Animators for Generated Programming
Environments

Frank Tip*

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
tip@cwi.nl

Abstract. Animation of execution is a necessary feature of source-level
debuggers. We present a framework where animators are generated from
existing algebraic specifications of interpreters. To this end, a pattern-
matching mechanism is used in conjunction with origin tracking, a generic
tracing technique. The generation of animators is illustrated using an
example language named CLaX, a Pascal relative. We study how our
approach can be extended to the generation of source-level debuggers
and algorithmic debuggers from specifications of interpreters.

1 Introduction

We study animators for generated programming environments. An animator is
a tool which visualizes program execution; typically, it highlights the statement
that is currently executing. Animators are especially useful for (automated) de-
bugging and tutoring.

We use the ASF+SDF Meta-environment [14] to generate programming
environments, consisting of syntax-directed editors, type-checkers, and inter-
preters, from algebraic specifications. Specifications are written in the formalism
ASF+SDF, a combination of the Algebraic Specification Formalism ASF [4], and
the Syntax Definition Formalism SDF [12]. Specifications can be executed in the
ASF+SDF Meta-environment as term rewriting systems [15].

Instead of explicitly extending specifications with animation facilities, we
generate animators from existing specifications of interpreters. We present a
generic mechanism for defining animators, consisting of two parts. First, we
define the events we are interested in. A typical example of such an event is the
execution of a statement. Second, the subjects of the events, i.e., the language
constructs involved, are determined. Events are defined by way of a pattern-
matching mechanism. Origin tracking [9] is used for determining the subjects.

We illustrate our techniques using an example language named CLaX, a
Pascal relative. In [10], the specification of a programming environment for this
language is described in detail.

Finally, we study how our approach can be extended to the generation of
source-level debuggers and algorithmic debuggers from specifications of inter-
preters. It is shown how, for CLaX, several debugger features can be defined.

* Partial support received from the European Communities under ESPRIT project 5399:
Compiler Generation for Parallel Machines — COMPARE.

2 Related Work

Often, animation is dealt with in an ad-hoc manner, such as keeping track of
line-numbers. Below, we discuss some generic approaches.

The program animation system PASTIS [16] allows the animation of For-
tran, C, and C++ source code without requiring changes to the program. The
system is built as an extension of the GNU source-level debugger, gdb [19]. This
debugger sends program data to an animation server. Visualization scripts serve
to determine which data is to be extracted from the program, and to which ani-
mators this data is to be sent. Information is represented by way of a relational
model. Animation scripts define how information is to be visualized: both textual
and graphical display of information is possible. Moreover, several animators can
execute in parallel. The main difference with our approach is that PASTIS relies
on the ad-hoc extension of a debugger. As a result, only languages that are sup-
ported by gdb can be supported by PASTIS. By contrast, we derive animators
from specifications. This means that, at least in principle, we can support any
language for which a specification is written.

In the context of the PSG system [3], a generator for language-specific de-
buggers was described in [2]. Language-specific compilers are generated by com-
piling denotational semantics definitions to a functional language. A standard,
language-independent interpreter is used to execute the generated functional
language fragments. Correspondences between the abstract syntax tree and the
generated fragments are maintained during compilation. To define debuggers, a
set of built-in debugging concepts is available. In particular, trace functions are
provided for the visualization of execution. Other notions enable one to inspect
the state of the interpreter, and to define breakpoints.

Bertot [6] contributes a technique called subject tracking to the specification
language Typol [7, 13] for animation and debugging purposes. A key property
of Typol specifications is that the meaning of a language construct is expressed
in terms of its sub-constructs. A special variable, Subject, serves to indicate the
language construct currently processed. This variable may be manipulated by the
specification writer, when different animation or debugging behavior is required.

Berry [5] presents an approach where animators are generated from struc-
tured operational semantics definitions. These specifications are augmented with
semantic display rules which determine how to perform animation when a par-
ticular semantic rule is being processed. Various views of the execution of a
program can be obtained by defining the appropriate display rules. Static views
consist of parts of the abstract syntax tree of a program, and dynamic views
are constructed from the program state during execution. As an example of a
dynamic view, the evaluation of a control predicate may be visualized as the
actual truth value it obtains during execution.

