
[C6] check(_LabelList, _Id: _StatAux) = check(_LabelList, _StatAux)
[C7] check(_Id* _Id _Id*’, GOTO _Id) = true

[default-C8]
_Id != _Id’

================
check(_Id* _Id’ _Id*’, GOTO _Id) = check(_Id* _Id*’, GOTO _Id)

equationC8 is considered only afterC0 to C7 are considered. However,C0 to C7 themselves are considered in a
nondeterministic way.

Default equations can be used for different purposes. Default equations can be used to avoid the use of negative
conditions in conditional equations. Such use of default equations is problematic from a dependence tracking point
of view, because the applicability of a default equation no longer depends on that equation alone, but also on the fact
that other equations arenotapplicable. In the CLaX specification, default equations are used in only a few places, and
only to improve efficiency. In the case of the above example, havingC8 as “default” does not change the semantics
but results in some performance gain.

Theory and Practice of Algebraic Specifications ASF+SDF’97 5



A Case Study of a Slicing-Based Approach for Locating Type Errors

Syntax
Consts

Tc
Booleans

Tc
SyntaxExt

Syntax
Program

Tc
Nint

Tc
Tenv

Tc
Expr

Tc
Proc

Tc

Tc
Label

Tc
Errors

4 Overview of the Specification

Once a program is accepted as valid according to the CLaX syntax (see Appendix A), the context-dependent aspects
of the program need to be checked. For example, multiple declarations of the same variable are not allowed within one
scope. The formal static semantics presented here were defined using the (informal) description of CLaX presented
in [19]. The modules that constitute the complete static semantics of CLaX can be found in Appendix B. From these
modules, a type checker for CLaX is generated by the ASF+SDF Meta-Environment. In this section, we present the
highlights of the specification of the CLaX type checker, which is written in an abstract interpretation style.

The specification of the CLaX type checker imports the CLaX syntax defined in moduleSyntaxProgram (see
Appendix A). The import diagram for the type checking modules is shown in Figure 4. Type checking is performed
in a compositional manner: the meaning of a compound CLaX construct is defined in terms of the meanings of its
sub-constructs. The basic strategy of the CLaX type checker consists of the following steps:

1. Distribution of the context (i.e., type information for all identifiers in the current scope) over every program
construct.

2. Replacement of identifiers and values by a common abstract representation. We usetypesfor abstract represen-
tations.

3. Evaluation of expressions using the abstract values obtained in the previous step.

In the course of performing step 3, all type-correct program constructs are removed from the result. What remains
is a list containing only the abstract values of theincorrectprogram constructs. In an additional phase, we generate
human-readable error messages from these abstract values. Section 5 discusses how the system automatically locates
the source positions of these errors.

4.1 Extending the Language

The syntax of the language is generalized slightly in moduleTcSyntaxExt (see Appendix B.3, relevant fragments
shown below), in order to be able to replace program constructs by their abstract values. Note that this does not affect
the CLaX language itself, since the syntax extensions are only used in the type checking modules.
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module TcSyntaxExt

imports SyntaxProgram

exports
context-free syntax

EXPR ":=" EXPR -> ASSIGN-STAT
EXPR "[" EXPR "]" -> EXPR
"READ" "(" EXPR ")" -> IN-OUT-STAT

ModuleTcSyntaxExt generalizes (i) the assignment statement, (ii) array indexing, and (iii) the input statement.
The reason for these generalizations is to make the specification of the type checker uniform over all constructs of the
language. These extensions will be elaborated on as needed later.

4.2 Type-environments

ModuleTcTenv (see Appendix B.8, relevant details shown below) specifies the type-environment (or the context) in
which the statements of a particularBLOCKwill be type checked. The declarations as seen from a particular point in
the program are represented simply as a list (TENV) of variable-declaration (VAR-DECL) pairs. Later, the sortTYPE
is also extended withLABEL-TYPE and sortPROC-TYPE, so that all identifiers can be uniformly represented using
theID : TYPE notation.

module TcTenv

imports TcSyntaxExt TcBooleans

exports
sorts TENV
context-free syntax

TYPE -> EXPR
"[" {DECL ";"}* "]" -> TENV
TENV* -> TENV-LIST
type-of(TENV-LIST, EXPR) -> TYPE

Because we want to use types as abstract values, sortTYPE is injected into sortEXPR. Equations[1] —[3]
below (over sortEXPR) rewrite all constantsfound in expressionsto their abstract values.

[1] _IntConst = INTEGER
[2] _RealConst = REAL
[3] _BoolConst = BOOLEAN

The operationtype-of(TENV-LIST, EXPR) extracts the abstract value of an expression from a type-
environment. The inclusion of this operation inTYPE indicates the intention that it reduces to an abstract value
and also helps us to define this operation by distributing it over the operations of the expressions (See equations[V0]
and[V1] of moduleTcExpr in Appendix B.4).

4.3 Evaluation of Expressions over Abstract Values

Module TcExpr describes the evaluation of expressions over abstract values. The expressions are transformed to
a more general form (sortOP) so that (i) the equations that distribute an environment over an expression, (ii) the
equations that evaluate an expression (over abstract values), and (iii) those that generate readable error messages can
be written in a generalized fashion.
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The main idea is that alltype-correctexpressions are converted to their abstract value, whereastype-incorrect
expressions will only be evaluated partially. As an example, we show equations[t0] and[t17] of moduleTcExpr .
The former transforms type-correct comparison expressions to a generalized form; the latter replaces generalized
comparison expressions by their abstract value, i.e.,BOOLEAN.

[t0] _Expr _Cop _Expr’ = _Expr _Op _Expr’ when _Op = _Cop
[t17] _SimpleType _Op _SimpleType = BOOLEAN when _Op = _Cop

4.4 Type Checking Procedures

The most significant parts of moduleTcProc (Appendix B.7), which deals with type checking of procedure calls,
are shown below. In order to ease the specification of type checking procedures, we introduce the sortPROC-TYPE
(denoting the signature of a procedure) and inject this into sortTYPE. This allows procedure signatures to be in
the range ofID : TYPE mappings in a type-environment (TENV). For convenience, we introduce a sortVTYPE
denoting a type that is (optionally) preceded by the keywordVAR.

A procedure header (sortPROC-HEAD) is reduced to theID : PROC-TYPE form by the functionsignature .
The formal variable declarations in a procedure heading along with their type declarations are reduced to a type-
environment by the function’sformals .

Procedure calls are type checked by matching the abstract form of the procedure header against the abstract form
of the procedure call. In the case of a variable parameter, we have the additional constraint that the actual parameter
must be a variable; this is checked by the functionvararg . All type-correct calls are eliminated, resulting in abstract
forms of type-incorrect calls only.

module TcProc

imports TcExpr

exports
sorts PROC-TYPE VTYPE TYPE-LIST
context-free syntax

"LABEL-TYPE" -> TYPE
"PROC""(" {VTYPE ";"}* ")" -> PROC-TYPE
PROC-TYPE -> TYPE
{TYPE ";"}* -> TYPE-LIST
types-of(TENV-LIST, {EXPR ","}*) -> TYPE-LIST
formals(PROC-DECL) -> TENV
signature(PROC-HEAD) -> PROC-TYPE
TYPE -> VTYPE
"VAR" TYPE -> VTYPE
vtype(FORMAL) -> VTYPE
isproc"(" EXPR "(" TYPE-LIST ")" ")" -> BOOL
vararg"(" EXPR "(" {EXPR ","}* ")" ")" -> BOOL
body-of( PROC-DECL ) -> BLOCK

4.5 Type Checking labels

ModuleTcLabel (Appendix B.5) handles the various cases of label consistency that must be checked so as to type
check aGOTOstatement. The cases are: (i) a label must be declared before being used, (ii) a label must be defined so
that aGOTOcan succeed, and (iii) a label must be uniquely defined.
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module TcLabel

imports TcProc

exports
sorts LABEL-LIST
context-free syntax

ID* -> LABEL-LIST
defines( STAT-SEQ ) -> LABEL-LIST
unique( LABEL-LIST ) -> BOOL
no-dups( LABEL-LIST ) -> BOOL
check( LABEL-LIST, STAT-SEQ ) -> BOOL
islabel(EXPR) -> BOOL

The most significant functions of moduleTcLabel are shown below.ID � defines aLABEL-LIST , an auxiliary
sort used in the definition of other label consistency check functions. The list of labels that are defined (and possibly
multiply defined) in a given statement sequence is generated bydefines . The uniqueness of label definitions is
checked using the functionunique , which returnstrue if the list of labels does not contain elements more than once.
For checking whether labels used inGOTOstatements are defined, the functioncheck(LABEL-LIST,STAT-SEQ)
is used, which returnstrue if the labels used in theGOTOstatements in theSTAT-SEQare in theLABEL-LIST .
Checking if an (abstract) value is a label is done by functionislabel , which returnstrue if the expression is
LABEL.

