Class Hierarchy Specialization*

Frank Tip and Peter F. Sweeney

IBM T.J. Watson Research Center
P.O. Boz 70/
Yorktown Hewghts, NY 10598, USA
E-mail: {tip,pfs}@watson.ibm.com

December 10, 1999

Abstract

Many class libraries are designed with an emphasis on generality and extensibil-
ity. Applications often exercise only part of a library’s functionality. As a result, the
objects created by an application may contain unused (user-specified or compiler-
generated) members. Redundant members in objects are undesirable because they
increase an application’s memory usage.

We present an algorithm for specializing a class hierarchy with respect to its
usage in a program P. That is, the algorithm analyzes the member access patterns
for P’s variables, and creates distinct classes for variables that access different
members. The algorithm addresses the inheritance mechanisms of C++ in their
full generality, including multiple inheritance and virtual (shared) inheritance.

Class hierarchy specialization reduces object size, and can be viewed as a space
optimization. However, execution time may also be reduced through reduced ob-
ject creation or destruction time, and caching and paging effects. Class hierarchy
specialization may also create new opportunities for existing optimizations such as
call devirtualization and inlining. In addition, specialization may be useful in tools
for software maintenance and program understanding.

1 Introduction

The development of applications has become increasingly dependent on class libraries
in recent years. Class libraries contain code and data structures that are common to
many applications in the form of a class hierarchy and associated methods. Libraries
make programmers more productive by helping them avoid reinventing the wheel, and
allowing them to concentrate on the application-specific parts of a program instead.
There is, however, a disadvantage to class library usage, which is caused by the fact
that libraries are typically designed with an emphasis on generality and extensibility. An
application that uses a class library often exercises only part of the library’s functionality.
Unfortunately, this leads to situations where the objects created by the program contain

*This is a revised and extended version of [35].

class S { int mil; class T1 { int ml; };

int m2; class T2 : T1 { int m2; };
int m3; class T3 : T2 { int m3; };
s
void main(){ void main(){
S s1; S s2; S s3; T1 s1; T2 s2; T3 s3;
sl.ml = 10; sl.ml = 10;
s2.m1 = 20; s2.m2 = 30; s2.m1 = 20; s2.m2 = 30;
s3.m1 = 40; s3.m3 = 50; s3.m1 = 40; s3.m3 = 50;
sl = s2; sl = s2;
s2 = s3; s2 = s3;
} }

(a) (b)

Figure 1: (a) Example program P;. (b) Result of specialization.

unused components. For example, for a member m in a given class C, it may be the
case that certain C-objects never use m. We present an algorithm that specializes a
class hierarchy with respect to its usage in a program P. The algorithm analyzes the
member access patterns for the variables in P, and creates distinct classes for variables
that access different members. The benefits of specialization can be manifold:

e The space requirements of a program are reduced at run-time, because objects no
longer contain unnecessary members.

e Specialization may eliminate virtual inheritance (i.e., shared multiple inheritance)
from a class hierarchy. This reduces member access time, and it may reduce object
size.

e Creation and destruction of objects requires less time due to reduced object size.
Time requirements may also be reduced through caching and paging effects.

e Specialization may create new opportunities for existing optimizations such as vir-
tual function call resolution [6, 12, 4, 11, 8] and inlining.

e Specialization may be of use in program understanding and debugging tools. For
example, specialization can be used as a means to suppress the displaying of unused
parts of objects during a debugging session.

e Specialization may be used in tools for finding imperfections in the design of class
hierarchies [27].

Since class hierarchy specialization constructs a version of a class hierarchy that is cus-
tomized for a specific application, it only applicable in cases where a library is statically
compiled or linked with an application. Although we expect class hierarchy specialization
to be primarily of use in the context of an optimizing compiler, we present the algorithm
as a source-to-source translation for the sake of illustration.

1.1 Scope of this paper

The motivation for this work is to reduce the overhead incurred by class library usage in
large object-oriented applications. In this paper, we focus on the foundational aspects

2

of the technique and in order to prevent our definitions and algorithms from becoming
too unwieldy, we will focus on a small, idealized subset of C++4, which we will refer to
as L. Language £ contains the inheritance mechanisms of C++ in their full generality,
including multiple inheritance and virtual (shared) inheritance but omits a number of
C++ features that would needlessly clutter the presentation of the algorithm (e.g., ac-
cess rights of classes and members). A number of other language features (e.g., nested
structures) are only discussed informally. This being said, our techniques are in principle
applicable to realistic languages such as C++ and Java, although this would involve a
major engineering effort. The syntax and semantics of £ are very close to those of C++,
and the example programs presented below have their usual meanings. For the interested
reader, details of £ are provided in Appendix A.

1.2 Motivating examples

Fig. 1(a) shows an example program P;, which contains three objects s1, s2, and s3,
each of type S. Careful analysis of P; reveals that member m1 is accessed from all three
objects, member m2 is accessed from s2, and member m3 is accessed from s3. In order
to save space at run-time, we would like to remove m2 from s1 and s3, and m3 from si1
and s2. Note that this requires s1, s2, and s3 to have different types, since objects of
the same type contain the same members.

However, the types of s1, s2, and s3 are not completely unrelated because the assign-
ments s1 = s2 and s2 = s3 impose constraints on them. If s1, s2, and s3 have three
different, unrelated types, the compiler would report a type error in the assignments.
Observe, however, that s1, s2, and s3 need not necessarily have ezactly the same type:
in general, an assignment z = y only requires that y’s type be transitively derived from
z’s typel. The specialized class hierarchy of Fig. 1(b) shows how this observation can
be exploited, by introducing new types T1, T2, and T3 for s1, s2, and s3, respectively,
and inheritance relations between these types. Note that s1 and s2 now contain fewer
members (the number of members of 3 remains the same) while program behavior is
preserved.

Fig. 2(a) shows an example program P, that will be used as a running example
throughout the remainder of the paper. P2 has a class hierarchy with two virtual func-
tions, £() and g(). The result of specialization is shown in Fig. 2(b), where we have
used the convention that the type of variable v is represented by class Ty, (v). Pictorial
views of the original and specialized class hierarchies are shown in Fig. 2(c) and (d),
respectively. Note that the methods A::£(), A::g(), B::ig(), and C::£() are dispersed over
four classes Tyar(xap)y Tvar(a), Tvar(v)s and Tyar(c), and that class Ty, (xap) only contains a
declaration? of method g(). Observe that the use of a common base class Tyar(+ap) With
only virtual methods allows us to eliminate the x data member from b and c.

Since the size of an object is strongly compiler-dependent it is difficult to make general
statements about the space savings obtained by specialization. Using the IBM x1C
C++ compiler on the RS/6000/AIX 4.1 platform, the size of variable a would remain

! More precisely, for an assignment z = y, where = has type X and y has type Y, there must be
exactly one X-subobject inside a Y-object [1, Section 10.2].

2In £, methods only need to be defined if they are invoked. This is not the case in C++4 where an
object cannot contain a pure declaration of a method for which there is no overriding definition.

class 4 { class T
virtual int £(){ return g(); };
virtual int g(){ return x; };

var(*ap) {
virtual int £(){ return g(); };
virtual int g(); /* declaration only */

int x; };
s :
class B : 4 { clas.s Tvar(_a) TV‘”(*aP) {)
virtual int g(){ return y; }; ertuﬁll int gO{ return x; };
int y; }.mt x;
IH : .
class C : B { class Tvar(b) : Tvar(*ap) {
virtual int £(){ return g() + z; }; virtual int gO){ return y; };
int z; int y;
class Tvar(c) : Tvar(b) {
virtual int £(){ return g() + z; };
int z;
}s
void main(){ void main(){
4 a; Bb; Cc; T a; T b; T c;
A %ap; Tvar(a) *apv;ar(b) var(c)
if (...) { ap = &a; } _fvar(*ap) - 1a:
else { if (...) { ap = &b; } 11 (...).f{ap- a }_ b
else { ap = ke; } } else { if (...) { ap = &b; }
ap->20); else { ap = &c; } }
} ’ ap->f();
}
(a) (b)
A (*ap)
var al
A::f A::f P
A::g gl()
X
B T (a) T (b)
var (a var
B::g A::g B::g
Yy X Yy
C T o
var (C
C::f C::f
Z Z

(c) (d)

Figure 2: (a) Example program P,. (b) Specialized program and class hierarchy. (c)
Pictorial view of the original class hierarchy, including the methods and fields that occur in each
class. (d) Pictorial view of the specialized class hierarchy.

unchanged at 8 bytes, the size of b would be reduced from 12 to 8 bytes, and the size of
c from 16 to 12 bytes.

We will now consider an example where class hierarchy specialization can transform
virtual inheritance into nonvirtual inheritance. This is of interest because virtual inher-
itance requires indirections in objects that increase object size and member access time.
Fig. 3(a) shows example program P3, which has a class hierarchy that exhibits a fairly
typical use of virtual inheritance. Fig. 3(c) shows a pictorial view of this hierarchy, in
which virtual inheritance relations are indicated using dashed lines. The hierarchy of
P3 contains an “interface” class I that contains a declaration of method £, and another
interface class J that “extends” I and adds a declaration for method g. In addition,
the hierarchy contains classes 4 and B in which I and J are “implemented”, respectively,
and which contain definitions of £ and g. Using the object model of the x1C compiler,
object a occupies 24 bytes, and object b 40 bytes. Both objects contain an indirection®
for accessing their respective I-subobjects.

Fig. 3(b) shows the result of specializing Ps, Fig. 3(d) shows a pictorial view of this
hierarchy. Observe that the class hierarchy no longer contains virtual inheritance. As a
result of removing the indirections to shared subobjects and removing data member x
from object b, both objects now occupy only 12 bytes. In addition, accessing method £
from the pointers ip and jp no longer involves following an indirection and hence requires
less time.

Program P3 also illustrates another benefit of specialization: it enables the transfor-
mation of virtual methods into nonvirtual methods under certain conditions. The reader
may observe that the two definitions of method f in Fig. 3(b) are completely unrelated,
since they do not have a base class in common in which f occurs. As a result, the
virtual methods f in Fig. 3(b) may be transformed into nonvirtual methods without
affecting program behavior. Note also that there is a single occurrence of method g in
the hierarchy of Fig. 3(b), so that g can be “devirtualized” as well. Interactions between
specialization and other optimizations are discussed in more detail in Section 9.

1.3 Organization of this paper

The remainder of this paper is organized as follows. Section 2 discusses related work.
The next three sections closely follow the organization of the algorithm, which consists of
four distinct phases. Section 3 discusses Phase I, in which basic program information is
collected by inspecting the source code of input program P. This information comprises
the variables, class members, assignments, and member access operations that occur in P,
as well as pointer-alias information for pointer-typed variables and an equivalence relation
on variables. Section 4 presents Phase II, which is concerned with the computation of
type constraints that precisely capture the required subtype-relationships between the
types of variables, and the visibility relations between class members and variables that
must be retained in order to preserve program behavior. Section b addresses Phase II1
which constructs a new class hierarchy from the type constraints computed in Phase II.
In addition, the variable declarations in the program are updated in Phase III to take
the new hierarchy into account.

31n the object model used by the IBM compiler, the objects contain a pointer to the shared subobject.
Other object models store such information in (virtual dispatch) tables instead of in objects.

Figure 3:

Pictorial view of the original class hierarchy (dashed lines indicate virtual inheritance).

class I { virtuwal int £(); };

class J : virtual I { virtual int g(); 1};

class A4 : virtual I {
virtual int £(){ return x + y; };
int x;
int y;
}s
class B : J, 4 {
virtual int £(){ return y + g(); };
virtual int g(){ return z; };
int z;

H

void main(){

A a;

a.x = 10; a.y = 20;
I *ip; ip = &a;

int p; p = ip->f();
B b;

b.y = 30; b.z = 40;
J *jp; jp = &b;

int q; q = jp->f();

(a)

I
£0)
////J s
A::f
g() X
Y
B
B::f
B::g
Z

(¢)

Pictorial view of the specialized class hierarchy.

(a) Example program Ps.

class Tdc](A::y) {
int y;
}s
class Tvar(a) : Tdc](A::y) {
virtual int £(){ return x + y; };
int x;
}s
class Tvar(b) : Tdc](A::y) {
virtual int £(){ return y + g(); };
virtual int g(){ return z; };
int z;

H

void main(){
Tvar(a) as
a.x = 10; a.y = 20;
T

var(a) *ip; ip = &a;
int p; p = ip->f();
Tvar(b) b;

b.y = 30; b.z = 40;
Tyar(p) *iPs Jp = &b;
int q; q = jp->f();

(b)

dcl(A::y)
Y
T
var (b)
var (a)
A.:f B :f
x B::g
z

(d)

(b) Specialized program and class hierarchy.

(c)
(d)

Section 6 discusses some of the issues that must be addressed in order to express the
new class hierarchy in terms of £’s inheritance mechanisms. In Section 7, we show that
specialization is a semantics-preserving program transformation by demonstrating that
the behavior of member access and type cast operations is preserved.

In the class hierarchy that results from Phase III, redundant data members and meth-
ods have been removed from objects. This hierarchy is not optimal however, since it
typically exhibits an abundance of virtual inheritance. Virtual inheritance is undesirable
because it is usually implemented in a way that increases member access time, and in
some cases object size as well. Phase IV addresses this problem by applying a set of
semantics-preserving transformation rules that simplify the specialized hierarchy, and
eliminate (virtual) inheritance where possible. Section 8 discusses Phase IV.

In Section 9, we investigate how specialization interacts with a number of other pro-
gram transformations/optimizations. Finally, conclusions and directions of future work
are presented in Section 10.

2 Related work

2.1 Techniques for eliminating unused components from objects

The first category of related work consists of techniques for eliminating unused compo-
nents from objects or class hierarchies. Tip, et al. [33] present an algorithm for slicing
of class hierarchies that eliminates members and inheritance relations from a C++ hi-
erarchy. In a sense, class hierarchy specialization can be viewed as a refinement of class
hierarchy slicing. Like specialization, class slicing is concerned with eliminating unused
members from hierarchies, but slicing can only remove a member from a class C if it
1s not used in any C-object. In contrast, specialization is capable of making finer dis-
tinctions at the variable level: By giving different types to variables that previously had
the same type, members may be eliminated from certain objects while being retained in
others.