Apart from differences in the underlying specification formalisms, there are
two major differences between our approach and Berry’s. First, we only consider
the highlighting of the language construct which is currently being executed,
whereas Berry also considers very advanced animation features such as dynamic
call graphs, and reversible execution. The price he pays for this is the fact that

he needs to store the entire evaluation history. This contrasts with our method
which only involves a small linear run-time space overhead, and no global history
at all. Second, Berry’s Animator Generator generates animators as stand-alone
tools, whereas our animators are smoothly integrated in the programming envi-
ronments generated by the ASF+SDF system.

3 Specification of an Interpreter

Our example language, CLaX, features the following language concepts: types,
type coercion, overloaded operators, arrays, procedures with reference and value
parameters, nested scopes, assignment statements, loop statements, conditional
statements, and goto statements. In Figure 1, an example of a CLaX program
is shown.

PROGRAM example;
DECLARE
i: INTEGER; j: INTEGER;

PROCEDURE incr(in: INTEGER; VAR out: INTEGER);
BEGIN { incr }

out := in + 1;
END { incr }

BEGIN { example }
i = 3;
incr(i, j)
END. { example }

Fig. 1. Example of a CLaX program.

The interpreter for CLaX is based on the well-known concept of a stack of
activation records (see e.g., [1]). This stack contains one record for every proce-
dure that is being executed. Each record contains the code of that procedure,
a ‘pointer’ to the current statement, and a set of (references to) values defined
in the procedure. In our specification, two distinct stacks are used to model
the stack of activation records, allowing us to separate control flow issues from
operations on the data:

— The code stack consists of zero or more code records, where each code record
is a pair containing the name of the procedure, and a list of statements that
remains to be executed.

— The data stack consists of zero or more data records, with each data record
containing (i) the name of the procedure, (ii) scope information, (iii) label
continuations, and (iv) a list of zero or more identifier-value pairs.

As an example, we consider the execution of the CLaX program of Figure 1.
When the assignment statement in the procedure body is executed, the state
looks as follows:

< [incr, out := in + 1] [example, incr(i, j) 1],

[incr, 1, in : 3 out: ref(j,)]
[example, , 1 : 3 j : O dimcr : ---] >

The first line shows the code stack, containing two records: one for procedure
incr, and one for the main program. The first of these records, [incr, out
:= in + 1] tells us that the current procedure is named incr, and that the
list of statements that remains to be executed consists of the single statement
out := in + 1. The second and third line show (parts of) the data stack. The
first data record, [incr, 1, in : 3 out: ref(j,)] contains the value 3
for in; moreover, the value for out is a reference to the value of j in the next
record.

The CLaX interpreter is invoked by applying a function eval-program to
the abstract syntax tree (AST) of a program. First, an initial state is computed;
then, a recursive evaluation function eval is repeatedly applied to the state.
Applications of eval can be regarded as execution steps of the interpreter. These
steps are: (i) the execution of a statement, (ii) the return from a procedure, and
(iii) program termination (i.e., extraction of the values of global variables from
the final state). The interpreter computes the following list of variable-value
pairs for the example program of Figure 1:

i:3 j:4

To give an example of the flavor of the specification, Figure 2 shows equations
[ev7] and [ev8] which define the execution of an IF-THEN-ELSE statement.
Depending on the result of evaluating the predicate (by way of an auxiliary
function eval-predicate, not shown here), the IF statement is replaced by the
statements in either the THEN or in the ELSE branch. The complete specification of
the CLaX interpreter consists of approximately 200 equations. Basic arithmetic
operations and I/O are performed in Lisp.