4.6 Type Checking Programs

ModuleTc (Appendix B.1) defines the functiontc for type checking entire programs; the syntax part of moduleTc

is shown below. The functiontc is invoked by theTypecheck button on the editor window.
Informally, the type checking proceeds as follows:

� The declarations of the block are processed, yielding a local type-environment.

� Some checks on the local environment are performed. The functionunique-decls checks that the asso-
ciation of identifiers is unique within the scope, andnonemptyarray checks if the index ranges of arrays
contain at least one element.

� All IF andWHILEstatements areflattened: the statement series inside these statements are moved outside the
IF /WHILE, and the condition of theIF orWHILEis transformed into an “abstract”TESTstatement. The allows
us to specify the checking of the validity of the conditional expression once for all conditional statements.

� All statements and expressions are type checked using the previously described functions for type checking
statements and expressions.

� The list of statements in the block is transformed into aconjunctionof statements, which can, in principle, be
processed in parallel. To this end, sortSTAT is injected in sortBOOL(moduleTcBooleans , Appendix B.2).
Type-correct statements evaluate totrue .

module Tc

imports TcLabel TcNint

exports
sorts TENV-LIST
context-free syntax

Theory and Practice of Algebraic Specifications ASF+SDF’97 9



A Case Study of a Slicing-Based Approach for Locating Type Errors

tc(PROGRAM) -> BOOL
collect( TENV-LIST, BLOCK ) -> BOOL
distribute( TENV-LIST, BLOCK ) -> BOOL
STAT -> BOOL
isbool(EXPR) -> BOOL
unique-decls(TENV*) -> BOOL
nonemptyarray(TENV) -> BOOL
no-dups(TENV) -> BOOL
get-id(DECL) -> ID
get-type(DECL) -> TYPE

4.7 Generating Error Messages

The result of type checking a CLaX program is a list of abstract values representing incorrect constructs. These
constructs can be transformed into human-readable error messages in a modular manner, by applying the function
errors of moduleTcErrors (Appendix B.10). This function is distributed over all transformed statements that
remain after type checking. Each equation for the functionerrors handles one particular type-error.

As an example, we show the processing ofLABEL := EXPR; here an error-message
cannot-assign-to-label is generated by the following equation:

[S03] errors(LABEL-TYPE := _Expr) = cannot-assign-to-label

4.8 Example

Consider the type checking of the following CLaX program:

PROGRAM test;
DECLARE

n : REAL;
i : INTEGER;
PROCEDURE square (n : INTEGER);
DECLARE

x : REAL;
step : LABEL;

BEGIN
x := 0; step := n; step := step * 0.01;
WHILE x < 1.0 DO

WRITE (x); WRITE (" ** 2 = "); WRITE (x * x); WRITE (" nn");
step: x := x + step

END ;
GOTO step ;
step:

END ;
BEGIN (* main program *)

i := 0;
WHILE i < 0 DO

WRITE("Enter number greater than 0");
READ(i);

END;
square(n)

END.
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Our type checker basically involves the following steps:

1. Change constants to their abstract values. After this step, the main program will look as follows:

BEGIN
i := INTEGER;
WHILE i < INTEGER DO

WRITE("Enter number greater than 0");
READ(i);

END;
square ( n )

END.

Note that integer constants are represented by their abstract values. However, since strings are not first class
TYPEs in CLaX (there are no operations defined over strings), they do not have an abstract value.

2. Collect the context—which is the effectiveTENVfor a given statement and thus for a given expression. For
instance, before entering the type checking of the statements in proceduresquare , a snap-shot might look as
follows:

collect([ i : INTEGER;
square : PROC (INTEGER);
n : INTEGER;
x : REAL;
step : LABEL

],
DECLARE

BEGIN
x := INTEGER;
step := n;
step := step * REAL; � � �

END)
&

collect([ n : REAL;
i : INTEGER;
square : PROC (INTEGER)

],
DECLARE

BEGIN
i := INTEGER; � � �

END

)

3. Check the consistency ofGOTOstatements before checking a block. For instance, before spawning the checking
of the statements in proceduresquare , the following label error is produced (for the fact that labelstep is
defined twice):

unique(step step)
&

distribute([ i : INTEGER;
square : PROC (INTEGER);
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Normal form Cause of the error
unique(step step) & Labelstep is defined twice
LABEL-TYPE := INTEGER & Cannot assign to label
LABEL-TYPE := LABEL-TYPE * REAL & Cannot operate on label
REAL := REAL + LABEL-TYPE & Cannot operate on label
isproc ( PROC (INTEGER) ( REAL )) Procedure called with incompatible arguments

Table 1: The result of type checking the program.

n : INTEGER;
x : REAL;
step : LABEL],

BEGIN x := INTEGER;
step := n;
step := step * REAL; � � �

END) � � �

4. Convert the list of statements to a conjunction of statements. For instance, the next step might look like:

unique(step step) & true &
REAL := INTEGER &
LABEL-TYPE := INTEGER &
LABEL-TYPE := LABEL-TYPE * REAL &
� � �

5. Perform abstract evaluation of expressions.

6. Generate error messages. The normal form of Table 1 is translated to:

multiply-defined-label step ;
cannot-assign-to-label ;
cannot-assign-to-label ;
label-used-as-operand ;
in-call expected-arg INTEGER found-arg REAL

The translator has convertedLABEL-TYPE := LABEL-TYPE � REAL into the error-message
cannot-assign-to-label . There are two occurrences of the same error-message.

Note that the generated error messages do not contain information regarding thepositionswhere the errors oc-
curred. Section 5 discusses how such information can be obtained automatically using dynamic dependence tracking.

5 Dynamic Dependence Tracking

In order to obtain positional information for type errors, we use a technique calleddependence trackingthat was
developed by Field and Tip [14, 20]. For a given sequence of rewriting stepsT0 ! � � � ! Tn, dependence tracking
computes a slice of the original term,T0, for each function symbol or subcontext (a notion that will be presented
below) of the result term,Tn.

We will use the following simple specification of integer arithmetic (taken from [21]) as an example to illustrate
dependence tracking:

A1 intmul (0;X) = 0
A2 intmul (intmul(X, Y) ;Z) = intmul (X; intmul(Y, Z) )
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Figure 3: Depiction of the definition of a term slice.
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By applying these equations, the termintsub (3, intmul(intmul(0, 1), 2) ) may be rewritten as follows
(subterms affected by rule applications are underlined):

T0 = intsub (3; intmul(intmul(0, 1), 2) )

�! A2

T1 = intsub (3; intmul(0, intmul(1, 2)) )

�! A1

T2 = intsub (3; 0)

By carefully studying this example, one can observe the following:

� The outer contextintsub (3, <?>) of T0 (‘<?>’ denotes a missing subterm) is not affected at all, and therefore
reappears inT1 andT2.

� The occurrence of variablesX, Y, andZ in both the left-hand side and the right-hand side ofA2 causes the
respective subterms0, 1, and2 of the underlined subterm ofT0 to reappear inT1.

� VariableX only occurs in the left-hand side ofA1. Consequently, the subtermintmul (1, 2) (of T1) that
is matched againstX does not reappear inT2. In fact, we can make the stronger observation that the subterm
matched againstX is irrelevantfor producing the constant0 in T2: the “creation” of this subterm0 only requires
the presence of the contextintmul (0, <?>) in T1.

The above observations are the cornerstones of the dynamic dependence relation of [14, 20]. Notions ofcreation
andresiduationare defined for single rewrite-steps. The former involves function symbols produced by rewrite rules
whereas the latter corresponds to situations where symbols are copied, erased, or not affected by rewrite rules1.
Figure 2 shows all residuation and creation relations for the example reduction discussed above.

Roughly speaking, the dynamic dependence relation for a sequence of rewriting steps� consists of the transitive
closure of creation and residuation relations for the individual steps in�. In [14, 20], the dynamic dependence relation
is defined as a relation oncontexts, i.e., connected sets of function symbols in a term. The fact thatC is asubcontext
of a termT is denotedC v T . For any sequence of rewrite steps� : T ! � � � ! T 0, a term slicewith respect to some
C 0 v T 0 is defined as the subcontextC v T that is found by tracing back the dynamic dependence relations fromC 0.
The term sliceC satisfies the property thatC can be rewritten to a termD0 w C 0 via a sequence of rewrite steps�0,
where�0 contains a subset of the rule applications in�. This property is illustrated in Figure 3.