In [31], Sweeney and Tip present an efficient conservative algorithm for detecting dead
data members in C++ applications. In essence, this algorithm reports a data member
to be dead if the program never reads that data member’s value. This algorithm is
evaluated on a set of C++ benchmark programs ranging from 600 to 58,000 lines of
code. Sweeney and Tip found that up to 27.3% of the data members in the benchmarks
are dead (average 12.5%), and that up to 11.6% of the object space of these applications
may be occupied by dead data members at run-time (average 4.4%).

The algorithm of [31] is also used in the context of Jax, an “application extraction” tool
for reducing the size of Java applications [34]. Jax reads in the class files that constitute
a Java application and uses Rapid Type Analysis [6, 5] to determine a set of reachable
methods. Then, unaccessed and write-only accessed data members are removed, and the
class hierarchy transformations that will be presented in Section 8 are used to simplify
the class hierarchy. After performing these transformations, JAX writes out a ZIP file
containing the compressed application. In [34], Jax is evaluated on a number of realistic
benchmark applications, and an average ZIP file size reduction of 48.7% is reported.

Agesen and Ungar [3] and Agesen [2] describe an algorithm for the dynamically typed
language Self that eliminates unused slots from objects (a slot corresponds to either a

7

data member, a method, or an inheritance relation). This work relies on a type inference
algorithm to compute for each message send that may be executed, a set of slots that is
needed to preserve that send’s behavior, and produces a source file in which redundant
slots have been eliminated. Comparing Agesen and Ungar’s work to ours is difficult due
to the differences between Self and C++. Much of the complexity of our approach is due
to the fact that removing members from objects requires changing the class hierarchy.
This issue does not come up in Self, a dynamically typed language without classes.

We consider class hierarchy specialization to be a technique that is largely complemen-
tary to techniques for eliminating unused ezecutable code [6, 29, 22]. In the scenario we
have in mind, unused executable code is removed from an application first, after which
the class hierarchy could be specialized in order to reduce object size. The benefit of this
approach is that members that are only accessed from useless code are removed from the
class hierarchy altogether. A specific technique that could be used to this end is pro-
gram slicing [36, 32], which determines the set of executable statements that may affect
the values computed at some designated point(s) of interest in a program. Unnecessary
statements can be removed from a program by slicing w.r.t. all output values.

2.2 Type inference algorithms

Class hierarch

formation Gathering” steps described in Section 3 to populate a table in which access
and subtype relationships between variables and class members are expressed. From this
table, a concept lattice is derived, which exposes the hidden underlying structure in these
relationships. This concept lattice provides valuable insight into the design of a class hi-
erarchy by exposing design anomalies such as unused members and variables from which
no members are accessed, and by indicating situations where it may be appropriate to
split a class into multiple classes because different subsets of members are accessed from
different groups of objects. Snelting and Tip also describe how the concept lattice can
serve as a basis for interactive class hierarchy restructuring tools.

Godin and Mili [13, 14] also use concept analysis for class hierarchy (re)design. The
starting point in their approach is a set of interfaces of (collection) classes. A table is
constructed that specifies for each interface the set of supported methods. The lattice
derived from this table suggests how the design of a class hierarchy implementing these
interfaces could be organized in a way that optimizes the distribution of methods over
the hierarchy.

Another category of related work is that of techniques for restructuring class hierarchies
for the sake of improving design, improving code reuse, and enabling reuse. Opdyke [21]
and Opdyke and Johnson [20] present a number of behavior-preserving transformations
on class hierarchies, which they refer to as refactorings. The goal of refactoring is to
improve design and enable reuse by “factoring out” common abstractions. This involves
steps such as the creation of new superclasses, moving around methods and classes in
a hierarchy, and a number of similar steps. In Opdyke and Johnson’s approach, the
transformation of class hierarchies is guided by the user. In contrast, class hierarchy
specialization has the opposite goal: class hierarchies are customized for a particular
application, as opposed to being generalized for the sake of reusability and maintenance.
Unlike refactoring, where the programmer determines what restructurings should take
place, the restructuring operations performed by class hierarchy specialization require no
programmer intervention.

Moore [18] presents a tool that automatically restructures inheritance hierarchies and
refactors methods in Self programs. The goal of this restructuring is to maximize the
sharing of expressions between methods, and the sharing of methods between objects in
order to obtain smaller programs with improved code reuse. Since Moore is studying a
dynamically typed language without explicit class definitions, a number of complex issues
related to preserving the appropriate subtype-relationships between classes of objects do
not arise in his setting. Another important difference between our work and Moore’s
1s that while Moore’s algorithm rearranges methods in a hierarchy, it is not capable of
eliminating unused members. Moore’s work can be viewed as complementary to our work
and some of the techniques mentioned above (e.g., [33]) because it removes methods and
expressions that are unnecessary due to duplication, as opposed to unnecessary due to
being unused.

3 Phase I: Information Gathering

Phase I of the specialization algorithm consists of gathering basic information about the
input program P, which we will assume to be type-correct. This information will be
used in Phase II (discussed in Section 4) to compute the set of type constraints (e.g.,

9

subtype-relationships between variables) that must be preserved in the specialized class
hierarchy.

In the sequel, v, w, ... denote variables in P whose type is a class; p, q, ... denote
variables* in P whose type is a pointer to a class. In addition, z, ¥, ... will be used to
denote expressions in P. In the definitions that follow, TypeOf(P, z) denotes the declared
(i.e., static) type of expression z in program P.

3.1 Variables

Definition 3.1 below defines ClassVars(P) and ClassPtrVars(P) as the set of all variables
in P whose type is a class, and a pointer to a class, respectively. ClassPtrVars(P) contains
elements for variables that occur in declarations as well as elements for implicitly declared
this pointers of methods. In order to distinguish between this pointers of different
methods, the this pointer of method A::f() will be denoted by the fully qualified name
of its method, i.e., A::f.

Definition 3.1 Let P be a program. Then, we define the sets of class-typed variables
and pointer-to-class-typed variables as follows:

ClassVars(P) £

{v|v is a variable in P, TypeOf(P,v) = C, for some class C in P }
ClassPtrVars(P) £

{p|pis a variable in P, TypeOf(P,*p) = C, for some class C in P }

Example 3.2 For program Py of Fig. 2, we have:

ClassVars(Pz) = {a, b c}
ClassPtrVars(P;) = {ap, Auf, Anig, Bug, Ciif }

3.2 Class members

For a given program P, Members(P) denotes the set of unqualified names of the
class members that occur in P. In addition, the sets DataMembers(P), and
VirtualMethods(P) contain the unqualified names of data members and virtual methods
of P, respectively. For convenience, we assume the intersection of DataMembers(P) and
VirtualMethods(P) to be empty (if this is not the case, members can be renamed), and
that there are no overloaded methods with the same name but different argument types
(again, renaming is possible if this is not the case).

Example 3.3 For program Py of Fig. 2, we have:

DataMembers(P3) = {xy 2z}
VirtualMethods(P2) = {f, g}

O

“We will henceforth use the word “variables” to refer to variables as well as method parameters.

10

3.3 Points-to analysis

We will need for each pointer-to-class-typed variable a conservative and safe® approx-
imation of the set of class-typed variables that it may point to in some execution of
P. Any of several existing algorithms [10, 9, 23, 30, 26]) can be used to compute this
information, and we do not make assumptions about the particular algorithm used to
compute points-to information.

Points-to analysis algorithms are traditionally defined for languages without virtual
dispatch, and perform an analysis of the assignments that occur in a program’s call graph.
In the presence of virtual dispatch, call graph construction requires that conservative
approximations be made about the methods that can be reached from each virtual call
site p — f(). An obvious way to make such approximations is to use the points-to
information associated with the receiver expression p to determine to which types of
objects p can point, and to determine the definition of f() that would be invoked in each
case. The identification of additional methods leads to additional assignments that must
be taken into account when computing points-to information. This may affect previously
analyzed call sites, and iteration between the two steps (computing points-to information
and resolving virtual call sites) is therefore necessary.

Definition 3.4 uses the information supplied by some points-to analysis algorithm to
construct a set PointsTo(P), which contains a pair (p,v) for each pointer p that may
point to a class-typed variable v.

Definition 3.4 Let P be a program. Then, the poinis-to information for P is defined
as follows:

PointsTo(P) £ { (p,v) | p € ClassPtrVars(P), v € ClassVars(P), p may point to v }

Example 3.5 We will use the following points-to information for program P3. Recall
that X::f denotes the this pointer of method X::f().

PointsTo(P2) =4 {(ap,a), (ap,b), (ap, c), (A:f,a), (A:xf,b), (Ci:f, c), (Aug,a),
(B::g,b), (Bug,c) }

O

Note that the following simple algorithm suffices to compute the information of Exam-
ple 3.5: For each pointer p of type *X, assume that it may point to any object of type
Y, such that (i) Y = X or Y is a class transitively derived from X, and (ii) if p is the
this pointer of a virtual method C::m(), no definitions of m that override C::m() exist
in class Y.

3.4 Assignments

Definition 3.6 below defines a set Assignments(P) that contains a pair of objects (z', y/')
for each assignment # = y in P for which the types of # and y are (a pointer to) a class.

51t will be assumed that points-to relationships are not in conflict with the type system: if a pointer
p is determined to point to a variable v with type V, then p’s declared type must be V or a (transitive)
base class of V.

11

In order to simplify the subsequent definitions, we will treat a direct® method call as
a set of assignments between corresponding formal and actual parameters, including the
this-parameter of instance methods. The return value of a method is treated as an
additional parameter as well. For indirect” calls, we use points-to information to model
dynamic dispatch behavior: a virtual method call p — f(y1, ..., yn) is simply treated
as a set of direct calls z.f(y1, ..., yn), for each (p,z) € PointsTo(P).

Definition 3.6 Let P be a program. Then, the set of assignments between variables
whose type is a (pointer to a) class is defined as follows:

Assignments(P) £
{{v,w) | v = w occurs in P, v, w € ClassVars(P) } U
{{(*p,w) | p= &w occurs in P, p € ClassPtrVars(P), w € ClassVars(P) } U
{ (*p,*q) | p = q occurs in P, p, q¢ € ClassPtrVars(P) } U
{ {(*p,w) | *p=w occurs in P, p € ClassPtrVars(P), w € ClassVars(P) } U
{{v,*q) | v = xq occurs in P, v € ClassVars(P), q € ClassPtrVars(P) } U
{ (*p, *q) | *p = *q occurs in P, p, ¢ € ClassPtrVars(P) }

Example 3.7 For program Py of Fig. 2, we have:

Assignments(P3) = { (*ap,a), (*ap,b), (*ap, c), (¥A:f,a), (*A:f, b), (*C:f, c),
(*A::g,a), (*B::g,b), (*B::g,c) }

Note that the last stz elements in this set occur due to implicit assignments that model
parameter-passing of this pointers. (I

3.5 Member access operations

Definition 3.8 below defines a set MemberAccess(P) of all pairs (@, m) such that m is
accessed from variable z. For an indirect call p — f(y1, ..., yn), we also include an
element (z, f) in MemberAccess(P) for each (p, z) € PointsTo(P).

Definition 3.8 Let P be a program. Then, the set of member access operations in P is

defined as follows:

MemberAccess(P) £
{{v,m) | v.m occurs in P, m € Members(P), v € ClassVars(P) } U
{ {*p,m) | p— m occurs in P, m € Members(P), p € ClassPtrVars(P) } U
{{z,m) | p— m occurs in P, m € VirtualMethods(P), (p, z) € PointsTo(P) }

Example 3.9 For program Py of Fig. 2, we have:

MemberAccess(Pz) = { (*Aug,x), (*¥Bug,y), (¥C::f, z), (*Anf, g), (*Cuf, g),
(*ap, £), (a,f), (b, 1), (¢, T), (2,8), (b,g), (c,8) }

O

8 A direct method call is an invocation of a virtual method from a non-pointer typed variable.
7An indirect call is an invocation of a virtual method from a pointer, which requires the virtual
dispatch mechanism to be invoked.

12

3.6 An equivalence relation on variables

We now define an equivalence relation ‘~’ on variables. Two variables occur in the same
equivalence class if they must have ezactly the same type. Definition 3.10 below states
that # ~ y if = is transitively assigned to y, and vice versa. Such assignments imply
that the type of z must be a transitive base class of the type of y, and vice versa, and
therefore that the types of # and y must be identical. The specialized class hierarchy
generated in Phase III will contain a class corresponding to each equivalence class F,
representing the type of the variables that occur in E.

Definition 3.10 Let P be a program. Then, the equivalence relation ‘~’ on the variables

in P is defined as follows:

z ~y when (zo,z1),(z1,22), ***; (Tm-1,Tm),
<y07 y1>7 <y17 y2>7 Y <yn—1a yn> S ASSigHmthS(P)
fOT some oy, ***y Tm, Yos * s Yn such that z¢ = Ly Tm =Y, Y0 =Y, Yn = Z.

Furthermore, for a given variable z, we will use [z] to denote the equivalence class
containing .

Example 3.11 For program Py of Fig. 2, each variable (see Ezample 3.2) occurs in an
equivalence class by itself. |

In Section 6, we will extend ‘~’ in order to prevent the occurrence of inheritance

structures that cannot be represented using the inheritance mechanisms of C++.

4 Phase II: Computing Type Constraints

In Phase II of the specialization algorithm, a set of type constraints is determined. These
constraints precisely characterize the subtype-relationships that must be preserved in the
specialized class hierarchy.

4.1 Member lookup and subobject graphs

The subsequent definitions of type constraints must precisely reflect the semantics of
member lookup. In the presence of multiple inheritance, an object may contain multiple
subobjects of a given type C, and hence multiple members C::m. In order to distinguish
correctly between subobjects and members with the same name, we need to keep track of
the subobjects that are selected by executing member lookup and type cast operations.
To this end, we use Rossie and Friedman’s formalization of subobject graphs and member
lookup [25, 33]. We will only introduce the notions essential for performing class hierarchy
specialization here, and refer the reader to [33] for details. An efficient member lookup
algorithm can be found in [24].