Algebraic specifications can be executed as term rewriting systems [15]. A
term rewriting system (TRS) is obtained from an algebraic specification by ori-
enting the equations from left to right; such an oriented equation is referred to as
a rewrite rule. Term rewriting is a cyclic process; it consists of the transformation
of an initial term (in our setting: a function eval-program applied to the AST
of a CLaX program) by repeatedly matching subterms against left-hand sides of
rewrite rules. If a match succeeds, a reducible expression (redexz) is established,
and the variables in the rewrite rule obtain a binding. The redex is replaced by
the instantiation of the right-hand side of the rewrite-rule, and the term rewrit-
ing process proceeds by looking for a new match. A rewriting process terminates
when no more redexes can be found, the term is then said to be in normal form.

In the case of conditional TRSs, conditions have to be evaluated after a match
has been found. A conditional rewrite rule is only applicable if all its conditions

[ev7] eval-predicate(_Fzp, _DStack) = TRUE

eval(<[_Id, IF _Ezxp THEN _Stat+’ ELSE _Statx” END; _Statx]
_CRecx, _DStack>) =
eval(<[_Id, _Statx';_Statx] _CRecx, _DStack>)

[ev8] eval-predicate(_Fzp, _DStack) = FALSE

eval(<[_Id, IF _Ezp THEN _Stat+’ ELSE _Statx” END; _Statx]
_CRecx, _DStack>) =
eval(<[_Id, _Statx";_Statx] _CRecx, _DStack>)

Fig. 2. Equations defining the execution of an IF-THEN-ELSE statement.

succeed. The evaluation of a condition consists of the instantiation and rewriting
of the condition sides, and the comparison of the resulting normal forms.

4 Definition of Events

We mentioned that an application of eval corresponds to an execution step of
the interpreter. This can be restated as follows: an execution step takes place
when a redex matches the pattern eval(<[_Id, _Statx] _CRecx, _DStack>
). Here, the variables _Id, _Statx, _CRec*, and _DStack match any identifier,
any list of statements, any list of code records, and any data stack, respectively.
Specific applications of eval can be recognized by specializations of this pattern.
In particular, we propose that an application of eval corresponds to:

— the execution of a statement if the current code record contains at least
one more statement which is to be executed. The corresponding pattern,
eval(<[Id, _Stat; _Statx] _CRecx, _DStack>), is obtained by replac-
ing _Stat* by the more specific list _Stat; _Statx which matches one or more
statements.

— the return from a procedure if the current code record contains no more
code to be executed, and there is more than one record on the code stack.
This event corresponds exactly to a match with the pattern eval(<[Id,]
[LId", _Stat; _Statx] _CRecx, _DStack>). Note that the variable _Stat=
in the general pattern is replaced by the empty list, and the variable _C'Recx
by [_Id', _Stat; _Staix] _CRecx.

— program termination if the current code record contains no more code to be
executed, and there is exactly one record on the code stack. The pattern
which describes this event 1s eval(<[_Id, 1, _DStack>). This time we
have replaced both _Statx and _CRec* by empty lists.

Table 1 summarizes some events and corresponding patterns for CLaX.

Table 1. Events and corresponding patterns for CLaX.

Event Pattern

execution of a statement |eval(<[_Id, _Stat; _Statx] _CRecx, _DStack>)
return from a procedure |eval(<[_Id,] [_Id", _Stat; _Statx] _CRecx,
_DStack>)

evaluation of a predicate |eval-predicate(_Ezpr, _DStack)

processing of a declaration|init-decls(_Decl; _Declx, _Statx, _Path)

processing of a parameter |init-params(_Actual, _Actualx,

_Formal; _Formalx, _DStack)

5 Determining Subjects

By matching patterns against redexes, one can determine that a particular pro-
gram construct is executing. Next, we deal with the remaining question of finding
which construct is being executed. To this end, we need the following ingredients:

1. A means to trace subterms of redexes back to subterms of the program’s
abstract syntax tree.
2. A mechanism to indicate subterms of patterns that ‘correspond’ to subjects.