Returning to the example, we can determine the term slice with respect to the entire termT2 by tracing back all
creation and residuation relations toT0. The reader may verify that the term slice with respect tointsub (3, 0)
consists of the contextintsub (3, intmul(intmul(0, <?>), <?>) ).

The middle window of the CLaX environment of Figure 1 is a textual representation of a term that represents a list
of errors. The slice shown in the bottom window of Figure 1 was computed by tracing back the dependence relations
from the selected “error” subterm.

6 Experiments

In this section, we summarize a number of changes we made to the specification in order to improve the accuracy of
the computed slices. As it turns out, almost all of these changes have the flavor of “removing redundant determinism”
or “over-specification”. In addition to the changes we outline below, we made the following other changes:

� We removed the “tokenization syntax” that was introduced to facilitate origin tracking (see Appendix C for
details on this issue).

1The notions of creation and residuation become more complicated in the presence of so-calledleft-nonlinearrules andcollapse rules. This is
discussed at greater length in [14, 20].
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� We made a number of syntactic changes to the specification to improve readability. In particular, we now use
standard prefix functions instead of mix-fix function symbols. For example, the act of collecting the type envi-
ronment and distributing it to the statements was earlier done using a functionTENV* "ˆ" BLOCK -> BOOL .
For readability, we have split this into two functions that collect and distribute type-environments:

collect( TENV-LIST, BLOCK ) -> BOOL
distribute( TENV-LIST, BLOCK ) -> BOOL

� We restored the syntax of error messages to their “natural” form. The use of origin tracking required that
program fragments were retained in error messages (otherwise these error messages would have non-empty
origins). Since dependence tracking does not impose such a restriction, we adopted a more “natural” style for
error messages. For example, the message associated with the errorLABEL := EXPR needed the token:=
for origin tracking to relate enough origins. Thus we had an equation

[Er] errors(LABEL := _Expr) = cannot-assign-to LABEL in :=

Now, we can simply have an expressioncannot-assign-to-label on the right hand side of this equation,
and still get all the desired dependence relations.

6.1 Over-Specification: Unnecessarily Specific Matching

In a number of places, the type checker specification of [10] was matching unnecessarily specific subterms, which
gave rise to spurious dependences. For example, the original specification contained an equation:

[NA1] nonemptyarray([_Id : LABEL]) = true

which expressed the fact that any declaration of the formId : LABEL is not a declaration of an array with 0
elements. Since the ‘LABEL’ subterm of the declaration is explicitly matched in the equation, ‘<?> : LABEL ’
subterms inadvertently showed up in the slices reported by the tool. It turned out that using the following, slightly
more general equation instead:

[NA1] nonemptyarray([_LabelDecl]) = true

had the desired effect of omitting the entire label declaration from the slice.

6.2 Flattening of Control-Flow Structures

Control-flow structures have little to do with the type checking of program constructs. Ignoring issues related to
the scopes of variables, the type checking of a statement does not depend on the position of that statement in the
program. This observation can be used to simplify the description of the type checker, by “flattening” the control flow
constructs: All statements that occur inside anIF or WHILEconstruct can be hoisted outside that construct without
affecting the type checking process. This has the pleasant property that the rules for type checking statements need
only be concerned with straight-line code.

In the specification of [10], a functionflat is explicitly applied to a statement list before any statements in that
list are type checked. The equations forflat are shown below:

[FL0] flat _StatAux = _StatAux’ ; _StatSeq’*
======================================
flat _Id : _StatAux = _Id : _StatAux’ ; _StatSeq’*

[FL1] flat _Expr := _Expr’ = _Expr := _Expr’
[FL2] flat _Id = _Id
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[FL3] flat _Id _( _ExprList _) = _Id _( _ExprList _)
[FL4] flat READ ( _Expr ) = READ ( _Expr )
[FL5] flat WRITE ( _Expr ) = WRITE ( _Expr )
[FL6] flat WRITE ( _String ) = WRITE ( _String )
[FL7] flat GOTO _Id = GOTO _Id
[FL8] flat =

[FL9] _StatSeq’ = flat _StatSeq
=========================
flat IF _Expr THEN _StatSeq END = IF _Expr THEN END ; _StatSeq’

[FL10] _StatSeq’’ = flat _StatSeq ; _StatSeq’
======================================
flat IF _Expr THEN _StatSeq ELSE _StatSeq’ END =
IF _Expr THEN END ; _StatSeq’’

[FL11] _StatSeq’ = flat _StatSeq
=========================
flat WHILE _Expr DO _StatSeq END = WHILE _Expr DO END ; _StatSeq’

[FL12] _StatSeq’ = flat _Stat, _StatSeq’’ = flat _StatSeq
==============================================
flat _Stat ; _StatSeq = _StatSeq’ ; _StatSeq’’

flat explicitly traverses a list of statements by recursively applyingflat to sublists of the list of statements (equa-
tion FL12 ). Statements other thanIF andWHILE, are left unchanged byflat (equationsFL0–FL8). For IF and
WHILEconstructs,flat hoists the nested statement lists inside these constructs (equationsFL9–FL11 ).

This approach to specifying the flattening process has a drawback. The dynamic dependence relations create a
dependency of each statement in a “flattened list” on the surroundingDECLARE--BEGIN--END or BEGIN--END
symbol(s).

We eliminated this spurious dependency by restating the flattening operation non-deterministically, as is shown
below:

[flat1] _StatSeq1*; WHILE _Expr DO_StatSeq2 END; _StatSeq3* =
_StatSeq1*; TEST _Expr END; _StatSeq2; _StatSeq3*

[flat2] _StatSeq1*; IF _Expr THEN_StatSeq2 END; _StatSeq3* =
_StatSeq1*; TEST _Expr END; _StatSeq2; _StatSeq3*

[flat3] _StatSeq1*; IF _Expr THEN_StatSeq2 ELSE _StatSeq3 END; _StatSeq4* =
_StatSeq1*; TEST _Expr END; _StatSeq2; _StatSeq3; _StatSeq4*

Each of these equations apply implicitly toany statement list, i.e., there is noexplicit call to a flattening function.
Equationflat1 transforms a statement list containing aWHILEstatement by hoisting its body and transforming the
WHILE into aTEST statement. Equationsflat2 andflat3 perform similar transformations onIF--THEN and
IF--THEN--ELSE constructs. The generatedTEST statement is a “generic” conditional statement whose control
predicate must be of a boolean type (the original specification contained distinct, similar checks for control predicates
in IF andWHILEconstructs). Using this approach, the specification can now assume all statement lists to be free of
IF andWHILEconstructs.
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6.3 Elimination of Correct Program Constructs

If we look at moduleTcBooleans (Appendix B.2), we notice that there are no equations that indicatetrue is the
identity value of theBOOLs. Originally, these simplification rules were present. This implied, however, that the “error
values” depended on thetrue or non-error values. For example, in

[Bool1] _Bool & true = _Bool

the resulting expression on the right-hand side depends on the presence oftrue on the left hand side.
In the current situation without boolean simplification rules,true subterms remain until the error processing is

done in the next phase. Then,errors(true) reduces to “no-errors” by the following equation:

[E0] errors(true) = no-errors

Then, the list-match equation below eliminatesno-errors subterms, when the rest of the list not empty. This
causes the list symbol to depend on correct statements, but this is no problem since we’re only interested in slices w.r.t.
individual statements.

[M0] _MsgList ; no-errors ; _MsgList’ = _MsgList ; _MsgList’
when _MsgList ; _MsgList’ = _MsgList’’ ; _Msg

6.4 Elimination of Determinism: Duplicate Elements in Lists

Overspecification is undesirable because it may result in overly large slices. Unfortunately, it can be hard to control
over-specification, and it is sometimes not apparent from the specification where over-specification occurs. We take
the example of the functionunique in moduleTcLabel (see Appendix B.5) to illustrate this point. If we have
unique defined as follows (here,& denotes boolean conjunction):

[xU1] unique(_LabelList) = no-dups(_LabelList)

[xN0] no-dups() = true
[xN1] no-dups(_Id) = true
[xN2] no-dups(_Id _Id’) = true when_Id != _Id’
[xN3] no-dups(_Id _Id’ _Label+) =

no-dups(_Id _Id’) & no-dups(_Id _Label+) & no-dups(_Id’ _Label+)

then, the specification would state that a list is unique if it is true that there are no duplicates2. Thus, when a list is not
unique, the non-uniqueness of the duplicate elements depends on other elements in the list.

Instead, we defineunique as follows to avoid over-specification.

[U1] unique(_LabelList) = true when no-dups(_LabelList) != false

[N1] no-dups(_Id* _Id _Id*’ _Id _Id*’’) = false

The functionunique defines a list to be unique only if it not the case that it has duplicate elements. Thus, when a list
is indeed unique, the functionno-dups does not match.