A subobject graph abstractly represents object layout. The subobject graph contains a
distinct subgraph for each type in the class hierarchy; in what follows, we will ignore the
distinction between the entire subobject graph (representing the layout of all objects),
and the subgraph for a specific type. Fig. 4(a) depicts a class hierarchy in which a
class D inherits nonvirtually (replicated) from classes B and C, and classes B and C both

13

A [D,DB-A] [D,D-C-A]

X X X
S [D,s]
£ £
B/ . . ¢ [D,DB] — [D,D-C]
£ b4 £ b4
D [D,D]
(a) (b)

Figure 4: (a) Example class hierarchy graph. Solid edges indicate replicated (nonvirtual)
inheritance. Dashed edges indicate virtual (i.e., shared) inheritance. (b) Subobject graph for
type D in the class hierarchy of Fig. 4(a).

inherit virtually (shared) from class S, and nonvirtually (replicated) from class 4. Class
A contains a member x, S and B contain a member f, and C contains a member z.

Fig. 4(b) shows the subobject graph for D. The nodes in this graph are identified by
a pair [Y,X; ---X,,] where the first component, Y, indicates the most derived type of
the subobject, and the second component is a sequence of class names, X; ---X,, that
encodes the sequence of inheritance relations from the least derived class X, to its nearest
virtual base class®. For a subobject o = [V, X --- X,,], mdc(o) denotes its most derived
class Y, and Idc(o) denotes its least derived class X,,. We will say that a member m
occurs in subobject ¢ if m occurs in its least derived class Idc(c). Edges in the subobject
graph of Fig. 4(b) reflect the containment relation ‘<’ between subobjects®. We will use
‘<*’ to denote the transitive and reflexive closure of ‘<’. In what follows, X(P) denotes
the set of all subobjects o induced by the class hierarchy of program P.

Example 4.1 In the example of Fig. 4(b), subobject [D,D] indicates the “full” D object,
and subobject [D,D-B] indicates the B subobject contained in [D,D]; in other words, we have
that [D,D-B] < [D,D]. Due to the presence of virtual inheritance, [D,D] contains a single
shared S-subobject: [D,S]. By contrast, since B and C inherit nonvirtually (replicated)
from A, [D,D] contains two distinct A-subobjects [D,D-B-A] and [D,D-C-A], each containing
a distinct x.

Using the subobject graph, member lookup and type cast operations can be defined
as a function from subobjects to subobjects. For example, a static lookup for a member

m on a subobject o can be expressed as follows:

o' = static-lookup (o, m)

8 This is the minimal amount of information that is sufficient to uniquely denote a subobject.

° In the present paper, we define the contained subobject to be “less than” the containing subobject.
We believe this notation to be more intuitive than that of [25, 33], where the contained subobject is
“greater than” the containing subobject.

14

Here, subobject o encodes both the static type and the run-time type of the object or
pointer from which the member is accessed, and the “result” subobject ¢’ contains the
definition of m that is selected by the lookup operation.

Static member lookup operations are used to model any member access that does not
involve a dynamic dispatch, such as an access to a data member, or a call to a virtual
method on a non-pointer variable. Static member lookup operations will also be used
as a means to reason about the behavior of dynamic member lookups (corresponding to
situations where a virtual method is called on a pointer). Specifically, we will model a
call p — f(), where f() is a virtual method, using the following steps:

o A static lookup is performed to determine the method f() that is statically selected.
At least a declaration of f() must be visible in the type of *p in order for the call
statement to be syntactically correct.

e Points-to information is used to determine the object v that p points to (see Defi-
nition 3.4).

e Another static lookup is performed to determine the definition of f() that would
be statically selected by a call v.f().

The definition of f() selected in the last step is the same method definition as the one
selected by the dynamically dispatched call p — f().

Definition 4.2 below introduces a function static-lookup that models static member
lookup. This function determines the “largest” subobject contained in o that contains
a definition of m. If such a unique largest subobject does not exist, the member access
1s ambiguous. It will be assumed that programs are type-correct, and in particular that
they do not contain ambiguous member access or type cast operations.

Definition 4.2 Let o be a subobject in 3(P), let ‘<’ be the ordering between subobjects,
and let m be the name of a member. Then, the subobject that contains the accessed
member m is defined as follows:

static-lookup (o, m) £ max({ o’ | 0’<*0,Idc(c’) contains member m })

Example 4.3 Constder a lookup 4.z, where d is an object of type D. In this case, there is
one definition of z in subobject [D,D], which is located in in subobject [D,D-C]1. Therefore,
we have that: static-lookup([D,D],z) = [D,D-C]. O

We have argued that a static member lookup operation in combination with points-to
information is in principle sufficient to reason about dynamic member lookup operations.
Nevertheless, it will be convenient to introduce another approach for reasoning about
dynamic member lookup operations. This alternative approach relies on the fact that
a subobject encodes both the static and the dynamic type of the object that a pointer
points to, in the form of its least derived class and its most derived class. Definition 4.4
defines how a dynamic lookup for a member m corresponds to selecting the “largest”
subobject contained in the “full object” [mdc(o),mdc(o)] that contains a definition of m.

Definition 4.4 Let o be a subobject and let ‘<’ be the ordering between subobjects. Then,
the subobject that contains the dynamically accessed member m is defined as follows:

dynamic-lookup_ (o, m) 2 max({o’ | o' <*[mdc(c),mdc(c)], Idc(c’) contains member m})

15

Example 4.5 Using the class hierarchy of Fig. 4, consider a situation where we have a
pointer cp of type C pointing to an object of type D, and suppose we have a virtual method
call cp—> £Q).

This corresponds to a dynamic method lookup for £() on subobject [D,D-C]. According
to Definition 4.4, we have that:

dynamic-lookup ([D,D-C], f) =

dynamic-lookup ([mdc([D,D-C]),mdc([D,D-C])], £) =
dynamic-lookup([D,D],) =

[D,D-B]

In other words, the method tnvocation cp—>f () will result in the invocation of B::f (). O

Lemma 4.6 formally states the relationship between static and dynamic lookup oper-
ations that we informally discussed above.

Lemma 4.6 Let o be a subobject, m a member, and ‘<’ an ordering among subobjects.
Then, we have that:

dynamic-lookup (o, m) = static-lookup ([mdc(o),mdc(c)], m)

Proof. Follows immediately from Definition 4.2 and Definition 4.4. |

We now turn our attention to type cast operations. For a cast from type X to type
Y where Y is a transitive base class of X, the unique subobject o/ <*[X,X] such that
Ide(c’) =Y is selected. If there is no unique ¢’ with least derived class Y, the type cast
1s ambiguous.

Definition 4.7 Let o be a subobject in Z(P), and let ‘<’ be the ordering between subob-
jects. Then, the subobject selected by the type cast to class C is defined as follows:

typecast (o, C) 2 ¢’ when o' is the unique subobject such that o' <*o, Idc(o’) = C

Example 4.8 Suppose that the program contains an assignment b = d, where b s of
type B and 4 s of type D, respectively. For this assignment, the compiler generates a type
cast from type D to type B. For this type cast, we have that: typecast([D,D]1,B) = [D,D-BI.
This implies that the assignment copies the [D,D-B]-subobject of d into b. |

Section 10.2.2 will briefly discuss how down casts (cast operations where the target
type is a derived class of the the type of the expression being casted) can be modeled.

We conclude the discussion of subobjects by introducing a composition operator ‘@’ on
“compatible” subobjects (a subobject o1 and a subobject o3 are compatible if Idc(c) =
mdc(oz). Intuitively, this operator determines a subobject o3<*c; such that Idc(os) =
Ide(o3). The definition below has two cases to reflect the fact that subobjects only record
the inheritance path from a subobject’s least derived class to its nearest virtual base.

Definition 4.9 Let 01 = [Z,Y1---YV,,] and 02 = [V, X1+ X,,] be subobjects such that
Y =Y,.. Then, the composition of o1 and o2 is defined as follows:

1o A [ZY1-Ypo1-X1---X,)] whenY =X
[Z,X1---X,) otherwise
Example 4.10 Using the ezample class hierarchy of Fig. 4, we have that [D,D-B]1®[B,B-A] =
[D,D-B-A] and that [D,D-B] & [B,S] = [D,S] O

16

class A { class T yar(xap)} 1

virtual int foo(){ virtual int foo(); /* declaration */
return x; }s
}; class T{ var(a) } ° T{ var(*ap) } {
int x; virtual int foo(){ return x; };
}; int x;
class B : A { };
virtual int foo(){ class T{var()} ¢ T var(xap)} 1
return y; virtual int foo(){ return y; };
s int y;
int y; };
}s
void main(){ void main(){
A a; a.x = 10; T var(a)} @5 a.x = 10;
B b; b.y = 11; T{ var(b) } b; b.y = 11;
A *ap; T{ var(xap) } *apP;
ap = &a; ap = &a;
int p; p = ap->foo(); int p; p = ap->foo();
ap = &b; ap = &b;
, int q; q = ap->foo(); int q; q = ap->foo();
}

(a) (b)

Figure 5: (a) Example program illustrating the purpose of distinguishing between method de-
clarations and method definitions. (b) Specialized program and class hierarchy for the program

of (a).

4.2 Declarations vs. definitions of members

We will distinguish between declarations and definitions of members. A method’s defi-
nition models its implementation, which has a this pointer from which other members
may be accessed. The declaration of a method has the sole purpose of ensuring visibility.
This distinction is important because it enables elimination of spurious dependences in
the presence of virtual method calls.

Fig. b illustrates this issue by way of a simple program that uses two class-typed
variables a and b, and a class-pointer-typed variable ap that points to a or b. We will now
informally discuss the type constraints induced by this program, and how the distinction
between declarations and definitions of methods can be exploited. For convenience, we
will frequently write “member m must be visible/accessible!® to variable z” instead of
“member m must be visible/accessible from the type of variable ” in the sequel.

Clearly, the type of *ap must be a base class of the types of a and b. Otherwise, the
assignments ap = &a and ap = &b would not be type-correct. Since virtual method foo
1s called from ap, a declaration of foo must be visible to ap. In addition, the definition of
A::foo() must be visible to a because ap may point to a, and the definition of B::foo()
must be visible to b because ap may point to b. Data member x must be visible to

108ince we ignore access rights of members and inheritance relations in the present paper, the notions
of “visible” and “accessible” are equivalent.

17

A::foo() because it is accessed from A::foo()’s this pointer. Similarly, data member y
must be visible to B::foo () because it is accessed from B::foo()’s this pointer. However,
note that A::foo()’s definition need not be visible to ap. In fact, it is undesirable for
A::foo()’s definition to be visible to ap, because that would force inclusion of x in b. The
latter fact follows from the following observations in the above discussion: (i) member
x must be visible to A::foo(), and (ii) that the type of *ap must be a base class of the
type of b. Hence, making A::foo() a base class of the type of *ap would include x in b’s
type due to the existence of a transitive inheritance relation between the type containing
x and the type of b.

Fig. 5(b) shows the specialized program and class hierarchy for the example of Fig. 5(a).
Note that, while the above constraints are met, x has been eliminated from b.

In the sequel, def{A::m) denotes the definition of member A::m, whereas dcl(A::m)
denotes its declaration. As the example of Fig. b illustrates, it is useful to separate the
declaration from the definition of virtual methods. Since a data member cannot access
any other class members, we treat data members as if they only have declarations. (For
nonvirtual methods, which are not treated in the present paper, distinguishing between
declarations and definitions is not useful, and only a definition is required.)

4.3 Type constraints and constraint variables

Type constraints are of the form (S, 0, T), where ¢ is a subobject of the original class
hierarchy, and S and T are sets of constraint variables, as defined by Definition 4.11
below.

Definition 4.11 Let P be a program. Then, the set of constraint variables for P is
defined as follows:

CVars(P) 2 { var(v) | v € ClassVars(P) } U
{ var(*p) | p € ClassPtrVars(P), p is not a method’s this pointer } U
{ dcl(X::m) | m € Members(P), m occurs in class X } U
{ def{ X::m) | m € VirtualMethods(P), m occurs in class X }

Example 4.12 For program Py of Fig. 2, we have:

CVars(P3) = { var(a), var(b), var(c), var(*ap), dcl(A::x), dcl(B::y), dcl(C::z),
dcl(A::f), dcl(A:g), dcl(B::g), dcl(C::f), def(A::f), def(A::g),
def(B::g), def(C::f) }

(I

Type constraints express subtype-relationships between constraint variables. For ex-
ample, ({ var(v) }, 0, { var{w) }) states that v has the same type as the o-subobject of the
type of w. Type constraints will also be used to express the “locations” of member dec-
larations/definitions in objects. For example, the constraint ({ dcl(A::m) }, o, { var(w) })
expresses the fact that the declaration of member A::m occurs in the o-subobject of the
type of w.

For reasons we will discuss shortly in Section 4.6, this pointers of methods require
somewhat special treatment. Definition 4.13 below maps a variable v in the program to
a constraint variable var(v) if v is not the this pointer of a method, and to def{ A::m) if
v is the this pointer of some method A::m().

18

Definition 4.13 Let z be an expression such that © = v for some v € ClassVars(P) or
z = *p for some p € ClassPtrVars(P). Then, a constraint variable in CVars(P) will be
associated with = as follows:

CVarOf(z) 2 { def{X::f) when ¢ = *X::f, for some method X::f()

var(z) otherwise

Example 4.14 For program Pa, we have CVarOf(a) = var(a) and CVarOf(*A::f) =
def(4::1). O

The equivalence relation ~ on variables of definition Definition 3.10 is now extended
to constraint variables as follows.

Definition 4.15 Let P be a program, and let s and t be constraint variables in CVars(P).
Then:

s~t if and only if s = CVarOf(z), t = CVarOf(y), z~vy, for some variables z, y

Furthermore, for a given constraint variable s, we will use [s] to denote the equivalence
class containing s.

Remark 4.16 In order to simplify notation, we will often identify a singleton equiva-
lence class with the element that it contains, and simply write s instead of { s}, where s
18 a constraint variable.

Note that, according to Definition 4.15, a constraint variable of the form dcl(C::m)
will always occur in an equivalence class by itself.