We use origin tracking to deal with the first issue. Informally stated, origin
tracking comprises of the following:

— Before the rewriting process is started, each symbol of the initial term is
annotated with positional information.

— Before the rewriting process is started, a propagation rule is derived auto-
matically for each equation of the specification.

— Whenever an equation is applied, positional information propagated from the
redex to the newly created subterm according to the corresponding propa-
gation rule.

For a formal definition of the origin function, its implementation, and a discussion
of its properties, the reader is referred to [9].

For the second issue, we use the well-known notion of paths (occurrences). A
path is a sequence of natural numbers corresponding to argument positions of
function symbols. A path uniquely identifies a function symbol in a term/pattern.
As an example, we consider the pattern eval (<[_Id, _Stat; _Statx] _CRecx,
_DStack>), which corresponds to the execution of a statement. Path (1 1 1
2 1) indicates the subterm _Stat, which is matched against the statement that
is currently executing. Figure 3 shows the pattern as a tree structure where
edges are labeled with argument positions of function symbols. Path (1112 1)
corresponds to the traversal of this tree from the root to the subterm _Stat.

Table 2 summarizes the paths to the subjects for each of the patterns shown
in Table 1.

eval

1
code-stack _DStack

P

stat-list

AN

_Stat _Statx

Fig. 3. Pattern eval(<[_Id, _Stat; _Statx] _CRecx, _DStack>) as a tree structure.

Table 2. Subjects of events. The first column contains paths indicating the subterms
of the patterns shown in boxes in the second column. The third column lists the cor-

responding subjects.

Path(s) |Pattern and subterm(s) indicated by; paths Subject(s)

(11121)eval(<[_Id, ; _Statx] _CRecx, _DStack>) |the statement

(11221) eval(<[./d, 1 [Id', ; -Statx] _CRecx, the procedure call
_DStack>)

(1) eval—predicate(, _DStack) the predicate
(11) init—decls(;,Decl*, _Stat+, _Path) the declaration
11), (21 init-params(, _Actualx, the actual and the

) ; _Formalx, _DStack) formal parameter

6 Example

As an example, we show some snapshots of the animator for CLaX that was
generated by the ASF+SDF system. The patterns and paths of Table 2 are used
to animate the execution of the program of Figure 1.

First, a match with pattern init-decls(_Decl; _Declx, _Statx, _Path) is
found. The origin of the subterm at path (1 1), which is matched against variable
_Decl is retrieved; the animation of the corresponding declaration is shown in

Figure 4. The next two animation steps (not shown) highlight the declaration of
j and the (procedure) declaration of incr, respectively.

= 0]
[] File Dizplay
eval-program |
FROGEAM example 8
LECLARE
i : INTEGER:
J + IMNTEGER:
FROCEDURE incr ¢ in ¢ IMTEGER:
WAR out : IMTEGER » :
BEGIM out := in + 1 EMD BEGIHN
i = 3:
irncr ¢ i.j 3 EMD L2

Fig. 4. Animation of the execution of a declaration.

Subsequently, two matches with the ‘execute statement’ pattern are found,
resulting in the animation of the assignment statement of the main program (see
Figure 5), followed by the animation of the call statement (not shown).

S| {10
[] File Display
eval—program i

PROGRAM example M

DECLARE

i t IMTEGER:

J 1 IMTEGER:

PROCEDURE incr ¢ in : IMTEGER:

YAR out : IMTEGER » :

BEGIM out 3= in + 1 EWD BEGIM

iz=3:

incr { i-j » EMD L

Fig. 5. Animation of the execution of a statement.

Then, the parameters of the procedure call are processed; the first of these
two animation steps is shown in Figure 6.

The remaining steps consist of highlighting the statement in the procedure
body, followed by the highlighting of the call statement in the main program
again. The latter step is due to a match with the ‘return from procedure’ pattern.

= lai0]
[] File Display
eval—program i
PROGRAM examnple x
LECLARE
i : IMTEGER:
J it IMTEGER:
PROCEDURE incr ¢ im z INTEGER;
WAR out i IMTEGER) :
BEGIM out := in + 1 EMD BEGIHN
i &= 88
incr i.3 » EMD L2

Fig. 6. Animation of formal and actual parameters.