2Note that equationno-dups( Id Id) = false is not defined because that would be over-specification. We are only interested in the
case whereunique is true . For the case that it is nottrue , the resulting irreducible term can be post-processed into a human-readable error
message.
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7 Conclusions

We presented a slicing-based approach for determining locations of type errors in [11]. Our work assumes a framework
in which type checkers are specified algebraically, and executed by way of term rewriting [16]. In this model, a type
check function rewrites a program’s abstract syntax tree to a list of type errors. Dynamic dependence tracking [14, 20]
is used to associate aslice [24, 22] of the program with each error message.

In this paper, we have presented a case study of this approach for the non-toy, Pascal-like language CLaX. We have
implemented this work in the context of the ASF+SDF Meta-environment [15, 23]. We have compared the method
of this paper with earlier work for generating error reporters based on origin tracking. The earlier, origin tracking
based work required non-trivial modifications to the specification to ensure that each term has a non-empty origin.
By contrast, the approach of the present paper guarantees the availability of positional information, regardless of the
specification style that is used. Experimentation with the CLaX specification revealed that the computed slices provide
highly insightful information regarding the nature of type violations. Nonetheless, we have observed that the accuracy
of the computed slices depends strongly on the amount of determinism in the specification, and our experiments led to
a number of changes in the specification that made it less deterministic. In addition to producing improved slices, we
believe these changes have improved the specification in the sense that it became more of a “specification” of the type
checking process, and less focused on the specific mechanisms and algorithms for computing type errors. In this paper,
we have presented a case study of this approach for the non-toy, Pascal-like language CLaX. We have implemented
this work in the context of the ASF+SDF Meta-environment [15, 23].

As a direction for future work, we intend to study the applicability of slicing-based error location in the related
area of typeinference[4], in particular for object-oriented languages [18] and for ML [17]. Although a slice can be
computed for each reported type inference error, it is unclear how accurate such slices will be in practice.
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A The Syntax of CLaX

A.1 Module SyntaxLayout
%% -------------------
%% Module SyntaxLayout
%% -------------------
%%
%% ASF+SDF provides a special sort called LAYOUT, using which,
%% text-to-be-discarded can be easily defined. This facility is
%% used here to define "comment" in module SyntaxLayout.
%%
%% Define lay out symbols of Clax programs. Note that in this specification
%% no * between comment delimitters (* and *) is allowed.

exports
lexical syntax

[ \t\n] -> LAYOUT
"{" ˜[}]* "}" -> LAYOUT
"(*" ˜[*]* "*)" -> LAYOUT

A.2 Module SyntaxConsts
%% -------------------
%% Module SyntaxConsts
%% -------------------

imports SyntaxLayout

exports
sorts ID STRING BOOL-CONST INT-CONST REAL-CONST SIGN SCALE-FACTOR

UNS-INT-CONST UNS-REAL-CONST
lexical syntax

[a-zA-Z] [A-Za-z0-9]* -> ID

"-" -> SIGN
"+" -> SIGN

UNS-INT-CONST -> INT-CONST
SIGN UNS-INT-CONST -> INT-CONST

"E" [+\-] UNS-INT-CONST -> SCALE-FACTOR
UNS-REAL-CONST -> REAL-CONST
SIGN UNS-REAL-CONST -> REAL-CONST

["] ˜["\n]* ["] -> STRING
"TRUE" -> BOOL-CONST
"FALSE" -> BOOL-CONST

[0-9]+ -> UNS-INT-CONST

"." UNS-INT-CONST -> UNS-REAL-CONST
"." UNS-INT-CONST SCALE-FACTOR -> UNS-REAL-CONST
UNS-INT-CONST "." -> UNS-REAL-CONST
UNS-INT-CONST "." UNS-INT-CONST -> UNS-REAL-CONST
UNS-INT-CONST "." UNS-INT-CONST SCALE-FACTOR -> UNS-REAL-CONST

variables
[_]Id[’]* -> ID
[_]IntConst[’]* -> INT-CONST
[_]BoolConst[’]* -> BOOL-CONST
[_]RealConst[’]* -> REAL-CONST
[_]String[’]* -> STRING

A.3 Module SyntaxExpr
%% -----------------
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%% Module SyntaxExpr
%% -----------------

imports SyntaxConsts

exports
sorts UAOP AOP1 AOP2 UBOP BOP1 BOP2 COP VARIABLE EXPR

context-free syntax
"-" -> UAOP
"NOT" -> UBOP

"*" -> AOP1
"/" -> AOP1
"%" -> AOP1
"&" -> BOP1

"+" -> AOP2
"-" -> AOP2
"|" -> BOP2

"<" -> COP
"<=" -> COP
"=" -> COP
">=" -> COP
">" -> COP
"#" -> COP

"(" EXPR ")" -> EXPR {bracket}

ID -> VARIABLE
VARIABLE "[" EXPR "]" -> VARIABLE

VARIABLE -> EXPR
BOOL-CONST -> EXPR
INT-CONST -> EXPR
REAL-CONST -> EXPR

EXPR AOP1 EXPR -> EXPR {left}
EXPR AOP2 EXPR -> EXPR {left}
EXPR BOP1 EXPR -> EXPR {left}
EXPR BOP2 EXPR -> EXPR {left}
EXPR COP EXPR -> EXPR {left}

UAOP EXPR -> EXPR
UBOP EXPR -> EXPR

variables
[_]Aop1[’]* -> AOP1
[_]Aop2[’]* -> AOP2
[_]Bop1[’]* -> BOP1
[_]Bop2[’]* -> BOP2
[_]Cop[’]* -> COP
[_]Uaop[’]* -> UAOP
[_]Ubop[’]* -> UBOP
[_]Var[0-9’]* -> VARIABLE
[_]Expr[0-9’]* -> EXPR

priorities
{EXPR COP EXPR -> EXPR}

< {left: EXPR AOP2 EXPR -> EXPR, EXPR BOP2 EXPR -> EXPR}
< {left: EXPR AOP1 EXPR -> EXPR, EXPR BOP1 EXPR -> EXPR}
< {UAOP EXPR -> EXPR, UBOP EXPR -> EXPR }

A.4 Module SyntaxHeaders
%% --------------------
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%% Module SyntaxHeaders
%% --------------------

imports SyntaxTypes

exports
%% BLOCK in SyntaxProgram
sorts PROC-HEAD LABEL-DECL PROC-DECL VAR-DECL DECL DECL-LIST

FORMAL BLOCK

context-free syntax
ID ":" "LABEL" -> LABEL-DECL
ID ":" TYPE -> VAR-DECL
PROC-HEAD ";" BLOCK -> PROC-DECL

-> EMPTY-DECL

VAR-DECL -> DECL
PROC-DECL -> DECL
LABEL-DECL -> DECL
EMPTY-DECL -> DECL

{ DECL ";" }* -> DECL-LIST
VAR-DECL -> FORMAL
"VAR" VAR-DECL -> FORMAL
"PROCEDURE" ID -> PROC-HEAD
"PROCEDURE" ID "(" {FORMAL ";"}+ ")" -> PROC-HEAD

variables

[_]Decl"+"[0-9’]* -> {DECL ";"}+
[_]Decl"*"[0-9’]* -> {DECL ";"}*
[_]LabelDecl[0-9’]* -> LABEL-DECL
[_]VarDecl[0-9’]* -> VAR-DECL
[_]ProcDecl[0-9’]* -> PROC-DECL
[_]ProcHead[0-9’]* -> PROC-HEAD
[_]Decl[0-9’]* -> DECL
[_]Block[0-9’]* -> BLOCK
[_]Formal[0-9’]* -> FORMAL
[_]Formal"+"[0-9’]* -> {FORMAL ";"}+
[_]DeclList[0-9’]* -> DECL-LIST
[_]EmptyDecl[0-9’]* -> EMPTY-DECL

hiddens
sorts EMPTY-DECL

A.5 Module SyntaxProgram

%% --------------------
%% Module SyntaxProgram
%% --------------------

imports SyntaxHeaders SyntaxStats

exports
sorts PROGRAM %% BLOCK is defined in Module SyntaxHeaders
context-free syntax