Example 4.17 For program Py of Fig. 2, each constraint variable occurs in an equiva-
lence class by itself (see Ezample 3.11). O

4.4 Type constraints due to assignments

Consider an assignment v = w

Example 4.19 For program Po of Fig. 2, we have:

AssignTC(P3) = {
(var(*ap), [4,4], var(a)), (var(*ap), [B,B-A], var(b)), (var(*ap), [C,C-B-4], var(c)),
(def(A::1), [A,4], var(a)), (def(A::f), [B,B-4], var(b)), (def(C::f), [C,C], var(c)),
(def{aig), (1], var(a)), (def(Brg), [B,8], var(b)), (def(Brg), [C,C'B], var(c)) }
Note: For the sake of readability, we have replaced all singleton equivalence classes in
this ezample by the sole element that they contain (see Remark 4.16). d

4.5 Type constraints due to member access

Definition 4.20 below defines the set of type constraints due to member access. The
definition has two cases.

The first case deals with situations where only a method declaration is needed, i.e.,
when the accessed member m is a data member, or a virtual method that is invoked
from a pointer p. For example, consider the case where a virtual method m is ac-
cessed from a pointer p of type *Y. Then, there must be a unique subobject ¢ =
[Y,a-X] = static-lookup ([Y,Y], m) such that X contains m. Since the virtual dispatch
mechanism only requires that a declaration of m be present in class X, a constraint
([dc](X::m)], o, [var(#p)]) is constructed, expressing the fact that the o-subobject of xp
must contain a declaration of method X::m().

The second case of Definition 4.20 addresses the situation where m’s definition is
required, i.e., when a virtual method is invoked from a nonpointer variable v. For ex-
ample, suppose that a virtual method m is accessed from a variable y of type Y. Then,
there must be a unique subobject ¢ = [Y,a-X] = static-lookup([Y,Y],m) such that
X contains a definition of m. Consequently, a constraint ([def{X::m)], o, [var(y)]) is
constructed, expressing the fact that the o-subobject of y must contain a definition of
method X::m().

Definition 4.20 Let P be a program. Then, the set of type consiraints due to member
access operations is defined as follows:

MemberAccessTC(P) £

{y, m) € MemberAccess(P), Y = TypeOf(P,y),
S o T (y = *p for some p € ClassPtrVars(P) or m € DataMembers(P)),
(8,0,7) o = [Y,a-X] = static-lookup ([Y,Y], m),

S = [dcd(X::m)], T = [CVarOfly)]

{y, m) € MemberAccess(P), Y = TypeOf(P,y),
S o T (y = v for some v € ClassVars(P) and m € VirtualMethods(P)),
(8,0,7) o = [Y,a-X] = static-lookup ([Y,Y], m),

= [def(X::m)], T = [CVarOfly)], S # T

Example 4.21 For program Py of Fig. 2, we have:

MemberAccessTC(P3) ={
(dcl(A::x), [A,A], def(A::g)), (dcl(B::y), [B,B], def(B::g)), (dcl(C::z), [C,C], def(C::f)),
(dcl(A::g), [A,A], def(A::£)), (dcl(B::g), [CCB],def(C::f» (dcl(A::£), [A,A], var(*ap)),
(def(A::1), [A,4], var(a)), (def(A::f), [B,B-4], var(b)), (def(C::f), [C,C], var(c)),
(def(A::g), [A,4], var(a)), (def(B::g), [B,B], var(b)), (def(B::g), [C,C-B], var(c)) }
20

Note: For the sake of readability, we have replaced all singleton equivalence classes in
this ezample by the sole element that they contain (see Remark 4.16). d

4.6 Treatment of this pointers

We now return to the issue of modeling this pointers of methods. The definitions
presented above were designed with the following properties in mind:

e The treatment of this pointers is analogous to that of other (class-typed and
pointer-to-class-typed) parameters. Both are modeled as assignments between cor-
responding formal and actual parameters.

e Method declarations and method definitions are modeled in similar ways.

e The type of a this pointer is not declared explicitly, but determined by the loca-
tion of the associated method in the class hierarchy!'!. Therefore, any constraint
involving the this pointer of some method is effectively a constraint on the location
in the hierarchy of that method.

We obtain the desired properties by mapping this pointers to constraint variables for
the associated method definitions (see Definition 4.13). As a result, assignments and
member access operations involving this pointers give rise to constraints involving the
associated method definition as follows:

e Accessing a member m from the this pointer of a method f yields a type constraint
involving the type containing (the declaration or definition of) m, and the type
containing f’s definition.

e Assigning the this pointer to a variable v (either explicitly, or via parameter-
passing) yields a type constraint involving v’s type and the type containing the

definition of f.

For example, the access to data member x from A::g()’s this pointer gives rise to the
type constraint {[dcl(A::x)], [4,4], [def{A::g)]), which can be interpreted as ‘the declaration
of A::x occurs in the [A,A]-subobject of the type containing the definition of method A::g’.

Modeling parameter-passing of this pointers as assignments is consistent with the
treatment of other parameters, but has the slightly odd property that identical type con-
straints occur in AssignTC(P) and MemberAccessTC(P). For example, the constraint
([def(A::1)], [A,4], [var(a)]) occurs in both AssignTC(P;) and MemberAccessTC(P3) (see
Examples 4.19 and 4.21). Although it is possible to eliminate this duplication of type
constraints by modifying the definitions slightly, we consider the present solution to be
the most consistent approach. The presence of duplicate type constraints is harmless in
the sense that it does not affect the specialized class hierarchy.

4.7 Type constraints for preserving dominance

We have now presented type constraints that express subtype-relationships between vari-
ables (Definition 4.18), and type constraints that express the visibility of members to

11 8pecifically, the this pointer of method C::f has type C.

21

class A { A

virtual void £(0){ ... };
}} A::f
class B {

virtual void £(0){ ... };

; B
void main () { B::f

A a;

a.f£();

B b;

b.£();

a = b;
}

(@ (b)
def (A::f) def (B::f) def (A::f) def (B::f)
A::f B::f A::f --—------ = B::f
T T T T
var (a) var (b) y var (a) var (b)
() (e)
class A {
virtual void £(0){ ... };

class B {
virtual void £0){ ... };

¥
void main () {

aj;
var (a)

a
a.f();
b;
var (b)
b.£();
a = b;

(d)

Figure 6: (a) Example program. (b) Original class hierarchy of the program of Fig. 6(a).

(¢) Incorrect specialized class hierarchy obtained by ignoring the hiding relationships between

method definitions.

(d) Example program of Fig. 6(a) after updating variable declarations to

reflect the class hierarchy of Fig. 6(c). (e) Correct specialized class hierarchy obtained by taking

into account hiding relationships between method definitions.

22

variables (Definition 4.20). Together, these constraints capture all the information that
is needed to construct a specialized class hierarchy in which each object contains the ap-
propriate set of members. However, more information is needed to construct a specialized
hierarchy that preserves program behavior.

Fig. 6(a) shows a simple example program, in which two objects a and b are created,
with types A and B, respectively. The class hierarchy for this program is depicted in
Fig. 6(b). A virtual method £() is defined in class A and overridden in class B. Observe
that the program contains calls to method £ () on both objects, and an assignment that
copies the [B,B -A]-subobject of object b into object a. According to Definitions 4.18
and 4.20, the following type constrains will be constructed for this program:

{ (def(A::1), [A,A], var(a)), (def(B::f), [B,B], var(b)), (var(a), [B,B-A], var(b)) }

Fig. 6(c) shows the (incorrect) specialized class hierarchy that is obtained by simply
interpreting these type constraints as subtype-relationships. Fig. 6(d) shows how the
declarations of a and b in the program of Fig. 6(a) are updated to take into account the
hierarchy of Fig. 6(c). Observe that method definitions def{ A::f) and def(B::f) are both
visible to object b. Since def(B::f) does not hide or dominate def{ A::f), the call to £()
on object b is ambiguous.

The ambiguity of member access b.£() in the above example is due to the fact that
the “hiding” of method definition def{A::f) by member definition def(B::f) is not pre-
served. Our solution to this problem is to model hiding and dominance relations between
members as type constraints as well. In the case of our example, a type constraint:

(def(A::f), [B,B-A], def{B::f))

is generated to express that the type containing method definition def{ A::f) must be a
base class of the type containing method definition def{ B::f). Fig. 6(e) shows the (cor-
rect) specialized class hierarchy that is constructed by taking this constraint into account.
Although this example only illustrates the need for modeling hiding/dominance relations
between definitions of methods, similar constraints are necessary to model hiding between
definitions and declarations, and among declarations.

Definition 4.22 formally defines the set of all type constraints that model hiding and
dominance relations between declarations and definitions of members with the same
name. In Phase III, a correct specialized class hierarchy is generated by selecting from
this set the minimal set of dominance constraints that suffices to preserve the non-
ambiguity of accessed members.

Formally, Definition 4.22 states that if there are subobjects o1 with least derived class
A and o, with least derived class B such that o7 is contained in o2, and 4 and B both
contain a declaration of member m, then a constraint ([dcl(A::m)], o, [dc](B::m)]), is
constructed. Here, o is the subobject such that o1 = o2®o. Similar relationships are
constructed for cases where 4 and B contain definitions of m.

Definition 4.22 Let P be a program. Then, the set of type constraints that reflect the
hiding/dominance relations between same-named members in the original hierarchy is

23

defined as follows:

DomTC(P) £

o1, 02 are subobjects in (P), o1 # o3,

o1 = 030, Idc(o1) = A, Idc(oz) = B,

class A contains a declaration of member m,

([dcl(A::m)], o, [dcl(B::m)])

class B contains a declaration of member m

o1, 03 are subobjects in X(P), o1 = 020,
Ide(o1) = A, Idc(o3) = B,

class A contains a declaration of member m,
class B contains a definition of member m

([dcl(A::m)], o, [def{ B::m)])

o1, 02 are subobjects in (P), o1 # o3,

o1 = 030, Idc(o1) = A, Idc(oz) = B,

class A contains a declaration of member m,
class B contains a definition of member m

([def(A::m)], o, [dcl(B::m)])

o1, 02 are subobjects in X(P), o1 # o2,

o1 = 030, Idc(o1) = A, Idc(oz) = B,

class A contains a declaration of member m,
class B contains a definition of member m }

([def(A::m)], o, [def{ B::m)])

Example 4.23 For program Py of Fig. 2, we have:

DomTC(P3) = {

(dcl(A::£), [A,A], def(A::£)), (dcl(A:T), [C,C-B-A], dcl(C::£)),
(dcl(A::£), [C,C-B-A], def(C::£)), <def(A :f), [C,C-B-4], dcl(C::f)),
(def(A::£), [C,C-B-A], def{C::£f)), (dcl(C::£), [C,C], def{(C::f)) }
(dcl(A::g), [A,A], def(A::g)), (dcl(A::g), [B,B-A], dcl(B::g)),
(dcl(A::g), [B,B-A], def(B::g)), (def(A::g), [B,B-4], dcl(B::g)},
<def(A g)a [BaB'A]a def(B::g)>a <dC () [BaB]v def(B::g)> }

Note: For the sake of readability, we have replaced all singleton equivalence classes in
this ezample by the sole element that they contain (see Remark 4.16). d

5 Phase III: Generating a Specialized Hierarchy

In Phase III, a subobject graph for the specialized class hierarchy is constructed. Then,
the specialized hierarchy itself is derived from the new subobject graph, and variable
declarations in the program are updated to take the new hierarchy into account.

5.1 Classes of the specialized hierarchy

The specialized hierarchy contains classes T, where S is an equivalence class of constraint
variables, as was defined in Definition 4.15.

24

Tt deicas) 3,[B,B-AL{ var(®) } T{dci(a:ig) },[B,B-AL,{ var(®) } T{dci(B::y) },[B,B],{ var(b) }

£(); g(); y

T¢ var(xap) 3,[B,B-AL{ var(b) } T defCa::£) },[B,B-A],{ var(b)}_1{ def(B::g) },[B,B],{ var(b) }

A () B:g()

Tt Sac(d) },[B,B),{ var) }

Figure 7: Specialized subobject graph for object b of example program P, of Fig. 2.

Example 5.1 For program Po of Fig. 2, the specialized class hierarchy contains the
following classes:

NeWC]aSSCS(Pg) = '{ T{ var(a) }» T{ var(b) }» T{ var(c) }» T{ var(xap) }» T{ del(h:x) }s
Tp geisy) 3o T1 det(cez) 3y LY det(ane) 3o TE dei(ang) 3o T4 del(Bg) 3s
T¢ dcice) 1o T def(ane) 3> 1Y def(ang) 3o T def(Biig) 3o 15 def(cre) } F

O

5.2 The specialized subobject graph

Definitions 5.2 through 5.5 below together define the subobject graph (N,C) of the
specialized class hierarchy as a set of nodes N on which a containment ordering ‘C’ is
defined. In the following definitions S, T', and U denote equivalence classes of constraint
variables.

Definition 5.2 uses the type constraints in AssignTC(P) and MemberAccessTC(P) to
construct the set of nodes N of the specialized subobject graph.

Definition 5.2 Let P be a program. Then, the set of nodes N of the specialized subobject
graph is inductively defined as follows:

T[var(v)],a,[var(v)] €N whenv € C]assVars(P), V = TypeOf('P, v), o= [V,V]
TQ,cfg@al,S €N when TR,UQ,S € N,
(Q, 01, R) € (AssignTC(P) U MemberAccessTC(P))

Definition 5.3 below defines the most derived class and the least derived class for nodes
in N.

25

Definition 5.3 Letn = TQ,O',S be a node in N. Then, we define the most derived class
mdc(n) of n and the least derived class Idc(n) of n as follows:

Tq

Ts

IdC(TQ,a,S)
de(TQ,O',S)

(> (>

Definition 5.4 below defines a mapping from subobjects in the specialized class hierar-
chy to subobjects in the original class hierarchy.

Definition 5.4 Let N be the set of nodes of the specialized subobject graph. Then, we
define a function ¢ that maps nodes in N to subobjects in the original subobject graph as
follows:

¥TQ,0,5) =0

Definition 5.5 below defines a containment relation ‘C’ on subobjects in N. The ‘@’
operator used in this definition was introduced in Section 4.1. The C-relationships (cf.
subtype-relationships) between the nodes in N are determined by the constraints in
AssignTC(P), MemberAccessTC(P), as well as those in DomTC(P). This approach has
the effect of selecting the appropriate subset of dominance relationships from DomTC(P)
needed to preserve the behavior of type casts and member lookups in P.