7 Limitations

Experience with our example language CLaX has taught us that our method is
in principle suitable for a wide range of programming languages. Nevertheless,
there are a few limitations.

The fact that we generate animators from specifications for interpreters im-
plies that we can only perform animations which ‘correspond’ to execution steps
of the interpreter. Moreover, we can only detect events which can be defined
as syntactic constraints on redexes. These limitations do not appear to be very
restrictive, as is illustrated by the animator we have derived for CLaX.

The use of origin tracking for determining subjects works well for interpreter
specifications with a compositional structure, where the execution of a language
construct is either expressed in terms of the execution of its sub-constructs, or,
recursively, in terms of the execution of the same construct in a modified envi-
ronment. However, when the execution of a language construct is expressed in
terms of the execution of other constructs, origin tracking fails to establish rela-
tions. As a result, it will not be possible to determine the subject, and animation
steps will be missing.

We would like to emphasize that we do not consider this to be a major prob-
lem, because most interpreter specifications are — at least to a very large extent
— written in a compositional manner. In the case of the CLaX interpreter (which
was written before we studied animators), we have changed only 2 equations to
obtain the desired animation behavior.

As an example of a problem case, we show an equation which expresses the
execution of a REPEAT construct in terms of the execution of a WHILE construct:

[evX] eval(<[_Id, REPEAT _Statx UNTIL _Exp END; _Stat+']
_CRecx, _DStack>) =
eval(<[_Id, _Statx; WHILE NOT(_Ezp) DO _Statx END; _Statx']
_CRecx, _DStack>)

Naturally, the problem can be remedied by re-defining the execution of a
REPEAT statement in terms of itself and its sub-constructs. We are currently
investigating a more appealing solution to this problem, which consists of an
extension of the origin function. This would enable us to determine useful sub-
jects in cases such as the one described above. Some ideas in this direction are
discussed in [10, 8].

8 Generation of Source-level Debuggers

As an extension of the generation of animators, we are currently investigating
the generation of source-level debuggers from specifications of interpreters. Basic
debugger features such as single-stepping, breakpoints, state inspection, and pro-
viding backtrace information can be expressed in terms of our pattern-matching
approach. Below, we discuss how each of these features can be defined for CLaX.
For reasons of clarity, we will only pay attention to statement-level debugging
features (e.g., breakpoints on statements, single-stepping at statement level).
Obviously, each of these features can be defined for all appropriate language
constructs. For example, we could define a breakpoint on the ‘execution’ of a
control predicate.

Single Stepping
There is little difference between single-stepping, and the animation steps we
have presented earlier. A single CLaX statement is executed by continuing
the term rewriting process until the next match with pattern eval(<[Id,
_Stat; _Statx] _CRecx, _DStack>) is encountered.
Breakpoints
A breakpoint on a CLaX statement can be defined as follows:
1. The user indicates a statement subterm of the AST of the program (e.g.,
in a syntax-directed editor).
2. The path p from the root of the AST to the designated statement is
automatically determined by the debugger.
3. The rewriting process is continued until a match with pattern eval(
<[_Id, _Stat; _Statx] _CRecx, _DStack>) is encountered and the ori-
gin of the subterm matched against variable _Stat contains path p.
State Inspection
Using the function eval-exp of the CLaX specification, which computes the
value of an expression, the current value of an arbitrary source-level expres-
sion can be computed as follows. Suppose that variable _Ezp is bound to the
expression we want to evaluate. Then, its value can be computed by rewriting
the (instantiation of the) term eval-exp(_Ezp, _DStack), where the bind-
ing of variable _DStack is obtained during the last match with pattern eval(
<[Id, _Stat; _Statx] _CRecx, _DStack>). The rewriting process for the
interpreter itself is suspended for the duration of the eval-exp rewriting
process.