"DECLARE" DECL-LIST "BEGIN" STAT-SEQ "END" -> BLOCK
"BEGIN" STAT-SEQ "END" -> BLOCK

"PROGRAM" ID ";" BLOCK "." -> PROGRAM

variables
[_]Program[0-9’]* -> PROGRAM
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A.6 Module SyntaxStats
%% ------------------
%% Module SyntaxStats
%% ------------------

imports SyntaxExpr

exports
sorts LABEL STAT STAT-SEQ ASSIGN-STAT PROC-STAT TEST-STAT

COND-STAT LOOP-STAT IN-OUT-STAT GOTO-STAT EMPTY-STAT

context-free syntax
ID -> LABEL
{ STAT ";" }+ -> STAT-SEQ

-> EMPTY-STAT
ID -> PROC-STAT
VARIABLE ":=" EXPR -> ASSIGN-STAT

"TEST" EXPR "END" -> TEST-STAT
"IF" EXPR "THEN" STAT-SEQ "ELSE" STAT-SEQ "END" -> COND-STAT
"IF" EXPR "THEN" STAT-SEQ "END" -> COND-STAT
"WHILE" EXPR "DO" STAT-SEQ "END" -> LOOP-STAT
"READ" "(" VARIABLE ")" -> IN-OUT-STAT
"WRITE" "(" EXPR ")" -> IN-OUT-STAT
"WRITE" "(" STRING ")" -> IN-OUT-STAT
"GOTO" LABEL -> GOTO-STAT
ID "(" {EXPR ","}+ ")" -> PROC-STAT
ASSIGN-STAT -> STAT-AUX
COND-STAT -> STAT-AUX
LOOP-STAT -> STAT-AUX
PROC-STAT -> STAT-AUX
GOTO-STAT -> STAT-AUX
IN-OUT-STAT -> STAT-AUX
EMPTY-STAT -> STAT-AUX
TEST-STAT -> STAT-AUX
STAT-AUX -> STAT
LABEL ":" STAT-AUX -> STAT

variables
[_]StatSeq[0-9’]* -> {STAT ";"}+
[_]StatSeq[0-9’]"*" -> {STAT ";"}*
[_]Stat[0-9’]* -> STAT
[_]ExprList[0-9]* -> {EXPR ","}*
[_]StatAux[’]* -> STAT-AUX
[_]Label[’]* -> LABEL
[_]AssignStat -> ASSIGN-STAT
[_]CondStat -> COND-STAT
[_]LoopStat -> LOOP-STAT
[_]InOutStat -> IN-OUT-STAT
[_]ProcStat -> PROC-STAT
[_]EmptyStat -> EMPTY-STAT
[_]GotoStat -> GOTO-STAT
[_]TestStat -> TEST-STAT

hiddens
sorts STAT-AUX

A.7 Module SyntaxTypes
%% ------------------
%% Module SyntaxTypes
%% ------------------

imports SyntaxConsts

exports
sorts TYPE SIMPLE-TYPE ARRAY-TYPE
context-free syntax
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"INTEGER" -> SIMPLE-TYPE
"REAL" -> SIMPLE-TYPE
"BOOLEAN" -> SIMPLE-TYPE

"ARRAY" "[" INT-CONST ".." INT-CONST "]" "OF" TYPE -> ARRAY-TYPE

SIMPLE-TYPE -> TYPE
ARRAY-TYPE -> TYPE

variables
[_]Type[’]* -> TYPE
[_]SimpleType[’]* -> SIMPLE-TYPE
[_]ArrayType[’]* -> ARRAY-TYPE

B Static Semantics of CLaX

B.1 Module Tc
%% ---------
%% Module Tc
%% ---------

imports TcLabel TcNint

exports
sorts TENV-LIST
context-free syntax

tc(PROGRAM) -> BOOL
collect( TENV-LIST, BLOCK ) -> BOOL
distribute( TENV-LIST, BLOCK ) -> BOOL
STAT -> BOOL
isbool(EXPR) -> BOOL
unique-decls(TENV*) -> BOOL
nonemptyarray(TENV) -> BOOL
no-dups(TENV) -> BOOL
get-id(DECL) -> ID
get-type(DECL) -> TYPE

equations

(* start: create initial empty type environment *)
(* -------------------------------------------- *)

[P0] tc(PROGRAM _Id ; _Block .) = collect([], _Block)

(* build type-environment by processing declarations *)
(* ------------------------------------------------- *)

[C1] collect(_Tenv* [_Decl*], DECLARE _EmptyDecl; _Decl*’ BEGIN _StatSeq END) =
collect(_Tenv* [_Decl*], DECLARE _Decl*’ BEGIN _StatSeq END)

[C2] collect(_Tenv* [_Decl*], DECLARE _VarDecl; _Decl*’ BEGIN _StatSeq END) =
collect(_Tenv* [_Decl*;_VarDecl], DECLARE _Decl*’ BEGIN _StatSeq END)

[C3] collect( _Tenv* [_Decl*], DECLARE _LabelDecl; _Decl*’ BEGIN _StatSeq END) =
collect(_Tenv* [_Decl*;_LabelDecl], DECLARE _Decl*’ BEGIN _StatSeq END)

[C4] collect(_Tenv* [_Decl*],DECLARE _ProcDecl; _Decl*’ BEGIN _StatSeq END)
= nonemptyarray(formals(_ProcDecl))

& collect(_Tenv* [_Decl*;_ProcDecl]
formals(_ProcDecl), body-of(_ProcDecl))

& collect(_Tenv* [_Decl*;_ProcDecl],
DECLARE _Decl*’ BEGIN _StatSeq END)

[C5] collect(_Tenv* [_Decl*], BEGIN _StatSeq END) =
collect(_Tenv* [_Decl*], DECLARE BEGIN _StatSeq END)
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[C6] collect(_Tenv* _Tenv , DECLARE BEGIN _StatSeq END) =
check(defines(_StatSeq), _StatSeq) &
unique(defines(_StatSeq)) &
unique-decls(_Tenv) & (* only need to check current scope! *)
distribute(_Tenv* _Tenv, BEGIN _StatSeq END)

(* flattening: move statements outside IF and WHILE statements *)
(* ----------------------------------------------------------- *)

[flat1] _StatSeq1*; WHILE _Expr DO_StatSeq2 END; _StatSeq3* =
_StatSeq1*; TEST _Expr END; _StatSeq2; _StatSeq3*

[flat2] _StatSeq1*; IF _Expr THEN_StatSeq2 END; _StatSeq3* =
_StatSeq1*; TEST _Expr END; _StatSeq2; _StatSeq3*

[flat3] _StatSeq1*; IF _Expr THEN_StatSeq2 ELSE _StatSeq3 END; _StatSeq4* =
_StatSeq1*; TEST _Expr END; _StatSeq2; _StatSeq3; _StatSeq4*

(* distribute type environments *)
(* ---------------------------- *)

[D1] distribute(_Tenv*, BEGIN _Stat ; _StatSeq END) =
distribute(_Tenv*, BEGIN _Stat END) &
distribute(_Tenv*, BEGIN _StatSeq END)

[D2] distribute(_Tenv*, BEGIN END) = true

[D3] distribute(_Tenv*, BEGIN _Id : _StatAux END) =
islabel( type-of(_Tenv*, _Id)) &
distribute(_Tenv*, BEGIN _StatAux END)

[D4] distribute(_Tenv*, BEGIN _Expr := _Expr’ END) =
type-of(_Tenv*, _Expr) := type-of(_Tenv*, _Expr’)

[D5] distribute(_Tenv*, BEGIN _Id END) = isproc((type-of(_Tenv*, _Id)) ())

[D6] distribute(_Tenv*, BEGIN _Id ( _ExprList ) END) =
isproc(type-of(_Tenv*, _Id) (types-of(_Tenv*, _ExprList))) &
vararg(type-of(_Tenv*, _Id) (_ExprList) )

[D7] distribute(_Tenv*, BEGIN READ ( _Expr ) END) =
READ ( type-of(_Tenv*, _Expr) )

[D8] distribute(_Tenv*, BEGIN WRITE ( _Expr ) END) =
WRITE ( type-of(_Tenv*, _Expr) )

[D9] distribute(_Tenv*, BEGIN WRITE ( _String ) END) = true

[D10] distribute(_Tenv*, BEGIN TEST _Expr END END) =
TEST type-of(_Tenv*, _Expr) END

[D11] distribute(_Tenv*, BEGIN GOTO _Id END) =
islabel( type-of(_Tenv*, _Id))

(* lookup of type in type environment *)
(* ---------------------------------- *)

[T1] type-of(_Tenv*, _Type) = _Type

[T2] get-id(_Decl) = _Id
=======================
type-of(_Tenv* [_Decl*; _Decl ; _Decl*’], _Id) = get-type(_Decl)

[default-T3] (* default rule *)
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_Id != get-id(_Decl)
=============================================
type-of(_Tenv* [_Decl*; _Decl; _Decl*’], _Id)
= type-of(_Tenv* [_Decl*; _Decl*’], _Id)

[T4] type-of(_Tenv*[], _Id) = type-of(_Tenv*, _Id)

[T5] type-of(_Tenv* _Tenv, (_Var [ _Expr’ ])) =
(type-of(_Tenv* _Tenv, _Var))[type-of(_Tenv* _Tenv, _Expr’)]