Definition 5.5 Let N be the set of nodes in the new subobject graph. Then, the con-
tainment ordering ‘T’ on subobjects in N is defined as follows: For nodes n, n' € N we
have that:

$(n) = 3(n')o,

Ide(n) = Tg, Ide(n') = Tr,

mdc(n) = mdc(n'),

(Q, 0, R) € (AssignTC(P) U MemberAccessTC(P) U DomTC(P))

/

nCn when

Remark 5.6 In principle, a T”-relationship that is due to constraints in AssignTC(P)
and MemberAccessTC(P) could be constructed by modifying the inductive clause of Defi-
nition 5.2. However, as was discussed in Section 4.7, additional subtype-relationships are
required in order to preserve hiding and dominance relationships between methods. Defin-
ttion 5.5 provides a uniform approach for constructing all required subtype-relationships.

Example 5.7 Fig. 7 shows the specialized subobject graph for object b. Nodes in this
graph correspond to subobjects in the specialized subobject graph, and edges in the graph
reflect the T ’-containment relation between nodes.

In order to clarify the construction of the subobject graph of Fig. 7, we will study the
construction of nodes T{ var(*ap) },[B,B-A],{ var(b) } and T{ var(b) },[B,B],{ var(b) }
in N, and the C-relationship between these nodes in some detail.

Node T{ var(b) },[B,B],{ var(b) } 1s added to N by the first part of Definition 5.2, using
v=">,V =B, and o = [B,B]. Similarly, node T{ var(*ap) },[B,B-A],{ var(b) } 18 added
to N by the second part of Definition 5.2, using T{ var(b) },[B,B],{ var(b) } € N and
({ var(*ap) }, [B,B-A], { var(b) }) € AssignTC(P3) (see Ezample 4.19), such that Q@ =
{ var(*ap) }, R = { var(b) }, S = { var(b) }, o1 = [B,B-4], and o2 = [B,B].

26

The C-relationship between these nodes 18 constructed
by Definition 5.5 using ({ var(*ap) },[B,B-4], { var(b) }) € AssignTC(P3), where n =

T{ Var(*ap) },[B,BA],{ Var(b) } ’ n' = T{ Var(b) },[B,B],{ Var(b) } ’ IdC(TL) = T{ var(*ap) }s
lde(n') = T{ var(v) 3, mde(n) = mde(n') = T¢ varv)}, @ = { var(*ap) }, R = { var(b) },
and o = [B,B-4].

[l

5.3 The specialized class hierarchy

We are now in a position to construct the specialized class hierarchy, using the subobject
graph (N, C). Definition 5.8 defines how this hierarchy is constructed.

Definition 5.8 The new class hierarchy contains a class Ts for each equivalence class
of constraint variables S (see Definitions 3.10 and 4.15). Class Ts contains the following
members:

e For each dcl(X::m) in S, class Ts contains a declaration of member m, similar to
the declaration of m in class X of the original hierarchy.

e For each def{ X::m) in S, class Ts contains a definition of member m, similar to
the definition of m in class X of the original hierarchy.

The inheritance relations of the specialized hierarchy are constructed as follows. For
two subobjects n, n' € N such that nCn', class Idc(n) is an immediate base class of class
Ide(n’). This inheritance relation is virtual if all of the following hold:

1. there is a node ny € N such that Idc(ny) = Idc(n),
2. niCng, for some ng € N with Idc(ny) = Ide(n'),
3. niCna, for some ng € N such that ng # na, and
4. naC*ng and nsC*ng, for some ng in N.
Otherwise, the inheritance relation between Idc(n) and Idc(n') is nonvirtual.

The final part of Phase III consists of updating the declarations in the program in order
to reflect the new class hierarchy. This is accomplished by giving type Tj,ar(.)) to each
variable v in ClassVars(P), and type #Tjyar(sp)] to each variable p in ClassPtrVars(P)
which is not the this pointer of a method. In C++4 (and £), this pointers are not
declared explicitly, but the type of a this pointer is determined by the location of the
associated method definition in the hierarchy. Hence, there are no declarations that need
to be updated in this case.

Example 5.9 Fig. 8 shows the new program and hierarchy constructed for program Po
of Fig. 2. The behavior of this program is tdentical to that of the original program, and the
reader may verify that members have been eliminated from certain objects, e.g., objects b
and ¢ no longer contain member x. However, due to an abundance of virtual inheritance
in the transformed hierarchy, the objects in the transformed program may have become
larger than before the transformation (virtual inheritance increases member access time,

27

class Tf gej(pnx)} 1 class Tt gef(ciie) } ¢ T{ del(Ciiz) }»

int x; virtual T{ dcl(A:£) }2
; virtual Ty j.ip..
class T¢ gej(n::t) } { virtual int £(O){ return g() jz; (}}?;g)}
}.virtual int £(); };
clisiituTa{ldi(f::gg())% { class T{ var(xap) } virtual T{ del(A:£) } {3}
g class Tf yar(a)} g{ def(h::£) } >
class Ty 4 1. { { def(h::g) }°
int y;{ (37) } T{ var(*ap) }
i e
clas.s T{ dl(B::g) } : virtual T{ del(hzg) } { class T{ var(b) } ° T{ def(A::f) }*
virtual int g(); T{ def(B::g) }*
b¥ y T{ var(*ap) }
cla.lss T{ del(C::z) } { |
};mt z; class T{ var(c) } : T{ def{C::£) }»
g{ def(B::g) }*
class T{ def(A::g) } : T.{ dc](A::x) }, } { Var(*ap) }
. . virtual T{ dcl(h:g) { ?
virtual int g(){ return x; };
b¥ void main(){
T a; T b; T c;
class T{ def(ar:1) } : v:ﬁ.rtual T{ del(hg) }* T{ var(a) } *ap{; var(b) } { var(c) }
virtual T .. {] { var(*ap) }
)) { del(a=1f) } if (...) { ap = &a; }
virtual int £O){ return g(); }; else if (...) { ap = &b; }
¥ else { ap = &c; }
lass T T P10
closs Tf gefipig)} ¢ T{ dei(Bay) }° }
.v1rtua].. T{ del(h=g) }° virtual T{ del(B::g) } {
}.vn‘tual int gO){ return y; };
(a)
TY dei(azt) } T{ dei(Bzy) }
O3 y
T{ del(h:x) } T{ del(h:g) } /// 3 \\\ T{ dcl(B::g) } T{ del(C::z) }
x g0; ,,,/:/ ””” e \’\r\ -1 80; z
T{ defld:g) } .- - T{ deng::f) I T{ Varg*ap) } R \LT{fd(ef(vB’::’g)} 1 \7\11 T{ def(C::f) }
A:gO) AxEQ) B:gO) C:f ()
T{ var(a) } T var(v) } T var(e)}

(b)

Figure 8: (a) Class hierarchy and program generated by Phase III for program P of Fig. 2.
(b) Pictorial view of the class hierarchy of Fig. 8.

28

and may increase object size). Using the object model of the IBM x1C C++ compiler,
object a now occupies 52 bytes (was 8), object b 68 bytes (was 12), and object ¢ 76 bytes
(was 16). O

Phase IV of the algorithm addresses this problem by applying a set of transformation
rules that simplify the class hierarchy, and reduce object size by eliminating virtual
inheritance. These transformations are discussed in Section 8.

6 Representability issues

The purpose of the partitioning of variables into equivalence classes that was introduced
in Definition 3.10 is to ensure that the generated class hierarchy can be expressed using
the inheritance mechanisms of C++. In the absence of such a partitioning, a pair of
assignments ¢ = y; y = = would lead to a situation where the type of = is a base class of
the type of y, and the type of y is a base class of the type of z, and such cyclic inheritance
class hierarchies are not valid in C4++4. The approach we follow, partitioning variables
into equivalence classes and generating one type per equivalence class, prevents these
problems.

Unfortunately, there is another situation that leads to irrepresentable inheritance struc-
tures in situations where the original class hierarchy contains classes X and ¥ such that
a Y-object may contain multiple X-subobjects (due to multiple nonvirtual inheritance).
Specialization may effectively transform each such X-subobject into a shared subobject.
However, the virtual inheritance mechanism of C++ is not sufficiently powerful to model
multiple, distinct shared subobjects of the same type.

Fig. 9(a) shows a program that illustrates this situation. Note that the special-
ized subobject graph for this program, shown in Fig. 9(b), contains two distinct nodes
Tt qa(asx) 3,[D,D-B-A1,{ var(d) } 314 Tf uy(arx) 3,[D,DC-41,{ var(a) } that have same
least derived class: Tyci(s::x). Unless countermeasures are taken, the algorithm of Sec-
tion 5.3 will construct the incorrect specialized class hierarchy of Fig. 9(c). This hierarchy
is incorrect because program behavior is not preserved: the program of Fig. 9(c) com-
putes the value 50 for variable result, whereas the program of Fig. 9(a) computes the
value 20.

The above problem only occurs in the presence of objects that contain multiple, distinct
subobjects that have the same least derived class. Definition 6.1 formalizes the concept of
a replicated class, which will be a key notion in our approach for avoiding irrepresentable
inheritance structures.

Definition 6.1 Let P be a program. Then, a class X in P is a replicated class if there
is some class Y in P such that [Y,Y] contains multiple subobjects whose least derived
class is X. We will use ReplClasses(P) to denote the set of all replicated classes in P.

We will use Definition 6.1 to modify the equivalence relation ‘~’ on constraint variables
in such a way that:

o The type Tjyar(v) associated with a variable v whose type in the original hierarchy
is a replicated class has at most one derived class in the specialized class hierarchy.

29

T delax) },[D,D-B-A)]{ var(d) } T delarx) 3,[D,D-C-A]{ var(d) }

x x
T bp2) },[D,D-Bh{ var(d) } T{ var(c ,[D,D-C],{ va
T{ var(bpl) },[D,D~ var(d) } T{ var(c D,D-C],{ var(d) }
T{ var(d) },[D,D],{ var(d) }
(b)
class A { int x; }; class T{ del(h::x) } { int x; }; class T{ del(h::x) } { int x; };
class B : A { }; class Ty yar(abpt) } class Ty yar(sbpt), var(+bp2) }
virtual T{ del(h::x) } {} T{ del(h::x) } i}
class T{ var(*bp2) }
virtual T{ del(h::x) } {3}
class C : A { }; class Ty yar(xcpt)} ¢ class Ty yar(scpt), var(+cp2) }
virtual T{ del(h::x) } {} T{ del(h::x) } i}
class T{ var(*cp2) }
virtual T{ del(h::x) } {3}
class D : B, C { }; class Ty yap(a)} ¢ class Ty yur(a) }
T{ var(*bpl) }° T{ var(*bp2) } ° T{ var(*bpl), var(*bp2) } °
T{ var(xcpl) }? T{ var(*cp2) } T{ var(*cpl), var(*cp2) } ik
void main(){ void main(){ void main(){
D d; T{ var(d) } d; T{ var(d) } ds
g :EP;; T{ var(*bpl) } *bp1; T{ var(*bpl), var(*bp2) } *bp1;
C *cilj T{ var(*bp2) } *bp2; T{ var(*bpl), var(*bp2) } *bp2;
c *CP2; T{ var(xcpl) } *cpl; T{ var(*cpl), var(*cp2) } *cpl;
bpl = &d; T{ var(xcp2) } *<P23 T{ var(xcpt), var(rcp2) } *°P23
bp2 = &d; bpl = &d; bp2 = &d; bpl = &d; bp2 = &d;
cpl = &d; cpl = &d; cp2 = &d; cpl = &d; cp2 = &d;
cp2 = &d; bpl->x = 10; bpl->x = 10;
bpl->x = 10; bp2->x += 10; bp2->x += 10;
bp2->x += 10; cpl->x = 40; cpl->x = 40;
cpl->x = 40; <.:p2—>x += 10; <.:p2—>x += 10;
cp2->x += 10; int result; int result;
int result; result = bpl->x; result = bpl->x;
result = bpl->x; } ¥

(a) (¢) (d)
Figure 9: (a) Example program. (b) Specialized subobject graph (irrepresentable). (c)

Specialized class hierarchy and program (incorrect). (d) Correct specialized class hierarchy and
program obtained using the equivalence relation of Definition 6.2.

30

o The type Tjqci(m)] OF Tidef(m)] @ssociated with a member m that occurs in a replicated
class in the original hierarchy has at most one derived class in the specialized class
hierarchy.

Since this implies that elements of the specialized subobject graph corresponding to
“replicated” subobjects in the original hierarchy are no longer shared, it is guaranteed
that no irrepresentable inheritance structures can occur!?. Definition 6.2 shows the

modified definition of ‘~’.

Definition 6.2 Let P be a program. Then, the equivalence relation ‘~’ on the variables

in P is defined as follows:
T~y when <:c7y1>7 Tty <yn7y>a <y,:c1>, B <£Cm,£(1> € Assignments(?)

(v, z), (v,y) € Assignments(P),
z~y when TypeOf(P,v) € ReplClasses(P),
TypeOf(P,z) = TypeOf(P,y)

(z,m), {y,m) € MemberAccess(P),
X = TypeOf(P,z) = TypeOf(P,y),
static-lookup ([X,X], m) = n,
Ide(n) € ReplClasses(P)

x~y when

for some z1, <+, Tm, Y1, <, Yn in (ClassVars(P) U ClassPtrVars(P)).

The first clause of this definition is the same as before. The second clause states that
if a variable v whose type is a replicated class is assigned two other variables, z and y,
then the types of # and y are merged. The third clause states that if a member in a
replicated class is accessed from two variables z and y, the types of these variables must
be merged. The effect of the additional equivalence rules is that any replicated class in
the specialized class hierarchy has no more than one derived class. As a result, such a
class will never be required to be a virtual base class of another class.

This scheme is sufficient to prevent the representability problem mentioned above,
provided that the following requirements are met:

e If the program contains an assignment & = z, and the type of z is a replicated class
X, and the type of z is Z, then X = Z, or X is an immediate base class of Z.

e If the program contains a member access v.m or v — m that statically resolves to
a member m in a replicated class X, then v’s type is X.

These assumptions are nonrestrictive: any L-program that does not conforms to these
assumptions can be trivially transformed into an equivalent L-program that meets our
requirements.

