
Animators for Generated Programming

Environments

Frank Tip�

CWI� P�O� Box ����� ���� AB Amsterdam� The Netherlands
tip�cwi�nl

Abstract� Animation of execution is a necessary feature of source	level
debuggers� We present a framework where animators are generated from
existing algebraic speci
cations of interpreters� To this end� a pattern	
matching mechanism is used in conjunction with origin tracking� a generic
tracing technique� The generation of animators is illustrated using an
example language named CLaX� a Pascal relative� We study how our
approach can be extended to the generation of source	level debuggers
and algorithmic debuggers from speci
cations of interpreters�

� Introduction

We study animators for generated programming environments� An animator is
a tool which visualizes program execution� typically� it highlights the statement
that is currently executing� Animators are especially useful for �automated� de�
bugging and tutoring�

We use the ASF�SDF Meta�environment �	
� to generate programming
environments� consisting of syntax�directed editors� type�checkers� and inter�
preters� from algebraic speci�cations� Speci�cations are written in the formalism
ASF�SDF� a combination of the Algebraic Speci�cation Formalism ASF �
�� and
the Syntax De�nition Formalism SDF �	
�� Speci�cations can be executed in the
ASF�SDF Meta�environment as term rewriting systems �	���

Instead of explicitly extending speci�cations with animation facilities� we
generate animators from existing speci�cations of interpreters� We present a
generic mechanism for de�ning animators� consisting of two parts� First� we
de�ne the events we are interested in� A typical example of such an event is the
execution of a statement� Second� the subjects of the events� i�e�� the language
constructs involved� are determined� Events are de�ned by way of a pattern�
matching mechanism� Origin tracking ��� is used for determining the subjects�

We illustrate our techniques using an example language named CLaX� a
Pascal relative� In �	��� the speci�cation of a programming environment for this
language is described in detail�

Finally� we study how our approach can be extended to the generation of
source�level debuggers and algorithmic debuggers from speci�cations of inter�
preters� It is shown how� for CLaX� several debugger features can be de�ned�

� Partial support received from the European Communities under Esprit project ����

Compiler Generation for Parallel Machines � Compare�



� Related Work

Often� animation is dealt with in an ad�hoc manner� such as keeping track of
line�numbers� Below� we discuss some generic approaches�

The program animation system PASTIS �	�� allows the animation of For�
tran� C� and C�� source code without requiring changes to the program� The
system is built as an extension of the GNU source�level debugger� gdb �	��� This
debugger sends program data to an animation server� Visualization scripts serve
to determine which data is to be extracted from the program� and to which ani�
mators this data is to be sent� Information is represented by way of a relational
model�Animation scripts de�ne how information is to be visualized� both textual
and graphical display of information is possible� Moreover� several animators can
execute in parallel� The main di�erence with our approach is that PASTIS relies
on the ad�hoc extension of a debugger� As a result� only languages that are sup�
ported by gdb can be supported by PASTIS� By contrast� we derive animators
from speci�cations� This means that� at least in principle� we can support any
language for which a speci�cation is written�

In the context of the PSG system ���� a generator for language�speci�c de�
buggers was described in �
�� Language�speci�c compilers are generated by com�
piling denotational semantics de�nitions to a functional language� A standard�
language�independent interpreter is used to execute the generated functional
language fragments� Correspondences between the abstract syntax tree and the
generated fragments are maintained during compilation� To de�ne debuggers� a
set of built�in debugging concepts is available� In particular� trace functions are
provided for the visualization of execution� Other notions enable one to inspect
the state of the interpreter� and to de�ne breakpoints�

Bertot ��� contributes a technique called subject tracking to the speci�cation
language Typol ��� 	�� for animation and debugging purposes� A key property
of Typol speci�cations is that the meaning of a language construct is expressed
in terms of its sub�constructs� A special variable� Subject� serves to indicate the
language construct currently processed� This variable may be manipulated by the
speci�cation writer� when di�erent animation or debugging behavior is required�

Berry ��� presents an approach where animators are generated from struc�
tured operational semantics de�nitions� These speci�cations are augmented with
semantic display rules which determine how to perform animation when a par�
ticular semantic rule is being processed� Various views of the execution of a
program can be obtained by de�ning the appropriate display rules� Static views
consist of parts of the abstract syntax tree of a program� and dynamic views
are constructed from the program state during execution� As an example of a
dynamic view� the evaluation of a control predicate may be visualized as the
actual truth value it obtains during execution�

Apart from di�erences in the underlying speci�cation formalisms� there are
two major di�erences between our approach and Berry�s� First� we only consider
the highlighting of the language construct which is currently being executed�
whereas Berry also considers very advanced animation features such as dynamic
call graphs� and reversible execution� The price he pays for this is the fact that



he needs to store the entire evaluation history� This contrasts with our method
which only involves a small linear run�time space overhead� and no global history
at all� Second� Berry�s Animator Generator generates animators as stand�alone
tools� whereas our animators are smoothly integrated in the programming envi�
ronments generated by the ASF�SDF system�

� Speci�cation of an Interpreter

Our example language� CLaX� features the following language concepts� types�
type coercion� overloaded operators� arrays� procedures with reference and value
parameters� nested scopes� assignment statements� loop statements� conditional
statements� and goto statements� In Figure 	� an example of a CLaX program
is shown�

PROGRAM example�

DECLARE

i� INTEGER� j� INTEGER�

PROCEDURE incr�in� INTEGER� VAR out� INTEGER��

BEGIN � incr 	

out �
 in � ��

END � incr 	

BEGIN � example 	

i �
 
�

incr�i� j�

END� � example 	

Fig� �� Example of a CLaX program�

The interpreter for CLaX is based on the well�known concept of a stack of
activation records �see e�g�� �	��� This stack contains one record for every proce�
dure that is being executed� Each record contains the code of that procedure�
a �pointer� to the current statement� and a set of �references to� values de�ned
in the procedure� In our speci�cation� two distinct stacks are used to model
the stack of activation records� allowing us to separate control �ow issues from
operations on the data�

� The code stack consists of zero or more code records� where each code record
is a pair containing the name of the procedure� and a list of statements that
remains to be executed�

� The data stack consists of zero or more data records� with each data record
containing �i� the name of the procedure� �ii� scope information� �iii� label
continuations� and �iv� a list of zero or more identi�er�value pairs�



As an example� we consider the execution of the CLaX program of Figure 	�
When the assignment statement in the procedure body is executed� the state
looks as follows�

� � incr� out �� in � � � � example� incr	i� j
 ��

� incr� �� in � � out� ref	j� 
 �

� example� � i � � j � � incr � � � � � 


The �rst line shows the code stack� containing two records� one for procedure
incr� and one for the main program� The �rst of these records� � incr� out

�� in � � � tells us that the current procedure is named incr� and that the
list of statements that remains to be executed consists of the single statement
out �� in � �� The second and third line show �parts of� the data stack� The
�rst data record� � incr� �� in � � out� ref	j� 
 � contains the value �
for in� moreover� the value for out is a reference to the value of j in the next
record�

The CLaX interpreter is invoked by applying a function eval�program to
the abstract syntax tree �AST� of a program� First� an initial state is computed�
then� a recursive evaluation function eval is repeatedly applied to the state�
Applications of eval can be regarded as execution steps of the interpreter� These
steps are� �i� the execution of a statement� �ii� the return from a procedure� and
�iii� program termination �i�e�� extraction of the values of global variables from
the �nal state�� The interpreter computes the following list of variable�value
pairs for the example program of Figure 	�

i � � j � �

To give an example of the �avor of the speci�cation� Figure 
 shows equations
�ev�� and �ev�� which de�ne the execution of an IF�THEN�ELSE statement�
Depending on the result of evaluating the predicate �by way of an auxiliary
function eval�predicate� not shown here�� the IF statement is replaced by the
statements in either the THEN or in the ELSE branch� The complete speci�cation of
the CLaX interpreter consists of approximately 
�� equations� Basic arithmetic
operations and I�O are performed in Lisp�

Algebraic speci�cations can be executed as term rewriting systems �	��� A
term rewriting system �TRS� is obtained from an algebraic speci�cation by ori�
enting the equations from left to right� such an oriented equation is referred to as
a rewrite rule� Term rewriting is a cyclic process� it consists of the transformation
of an initial term �in our setting� a function eval�program applied to the AST
of a CLaX program� by repeatedly matching subterms against left�hand sides of
rewrite rules� If a match succeeds� a reducible expression �redex� is established�
and the variables in the rewrite rule obtain a binding� The redex is replaced by
the instantiation of the right�hand side of the rewrite�rule� and the term rewrit�
ing process proceeds by looking for a new match� A rewriting process terminates
when no more redexes can be found� the term is then said to be in normal form�

In the case of conditional TRSs� conditions have to be evaluated after a match
has been found� A conditional rewrite rule is only applicable if all its conditions



�ev�� eval�predicate� Exp� DStack� 
 TRUE



























































eval� �� Id� IF Exp THEN Stat�� ELSE Stat��� END� Stat��
CRec�� DStack� � 


eval� �� Id� Stat��� Stat�� CRec�� DStack� �

�ev�� eval�predicate� Exp� DStack� 
 FALSE



























































eval� �� Id� IF Exp THEN Stat�� ELSE Stat��� END� Stat��
CRec�� DStack� � 


eval� �� Id� Stat���� Stat�� CRec�� DStack� �

Fig� �� Equations de
ning the execution of an IF�THEN�ELSE statement�

succeed� The evaluation of a condition consists of the instantiation and rewriting
of the condition sides� and the comparison of the resulting normal forms�

� De�nition of Events

We mentioned that an application of eval corresponds to an execution step of
the interpreter� This can be restated as follows� an execution step takes place
when a redex matches the pattern eval	 �� Id� Stat�� CRec�� DStack



� Here� the variables Id � Stat�� CRec�� and DStack match any identi�er�
any list of statements� any list of code records� and any data stack� respectively�
Speci�c applications of eval can be recognized by specializations of this pattern�
In particular� we propose that an application of eval corresponds to�

� the execution of a statement if the current code record contains at least

one more statement which is to be executed� The corresponding pattern�
eval	 �� Id� Stat� Stat�� CRec�� DStack
 
� is obtained by replac�
ing Stat� by the more speci�c list Stat� Stat� which matches one or more
statements�

� the return from a procedure if the current code record contains no more
code to be executed� and there is more than one record on the code stack�
This event corresponds exactly to a match with the pattern eval	 �� Id� �

� Id �� Stat� Stat�� CRec�� DStack
 
� Note that the variable Stat�

in the general pattern is replaced by the empty list� and the variable CRec�

by � Id �� Stat� Stat�� CRec��
� program termination if the current code record contains no more code to be
executed� and there is exactly one record on the code stack� The pattern
which describes this event is eval	 �� Id� �� DStack
 
� This time we
have replaced both Stat� and CRec� by empty lists�

Table 	 summarizes some events and corresponding patterns for CLaX�



Table �� Events and corresponding patterns for CLaX�

Event Pattern

execution of a statement eval� �� Id� Stat� Stat�� CRec�� DStack� �

return from a procedure eval� �� Id� � � Id �� Stat� Stat�� CRec��
DStack� �

evaluation of a predicate eval�predicate� Expr� DStack�

processing of a declaration init�decls� Decl� Decl�� Stat�� Path�

processing of a parameter init�params� Actual� Actual��
Formal� Formal�� DStack�

� Determining Subjects

By matching patterns against redexes� one can determine that a particular pro�
gram construct is executing� Next� we deal with the remaining question of �nding
which construct is being executed� To this end� we need the following ingredients�

	� A means to trace subterms of redexes back to subterms of the program�s
abstract syntax tree�


� A mechanism to indicate subterms of patterns that �correspond� to subjects�

We use origin tracking to deal with the �rst issue� Informally stated� origin
tracking comprises of the following�

� Before the rewriting process is started� each symbol of the initial term is
annotated with positional information�

� Before the rewriting process is started� a propagation rule is derived auto�
matically for each equation of the speci�cation�

� Whenever an equation is applied� positional information propagated from the
redex to the newly created subterm according to the corresponding propa�
gation rule�

For a formal de�nition of the origin function� its implementation� and a discussion
of its properties� the reader is referred to ����

For the second issue� we use the well�known notion of paths �occurrences�� A
path is a sequence of natural numbers corresponding to argument positions of
function symbols� A path uniquely identi�es a function symbol in a term�pattern�
As an example� we consider the pattern eval	 �� Id� Stat� Stat�� CRec��

DStack
 
� which corresponds to the execution of a statement� Path �	 	 	

 	� indicates the subterm Stat � which is matched against the statement that
is currently executing� Figure � shows the pattern as a tree structure where
edges are labeled with argument positions of function symbols� Path �	 	 	 
 	�
corresponds to the traversal of this tree from the root to the subterm Stat �

Table 
 summarizes the paths to the subjects for each of the patterns shown
in Table 	�



eval

�

� ��� �

�

code�stack

�

� �� � �

�

Id

�

stat�list

�

Stat

�

Stat�

�

CRec�

�

DStack

Fig� �� Pattern eval� �� Id� Stat� Stat�� CRec�� DStack� � as a tree structure�

Table �� Subjects of events� The 
rst column contains paths indicating the subterms
of the patterns shown in boxes in the second column� The third column lists the cor	
responding subjects�

Path�s� Pattern and subterm�s� indicated by paths Subject�s�

�� � � � �� eval� �� Id� Stat � Stat�� CRec�� DStack� � the statement

�� � � � �� eval� �� Id� � � Id �� Stat � Stat�� CRec��
DStack� �

the procedure call

��� eval�predicate� Expr � DStack� the predicate

�� �� init�decls� Decl � Decl�� Stat�� Path� the declaration

�� ��� �� ��
init�params� Actual � Actual��

Formal � Formal�� DStack�

the actual and the
formal parameter

� Example

As an example� we show some snapshots of the animator for CLaX that was
generated by the ASF�SDF system� The patterns and paths of Table 
 are used
to animate the execution of the program of Figure 	�

First� a match with pattern init�decls	 Decl� Decl�� Stat�� Path
 is
found� The origin of the subterm at path �	 	�� which is matched against variable
Decl is retrieved� the animation of the corresponding declaration is shown in



Figure 
� The next two animation steps �not shown� highlight the declaration of
j and the �procedure� declaration of incr� respectively�

Fig� �� Animation of the execution of a declaration�

Subsequently� two matches with the �execute statement� pattern are found�
resulting in the animation of the assignment statement of the main program �see
Figure ��� followed by the animation of the call statement �not shown��

Fig� 	� Animation of the execution of a statement�

Then� the parameters of the procedure call are processed� the �rst of these
two animation steps is shown in Figure ��

The remaining steps consist of highlighting the statement in the procedure
body� followed by the highlighting of the call statement in the main program
again� The latter step is due to a match with the �return from procedure� pattern�



Fig� 
� Animation of formal and actual parameters�

� Limitations

Experience with our example language CLaX has taught us that our method is
in principle suitable for a wide range of programming languages� Nevertheless�
there are a few limitations�

The fact that we generate animators from speci�cations for interpreters im�
plies that we can only perform animations which �correspond� to execution steps
of the interpreter� Moreover� we can only detect events which can be de�ned
as syntactic constraints on redexes� These limitations do not appear to be very
restrictive� as is illustrated by the animator we have derived for CLaX�

The use of origin tracking for determining subjects works well for interpreter
speci�cations with a compositional structure� where the execution of a language
construct is either expressed in terms of the execution of its sub�constructs� or�
recursively� in terms of the execution of the same construct in a modi�ed envi�
ronment� However� when the execution of a language construct is expressed in
terms of the execution of other constructs� origin tracking fails to establish rela�
tions� As a result� it will not be possible to determine the subject� and animation
steps will be missing�

We would like to emphasize that we do not consider this to be a major prob�
lem� because most interpreter speci�cations are � at least to a very large extent
� written in a compositional manner� In the case of the CLaX interpreter �which
was written before we studied animators�� we have changed only 
 equations to
obtain the desired animation behavior�

As an example of a problem case� we show an equation which expresses the
execution of a REPEAT construct in terms of the execution of a WHILE construct�

�evX� eval	 �� Id� REPEAT Stat� UNTIL Exp END� Stat���

CRec�� DStack
 
 �

eval	 �� Id� Stat�� WHILE NOT	 Exp
 DO Stat� END� Stat���

CRec�� DStack
 




Naturally� the problem can be remedied by re�de�ning the execution of a
REPEAT statement in terms of itself and its sub�constructs� We are currently
investigating a more appealing solution to this problem� which consists of an
extension of the origin function� This would enable us to determine useful sub�
jects in cases such as the one described above� Some ideas in this direction are
discussed in �	�� ���

	 Generation of Source
level Debuggers

As an extension of the generation of animators� we are currently investigating
the generation of source�level debuggers from speci�cations of interpreters� Basic
debugger features such as single�stepping� breakpoints� state inspection� and pro�
viding backtrace information can be expressed in terms of our pattern�matching
approach� Below� we discuss how each of these features can be de�ned for CLaX�
For reasons of clarity� we will only pay attention to statement�level debugging
features �e�g�� breakpoints on statements� single�stepping at statement level��
Obviously� each of these features can be de�ned for all appropriate language
constructs� For example� we could de�ne a breakpoint on the �execution� of a
control predicate�

Single Stepping

There is little di�erence between single�stepping� and the animation steps we
have presented earlier� A single CLaX statement is executed by continuing
the term rewriting process until the next match with pattern eval	 �� Id�

Stat� Stat�� CRec�� DStack
 
 is encountered�

Breakpoints

A breakpoint on a CLaX statement can be de�ned as follows�

	� The user indicates a statement subterm of the AST of the program �e�g��
in a syntax�directed editor��


� The path p from the root of the AST to the designated statement is
automatically determined by the debugger�

�� The rewriting process is continued until a match with pattern eval	

�� Id� Stat� Stat�� CRec�� DStack
 
 is encountered and the ori�
gin of the subterm matched against variable Stat contains path p�

State Inspection

Using the function eval�exp of the CLaX speci�cation� which computes the
value of an expression� the current value of an arbitrary source�level expres�
sion can be computed as follows� Suppose that variable Exp is bound to the
expression we want to evaluate� Then� its value can be computed by rewriting
the �instantiation of the� term eval�exp	 Exp� DStack
� where the bind�
ing of variable DStack is obtained during the last match with pattern eval	

�� Id� Stat� Stat�� CRec�� DStack
 
� The rewriting process for the
interpreter itself is suspended for the duration of the eval�exp rewriting
process�



Backtrace Information
In Section �� we outlined how an interpreter state contains one code record
for each procedure call� Each code record contains a list of statements re�
maining to be executed in that procedure� the �rst element of this list is the
current statement� All information needed for a backtrace is available� since
we can do the following for each code record�
� Retrieve the origin of the current statement� and highlight the corre�
sponding subterm of the AST�

� The values of parameters and local variables can be obtained by consid�
ering the corresponding record on the data stack�

More advanced features such as watchpoints �	��� conditional breakpoints�
and breakpoints on a reference to a designated variable can be expressed in
similar ways� Moreover� since we operate in an interactive setting� changing the
values of variables or even the program itself is conceivable� Both of these features
can be implemented by physical modi�cation of the interpreter state during the
rewriting process�

From the above discussion� we conclude that obtaining the functionality of a
source�level debugger is a feasible task� However� before we are able to generate
source�level debuggers� more work remains to be done on the development of a
formalism to specify both the behavior� and the user�interface of a debugger� For
example� if one wants to set a breakpoint on a particular language construct� this
could be done by selecting that construct in the ASF�SDF system�s structure
editor� Then� the system could infer the associated pattern from the type of the
selected language construct and the debugger speci�cation�

� Generation of Algorithmic Debuggers

An interesting extension of our work on the generation of conventional source�
level debuggers would be the generation of algorithmic debuggers �	�� 		�� An
algorithmic debugger partially automates the task of localizing a bug by com�
paring the intended program behavior with the actual program behavior� The
intended behavior is obtained by asking the user whether or not a program unit
�e�g�� a procedure� behaves correctly� Using the answers given by the user� the
location of the bug can be determined at the unit level�

In order to generate algorithmic debuggers from speci�cation of interpreters�
the following issues have to be dealt with�

	� The original program has to be transformed into an equivalent� side�e�ect
free program� A possible approach is described in �	��� An extension of the
origin function can be used to relate subterms of the ASTs of the original
program� and the transformed one�


� Algorithmic debugging is a post�mortem technique� based on the analysis of
the execution tree of a program� Our approach to generate animators and
debuggers� on the other hand� can be regarded as interactive debugging�
However� patterns could be used to intercept the events when information



�for the execution tree� needs to be stored� This information should include
the origins of the procedure calls� so as to be able to animate the algorithmic
debugging process�

�� A separate algorithmic debugger has to be constructed which interprets the
execution tree information� and uses the origins stored in �
� and the re�
lations between the original and the transformed program stored in �	� to
animate the algorithmic debugging process�

�� Conclusions and Future Work

We have presented a framework for incorporating animation features in gener�
ated programming environments where animators are generated from speci�ca�
tions of interpreters� We have considered simple animators which highlight the
language constructs that are currently being executed� Origin tracking and a
pattern�matching mechanism are used to de�ne animators� The successful gen�
eration of an animator for CLaX shows the feasibility of our approach�

Section � describes some limitations� which can be summarized as follows�
First� we can only detect events which correspond to syntactic constraints on
redexes� Second� the use of origin tracking restricts us to speci�cations which
have a compositional structure� As it turns out� these limitations do not cause
much problems�

We claim that our approach for generating animators is suitable for a wide
range of imperative programming languages� including realistic languages such
as Pascal and C� We will investigate if animators can be generated for languages
with parallel and object�oriented features in a similar way� We conjecture that
these features will not cause fundamental problems�

A possible criticism is that patterns for de�ning events may become quite
complicated� One should bear in mind� however� that these patterns are similar
to the equations of the interpreter speci�cation� We claim� therefore� that the
de�nition of animation features is an easy task for the speci�cation writer�

In Section �� we have outlined how our approach can be extended to the
generation of source�level debuggers� by indicating how various debugger fea�
tures can be de�ned for our example language� In Section �� we have described
prerequisites for a further extension to the generation of algorithmic debuggers�

What remains to be developed is a formalism to specify animation and de�
bugging features� Such an animator�debugger speci�cation would de�ne both
the functionality and the user�interface of the generated tools�

Acknowledgements

I am grateful to Paul Klint� Peter Fritzson� T�B� Dinesh� and the AADEBUG���
referees for their comments on drafts of this paper�



References

�� Aho� A�V� � Sethi� R�� Ullman� J�D�
 Compilers� Principles� Techniques and Tools�
Addison	Wesley� �����

�� Bahlke� R�� Moritz� B�� Snelting� G�
 A generator for language	speci
c debugging
systems� In Proceedings of the ACM SIGPLAN��� Symposium on Interpreters
and Interpretive Techniques� pages ������� ����� Appeared as SIGPLAN Notices
������

�� Bahlke R�� Snelting� G�
 The PSG system
 from formal language de
nitions to
interactive programming environments� ACM Transactions on Programming Lan�
guages and Systems� ����
�������� �����

�� Bergstra� J�A�� Heering� J�� Klint� P�� Eds�
 Algebraic Speci�cation� ACM Press
Frontier Series� The ACM Press in co	operation with Addison	Wesley� �����

�� Berry� D�
 Generating Program Animators from Programming Language Seman�
tics� PhD thesis� University of Edinburgh� �����

�� Bertot� Y�
 Occurrences in debugger speci
cations� In Proceedings of the ACM
SIGPLAN�	
 Conference on Programming Language Design and Implementation�
pages �������� ����� Appeared as SIGPLAN Notices ������

�� Borras� P�� Cl�ement� D�� Despeyroux� Th�� Incerpi� J�� Lang� B�� Pascual� V�
 Cen�
taur
 the system� In Proceedings of the ACM SIGSOFT�SIGPLAN Software En�
gineering Symposium on Practical Software Development Environments� pages ���
��� ����� Appeared as SIGPLAN Notices ������

�� Deursen� A� van
 Origin tracking in primitive recursive schemes� Technical report�
Centrum voor Wiskunde en Informatica �CWI�� ����� To appear�

�� Deursen� A� van� Klint� P�� Tip� F�
 Origin tracking� Report CS	R����� Centrum
voor Wiskunde en Informatica �CWI�� ����� To appear in Journal of Symbolic
Computation�

��� Dinesh� T�B�� Tip� F�
 Animators and error reporters for generated programming
environments� Report CS	R����� Centrum voor Wiskunde en Informatica �CWI��
�����

��� Fritzson� P�� Gyimothy� T�� Kamkar� M�� Shahmehri� N�
 Generalized algorithmic
debugging and testing� In Proceedings of the ACM SIGPLAN�	
 Conference on
Programming Language Design and Implementation� pages �������� ����� Ap	
peared as SIGPLAN Notices ������

��� Heering� J�� Hendriks� P�R�H�� Klint� P�� Rekers� J�
 The syntax de
nition formalism
SDF 	 reference manual� SIGPLAN Notices� ������
������ �����

��� Kahn� G�
 Natural semantics� In Brandenburg� F�J�� Vidal	Naquet� G�� Wirsing�
M�� Eds�
 Fourth Annual Symposium on Theoretical Aspects of Computer Science�
volume ��� of Lecture Notes in Computer Science� pages ������ Springer	Verlag�
�����

��� Klint� P�
 A meta	environment for generating programming environments� ACM
Transactions on Software Engineering Methodology� ����
�������� �����

��� Klop� J�W�
 Term rewriting systems� In Abramsky� S�� Gabbay� D�� Maibaum� T��
Eds�
 Handbook of Logic in Computer Science� Vol II� Oxford University Press�
����� Also CWI report CS	R�����

��� M�uller� H�� Winckler� J�� Grzybek� S�� Otte� M�� Stoll� B�� Equoy� F�� Higilin� N�

The program animation system PASTIS� Bericht ��� Universit�at Freib�urg� Institut
f�ur Informatik� �����

��� Shahmehri� N�
 Generalized Algorithmic Debugging� PhD thesis� Link�oping Uni	
versity� �����



��� Shapiro E�Y�
 Algorithmic Program Debugging� MIT Press� �����
��� Stallman� R�M�� Pesch� R�H�
 Using GDB� A guide to the GNU Source�Level De�

bugger� Free Software Foundation�Cygnus Support� ����� Version ����

This article was processed using the LaTEX macro package with LLNCS style