(* retrieve type of DECL *)
(* --------------------- *)

[G1] get-type( _Id:_Type ) = _Type
[G2] get-type( _Id:LABEL ) = LABEL-TYPE
[G3] get-type( _ProcHead; _Block ) = signature(_ProcHead)

(* get-id: get the identifier of a DECL *)
(* ------------------------------------ *)

[Id1] get-id( _Id:_Type) = _Id
[Id2] get-id( _Id:LABEL) = _Id
[Id3] get-id( PROCEDURE _Id; _Block ) = _Id
[Id4] get-id( PROCEDURE _Id(_Formal+); _Block ) = _Id

(* reduce correct cases to "true" *)
(* ------------------------------ *)

[R1] _SimpleType := _SimpleType = true
[R2] REAL := INTEGER = true
[R3] READ ( _SimpleType ) = true
[R4] WRITE ( _SimpleType ) = true
[R5] TEST BOOLEAN END = true

(* other stuff *)
(* ----------- *)

[IB0] isbool(BOOLEAN) = true

(* check for uniqueness of declarations *)
(* ------------------------------------ *)

[U1] unique-decls(_Tenv) = true when no-dups(_Tenv) != false

[N1] get-id(_Decl) = get-id(_Decl’)
=======================================================
no-dups([_Decl*;_Decl;_Decl*’;_Decl’;_Decl*’’]) = false

(* check array range *)
(* ----------------- *)

[NA0] nonemptyarray([_Id : _SimpleType]) = true
[NA1] nonemptyarray([_LabelDecl]) = true
[NA2] nonemptyarray([_Id : ARRAY [_IntConst .. _IntConst’] OF _Type]) =

_IntConst islessthan _IntConst’ & nonemptyarray([_Id : _Type])
[NA3] nonemptyarray([]) = true
[NA4] nonemptyarray([_D;_D+]) = nonemptyarray([_D]) & nonemptyarray([_D+])

B.2 Module TcBooleans
%% -----------------
%% Module TcBooleans
%% -----------------

exports
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sorts BOOL BOOL-CON
context-free syntax

true -> BOOL-CON
false -> BOOL-CON
BOOL-CON -> BOOL
BOOL "&" BOOL -> BOOL {assoc}
"(" BOOL ")" -> BOOL {bracket}

variables
Bool[1-9’]* -> BOOL
Bool-con[1-9’]*-> BOOL-CON

%%There are no equations in TcBooleans module.

B.3 Module TcSyntaxExt
%% ------------------
%% Module TcSyntaxExt (Syntax Extentions)
%% ------------------

imports SyntaxProgram

exports
context-free syntax

EXPR ":=" EXPR -> ASSIGN-STAT
EXPR "[" EXPR "]" -> EXPR
"READ" "(" EXPR ")" -> IN-OUT-STAT

priorities
{VARIABLE ":=" EXPR -> ASSIGN-STAT,

VARIABLE "[" EXPR "]" -> VARIABLE,
"READ" "(" VARIABLE ")" -> IN-OUT-STAT}

>
{EXPR ":=" EXPR -> ASSIGN-STAT,

EXPR "[" EXPR "]" -> EXPR,
"READ" "(" EXPR ")" -> IN-OUT-STAT}

equations

[t1] _Var := _Expr = _Expr’ := _Expr when _Expr’ = _Var
[t2] READ ( _Var ) = READ ( _Expr ) when _Expr = _Var

B.4 Module TcExpr
%% -------------
%% Module TcExpr
%% -------------

imports TcTenv

exports
sorts AOP BOP UOP OP

context-free syntax
AOP1 -> AOP
BOP1 -> BOP
AOP2 -> AOP
BOP2 -> BOP
AOP -> OP
BOP -> OP
COP -> OP
UAOP -> UOP
UBOP -> UOP

EXPR OP EXPR -> EXPR
UOP EXPR -> EXPR
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variables
[_]Aop[’]* -> AOP
[_]Bop[’]* -> BOP
[_]Op[’]* -> OP
[_]Uop[’]* -> UOP

priorities
{UAOP EXPR -> EXPR, UBOP EXPR -> EXPR, EXPR COP EXPR -> EXPR,

EXPR AOP2 EXPR -> EXPR, EXPR BOP2 EXPR -> EXPR,
EXPR AOP1 EXPR -> EXPR, EXPR BOP1 EXPR -> EXPR}

> {UOP EXPR -> EXPR, EXPR OP EXPR -> EXPR}

equations

[t0] _Expr _Cop _Expr’ = _Expr _Op _Expr’ when _Op = _Cop
[t1] _Expr _Aop1 _Expr’ = _Expr _Op _Expr’ when _Op = _Aop1
[t2] _Expr _Aop2 _Expr’ = _Expr _Op _Expr’ when _Op = _Aop2
[t3] _Expr _Bop1 _Expr’ = _Expr _Op _Expr’ when _Op = _Bop1
[t4] _Expr _Bop2 _Expr’ = _Expr _Op _Expr’ when _Op = _Bop2
[t5] _Ubop _Expr = _Uop _Expr when _Uop = _Ubop
[t6] _Uaop _Expr = _Uop _Expr when _Uop = _Uaop

[t11] _Uop BOOLEAN = BOOLEAN when _Uop = NOT
[t12] _Uop INTEGER = INTEGER when _Uop != NOT
[t13] _Uop REAL = REAL when _Uop != NOT
[t14] INTEGER _Op INTEGER = INTEGER when _Op = _Aop
[t15] REAL _Op REAL = REAL when _Op = _Aop, _Op != %
[t16] BOOLEAN _Op BOOLEAN = BOOLEAN when _Op = _Bop

[t17] _SimpleType _Op _SimpleType = BOOLEAN when _Op = _Cop

[V0] type-of(_Tenv*, _Uop _Expr) =
_Uop (type-of(_Tenv*, _Expr))

[V1] type-of(_Tenv*, (_Expr _Op _Expr’)) =
(type-of(_Tenv*,_Expr)) _Op (type-of(_Tenv*,_Expr’))

B.5 Module TcLabel
%% --------------
%% Module TcLabel
%% --------------

imports TcProc

exports
sorts LABEL-LIST
context-free syntax

ID* -> LABEL-LIST
defines( STAT-SEQ ) -> LABEL-LIST
unique( LABEL-LIST ) -> BOOL
no-dups( LABEL-LIST ) -> BOOL
check( LABEL-LIST, STAT-SEQ ) -> BOOL
islabel(EXPR) -> BOOL

variables
[_]Id"*"[’]* -> ID*
[_]Id"+"[’] -> ID+
[_]Labels[’]* -> ID*
[_]Labels"+" -> ID+
[_]LabelList[’]* -> LABEL-LIST

equations

[L0] defines(_StatAux ) =
[L1] defines(_Id : _StatAux ) = _Id
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[L2] _Labels’ = defines(_Stat ),
_Labels’’ = defines(_StatSeq),
_Labels = _Labels’ _Labels’’
============================
defines(_Stat ; _StatSeq) = _Labels

[IsL0] islabel(LABEL-TYPE) = true

(* check if there are any multiply defined labels *)

[U1] unique(_LabelList) = true when no-dups(_LabelList) != false

[N1] no-dups(_Id* _Id _Id*’ _Id _Id*’’) = false

(* check if labels that are being jumped to are defined *)

[C0] check(_LabelList, _Stat;_StatSeq) =
check(_LabelList, _Stat) & check(_LabelList, _StatSeq)

[C1] check(_LabelList, _AssignStat) = true
[C2] check(_LabelList, _TestStat) = true
[C3] check(_LabelList, _InOutStat) = true
[C4] check(_LabelList, _ProcStat) = true
[C5] check(_LabelList, _EmptyStat) = true
[C6] check(_LabelList, _Id: _StatAux) = check(_LabelList, _StatAux)

[C7] check(_Id* _Id _Id*’, GOTO _Id) = true
[default-C8]

_Id != _Id’
================
check(_Id* _Id’ _Id*’, GOTO _Id) = check(_Id* _Id*’, GOTO _Id)

B.6 Module TcNint
%% -------------
%% Module TcNint
%% -------------

imports TcBooleans SyntaxConsts

exports
context-free syntax

INT-CONST islessthan INT-CONST -> BOOL
hiddens

sorts INT INT-CON POS NEG NAT AUX

lexical syntax
[1-9][0-9]* -> POS %% constr
[+\-0] -> AUX

context-free syntax
toint INT-CONST -> INT
"-" POS -> NEG %% constr
"0" -> NAT %% constr
POS -> NAT
NAT -> INT-CON
NEG -> INT-CON
INT-CON -> INT