Returning to the example of Fig. 9(a), Fig. 9(d) shows the specialized class hierarchy
and program obtained using the modified definition of ‘~’ of Definition 6.2. Variables

12 An alternative approach for avoiding irrepresentable structures might be to make the access to
multiple shared subobjects with the same least derived class explicit, by introducing a data member
that contains a pointer to the subobject under consideration.

31

bp1 and bp2, and variables cpl and cp2 now occur in the same equivalence class, causing
their types to be merged in the specialized hierarchy. As a result, the inheritance relation
between these “merged” types, and type T gcys::x)} 1S now non-virtual.

Representability issues become a much more prominent issue for object-oriented lan-
guages such as Java [15] that have more limited facilities for expressing inheritance than
L. The inheritance structures that result from class hierarchy specialization are derived
from the member access and assignment operations in a program, and do not conform
“naturally” to a language’s limitations on inheritance. For example, multiple inheritance
arises naturally in the generated subobject graphs because any variable from which n
members are accessed may have up to n base classes (the exact number of base classes de-
pends on how many of these members occur in the same equivalence class). If a language
for example does not support multiple inheritance, types of variables must be merged
until all use of multiple inheritance is eliminated.

7 Justification

In this section, we demonstrate that class hierarchy specialization is a semantics-preserving
program transformation. Since only the class hierarchy and the declarations of variables
are affected by the transformation, it suffices to show that the behaviors of member
lookup and type cast operations are preserved. In order to do so, we need to reason
about “corresponding” subobjects in the original and specialized class hierarchy, and
“corresponding” lookup and type cast operations that are performed on the original and
the specialized subobject graphs. To this end, we use the 3 mapping of Section 5.2:
Informally, a subobject n in N corresponds to a subobject o € L(P) if ¥(n) = 0.

In order to uniformly refer to the types of variables, member declarations, and member
definitions, we extend TypeOf to constraint variables as follows:

Definition 7.1 Let P be a program, and let e be a constraint variable in CVars(P).
Then:
TypeOfiP,z) when e = var(z)
TypeOfiP,e) £ C when e = dcl(C:m)
C when e = def(C::m)

Lemma 7.2 states that all constraint variables in an equivalence class have the same
type.

Lemma 7.2 Let e and f be constraint variables such that e ~ f. Then:

TypeOf(P,e) = TypeOf(P, f)

Proof. Follows directly from Definition 6.2. d

Lemma 7.3 establishes a relationship between the types of the constraint variables in
S, and the least derived class of a subobject o, for a given type constraint (S, o, T') that
1s due to an assignment or member access.

Lemma 7.3 Let P be a program and let (S, o, T) be a type constraint in AssignTC(P) or
MemberAccessTC(P). Then, for each constraint variable e in S, we have that Idc(o) =
TypeOf{P,e).

32

Proof. Follows directly from Definitions 4.18 and 4.20, and Lemma 7.2. d
Lemma 7.4 establishes a relationship between the least derived class of a subobject,
and the subobject composition operator.

Lemma 7.4 Let o1 and o3 be subobjects such that mde(o1) = Idc(oz). Then, we have
that Idc(o3®01) = Ide(o1).

Proof. Follows directly from Definition 4.9. d
Lemma 7.5 states that for any subobject n in N with least derived class Tj,], the least
derived class of ¥(n) is the same as the type of e in the original class hierarchy.

Lemma 7.5 Let n be a subobject in (N, ‘<’) such that Idc(n) = Tf.). Then:

Ide(y(n)) = TypeOf(P,e)

Proof. This can be shown inductively, by showing that the property holds for any node
added to N in Definition 5.2.
The base case consists of nodes n such that n = T[var(v)] &, [var(0)]’ for some v €

ClassVars(P), V. = TypeOf(P,v), and ¢ = [V,V]. The property follows trivially for v,
and from Lemma 7.2 it follows that the property holds for all elements of [var(v)].

For the inductive case, assume that the property holds for a node n’ € N. Let n be a
node that is added by the inductive clause of Definition 5.2 such that n’ = TT,UQ,U’
and (S,01,T) € (AssignTC(P) U MemberAccessTC(P)). Then, we have that n =
TS,ag@ol,U‘ The property follows from Lemma 7.3 and Lemma 7.4. d

Lemma 7.6 Let n and n' be subobjects in N such that n'Cn. Then $(n')<*¢(n) and
mdc(n') = mde(n).

Proof. Follows directly from Definitions 5.2 and 5.5. d
Lemma 7.7 states that casting a subobject o to its least derived class results in selection
of o itself.

Lemma 7.7 Let o be a subobject. Then, we have that:
typecast - (o, ldc(o)) = ¢

Proof. Follows immediately from Definition 4.7. d

Theorem 7.8 states that assignment behavior is preserved. Specifically, we demonstrate
that if (i) there is an assignment (z, y) € Assignments(P), (ii) ¢ and n are corresponding
subobjects in X(P) and N, respectively, and (iii) the least derived classes of o and n
both correspond to the type of object y, then execution of the assignment will result in
the selection of corresponding subobjects in %(P) and N.

Theorem 7.8 Let P be a program with initial subobject graph (L(P), ‘<’ and specialized
subobject graph (N, ‘T’). Let n be a subobject in N such that ldc(n) = Tiovaros(y)), and
let (z,y) € Assignments(P). Then:

Y(typecast=(n, Ticvaros(z)])) = typecast< (¥(n), TypeOf(P, z))

33

Proof. We distinguish two cases:

1. CVarOflz)~CVarOfly). We will demonstrate that the left-hand side and right-

hand side of the equation reduce to the same subobject.

For the left-hand side, we have that:

Y(typecast—(n, Ticvarof(z)])) = ¥(typecast—(n, Tiovarony))) = ¥(n) £ o

using [CVarOf(z)] = [CVarOf(y)] for the first step, and Idc(n) = Tiovaros(y)) and
Definition 4.7 for the second step).

For the right-hand side, we have that:

typecast - (¢(n), TypeOf(P, z)) = typecast (o, TypeOf(P,y)) = ¢

using o = ¥(n), CVarOflz)~CVarOf(y), and Lemma 7.2 for the first step. The sec-
ond step relies on Lemmas 7.5 and 7.7 to demonstrate that Idc(c) = TypeOf(P, y),
and hence that typecast (o, TypeOf(P,y)) = o.

2. CVarOf(z)#CVarOfly). Let n = T[CVarOf(y)],ag,T‘ From (z,y) €
Assignments(P) and Definition 4.18, it follows that there exists a type constraint
([Tevarof(z)], 71, [Tevarofy)]) in AssignTC(P), for some o1. From Definitions 5.2
and 5.5, it follows that n' = T[CVarOf(fC)]v‘72@01,T € N, and that n'Cn.

This demonstrates that n contains a subobject n’ whose least derived class is of
the correct type (the target type of the cast operation).

What remains to be demonstrated is that n does not contain another subobject n’’
with the same least derived class that would render the cast operation ambiguous.
Formally speaking, we will show by contradiction that there is no »” in N such that
n"C*n, n" # n/, and Idc(n”’) = Ticvarof(z)]- Assume there is such an n”. Then,
from Lemma 7.6 it follows that o1<*c, Ildc(c1) = X 02<*0, ldc(oz) = X, and
o1 # o2 where X = TypeOf(P,z), 0 = ¥(n), o1 = ¥(n1), and oz = ¥(nz). From
Definition 4.7, it follows that the type cast to type X in the original class hierarchy
1s ambiguous. Since we assume the program to be type-correct, this is impossible.

Therefore, the property also holds in the case where CVarOf(z)#CVarOf(y).
(I

The following lemma is crucial in proving that the behavior of static lookup operations
is preserved. Informally speaking, it states that the declaration/definition of a member
m that is accessed in a lookup operation dominates all other visible declarations and
definitions of m.

Lemma 7.9 Let ny, n2, and nz be nodes in N such that n; = Tg o1, T
J J

N2 = T[IB(Y::m)]’O.l@O-z’T; and n3 = T[a(X::m)],O']_@O'g,T’ nalCny, nSE*nl,
([B(Y::m)], 02, S) € MemberAccessTC(P), and «, B in { dcl, def}. Then nzCns.

Proof. Let X = TypeOf(P,a(X:m)) and ¥ = TypeOf(P,B(Y::m)). From Defini-
tion 5.8, it follows that classes X and ¥ both contain a declaration/definition of m.
From Lemma 7.6, naCny, and nzC*ng , it follows that o1Po2<*0; and o1Po3<* 0.

34

From the above information, Definition 4.20, and Definition 4.2, it follows that
01Po3<*c1P0os. It can easily be seen that this implies that o3<*cs.

We have now demonstrated that the occurrences of m in subobjects ny and nz are
both visible in subobject n;, and that there exists a containment relationship between
corresponding subobjects in the original hierarchy, o2 and 3. Informally speaking,
this containment relation implies that the m in subobject o5 hides or dominates the
m in subobject o3. The dominance type constraints of Definition 4.22 were introduced
to capture the appropriate hiding/dominance relations so they can be retained in the
specialized subobject graph.

Formally, Definition 4.22 states that there is a constraint {[a(X::m)], o, [B(Y::m)]) in
DomTC(P), where 030 = o3. Hence, Definition 5.5 implies that nzCn,. O

Theorem 7.10 states that the behavior of static lookup operations is preserved. Infor-
mally, the theorem states that if (i) member m is accessed from object y, (ii) ¢ and n are
corresponding subobjects in X(P) and N, respectively, and (iii) the least derived class of
o and n correspond to the type of object y then the static lookup operation will select
corresponding subobjects in X(P) and N.

Theorem 7.10 Let P be a program with initial subobject graph (XL(P), ‘<?’) and special-
ized subobject graph (N, T). Let n be a subobject in N such that ldc(n) = Tievarosn(y)],
and let (m,y) € MemberAccess(P). Then:

p(static-lookup(n, m)) = static-lookup (4(n), m)
Proof. Let n = T[CVarOf(y)] o0, T There are two cases:

1. y € ClassPtrVars(P) or m € DataMembers(P). According to Definition 4.20
there is a type constraint {[dcl(X::m)], o1,[CVarOfly)]) € MemberAccessTC(P),
where Y = TypeOf(P,y), and o2®01 = [Y,a-X]| = static-lookup([Y,Y], m).
From Definition 5.2 and 5.5, it follows that n' = T[dc](X“m)]vO?@Ul,T € N,
and that n'Cn. From Lemma 7.9 it follows that for every n” in N Idc(n”) =
Tio(w::m)] for some W and some z € { dcl, def}, and n"'C*n, we have that n"/C*n’.
From Definition 4.2 it follows that static-lookup—(n,m) = n’, and hence that
p(static-lookup(n, m)) = static-lookup(4(n), m).

2. y € ClassVars(P) and m € VirtualMethods(P). According to Definition 4.20 there
is a type comstraint ([def{X::m)], o, [CVarOf(y)]) € MemberAccessTC(P), where
Y = TypeOf(P,y), and ¢ = [Y,«-X]| = static-lookup([Y,Y],m). From Defini-

tion 5.2 and 5.5, it follows that n’ = T[def(X::m)]ao-2@o'l,T € N, and that n'Cn.

From Lemma 7.9 it follows that for every n” in N Idc(n") = Tjo(w::m)) for some W
and some z € { dcl, def} and n”"C*n, we have that n”/C*n’. From Definition 4.2 it
follows that static-lookup(n, m) = n’, and hence that +(static-lookup(n,m)) =
static-lookup (¢(n), m).

O

Theorem 7.10 states a correspondence between static lookup operations in the original
and specialized class hierarchies. However, in order to argue that program behavior
is preserved, it is necessary to make a similar claim about dynamic member lookup

35

operations that arise from dynamically dispatched method calls. We first introduce
another lemma.

Lemma 7.11 establishes a relationship between a subobject’s most derived class, and
the subobject mapping of Definition 5.4.

Lemma 7.11 Letn be a subobject in the specialized class hierarchy. Then, we have that:

$([mde(n),mdc(n)]) = [mde((n)),mde(¢(n))]

Proof. Follows directly from Definitions 5.3 and 5.4. d
Theorem 7.12 uses Lemma 7.11 to demonstrate that dynamic lookup behavior is pre-
served.

Theorem 7.12 Let P be a program with initial subobject graph (XL(P), ‘<’ and special-
ized subobject graph (N, T). Let n be a subobject in N such that ldc(n) = Tievarosn(y)],
and let (m,y) € MemberAccess(P). Then:

y(dynamic-lookup(n, m)) = dynamic-lookup(¢(n), m)
Proof. Using Lemma 4.6, we have that
y(dynamic-lookup(n, m)) = y(static-lookup([mdc(n),mdc(n)], m))
Using Theorem 7.10, this can be restated as:
static-lookup (([mdc(n),mdc(n)]), m)
According to Lemma 7.11, this can be rewritten to:
static-lookup ([mdc(¢(n)),mde(sp(n))], m)
According to Definition 4.4, this is the same as:

dynamic-lookup (4(n), m)

8 Phase IV: Simplification

Phase IV of the algorithm consists of the application of a set of semantics-preserving
transformation rules to the specialized class hierarchy'®. These rules simplify the (vir-
tual) inheritance structures of the class hierarchy in order to reduce the number of
compiler-generated fields in objects, and consequently reducing member access time
and/or object size. It is important to realize that the number of explicit (i.e., user-
defined) members contained in each object is not affected by the transformations, with
the exception that a member’s declaration and definition may be merged.

13 Alternatively, the set of type constraints could be simplified before the specialized class hierarchy is
generated. However, since these transformations are of interest in their own right (e.g., as an optimization
performed subsequent to class hierarchy slicing [33] or application extraction [34]), we have chosen to
present them as general transformations that may be applied to any class hierarchy.