Backtrace Information
In Section 3, we outlined how an interpreter state contains one code record
for each procedure call. Each code record contains a list of statements re-
maining to be executed in that procedure; the first element of this list is the
current statement. All information needed for a backtrace is available, since
we can do the following for each code record:
— Retrieve the origin of the current statement, and highlight the corre-
sponding subterm of the AST.
— The values of parameters and local variables can be obtained by consid-
ering the corresponding record on the data stack.

More advanced features such as watchpoints [19], conditional breakpoints,
and breakpoints on a reference to a designated variable can be expressed in
similar ways. Moreover, since we operate in an interactive setting, changing the
values of variables or even the program itself is conceivable. Both of these features
can be implemented by physical modification of the interpreter state during the
rewriting process.

From the above discussion, we conclude that obtaining the functionality of a
source-level debugger is a feasible task. However, before we are able to generate
source-level debuggers, more work remains to be done on the development of a
formalism to specify both the behavior, and the user-interface of a debugger. For
example, if one wants to set a breakpoint on a particular language construct, this
could be done by selecting that construct in the ASF+SDF system’s structure
editor. Then, the system could infer the associated pattern from the type of the
selected language construct and the debugger specification.

9 Generation of Algorithmic Debuggers

An interesting extension of our work on the generation of conventional source-
level debuggers would be the generation of algorithmic debuggers [18, 11]. An
algorithmic debugger partially automates the task of localizing a bug by com-
paring the intended program behavior with the actual program behavior. The
intended behavior is obtained by asking the user whether or not a program unit
(e.g., a procedure) behaves correctly. Using the answers given by the user, the
location of the bug can be determined at the unit level.

In order to generate algorithmic debuggers from specification of interpreters,
the following issues have to be dealt with:

1. The original program has to be transformed into an equivalent, side-effect
free program. A possible approach is described in [17]. An extension of the
origin function can be used to relate subterms of the ASTs of the original
program, and the transformed one.

2. Algorithmic debugging is a post-mortem technique, based on the analysis of
the execution tree of a program. Our approach to generate animators and
debuggers, on the other hand, can be regarded as interactive debugging.
However, patterns could be used to intercept the events when information

(for the execution tree) needs to be stored. This information should include
the origins of the procedure calls, so as to be able to animate the algorithmic
debugging process.

3. A separate algorithmic debugger has to be constructed which interprets the
execution tree information, and uses the origins stored in (2) and the re-
lations between the original and the transformed program stored in (1) to
animate the algorithmic debugging process.

10 Conclusions and Future Work

We have presented a framework for incorporating animation features in gener-
ated programming environments where animators are generated from specifica-
tions of interpreters. We have considered simple animators which highlight the
language constructs that are currently being executed. Origin tracking and a
pattern-matching mechanism are used to define animators. The successful gen-
eration of an animator for CLaX shows the feasibility of our approach.

Section 7 describes some limitations, which can be summarized as follows.
First, we can only detect events which correspond to syntactic constraints on
redexes. Second, the use of origin tracking restricts us to specifications which
have a compositional structure. As it turns out, these limitations do not cause
much problems.

We claim that our approach for generating animators is suitable for a wide
range of imperative programming languages, including realistic languages such
as Pascal and C. We will investigate if animators can be generated for languages
with parallel and object-oriented features in a similar way. We conjecture that
these features will not cause fundamental problems.

A possible criticism is that patterns for defining events may become quite
complicated. One should bear in mind, however, that these patterns are similar
to the equations of the interpreter specification. We claim, therefore, that the
definition of animation features is an easy task for the specification writer.

In Section 8, we have outlined how our approach can be extended to the
generation of source-level debuggers, by indicating how various debugger fea-
tures can be defined for our example language. In Section 9, we have described
prerequisites for a further extension to the generation of algorithmic debuggers.

What remains to be developed is a formalism to specify animation and de-
bugging features. Such an animator/debugger specification would define both
the functionality and the user-interface of the generated tools.