"P" INT -> INT
"S" INT -> INT

"(" INT ")" -> INT {bracket}
INT "<" INT -> BOOL
"-" INT -> INT

variables
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Int[0-9’]* -> INT

hiddens
context-free syntax

INT ";" INT -> INT {left} %% concatenation
hd "(" INT ")" -> INT
tl "(" INT ")" -> INT
"bigpos?" "(" INT ")" -> BOOL

variables
Int[0-9’]* -> INT
[xy][0-9’]* -> INT
[z][0-9’]* -> NEG
[n][0-9’]* -> POS
c[0-9’]* -> CHAR
c[0-9’]*"+" -> CHAR+
c[0-9’]*"*" -> CHAR*

priorities
";"

<
{ "S" INT -> INT, "P" INT -> INT, "-" INT -> INT}
<
{ "-" POS -> NEG }

equations

[S0] S-1=0 [S1] S0=1 [S2] S1=2 [S3] S2=3 [S4] S3=4
[S5] S4=5 [S6] S5=6 [S7] S6=7 [S8] S7=8 [S9] S8=9

[P0] P0=-1 [P1] P1=0 [P2] P2=1 [P3] P3=2 [P4] P4=3
[P5] P5=4 [P6] P6=5 [P7] P7=6 [P8] P8=7 [P9] P9 = 8

[11] Sn = hd(n) ; S tl(n) when tl(n) != 9, bigpos?(n) = true
[12] Sn = S hd(n) ; 0 when tl(n) = 9
[13] S(-n) = - n’ when n’ = Pn
[14] Pn = hd(n) ; P tl(n) when tl(n) != 0, bigpos?(n) = true
[15] Pn = P hd(n) ; 9 when tl(n) = 0, bigpos?(n) = true
[16] P(-n) = - n’ when n’ = Sn

[l1] 0 < 0 = false
[l2] 0 < n = true
[l3] 0 < z = false
[l4] n < x = Pn < Px
[l5] z < x = Sz < Sx

[h1] hd( pos(c+ c) ) = pos(c+)
[h2] hd( pos( c ) ) = 0

[t1] tl(pos(c+ "0")) = 0
[t2] tl(pos(c* c)) = pos(c) when pos(c* c) != pos(c* "0")

[o1] bigpos?(pos(c+ c)) = true

[o2] bigpos?(pos(c)) = false

[o2] pos(c+) ; pos(c’+) = pos(c+ c’+)
[o3] pos(c+) ; 0 = pos(c+ "0")
[o4] 0 ; x = x

[e1] - (n) = - n
[e2] - - n = n
[e3] - 0 = 0

[T0] toint int-const("+" c+) = toint int-const(c+)
[T1] toint int-const("-" c+) = - toint int-const(c+)
[T2] toint int-const("0" c+) = toint int-const(c+)
[T3] toint int-const(c) = pos(c)
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[T4] toint int-const(c c+) = pos(c c+)
when aux(c) != aux("0"),

aux(c) != aux("+"),
aux(c) != aux("-")

[L0] _IntConst islessthan _IntConst’ = true
when toint _IntConst < toint _IntConst’ = true

B.7 Module TcProc
%% -------------
%% Module TcProc
%% -------------

imports TcExpr

exports
sorts PROC-TYPE VTYPE TYPE-LIST
context-free syntax

"LABEL-TYPE" -> TYPE
"PROC""(" {VTYPE ";"}* ")" -> PROC-TYPE
PROC-TYPE -> TYPE
{TYPE ";"}* -> TYPE-LIST
types-of(TENV-LIST, {EXPR ","}*) -> TYPE-LIST
formals(PROC-DECL) -> TENV
signature(PROC-HEAD) -> PROC-TYPE
TYPE -> VTYPE
"VAR" TYPE -> VTYPE
vtype(FORMAL) -> VTYPE
isproc"(" EXPR "(" TYPE-LIST ")" ")" -> BOOL
vararg"(" EXPR "(" {EXPR ","}* ")" ")" -> BOOL
body-of( PROC-DECL ) -> BLOCK

variables
[_]Type"*"[’]* -> {TYPE ";"}*
[_]TypeList[’]* -> {TYPE ";"}*
[_]ProcType[’]* -> PROC-TYPE
[_]Vtype[’]* -> VTYPE
[_]VtypeList[’]* -> {VTYPE ";"}*

equations

(* compute a list of types for a list of expressions *)

[T1] types-of(_TenvList, _Expr) = type-of(_TenvList, _Expr)

[T2] type-of(_TenvList, _Expr) = _Type,
types-of(_TenvList, _ExprList) = _Type*
====================================================
types-of(_TenvList, _Expr,_ExprList) = _Type; _Type*

(* create TENV with the formal parameters of a procedure *)

[F0] formals(PROCEDURE _Id; _Block) = []
[F1] formals(PROCEDURE _Id (_VarDecl); _Block) = [_VarDecl]
[F2] formals(PROCEDURE _Id (VAR _VarDecl); _Block) = [_VarDecl]
[F3] formals(PROCEDURE _Id (_Formal); _Block) = [_Decl],

formals(PROCEDURE _Id (_Formal+); _Block) = [_Decl+]
========================================
formals(PROCEDURE _Id (_Formal;_Formal+); _Block) = [_Decl;_Decl+]

[S0] signature(PROCEDURE _Id) = PROC ()
[S1] signature(PROCEDURE _Id (_Formal)) = PROC (vtype(_Formal))
[S2] signature(PROCEDURE Id (_Formal+)) = PROC(_VtypeList) (* Id is a const :-*)

===============================================================================
signature(PROCEDURE _Id (_Formal; _Formal+)) = PROC(vtype(_Formal); _VtypeList)

[P0] isproc((PROC()) ()) = true
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[P1] isproc((PROC(_Type; _VtypeList)) (_Type; _TypeList)) =
isproc((PROC(_VtypeList)) (_TypeList))

[P2] isproc((PROC(VAR _Type; _VtypeList)) (_Type; _TypeList)) =
isproc((PROC(_VtypeList)) (_TypeList))

[VA0] vararg((PROC()) ()) = true
[VA1] vararg((PROC(_Type; _VtypeList)) (_Expr, _ExprList )) =

vararg((PROC(_VtypeList)) (_ExprList ))
[VA2] vararg((PROC(VAR _Type; _VtypeList)) (_Var, _ExprList )) =

vararg((PROC(_VtypeList)) (_ExprList ))

[VT0] vtype(VAR _Id : _Type) = VAR _Type
[VT1] vtype(_Id : _Type) = _Type

[B1] body-of( _ProcHead; _Block ) = _Block

B.8 Module TcTenv
%% -------------
%% Module TcTenv
%% -------------

imports TcSyntaxExt TcBooleans

exports
sorts TENV
context-free syntax

TYPE -> EXPR
"[" {DECL ";"}* "]" -> TENV
TENV* -> TENV-LIST
type-of(TENV-LIST, EXPR) -> TYPE

variables
[_]C"*" -> TENV*
[_]D"*"[’]* -> {DECL ";"}*
[_]D[’]* -> DECL
[_]D"+"[’]* -> {DECL ";"}+
[_]Tenv[’]* -> TENV
[_]Tenv"*"[’]* -> TENV*
[_]Tenv"+"[’]* -> TENV+
[_]TenvList[’]* -> TENV-LIST

equations

[1] _IntConst = INTEGER
[2] _RealConst = REAL
[3] _BoolConst = BOOLEAN

[4] (ARRAY[_IntConst .. _IntConst’] OF _Type) [ INTEGER ] = _Type

B.9 Module TcErrorsSyntax
%% ---------------------
%% Module TcErrorsSyntax
%% ---------------------

imports SyntaxProgram

exports
sorts MESSAGE MSG-LIST
context-free syntax

errors(PROGRAM) -> MSG-LIST
{ MESSAGE ";" }+ -> MSG-LIST

no-errors -> MESSAGE
err(EXPR) -> MESSAGE
incomp(MESSAGE) -> MESSAGE
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TYPE -> MESSAGE

undeclared-identifier ID -> MESSAGE
incompatible-operands(EXPR) -> MESSAGE
incompatible-array-access(EXPR) -> MESSAGE
used-as-operand EXPR -> MESSAGE
label-used-as-operand -> MESSAGE
assignment-incompatible BOOL -> MESSAGE
cannot-assign-to EXPR -> MESSAGE
cannot-assign-to-label -> MESSAGE
"Boolean-expected-in-cond" MESSAGE -> MESSAGE
undeclared-procedure-called ID -> MESSAGE
in-call expected-arg VTYPE found-arg MESSAGE -> MESSAGE
in-call expected-no-more-args-but-found TYPE-LIST -> MESSAGE
in-call expected-variable-arg VTYPE found-arg EXPR -> MESSAGE
only-simple-type-variable-allowed-in "READ" "(" MESSAGE ")" -> MESSAGE
only-simple-type-variable-allowed-in "WRITE" "(" MESSAGE ")" -> MESSAGE
array-decl-must-have-positive-size "(" INT-CONST ".." INT-CONST ")" -> MESSAGE
expected-label-found MESSAGE -> MESSAGE
multiply-defined-label ID -> MESSAGE
undefined-label ID -> MESSAGE
undeclared-label ID -> MESSAGE
multiple-declaration-in-same-scope ID -> MESSAGE
unary-operator UOP not-allowed-on-operand-of-type TYPE -> MESSAGE