36

TY dei(azt) } T¢ dei(piry) 3

£0; y
T{ del(h:x) } T{ del(4::g) } /// 3 \\\ T{ dcl(B::g) } T{ del(C::z) }
x g0 *”/i/ ****** e *\r\ = gO; z
T{ def(Azg) } -~ - T{ def@A::f) I T{ Var\g*ap) } R \LT{id(eng’::’g) T \7\11 T{ def{C::f) }
A:gO) AxfQ B:gO) C:f ()
T4 var(a) 3 T4 var(v) 3 T4 var(e) ¥

(a)

Traci(ang)} . Tf da(aut), var(xap) } - T{ del(B:g) }

§O0; | £0; 1 s0;
T{ del(a:x), def(A:g) } . T{ deng::f) | g : 3 : T{ dicli(};::iyi:/id:sfiBizzig): j:T{idjc‘:](C::z), def(C::f) }
x y SRR v 2
A:g(O) BfO Lo B::g() C::fF Q)
Ty > Time)y 7 T

(b)

Tl aci(ag)y . T{ dal(hot), var(xap) } . T{ del(::6) }

gO; | £O; 1 g0
T{ def(a::f) } 7 ’ N T{ dc](B::y%l/ def(B::g)\ } R
. y ’ \\ hl
| y |
‘ AcEQ) ‘
i B:g() ;

T{\dcl(A::x), def(A::g), var(a T{ var(b) } T dcl(C::z), def(C::£), v:ar(c/)/}

x z
A:g(O) C:f()

(¢)

Figure 10: Ilustration of the class hierarchies that result from applying the simplification rules
of Section 8 to the specialized class hierarchy of Fig. 8. In the figure, boxes indicate classes, solid
arrows indicate nonvirtual (replicated) inheritance, and dashed arrows indicate virtual (shared)
inheritance. An unqualified member name inside a box (e.g., £() ;) indicates that a declaration
of that member occurs in the class. A qualified member name (e.g., A::g()) indicates a member

definition and the class in the original hierarchy from where it originated (4).

37

T{ del(h:g) }

gO;
T{ del(A::1), VarS*ap), def(4::f) } \ T{\dd\()?::g), dcl(B::y), def(B::g) }
. y
AEQ) \ B::gO)
: T :
; Tty
x z
A:g(O) C:f ()
T{ dcl(h::x), def(A::g), var(a) } T{ dcl(C::z), def(C::f), var(c) }
(a)
T{ dcl(A::g), dcl(A::f), var(*ap), def(A::f) } T{ dcl(B::y), def(B::g) }
gOs | | y
AcEQ) \\\\\\ B::g()
: Ty :
v o H{var(p) 3, R Y
x z
A:g(O) C:f ()
T{ dcl(h::x), def(A::g), var(a) } T{ dcl(C::z), def(C::f), var(c) }

(b)

T{ dcl(A::g), dcl(A::f), var(*ap), def(A::f) } T{ var(b), dcl(B::y), def(B::g) }

sOs | N y
AcEQ) B::g()
T{ del(h::x), dev‘f(A::g), var(a) } T{ del(C::z), dev‘f(C::f), var(c) }
x z
A:g() C:f()

(¢)

T{ dcl(A::g), dcl(A::f), var(*ap), def(A::f) } T{ var(b), dcl(B::y), def(B::g) }

g0; y
AcEQ) B::g()
T{ dcl(h::x), def(A::g), var(a) } T{ dcl(C::z), def(C::f), var(c) }
x z
A:g() C:f()

(d)

Figure 11: Illustration of the class hierarchies that result from applying the simplification
rules of Section 8 to the specialized class hierarchy of Fig. 8 (continuation of Fig. 10).

38

8.1 The R-Rule: Removal of redundant inheritance relations

The R-Rule states that a virtual inheritance relation between classes X and Z can be
removed if there exists a class Y such that:

1. X is an immediate virtual base class of Y,
2. X is an immediate virtual base class of Z, and

3. Y is a (direct or indirect) base class of Z.

8.2 The D-Rule: De-virtualizing an inheritance relation

The D-Rule'* states that the virtual inheritance between classes X and Y can be replaced
by a nonvirtual inheritance relation when:

1. X is an immediate virtual base class of Y, and

2. there is no class Y’ # Y such that (i) X is an immediate virtual base class of Y,
and (ii) there is a class Z that directly or indirectly inherits from both ¥ and Y,
and

3. there is no type W such that subobject [W,W] contains multiple, distinct subob-
jects with least derived class X.

8.3 The M-Rule: Merging two classes

In the description of the rule below, the “merging” of two classes X and Y (where X is
a base class of Y) involves the creation of a new class Z that (virtually) inherits from
each (virtual) base class of X and Y, and which contains all members of X and Y. In
addition, each class Z’ that inherits from X or Y is made to inherit from Z instead.
This inheritance relation is virtual if the inheritance relation between X and Y or the
inheritance relation between X and Z’ or Y and Z’ is virtual; otherwise it is nonvirtual.
All variables of type X and Y are given type Z, and all variables of type X* and Y'* are
given type Zx. The final part of the merge operation consists of the removal of classes
X and Y from the hierarchy.

The M-Rule states that we merge a base class X with a derived class Y if all of the
following conditions hold:

1. X and Y have no members in common, except for the fact that for any member
m, X may contain a declaration of m, and Y a definition of m.

2. There is no class Z which is a direct nonvirtual base class of both X and Y.

3. If there is a direct base class X' # X of YV, and a direct derived class Y/ # Y of
X, then X’ is an indirect base class of Y.

4. Y is not a replicated class.

14 The original formulation of this rule in [35] contained an error.

39

5. If there are any variables in the program whose type is X, or any type Y’ # Y
directly or indirectly derived from X, then neither ¥ nor any direct or indirect
base class X' # X of Y contains any data members.

6. If there are any variables in the program whose type is X, or any type Y/ # Y
directly or indirectly derived from X, and if Y or any direct or indirect base class
X' # X of Y contains a declaration/definition of a virtual method, then X contains
a declaration/definition of a virtual method.

Conditions (1)—(4) ensure that the class hierarchy is still valid after the merge and that
member lookup behavior is preserved. Condition (5) ensures that no object becomes
larger due to the addition of a data member of method as a result of the merge, and
condition (6) ensures that no object becomes larger due to the addition of a virtual
function table pointer!S.

8.4 Example

As an example, we will study the simplification of the specialized class hierarchy that
was shown in Fig. 8.

Fig. 10(a) depicts this class hierarchy before any simplifications have been per-
formed. In Fig. 10(b), the class hierarchy is shown after merging class T del(az:x) } With
class T{ def(A::g) } (M), merging T{ dcl(B::y) } and T{ def(B::g) } (M), merging T{ del(C::z) } and
T def(c::£) } (M), eliminating the inheritance relation between T7 gei(a::g)} and TY geq(s::g) }
(R), and merging T} gci(a::r) 3 and T var(xap) 3 (M). Fig. 10(c) depicts the class hierarchy
after eliminating the inheritance relation between T7 geyi:.t), var(xap) } @nd T7 var(a) } (R),
eliminating the inheritance relation between T gcy(s::t), var(xap) } @nd TY var(v) } (R), elim-
inating the inheritance relation between T jcyi::z), var(xap)} aRd T7 var(c) } (R), merging
T{ dcl(A::x), def(A:g) } and T{ var(a) } (M)a and merging T{ dcl(C::z), def(C::f) } and T{ var(c) } (M)

Fig. 11(a) shows the hierarchy after eliminating the inheritance relation be-
tween Ty geiaig)} and Ty gei(aix), def{asg), var(a) } (R), eliminating the inheritance rela-
tion between T{ dcl(B::g) } and T{ dcl(C::z), def(C::£), var(c) } (R)a merging T{ dcl(B::g) } and
T{ dcl(B::y), def(B::g) } (M)a and merging T{ dcl(A::t), var(*ap) } and T{ def(A::f) } (M) Note that
merging 7Y gey(a:t), var(xap) } With its other derived class, T7 gey(ci:z), def(cit), var(c) }s 18
not permitted because that would violate condition (5) of the M-Rule. Another
point to note is that, as a result of the merge, the inheritance relations between
the newly created “merged” classes and their derived classes have become virtual.
Fig. 11(b) shows the hierarchy after merging 7% gcia:g)} and Y gei(as:£), var(sap), def(a::£) }
(M). Fig. 11(c) shows the hierarchy after eliminating the inheritance relation between
TY del(hszg), del(h::t), var(xap), def(a:£) } and TY var(v) 3 (R), eliminating the inheritance relation
between T{ dcl(4::g), del(A::f), var(*ap), def(A::f) } and T{ dcl(C::z), def(C::f), var(c) } (R)a and merging
T dci(Biry), def(B:g) } and T varv)} (M). The final result, shown in Fig. 11(d) is obtained
by replacing all virtual inheritance relations by nonvirtual inheritance relations (three
applications of the D-Rule). This is the same hierarchy that was shown earlier in Fig. 2.

15 Condition (6) is dependent on the object model. This condition may require modification if a
different object model is used.

40

9 Interaction with other Optimizations

Class hierarchy specialization may interact with a number of existing program optimiza-
tions and transformations in interesting ways. In Section 9.1, we discuss a number of
program transformations that may improve the results when applied before specializa-
tion. Section 9.2 discusses optimizations that may be enabled by specialization.

9.1 Optimizations to be performed before specialization

Removing dead or useless code may improve the result of specialization. In particular,
eliminating assignments and member access expressions may reduce the number of in-
heritance relations in the specialized hierarchy, and eliminating declarations of variables
reduces the number of classes. Various techniques for eliminating useless code may be
used, including elimination of unreachable methods [29], dead code elimination [17], and
program slicing [36, 32].

Sometimes programmers reuse variables in order to save space. This situation is il-
lustrated by Fig. 12(a), where variable ap is declared once, and used in two different,
unrelated contexts—note that the second assignment to ap “kills” the previous value.
Reusing variables may adversely affect specialization because the different “uses” of the
variable access different members, and be involved in different subtype-relationships with
other variables. The result of specializing the program is shown in Fig. 12(b). Note that
a better result can be obtained by first “splitting” variable ap (see Fig. 12(c)), followed
by specialization (see Fig. 12(d)).

We conclude this discussion by mentioning that, in certain cases, a better specialization
result can be achieved by transforming nonvirtual methods into virtual methods. This
1s the case because virtual methods are more “flexible” than nonvirtual methods in the
sense that the definition of the method need not be visible to the caller.

9.2 Optimizations to be performed after specialization

The example of Fig. 3 illustrates how class hierarchy specialization may enable the trans-
formation of virtual methods into nonvirtual methods. This may in turn create oppor-
tunities for inlining methods, and various intraprocedural optimizations.

10 Conclusions and Future Work

10.1 Discussion

We have presented an algorithm that computes a new class hierarchy for a program, and
updates the declarations of variables in the program accordingly. This transformation
may remove unnecessary members from objects, and it may eliminate virtual (shared)
inheritance (which decreases member access time, and which may decrease object size).
The advantages of specialization are reduced space requirements at run-time, and re-
duced time requirements through the reduced cost of object creation/destruction, and
indirectly through caching/paging effects. In addition, specialization may create addi-
tional opportunities for existing optimizations such as virtual function call resolution.

41

Figure 12:

class 4 {
virtual int £(){ return x; };
int x;
int z;
}s
class B : 4 {
virtual int £(){ return y; };
int y;

s

void main(){
A a;
B b;
4 *ap;

ap = &a;
ap->z = 10;
int p; p = ap->f();

ap = &b;

int q; q = ap->f();
}
(a)
class 4 {

virtual int £(){ return x; };
int x;
int z;
1
class B : 4 {
virtual int £(){ return y; };
int y;

s

void main(){
A a;
B b;
4 =apl;
apl = &a;
apl->z = 10;
int p; p = apl->f();

4 *ap2;
ap2 = &b;
int q; q = ap2->£();

(¢)

42

class T{ Var(*ap)} {

virtual int £();
int z; };

cless Tf yar(a)} ¢ T{var(xap)} {

virtual int £(){ return x; };
int x;
int z;

1
class T{ var(b) } ° T{ var(*ap) } {

virtual int £(){ return y; };
int y;

H

void main(){

T{ var(a) }
T var(v) } B
T{ var(*ap) } *ap;

ap = &a;
ap->z = 10;
int p; p = ap->f();

ap = &b;
int q; q = ap->f();

(b)

class T{ Var(a)} {
virtual int £(){ return x; };
int x;
int z;
}s
class T{ Val‘(b)} {
virtual int £(){ return y; };
int y;
}s
void main(){
T{ var(a), var(*apl) } 2
Ik var(b), var(*ap2) } b;
Ik var(a), var(*apl) } *apl;
ap = &a;
ap->z = 10;
int p; p = ap->f();

Ik var(b), var(*ap2) } *ap2;
ap2 = &b;
int q; q = ap2->£();

(d)

(a) Example program. (b) Specialized program class hierarchy.

Much of the complexity of the formalization of class hierarchy specialization is due to
the complexity of multiple non-virtual inheritance. In the presence of single inheritance,
and multiple virtual inheritance, each object can be characterized as a set of members,
because an object always contains at most one subobject of any given type. In the
presence of non-virtuel multiple inheritance, this is no longer the case, and subobject
information needs to be encoded in type constraints. Virtual inheritance does not pose
many problems by itself, because even for languages with only single inheritance, the hi-
erarchies generated by Phase III naturally exhibit virtual multiple inheritance. However,
as we mentioned in Section 6, additional work would be involved in transforming these
intermediate results into hierarchies with only single inheritance.

While we do not have empirical data of the space savings due to class hierarchy spe-
cialization, less sophisticated member elimination techniques [31, 34] have shown to be
highly effective in reducing the number of class members. Specifically, [31] reports an
average of 12.5% dead data members in C++ applications, and [34] reports an aver-
age of 49.7% dead fields, and an average of 34.4% dead methods in Java applications.
We believe that the better results in the context of Java are due to the fact that Java
applications are written in a more object-oriented style and tend to rely more on class
libraries, but also because in the approach of [34] dead methods are removed prior to
the transformations of the class hierarchy. Being a more precise analysis, class hierarchy
specialization should produce better results. How much better the results would be in
practice is a topic for future research.

10.2 Accommodating other language features

We have presented our definitions and formalism for a small object-oriented language in
order to prevent our definitions from becoming too unwieldy. However, the application
of class hierarchy specialization to a real language such as C++ or Java requires that a
number of additional language features be modeled.

10.2.1 Nested structures

Nested structures arise when the type of a data member is a class, or a pointer to a class.
Applying specialization to such structures affects a data member C::m of type D in two
“orthogonal” dimensions:

e The “location” of m in the class hierarchy is affected by changing the number of
objects that contain this field. This is no different from data members of built-in

types.

e The type of m is replaced by a specialized version of D, containing a subset of D’s
members. This is no different from the way we treat variables.