Acknowledgements

I am grateful to Paul Klint, Peter Fritzson, T.B. Dinesh, and the AADEBUG’93

referees for their comments on drafts of this paper.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Aho, AV. | Sethi, R., Ullman, J.D.: Compilers. Principles, Techniques and Tools.

Addison-Wesley, 1986.

Bahlke, R., Moritz, B., Snelting, G.: A generator for language-specific debugging
systems. In Proceedings of the ACM SIGPLAN’87 Symposium on Interpreters
and Interpretive Technigues, pages 92—-101, 1987. Appeared as SIGPLAN Notices
22(7).

Bahlke R., Snelting, G.: The PSG system: from formal language definitions to
interactive programming environments. ACM Transactions on Programming Lan-
guages and Systems, 8(4):547-576, 1986.

. Bergstra, J.A., Heering, J., Klint, P., Eds.: Algebraic Specification. ACM Press

Frontier Series. The ACM Press in co-operation with Addison-Wesley, 1989.
Berry, D.: Generating Program Animators from Programming Language Seman-
tics. PhD thesis, University of Edinburgh, 1991.

Bertot, Y.: Occurrences in debugger specifications. In Proceedings of the ACM
SIGPLAN’91 Conference on Programming Language Design and Implementation,
pages 327-337, 1991. Appeared as SIGPLAN Notices 26(6).

Borras, P., Clément, D., Despeyroux, Th., Incerpi, J., Lang, B., Pascual, V.: CEN-
TAUR: the system. In Proceedings of the ACM SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software Development Environments, pages 14—
24, 1989. Appeared as SIGPLAN Notices 14(2).

Deursen, A. van: Origin tracking in primitive recursive schemes. Technical report,
Centrum voor Wiskunde en Informatica (CWI), 1993. To appear.

Deursen, A. van, Klint, P., Tip, F.: Origin tracking. Report CS-R9230, Centrum
voor Wiskunde en Informatica (CWI), 1992. To appear in Journal of Symbolic
Computation.

Dinesh, T.B., Tip, F.: Animators and error reporters for generated programming
environments. Report CS-R9253, Centrum voor Wiskunde en Informatica (CWI),
1992.

Fritzson, P., Gyimothy, T., Kamkar, M., Shahmehri, N.: Generalized algorithmic
debugging and testing. In Proceedings of the ACM SIGPLAN’91 Conference on
Programming Language Destgn and Implementation, pages 317-326, 1991. Ap-
peared as SIGPLAN Notices 26(6).

Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism
SDF - reference manual. SIGPLAN Notices, 24(11):43-75, 1989.

Kahn, G.: Natural semantics. In Brandenburg, F.J., Vidal-Naquet, G., Wirsing,
M., Eds.: Fourth Annual Symposium on Theoretical Aspects of Computer Science,
volume 247 of Lecture Notes in Computer Science, pages 22—-39. Springer-Verlag,
1987.

Klint, P.: A meta-environment for generating programming environments. ACM
Transactions on Software Engineering Methodology, 2(2):176-201, 1993.

Klop, JJW.: Term rewriting systems. In Abramsky, S., Gabbay, D., Maibaum, T.,
Eds.: Handbook of Logic in Computer Science, Vol II. Oxford University Press,
1991. Also CWI report CS-R9073.

Miiller, H., Winckler, J., Grzybek, S., Otte, M., Stoll, B., Equoy, F., Higilin, N.:
The program animation system PASTIS. Bericht 20, Universitat Freibiirg, Institut
fir Informatik, 1990.

Shahmehri, N.: Generalized Algorithmic Debugging. PhD thesis, Linképing Uni-
versity, 1991.

18. Shapiro E.Y.: Algorithmic Program Debugging. MIT Press, 1982.
19. Stallman, R.M., Pesch, R.H.: Using GDB, A guide to the GNU Source-Level De-
bugger. Free Software Foundation/Cygnus Support, 1991. Version 4.0.

This article was processed using the IATpX macro package with LLNCS style