B.10 Module TcErrors
%% ---------------
%% Module TcErrors
%% ---------------

imports Tc TcErrorsSyntax

exports
context-free syntax

errors(BOOL) -> MSG-LIST
err(TYPE-LIST) -> MSG-LIST
MSG-LIST "::" MSG-LIST -> MSG-LIST

variables
[_]Msg[’]* -> MESSAGE
[_]MsgList[’]* -> {MESSAGE ";"}*

equations

[Top] errors(_Program) = errors(tc(_Program))

[M0] _MsgList ; no-errors ; _MsgList’ = _MsgList ; _MsgList’
when _MsgList ; _MsgList’ = _MsgList’’ ; _Msg

[E0] errors(true) = no-errors

[E1] errors(Bool1 & Bool2) = errors(Bool1) :: errors(Bool2)

[M11] _MsgList :: _MsgList’ = _MsgList ; _MsgList’

[S01] errors(_SimpleType := _SimpleType’) =
assignment-incompatible (_SimpleType := _SimpleType’)

[S02] errors(_Expr[_Expr’] := _Expr’’) = err( _Expr[_Expr’] )

[S03] errors(LABEL-TYPE := _Expr) = cannot-assign-to-label

[S04] errors(_SimpleType := _Expr[_Expr’]) = incomp(err(_Expr[_Expr’]))
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[S05] errors(_SimpleType := _Expr _Op _Expr’) = incomp(err(_Expr _Op _Expr’))

[S06] errors(_SimpleType := _Uop _Expr) = incomp(err(_Uop _Expr))

[S07] errors(type-of(,_Id) := _Expr) = undeclared-identifier _Id

[S08] errors(_SimpleType := type-of(,_Id) ) = undeclared-identifier _Id

[S11] errors(isproc(type-of(,_Id)(_TypeList))) = undeclared-procedure-called _Id
[S12] errors(isproc(PROC(_Vtype; _VtypeList) (_Type;_TypeList) ))

= in-call expected-arg _Vtype found-arg incomp(err(_Type))
[S13] errors(isproc(PROC() (_Type;_TypeList) ))

= in-call expected-no-more-args-but-found _Type;_TypeList
[S14] errors(vararg(type-of(,_Id)(_ExprList))) = undeclared-procedure-called _Id
[S15] errors(vararg(PROC(_Vtype; _VtypeList) (_Expr, _ExprList) ))

= in-call expected-variable-arg _Vtype found-arg _Expr

[S2] errors(TEST _Expr END) = Boolean-expected-in-cond incomp(err(_Expr))

[S3] errors(READ(_Expr)) = only-simple-type-variable-allowed-in READ(incomp(err(_Expr)))
[S4] errors(WRITE(_Expr)) = only-simple-type-variable-allowed-in WRITE(incomp(err(_Expr)))

[S5] errors(islabel(_Expr)) = expected-label-found incomp(err(_Expr))

[E0x] err(_Uop type-of(,_Id)) = err(type-of(,_Id))
[E0y] err(_Expr _Op type-of(,_Id)) = err(type-of(,_Id))
[E0z] err((type-of(,_Id)) _Op _Expr) = err(type-of(,_Id))

[E1a] err((_Uop _Type) _Op _Expr) = err(_Uop _Type)
[E1b] err((_Type _Op _Type’) _Op’ _Expr) = err(_Type _Op _Type’)
[E1c] err(_Expr _Op (_Type _Op’ _Type’)) = err(_Type _Op’ _Type’)

[E1d] err(ARRAY [ _IntConst .. _IntConst’ ] OF _Type[_Expr])
= incompatible-array-access(_Expr)

[E1e] err(_Expr’) = incompatible-array-access(_Expr)
=============================================
err(_Expr’ _Op _Expr’’) = incompatible-array-access(_Expr)

[E1f] err(_Expr’’) = incompatible-array-access(_Expr)
=============================================
err(_Expr’ _Op _Expr’’) = incompatible-array-access(_Expr)

[E2a] err(_Uop _Type) = unary-operator _Uop not-allowed-on-operand-of-type _Type

[E2b] err(type-of(,_Id)) = undeclared-identifier _Id

[O1] incomp(undeclared-identifier _Id) = undeclared-identifier _Id
[O2] incomp(err(_SimpleType)) = _SimpleType
[O3] incomp(err(_SimpleType _Op _SimpleType’))

= incompatible-operands(_SimpleType _Op _SimpleType’)

[O4] incomp(err(LABEL-TYPE _Op _Expr)) = label-used-as-operand
[O5] incomp(err(_Expr _Op LABEL-TYPE)) = label-used-as-operand

[O6] err(_Expr’) = err(_Expr)
=======================
incomp(incompatible-array-access(_Expr)) = incompatible-array-access(_Expr’)

[O7] incomp(unary-operator _Uop not-allowed-on-operand-of-type _Type) =
unary-operator _Uop not-allowed-on-operand-of-type _Type

[O8] incomp(err((_Uop _Expr) _Op _Expr’)) = incomp(err(_Uop _Expr))

[O9] incomp(err(_Expr _Op (_Uop _Expr’))) = incomp(err(_Uop _Expr’))

[O10] incomp(err( (_Expr _Op _Expr’) _Op’ _Expr’’ )) =
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incomp(err( (_Expr _Op _Expr’) ))

[O11] incomp(err( _Expr _Op (_Expr’ _Op’ _Expr’’))) =
incomp(err( (_Expr’ _Op _Expr’’) ))

[O12] incomp(err( type-of(,_Id) [_Expr ])) =
incomp(err( type-of(,_Id) ))

[L0] errors(unique(_Id*_Id _Id*’ _Id _Id*’’)) = multiply-defined-label _Id

[L1] errors(check(, GOTO _Id)) = undefined-label _Id

[L2] errors(islabel(type-of(,_Id))) = undeclared-label _Id

[UE0] get-id(_Decl) = get-id(_Decl’)
=======================================
errors(unique-decls([_D*;_Decl;_D*’; _Decl’; _D*’’])) =

multiple-declaration-in-same-scope get-id(_Decl)

[AL0] errors(_IntConst islessthan _IntConst’)
= array-decl-must-have-positive-size(_IntConst .. _IntConst’)

C Earlier Tokenization
Earlier, when we used origin tracking to generate error reporters, ModuleSyntaxTokens defined sorts and tokens
which represent reserved words and special characters for which origin tracking is desired (see Section 6).The module
SyntaxTokens , in general, would not be used in a straightforward syntax specification; it was used for the purpose
increasing the origin tracking hits.

module SyntaxTokens
exports

sorts
LABEL-LEX PROCEDURE VAR-LEX DECLARE BEGIN ASGN IF THEN ELSE
END WHILE OF DO GOTO READ WRITE LPAR RPAR LSQ RSQ

context-free syntax

"LABEL" -> LABEL-LEX
"PROCEDURE" -> PROCEDURE
"VAR" -> VAR-LEX
"OF" -> OF
"(" -> LPAR
")" -> RPAR
"[" -> LSQ
"]" -> RSQ
"DECLARE" -> DECLARE
"BEGIN" -> BEGIN
":=" -> ASGN
"IF" -> IF
"THEN" -> THEN
"ELSE" -> ELSE
"END" -> END
"WHILE" -> WHILE
"DO" -> DO
"GOTO" -> GOTO
"READ" -> READ
"WRITE" -> WRITE

module SyntaxProgram

%% This module uses module SyntaxTokens. Note that
%% the keywords DECLARE, BEGIN and END are sorts with values
%% "DECLARE", "BEGIN" and "END" respectively
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imports SyntaxHeaders SyntaxStats

exports
sorts PROGRAM %% BLOCK defined in module SyntaxHeaders
context-free syntax

DECLARE DECL-LIST BEGIN STAT-SEQ END -> BLOCK
BEGIN STAT-SEQ END -> BLOCK

"PROGRAM" ID ";" BLOCK "." -> PROGRAM

variables
[_]Program[0-9’]* -> PROGRAM
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