Consequently, data members of class-based types should be modeled as built-in data
members end as variables. This is accomplished by introducing constraint variables
dcl(C::m) and var(C::m), which represent the “data member” view and the “variable
view” of m, respectively. Constructing the type constraints involving these constraint
variables is completely analogous to the case with only data members of built-in types.

43

10.2.2 Down casts and type-test operations

Down casts are type cast operations where the “target” type T of the cast operation is
a derived class of the static type S of the casted expression. Down casting is generally
discouraged because a run-time error or exception occurs if the run-time type of the
expression 1is not a class transitively derived from 7. However, many realistic programs,
especially languages such as Java that lack parametric polymorphism, use downcasting
heavily. Type test operations are closely related to down casts, and allow a user to test
if a pointer or reference is a (subtype of) a specified type, and compute a boolean or
integer value indicating the result. For example, Java allows expressions of the form e
instanceof X, to test if the object pointed to by e is a subtype of X. Both down casts
and type test operations can be transformed into virtual method calls'®, allowing us to
simply rely on the previously discussed mechanisms.

10.2.3 Miscellaneous other features

Other language features that need to be modeled include:

e User-defined constructors and destructors. Typically, a constructor initializes all
members of a class. The algorithm presented in the present paper would not be
able to omit any members accessed from a constructor’s this pointer.

e Static members. Although member lookup works somewhat differently for static
members [24], we do not think that there are any conceptual difficulties here. From
a space savings point of view, static members are not very interesting because there
is only one such member per class.

e Reflection and dynamic loading. Reflective features allow one to access an ob-
ject’s class, and from such a class-object members in that class can be inspected
or accessed. Since it is in general impossible to determine using static analysis
which members may be accessed using reflection, additional user input would be
required to perform class hierarchy specialization on programs that use reflection
(the approach taken in [34]).

Other pragmatic issues that need to be addressed in order to make class hierarchy spe-
cialization practical are separate compilation and the use of class libraries for which only
object code is available.

10.3 Simplification rules

While the simplification rules of Section 8 are sufficient for the examples presented in
this paper, further research is needed to determine if additional rules are required in
other cases. In addition, simplification rules would ideally allow for certain time/space
tradeoffs. For example, one might think of a situation where a virtual inheritance relation
can be eliminated if a data member m is added to a certain object that does not need
m. We intend to investigate whether rewriting systems [7, 16] can be used as a formal
means to reason about class hierarchy simplifications.

18 This transformation was proposed by M. Streckenbach, and is presented in detail in [28].

44

10.4 Implementation plans

We have started work on an implementation of class hierarchy specialization in the
context of Jax [34], an application extraction tool for Java which is currently being
developed at IBM Research!”. The main goal of Jax is to reduce the time required
to download applications over the internet by reducing application size. In [34], Jax
1s evaluated on a number of realistic benchmark applications, and an average ZIP file
size reduction of 51.7% is reported. Jax incorporates a number of recently developed
whole-program analysis techniques such as Rapid Type Analysis [6, 5] and the dead data
member detection algorithm of [31].

We have adapted the class hierarchy simplification rules of Section 8 to Java, and
implemented them in the context of Jax. Java provides a limited form of multiple in-
heritance for interface classes, and does not make an explicit distinction between virtual
and non-virtual inheritance'®. Therefore, only the M-Rule and the R-Rule of Section 8
have been implemented. For the benchmark applications of [34], the simplification rules
reduce the number of classes by an average of 33.8%. This has a nontrivial impact on
application size because in the Java class file representation, each class has a local copy
of the literal values it refers to, and merging classes reduces the duplication of constants
in different classes.

A Language £

Language £ is a small C++-like language with virtual (shared) and nonvirtual (repli-
cated) multiple inheritance. We omitted many C++ features from £, including user-
specified constructors and destructors, nonvirtual methods, pure virtual methods and
abstract base classes, access rights (for members and inheritance relations; members
and subobjects are accessible from anywhere within an £-program), multi-level pointers,
functions, operators, overloading, dynamic allocation, pointer arithmetic, pointers-to-
members, the ‘::” direct method call operator, explicit casts, typedefs, templates, excep-
tion handling constructs. Furthermore, we assume that data members are of a built-in
type. For convenience, we allow classes to contain the declaration of a method without
an accompanying definition if the method under consideration is not called. All vari-
able/parameter types are either int or a class, data members are always of type int,
and members may only be accessed from a variable. Fig. 13 shows a BNF grammar for
L.

Without loss of generality we assume that the program does not contain variables,
parameters, members, and classes with the same name (if this is not the case, some
name-mangling scheme can be applied). The only exception to this rule is that we allow
a virtual method to override another virtual method with the same name.

1"More information about Jax can be found at www.research.ibm.com/jax. A free evaluation copy
can be downloaded from www.alphaWorks.ibm.com/tech/jax.

18Since interfaces cannot contain non-static fields, and all of the declarations of a method in different
interfaces refer to the same method, virtual and non-virtual inheritance would have exactly the same
semantics anyway.

45

Program = Hierarchy void main() { S_List }
Hierarchy = ClassDef | ClassDef Hierarchy
ClassDef ;2= class Id [: I.List] { M_List};
I_List [virtual] Id | [virtual | Id, I-List
M_List = Member; | Member; M_List
Member ;:= virtual int JTd([D_-List]) [{ S-List }] |
virtual Id JTd([D_List]) [{ S-List}] | int Id
S_List Stat; | Stat; S_List
Stat Decl | IfStat | AssignStat | ReturnStat | CallStat
Decl int Id | Id[*] Id
D_List Decl | Decl, D_List
IfStat ;= if (Id) { S_List} [else { S_List }]
AssignStat (= [*]1Id = Bzp | Id M_Op Id= Ezp
ReturnStat := return FEzp
CallStat (= CallExp
Ezxp ;= IntConst | Id | *xId | &Id | PBzp + Id | CallEzp
CallBzp ‘= Id M_Op Id([Ezp_List]) | Id M_Op Id| Id ([Exp_List]
Ezp_List := Exzp | E=zp, Brp_List
IntConst ;= .| -t]o]1] ...
M_Op i= . =>
Figure 13: BNF grammar for L.
References

(1]

(2]

AccrEDITED STANDARDS CoMMITTEE X3, I. P. S. Working paper for draft proposed
international standard for information systems—programming language C++. Doc. No.

X3J16/97-0108. Draft of 25 November 1997.

AGESEN, O. Concrete Type Inference: Delivering Object-Oriented Applications. PhD thesis,
Stanford University, December 1995. Appeared as Sun Microsystems Laboratories Technical
Report SMLI TR-96-52.

AgesEN, O., AND UNGAR, D. Sifting out the gold: Delivering compact applications from
an exploratory object-oriented programming environment. In Proceedings of the Ninth
Annual Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA’94) (Portland, OR, 1994), pp. 355-370. SIGPLAN Notices 29(10).

A1GNER, G., AND HOLZLE, U. Eliminating virtual function calls in C++ programs. In Pro-
ceedings of the Tenth European Conference on Object-Oriented Programming (ECOOP’96)
(Linz, Austria, July 1996), vol. 1098 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 142-166.

Bacon, D. F. Fast and Effective Optimization of Statically Typed Object-Oriented Lan-
guages. PhD thesis, Computer Science Division, University of California, Berkeley, Dec.
1997. Report No. UCB/CSD-98-1017.

Bacon, D. F., AND SWEENEY, P. F. Fast static analysis of C++ virtual function calls. In

Proceedings of the Eleventh Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’96) (San Jose, CA, 1996), pp. 324-341. SIGPLAN
Notices 31(10).

BarenDrREGT, H., vAN EEKELEN, M., GLAUERT, J., KENNAwWAY, J., PLASMELJER, M.,
AND SLEEP, M. Term graph rewriting. In Proc. PARLE Conference, Vol. II: Parallel
Languages (Eindhoven, The Netherlands, 1987), vol. 259 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 141-158.

CALDER, B., AND GRUNWALD, D. Reducing indirect function call overhead in C++ pro-
grams. Conference Record of the Twenty-First ACM Symposium on Principles of Program-
ming Languages (January 1994), 397-408.

46

[9]

[10]

[11]

[12]

[15]

[16]

[17]

18]

Carmi, P. R., Hwp, M., AND SrINIVASAN, H. Flow-sensitive type analysis for C++.
Tech. Rep. RC 20267, IBM T.J. Watson Research Center, 1995.

Cuori, J.-D., BUrkE, M., aND CaArINI, P. Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In Conference Record of the Twentieth
ACM Symposium on Principles of Programming Languages (1993), ACM, pp. 232-245.

DEaN, J., Grove, D., anD CHAMBERS, C. Optimization of object-oriented programs
using static class hierarchy analysis. In Proceedings of the Ninth European Conference on
Object-Oriented Programming (ECOOP’95) (Aarhus, Denmark, Aug. 1995), W. Olthoff,
Ed., Springer-Verlag, pp. 77-101.

Diwan, A., Moss, J. E. B., anD McKmwLEY, K. S. Simple and effective analysis of
statically-typed object-oriented programs. In Proceedings of the Eleventh Annual Con-

ference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA'96) (San Jose, CA, 1996), pp. 292-305. SIGPLAN Notices 31(10).

GopmN, R., aND Min1, H. Building and maintaining analysis-level class hierarchies using
galois lattices. In Proceedings of the Eighth Annual Conference on QObject-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’98) (Washington, DC, 1993),
pp- 394-410. ACM SIGPLAN Notices 28(10).

Gopm, R., M1, H., MiNEAU, G. W., Missaoul, R., ArFI, A., aND CHAU, T.-T. Design
of class hierarchies based on concept (galois) lattices. Theory and Practice of Object Systems

4, 2 (1998), 117-134.

GosLiNg, J., Jov, B., aND STEELE, G. The Java Language Specification. Addison-Wesley,
1996.

Krop, J. Term rewriting systems. In Handbook of Logic in Computer Science, Volume 2.
Background: Computational Structures, S. Abramsky, D. Gabbay, and T. Maibaum, Eds.
Oxford University Press, 1992, pp. 1-116.

Liu, Y. A., AND STOLLER, S. D. Dead code elimination using program-based regular tree
grammars. Tech. Rep. TR498, Indiana University, November 1997.

Moorg, I. Automatic inheritance hierarchy restructuring and method refactoring. In
Proceedings of the Eleventh Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’96) (San Jose, CA, 1996), pp. 235-250. SIGPLAN
Notices 31(10).

O’CaLLauAN, R., AND JacksoN, D. Lackwit: A program understanding tool based on
type inference. In Proceedings of the 1997 International Conference on Software Engineering
Programming Systems, Languages, and Applications (ICSE’96) (Boston, MA, May 1997).

OpPDYKE, W., AND JoHNSON, R. Creating abstract superclasses by refactoring. In ACM
1998 Computer Science Conference (1993).

OppYKE, W. F. Refactoring Object-Oriented Frameworks. PhD thesis, University Of
Tlinois at Urbana-Champaign, 1992.

PALSBERG, J., AND SCHWARTZBACH, M. Object-Oriented Type Systems. John Wiley &
Sons, 1993.

PanpE, H. D, anD RYDER, B. G. Static type determination and aliasing for C++. Report
LCSR-TR-250-A, Rutgers University, October 1995.

RamaringaM, G., AND SRINIVASAN, H. A member lookup algorithm for C++. In Pro-
ceedings of the ACM SIGPLAN’'97 Conference on Programming Language Design and Im-
plementation (Las Vegas, NV, 1997), pp. 18-30.

47

[25]

[34]

[35]

[36]

Rossig, J. G., AND FrRIEDMAN, D. P. An algebraic semantics of subobjects. In Proceedings
of the Tenth Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’95) (Austin, TX, 1995), pp. 187-199. SIGPLAN Notices 30(10).

SHAPIRO, M., AND HorwiTZ, S. Fast and accurate flow-insensitive points-to analysis. In
Conference Record of the Twenty-Fourth ACM Symposium on Principles of Programming
Languages (Paris, France, 1997), pp. 1-14.

SNELTING, G., AND T1P, F. Reengineering class hierarchies using concept analysis. In Pro-
ceedings of the Sizth International Symposium on the Foundations of Software Engineering

(FSE-6) (Lake Buena Vista, FL, November 1998), pp. 99-110.

SNeLTING, G., AND TP, F. Reengineering class hierarchies using concept analysis. Tech.
rep., IBM T.J. Watson Research Center, December 1999. Forthcoming.

SrivasTava, A. Unreachable procedures in object oriented programming. ACM Letters on
Programming Languages and Systems 1, 4 (December 1992), 355-364.

STEENSGAARD, B. Points-to analysis in almost linear time. In Proceedings of the Twenty-
Third ACM Symposium on Principles of Programming Languages (St. Petersburg, FL,
January 1996), pp. 32-41.

SweeNEY, P. F., aND Trp, F. A study of dead data members in C++ applications. In
Proceedings of the ACM SIGPLAN’98 Conference on Programming Language Design and
Implementation (Montreal, Canada, June 1998), pp. 324-332.

Trp, F. A survey of program slicing techniques. Journal of Programming Languages 8, 3

(1995), 121-189.

T, F., CHor, J.-D., FELD, J., AND RaMAaLINGAM, G. Slicing class hierarchies in C++. In
Proceedings of the Eleventh Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’96) (San Jose, CA, 1996), pp. 179-197. SIGPLAN
Notices 31(10).

T, F., LarrFra, C., SWEENEY, P. F., AND STREETER, D. Practical experience with
an application extractor for java. In Proceedings of the Fourteenth Annual Conference
on Object-Oriented Programming, Languages, and Applications (OOPSLA’'99) (November
1999), pp. 292-305. SIGPLAN Notices 34(10).

Trp, F., AND SWEENEY, P. F. Class hierarchy specialization. In Proceedings of the Eleventh
Annual Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA’97) (Atlanta, GA, 1997), pp. 271-285. ACM SIGPLAN Notices 32(10).

WEISER, M. Program slices: formal, psychological, and practical investigations of an auto-
matic program abstraction method. PhD thesis, University of Michigan, Ann Arbor, 1979.

Acknowledgements

John Field, Yossi Gil, G. Ramalingam, and Gregor Snelting made many useful sugges-
tions. The constructive feedback by the anonymous referees is also much appreciated.

48

