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Abstract

Many class libraries are designed with an emphasis on generality and extensibil�
ity� Applications often exercise only part of a library�s functionality� As a result� the
objects created by an application may contain unused �user�speci�ed or compiler�
generated� members� Redundant members in objects are undesirable because they
increase an application�s memory usage�

We present an algorithm for specializing a class hierarchy with respect to its
usage in a program P� That is� the algorithm analyzes the member access patterns
for P�s variables� and creates distinct classes for variables that access di	erent
members� The algorithm addresses the inheritance mechanisms of C

 in their
full generality� including multiple inheritance and virtual �shared� inheritance�

Class hierarchy specialization reduces object size� and can be viewed as a space
optimization� However� execution time may also be reduced through reduced ob�
ject creation or destruction time� and caching and paging e	ects� Class hierarchy
specialization may also create new opportunities for existing optimizations such as
call devirtualization and inlining� In addition� specialization may be useful in tools
for software maintenance and program understanding�

� Introduction

The development of applications has become increasingly dependent on class libraries
in recent years� Class libraries contain code and data structures that are common to
many applications in the form of a class hierarchy and associated methods� Libraries
make programmers more productive by helping them avoid reinventing the wheel� and
allowing them to concentrate on the application�speci�c parts of a program instead�
There is� however� a disadvantage to class library usage� which is caused by the fact

that libraries are typically designed with an emphasis on generality and extensibility� An
application that uses a class library often exercises only part of the library�s functionality�
Unfortunately� this leads to situations where the objects created by the program contain

�This is a revised and extended version of �����
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Figure �� �a� Example program P�� �b� Result of specialization�

unused components� For example� for a member m in a given class C� it may be the
case that certain C�objects never use m� We present an algorithm that specializes a
class hierarchy with respect to its usage in a program P � The algorithm analyzes the
member access patterns for the variables in P� and creates distinct classes for variables
that access di	erent members� The bene�ts of specialization can be manifold�

� The space requirements of a program are reduced at run�time� because objects no
longer contain unnecessary members�

� Specialization may eliminate virtual inheritance 
i�e�� shared multiple inheritance�
from a class hierarchy� This reduces member access time� and it may reduce object
size�

� Creation and destruction of objects requires less time due to reduced object size�
Time requirements may also be reduced through caching and paging e	ects�

� Specialization may create new opportunities for existing optimizations such as vir�
tual function call resolution �� ��� �� ��� �� and inlining�

� Specialization may be of use in program understanding and debugging tools� For
example� specialization can be used as a means to suppress the displaying of unused
parts of objects during a debugging session�

� Specialization may be used in tools for �nding imperfections in the design of class
hierarchies �����

Since class hierarchy specialization constructs a version of a class hierarchy that is cus�
tomized for a speci�c application� it only applicable in cases where a library is statically
compiled or linked with an application� Although we expect class hierarchy specialization
to be primarily of use in the context of an optimizing compiler� we present the algorithm
as a source�to�source translation for the sake of illustration�

��� Scope of this paper

The motivation for this work is to reduce the overhead incurred by class library usage in
large object�oriented applications� In this paper� we focus on the foundational aspects

�



of the technique and in order to prevent our de�nitions and algorithms from becoming
too unwieldy� we will focus on a small� idealized subset of C��� which we will refer to
as L� Language L contains the inheritance mechanisms of C�� in their full generality�
including multiple inheritance and virtual 
shared� inheritance but omits a number of
C�� features that would needlessly clutter the presentation of the algorithm 
e�g�� ac�
cess rights of classes and members�� A number of other language features 
e�g�� nested
structures� are only discussed informally� This being said� our techniques are in principle
applicable to realistic languages such as C�� and Java� although this would involve a
major engineering e	ort� The syntax and semantics of L are very close to those of C���
and the example programs presented below have their usual meanings� For the interested
reader� details of L are provided in Appendix A�

��� Motivating examples

Fig� �
a� shows an example program P�� which contains three objects s�� s�� and s��
each of type S� Careful analysis of P� reveals that member m� is accessed from all three
objects� member m� is accessed from s�� and member m� is accessed from s�� In order
to save space at run�time� we would like to remove m� from s� and s�� and m� from s�

and s�� Note that this requires s�� s�� and s� to have di�erent types� since objects of
the same type contain the same members�
However� the types of s�� s�� and s� are not completely unrelated because the assign�

ments s� � s� and s� � s� impose constraints on them� If s�� s�� and s� have three
di	erent� unrelated types� the compiler would report a type error in the assignments�
Observe� however� that s�� s�� and s� need not necessarily have exactly the same type�
in general� an assignment x � y only requires that y�s type be transitively derived from
x�s type�� The specialized class hierarchy of Fig� �
b� shows how this observation can
be exploited� by introducing new types T�� T�� and T� for s�� s�� and s�� respectively�
and inheritance relations between these types� Note that s� and s� now contain fewer
members 
the number of members of s� remains the same� while program behavior is
preserved�
Fig� �
a� shows an example program P� that will be used as a running example

throughout the remainder of the paper� P� has a class hierarchy with two virtual func�
tions� f�� and g��� The result of specialization is shown in Fig� �
b�� where we have
used the convention that the type of variable v is represented by class Tvar�v�� Pictorial
views of the original and specialized class hierarchies are shown in Fig� �
c� and 
d��
respectively� Note that the methods A��f��� A��g��� B��g��� and C��f�� are dispersed over
four classes Tvar��ap�� Tvar�a�� Tvar�b�� and Tvar�c�� and that class Tvar��ap� only contains a
declaration� of method g��� Observe that the use of a common base class Tvar��ap� with
only virtual methods allows us to eliminate the x data member from b and c�
Since the size of an object is strongly compiler�dependent it is di�cult to make general

statements about the space savings obtained by specialization� Using the IBM xlC

C�� compiler on the RS�����AIX ��� platform� the size of variable a would remain

�More precisely� for an assignment x � y� where x has type X and y has type Y � there must be
exactly one X	subobject inside a Y 	object �
� Section 
�����

�In L� methods only need to be dened if they are invoked� This is not the case in C�� where an
object cannot contain a pure declaration of a method for which there is no overriding denition�
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class A f
virtual int f��f return g��� g�
virtual int g��f return x� g�
int x�

g�
class B � A f

virtual int g��f return y� g�
int y�

g�
class C � B f

virtual int f��f return g�� � z� g�
int z�

g�

class T
var��ap� f

virtual int f��f return g��� g�
virtual int g��� �� declaration only ��

g�
class T

var�a� � T
var��ap� f

virtual int g��f return x� g�
int x�

g�
class T

var�b� � T
var��ap� f

virtual int g��f return y� g�
int y�

g�
class T

var�c� � T
var�b� f

virtual int f��f return g�� � z� g�
int z�

g�

void main��f
A a� B b� C c�
A �ap�
if ����� f ap 	 
a� g
else f if ����� f ap 	 
b� g

else f ap 	 
c� g g
ap��f���

g

void main��f
T
var�a� a� T

var�b� b� T
var�c� c�

T
var��ap� �ap�

if ����� f ap 	 
a� g
else f if ����� f ap 	 
b� g

else f ap 	 
c� g g
ap��f���

g
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Figure �� �a� Example program P�� �b� Specialized program and class hierarchy� �c�

Pictorial view of the original class hierarchy� including the methods and �elds that occur in each

class� �d� Pictorial view of the specialized class hierarchy�
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unchanged at � bytes� the size of b would be reduced from �� to � bytes� and the size of
c from � to �� bytes�
We will now consider an example where class hierarchy specialization can transform

virtual inheritance into nonvirtual inheritance� This is of interest because virtual inher�
itance requires indirections in objects that increase object size and member access time�
Fig� �
a� shows example program P�� which has a class hierarchy that exhibits a fairly
typical use of virtual inheritance� Fig� �
c� shows a pictorial view of this hierarchy� in
which virtual inheritance relations are indicated using dashed lines� The hierarchy of
P� contains an �interface� class I that contains a declaration of method f� and another
interface class J that �extends� I and adds a declaration for method g� In addition�
the hierarchy contains classes A and B in which I and J are �implemented�� respectively�
and which contain de�nitions of f and g� Using the object model of the xlC compiler�
object a occupies �� bytes� and object b �� bytes� Both objects contain an indirection�

for accessing their respective I�subobjects�
Fig� �
b� shows the result of specializing P�� Fig� �
d� shows a pictorial view of this

hierarchy� Observe that the class hierarchy no longer contains virtual inheritance� As a
result of removing the indirections to shared subobjects and removing data member x
from object b� both objects now occupy only �� bytes� In addition� accessing method f

from the pointers ip and jp no longer involves following an indirection and hence requires
less time�
Program P� also illustrates another bene�t of specialization� it enables the transfor�

mation of virtual methods into nonvirtual methods under certain conditions� The reader
may observe that the two de�nitions of method f in Fig� �
b� are completely unrelated�
since they do not have a base class in common in which f occurs� As a result� the
virtual methods f in Fig� �
b� may be transformed into nonvirtual methods without
a	ecting program behavior� Note also that there is a single occurrence of method g in
the hierarchy of Fig� �
b�� so that g can be �devirtualized� as well� Interactions between
specialization and other optimizations are discussed in more detail in Section ��

��� Organization of this paper

The remainder of this paper is organized as follows� Section � discusses related work�
The next three sections closely follow the organization of the algorithm� which consists of
four distinct phases� Section � discusses Phase I� in which basic program information is
collected by inspecting the source code of input program P� This information comprises
the variables� class members� assignments� and member access operations that occur in P�
as well as pointer�alias information for pointer�typed variables and an equivalence relation
on variables� Section � presents Phase II� which is concerned with the computation of
type constraints that precisely capture the required subtype�relationships between the
types of variables� and the visibility relations between class members and variables that
must be retained in order to preserve program behavior� Section � addresses Phase III
which constructs a new class hierarchy from the type constraints computed in Phase II�
In addition� the variable declarations in the program are updated in Phase III to take
the new hierarchy into account�

�In the object model used by the IBM compiler� the objects contain a pointer to the shared subobject�
Other object models store such information in �virtual dispatch� tables instead of in objects�
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class I f virtual int f��� g�
class J � virtual I f virtual int g��� g�
class A � virtual I f

virtual int f��f return x � y� g�
int x�
int y�

g�
class B � J A f

virtual int f��f return y � g��� g�
virtual int g��f return z� g�
int z�

g�

class T
dcl�A��y� f

int y�
g�
class T

var�a� � T
dcl�A��y� f

virtual int f��f return x � y� g�
int x�

g�
class T

var�b� � T
dcl�A��y� f

virtual int f��f return y � g��� g�
virtual int g��f return z� g�
int z�

g�

void main��f
A a�
a�x 	 ��� a�y 	 ���
I �ip� ip 	 
a�
int p� p 	 ip��f���

B b�
b�y 	 ��� b�z 	 ���
J �jp� jp 	 
b�
int q� q 	 jp��f���

g

void main��f
T
var�a� a�

a�x 	 ��� a�y 	 ���
T
var�a� �ip� ip 	 
a�

int p� p 	 ip��f���
T
var�b� b�

b�y 	 ��� b�z 	 ���
T
var�b� �jp� jp 	 
b�

int q� q 	 jp��f���
g
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Figure �� �a� Example program P�� �b� Specialized program and class hierarchy� �c�

Pictorial view of the original class hierarchy �dashed lines indicate virtual inheritance�� �d�

Pictorial view of the specialized class hierarchy�





Section  discusses some of the issues that must be addressed in order to express the
new class hierarchy in terms of L�s inheritance mechanisms� In Section �� we show that
specialization is a semantics�preserving program transformation by demonstrating that
the behavior of member access and type cast operations is preserved�
In the class hierarchy that results from Phase III� redundant data members and meth�

ods have been removed from objects� This hierarchy is not optimal however� since it
typically exhibits an abundance of virtual inheritance� Virtual inheritance is undesirable
because it is usually implemented in a way that increases member access time� and in
some cases object size as well� Phase IV addresses this problem by applying a set of
semantics�preserving transformation rules that simplify the specialized hierarchy� and
eliminate 
virtual� inheritance where possible� Section � discusses Phase IV�
In Section �� we investigate how specialization interacts with a number of other pro�

gram transformations�optimizations� Finally� conclusions and directions of future work
are presented in Section ���

� Related work

��� Techniques for eliminating unused components from objects

The �rst category of related work consists of techniques for eliminating unused compo�
nents from objects or class hierarchies� Tip� et al� ���� present an algorithm for slicing
of class hierarchies that eliminates members and inheritance relations from a C�� hi�
erarchy� In a sense� class hierarchy specialization can be viewed as a re�nement of class
hierarchy slicing� Like specialization� class slicing is concerned with eliminating unused
members from hierarchies� but slicing can only remove a member from a class C if it
is not used in any C�object� In contrast� specialization is capable of making �ner dis�
tinctions at the variable level� By giving di	erent types to variables that previously had
the same type� members may be eliminated from certain objects while being retained in
others�
In ����� Sweeney and Tip present an e�cient conservative algorithm for detecting dead

data members in C�� applications� In essence� this algorithm reports a data member
to be dead if the program never reads that data member�s value� This algorithm is
evaluated on a set of C�� benchmark programs ranging from �� to ������ lines of
code� Sweeney and Tip found that up to ����� of the data members in the benchmarks
are dead 
average ������� and that up to ���� of the object space of these applications
may be occupied by dead data members at run�time 
average ������
The algorithm of ���� is also used in the context of Jax� an �application extraction� tool

for reducing the size of Java applications ����� Jax reads in the class �les that constitute
a Java application and uses Rapid Type Analysis �� �� to determine a set of reachable
methods� Then� unaccessed and write�only accessed data members are removed� and the
class hierarchy transformations that will be presented in Section � are used to simplify
the class hierarchy� After performing these transformations� JAX writes out a ZIP �le
containing the compressed application� In ����� Jax is evaluated on a number of realistic
benchmark applications� and an average ZIP �le size reduction of ����� is reported�
Agesen and Ungar ��� and Agesen ��� describe an algorithm for the dynamically typed

language Self that eliminates unused slots from objects 
a slot corresponds to either a
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data member� a method� or an inheritance relation�� This work relies on a type inference
algorithm to compute for each message send that may be executed� a set of slots that is
needed to preserve that send�s behavior� and produces a source �le in which redundant
slots have been eliminated� Comparing Agesen and Ungar�s work to ours is di�cult due
to the di	erences between Self and C��� Much of the complexity of our approach is due
to the fact that removing members from objects requires changing the class hierarchy�
This issue does not come up in Self� a dynamically typed language without classes�
We consider class hierarchy specialization to be a technique that is largely complemen�

tary to techniques for eliminating unused executable code �� ��� ���� In the scenario we
have in mind� unused executable code is removed from an application �rst� after which
the class hierarchy could be specialized in order to reduce object size� The bene�t of this
approach is that members that are only accessed from useless code are removed from the
class hierarchy altogether� A speci�c technique that could be used to this end is pro�
gram slicing ��� ���� which determines the set of executable statements that may a	ect
the values computed at some designated point
s� of interest in a program� Unnecessary
statements can be removed from a program by slicing w�r�t� all output values�

��� Type inference algorithms

Class hierarch



formation Gathering� steps described in Section � to populate a table in which access
and subtype relationships between variables and class members are expressed� From this
table� a concept lattice is derived� which exposes the hidden underlying structure in these
relationships� This concept lattice provides valuable insight into the design of a class hi�
erarchy by exposing design anomalies such as unused members and variables from which
no members are accessed� and by indicating situations where it may be appropriate to
split a class into multiple classes because di	erent subsets of members are accessed from
di	erent groups of objects� Snelting and Tip also describe how the concept lattice can
serve as a basis for interactive class hierarchy restructuring tools�
Godin and Mili ���� ��� also use concept analysis for class hierarchy 
re�design� The

starting point in their approach is a set of interfaces of 
collection� classes� A table is
constructed that speci�es for each interface the set of supported methods� The lattice
derived from this table suggests how the design of a class hierarchy implementing these
interfaces could be organized in a way that optimizes the distribution of methods over
the hierarchy�
Another category of related work is that of techniques for restructuring class hierarchies

for the sake of improving design� improving code reuse� and enabling reuse� Opdyke ����
and Opdyke and Johnson ���� present a number of behavior�preserving transformations
on class hierarchies� which they refer to as refactorings� The goal of refactoring is to
improve design and enable reuse by �factoring out� common abstractions� This involves
steps such as the creation of new superclasses� moving around methods and classes in
a hierarchy� and a number of similar steps� In Opdyke and Johnson�s approach� the
transformation of class hierarchies is guided by the user� In contrast� class hierarchy
specialization has the opposite goal� class hierarchies are customized for a particular
application� as opposed to being generalized for the sake of reusability and maintenance�
Unlike refactoring� where the programmer determines what restructurings should take
place� the restructuring operations performed by class hierarchy specialization require no
programmer intervention�
Moore ���� presents a tool that automatically restructures inheritance hierarchies and

refactors methods in Self programs� The goal of this restructuring is to maximize the
sharing of expressions between methods� and the sharing of methods between objects in
order to obtain smaller programs with improved code reuse� Since Moore is studying a
dynamically typed language without explicit class de�nitions� a number of complex issues
related to preserving the appropriate subtype�relationships between classes of objects do
not arise in his setting� Another important di	erence between our work and Moore�s
is that while Moore�s algorithm rearranges methods in a hierarchy� it is not capable of
eliminating unused members� Moore�s work can be viewed as complementary to our work
and some of the techniques mentioned above 
e�g�� ����� because it removes methods and
expressions that are unnecessary due to duplication� as opposed to unnecessary due to
being unused�

� Phase I� Information Gathering

Phase I of the specialization algorithm consists of gathering basic information about the
input program P� which we will assume to be type�correct� This information will be
used in Phase II 
discussed in Section �� to compute the set of type constraints 
e�g��
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subtype�relationships between variables� that must be preserved in the specialized class
hierarchy�
In the sequel� v� w� � � � denote variables in P whose type is a class� p� q� � � � denote

variables� in P whose type is a pointer to a class� In addition� x� y� � � � will be used to
denote expressions in P� In the de�nitions that follow�TypeOf
P� x� denotes the declared

i�e�� static� type of expression x in program P�

��� Variables

De�nition ��� below de�nes ClassVars
P� and ClassPtrVars
P� as the set of all variables
in P whose type is a class� and a pointer to a class� respectively� ClassPtrVars
P� contains
elements for variables that occur in declarations as well as elements for implicitly declared
this pointers of methods� In order to distinguish between this pointers of di	erent
methods� the this pointer of method A��f�� will be denoted by the fully quali�ed name
of its method� i�e�� A��f�

De�nition ��� Let P be a program� Then� we de�ne the sets of class�typed variables
and pointer�to�class�typed variables as follows�

ClassVars
P� �
f v j v is a variable in P� TypeOf
P� v� � C� for some class C in P g

ClassPtrVars
P� �
f p j p is a variable in P � TypeOf
P� �p� � C� for some class C in P g

Example ��� For program P� of Fig� �� we have�

ClassVars
P�� � f a� b� c g
ClassPtrVars
P�� � f ap� A��f� A��g� B��g� C��f g

�

��� Class members

For a given program P� Members
P� denotes the set of unquali�ed names of the
class members that occur in P� In addition� the sets DataMembers
P�� and
VirtualMethods
P� contain the unquali�ed names of data members and virtual methods
of P � respectively� For convenience� we assume the intersection of DataMembers
P� and
VirtualMethods
P� to be empty 
if this is not the case� members can be renamed�� and
that there are no overloaded methods with the same name but di	erent argument types

again� renaming is possible if this is not the case��

Example ��� For program P� of Fig� �� we have�

DataMembers
P�� � f x� y� z g
VirtualMethods
P�� � f f� g g

�

�We will henceforth use the word �variables� to refer to variables as well as method parameters�
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��� Points�to analysis

We will need for each pointer�to�class�typed variable a conservative and safe� approx�
imation of the set of class�typed variables that it may point to in some execution of
P� Any of several existing algorithms ���� �� ��� ��� ��� can be used to compute this
information� and we do not make assumptions about the particular algorithm used to
compute points�to information�
Points�to analysis algorithms are traditionally de�ned for languages without virtual

dispatch� and perform an analysis of the assignments that occur in a program�s call graph�
In the presence of virtual dispatch� call graph construction requires that conservative
approximations be made about the methods that can be reached from each virtual call
site p � f
�� An obvious way to make such approximations is to use the points�to
information associated with the receiver expression p to determine to which types of
objects p can point� and to determine the de�nition of f
� that would be invoked in each
case� The identi�cation of additional methods leads to additional assignments that must
be taken into account when computing points�to information� This may a	ect previously
analyzed call sites� and iteration between the two steps 
computing points�to information
and resolving virtual call sites� is therefore necessary�
De�nition ��� uses the information supplied by some points�to analysis algorithm to

construct a set PointsTo
P�� which contains a pair hp� vi for each pointer p that may
point to a class�typed variable v�

De�nition ��� Let P be a program� Then� the points�to information for P is de�ned
as follows�

PointsTo
P� � f hp� vi j p � ClassPtrVars
P�� v � ClassVars
P�� p may point to v g

Example ��	 We will use the following points�to information for program P�� Recall
that X��f denotes the this pointer of method X��f
��

PointsTo
P�� � f hap� ai� hap� bi� hap� ci� hA��f� ai� hA��f� bi� hC��f� ci� hA��g� ai�
hB��g� bi� hB��g� ci g

�

Note that the following simple algorithm su�ces to compute the information of Exam�
ple ���� For each pointer p of type �X� assume that it may point to any object of type
Y � such that 
i� Y � X or Y is a class transitively derived from X� and 
ii� if p is the
this pointer of a virtual method C��m
�� no de�nitions of m that override C��m
� exist
in class Y �

��� Assignments

De�nition �� below de�nes a set Assignments
P� that contains a pair of objects hx�� y�i
for each assignment x � y in P for which the types of x and y are 
a pointer to� a class�

�It will be assumed that points	to relationships are not in con�ict with the type system� if a pointer
p is determined to point to a variable v with type V � then p�s declared type must be V or a �transitive�
base class of V �
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In order to simplify the subsequent de�nitions� we will treat a direct	 method call as
a set of assignments between corresponding formal and actual parameters� including the
this�parameter of instance methods� The return value of a method is treated as an
additional parameter as well� For indirect
 calls� we use points�to information to model
dynamic dispatch behavior� a virtual method call p � f
y�� � � � � yn� is simply treated
as a set of direct calls x�f
y�� � � � � yn�� for each hp� xi � PointsTo
P��

De�nition ��
 Let P be a program� Then� the set of assignments between variables
whose type is a 	pointer to a
 class is de�ned as follows�

Assignments	P
 �
f hv� wi j v � w occurs in P � v� w � ClassVars
P� g �
f h�p� wi j p �  w occurs in P� p � ClassPtrVars
P�� w � ClassVars
P� g �
f h�p� �qi j p � q occurs in P� p� q � ClassPtrVars
P� g �
f h�p� wi j �p � w occurs in P� p � ClassPtrVars
P�� w � ClassVars
P� g �
f hv� �qi j v � �q occurs in P� v � ClassVars
P�� q � ClassPtrVars
P� g �
f h�p� �qi j �p � �q occurs in P � p� q � ClassPtrVars
P� g

Example ��� For program P� of Fig� �� we have�

Assignments	P�
 � f h�ap� ai� h�ap� bi� h�ap� ci� h�A��f� ai� h�A��f� bi� h�C��f� ci�
h�A��g� ai� h�B��g� bi� h�B��g� ci g

Note that the last six elements in this set occur due to implicit assignments that model
parameter�passing of this pointers� �

��� Member access operations

De�nition ��� below de�nes a set MemberAccess
P� of all pairs hx�mi such that m is
accessed from variable x� For an indirect call p � f
y�� � � � � yn�� we also include an
element hx� fi in MemberAccess
P� for each hp� xi � PointsTo
P��

De�nition ��� Let P be a program� Then� the set of member access operations in P is
de�ned as follows�

MemberAccess
P� �
f hv�mi j v�m occurs in P� m �Members
P�� v � ClassVars
P� g �
f h�p�mi j p� m occurs in P � m �Members
P�� p � ClassPtrVars
P� g �
f hx�mi j p� m occurs in P � m � VirtualMethods
P�� hp� xi � PointsTo
P� g

Example �� For program P� of Fig� �� we have�

MemberAccess
P�� � f h�A��g� xi� h�B��g� yi� h�C��f� zi� h�A��f� gi� h�C��f� gi�
h�ap� fi� ha� fi� hb� fi� hc� fi� ha� gi� hb� gi� hc� gi g

�

�A direct method call is an invocation of a virtual method from a non	pointer typed variable�
�An indirect call is an invocation of a virtual method from a pointer� which requires the virtual

dispatch mechanism to be invoked�

��



��	 An equivalence relation on variables

We now de�ne an equivalence relation !�� on variables� Two variables occur in the same
equivalence class if they must have exactly the same type� De�nition ���� below states
that x � y if x is transitively assigned to y� and vice versa� Such assignments imply
that the type of x must be a transitive base class of the type of y� and vice versa� and
therefore that the types of x and y must be identical� The specialized class hierarchy
generated in Phase III will contain a class corresponding to each equivalence class E�
representing the type of the variables that occur in E�

De�nition ���� Let P be a program� Then� the equivalence relation ��� on the variables
in P is de�ned as follows�

x� y when hx�� x�i� hx�� x�i� � � � � hxm��� xmi�
hy�� y�i� hy�� y�i� � � � � hyn��� yni � Assignments	P


for some x�� � � � � xm� y�� � � � � yn such that x� � x� xm � y� y� � y� yn � x�
Furthermore� for a given variable x� we will use �x� to denote the equivalence class

containing x�

Example ���� For program P� of Fig� �� each variable 	see Example ��
 occurs in an
equivalence class by itself� �

In Section � we will extend !�� in order to prevent the occurrence of inheritance
structures that cannot be represented using the inheritance mechanisms of C���

� Phase II� Computing Type Constraints

In Phase II of the specialization algorithm� a set of type constraints is determined� These
constraints precisely characterize the subtype�relationships that must be preserved in the
specialized class hierarchy�

��� Member lookup and subobject graphs

The subsequent de�nitions of type constraints must precisely re�ect the semantics of
member lookup� In the presence of multiple inheritance� an object may contain multiple
subobjects of a given type C� and hence multiple members C��m� In order to distinguish
correctly between subobjects and members with the same name� we need to keep track of
the subobjects that are selected by executing member lookup and type cast operations�
To this end� we use Rossie and Friedman�s formalization of subobject graphs and member
lookup ���� ���� We will only introduce the notions essential for performing class hierarchy
specialization here� and refer the reader to ���� for details� An e�cient member lookup
algorithm can be found in �����
A subobject graph abstractly represents object layout� The subobject graph contains a

distinct subgraph for each type in the class hierarchy� in what follows� we will ignore the
distinction between the entire subobject graph 
representing the layout of all objects��
and the subgraph for a speci�c type� Fig� �
a� depicts a class hierarchy in which a
class D inherits nonvirtually 
replicated� from classes B and C� and classes B and C both
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Figure �� �a� Example class hierarchy graph� Solid edges indicate replicated �nonvirtual�

inheritance� Dashed edges indicate virtual �i�e�� shared� inheritance� �b� Subobject graph for

type D in the class hierarchy of Fig� ��a��

inherit virtually 
shared� from class S� and nonvirtually 
replicated� from class A� Class
A contains a member x� S and B contain a member f� and C contains a member z�
Fig� �
b� shows the subobject graph for D� The nodes in this graph are identi�ed by

a pair �Y �X� � � �Xn� where the �rst component� Y � indicates the most derived type of
the subobject� and the second component is a sequence of class names� X� � � �Xn that
encodes the sequence of inheritance relations from the least derived classXn to its nearest
virtual base class�� For a subobject � � �Y �X� � � �Xn�� mdc
�� denotes its most derived
class Y � and ldc
�� denotes its least derived class Xn� We will say that a member m
occurs in subobject � if m occurs in its least derived class ldc
��� Edges in the subobject
graph of Fig� �
b� re�ect the containment relation !�� between subobjects � We will use
!	�� to denote the transitive and re�exive closure of !��� In what follows� "
P� denotes
the set of all subobjects � induced by the class hierarchy of program P�

Example ��� In the example of Fig� �	b
� subobject �D	D
 indicates the �full� D object�
and subobject �D	D�B
 indicates the B subobject contained in �D	D
� in other words� we have
that �D	D�B
 � �D	D
� Due to the presence of virtual inheritance� �D	D
 contains a single
shared S�subobject� �D	S
� By contrast� since B and C inherit nonvirtually 	replicated

from A� �D	D
 contains two distinct A�subobjects �D	D�B�A
 and �D	D�C�A
� each containing
a distinct x�

Using the subobject graph� member lookup and type cast operations can be de�ned
as a function from subobjects to subobjects� For example� a static lookup for a member
m on a subobject � can be expressed as follows�

�� � static�lookup�
��m�

�This is the minimal amount of information that is su�cient to uniquely denote a subobject�
	 In the present paper� we dene the contained subobject to be �less than� the containing subobject�

We believe this notation to be more intuitive than that of ���� ���� where the contained subobject is
�greater than� the containing subobject�

��



Here� subobject � encodes both the static type and the run�time type of the object or
pointer from which the member is accessed� and the �result� subobject �� contains the
de�nition of m that is selected by the lookup operation�
Static member lookup operations are used to model any member access that does not

involve a dynamic dispatch� such as an access to a data member� or a call to a virtual
method on a non�pointer variable� Static member lookup operations will also be used
as a means to reason about the behavior of dynamic member lookups 
corresponding to
situations where a virtual method is called on a pointer�� Speci�cally� we will model a
call p� f
�� where f
� is a virtual method� using the following steps�

� A static lookup is performed to determine the method f
� that is statically selected�
At least a declaration of f
� must be visible in the type of �p in order for the call
statement to be syntactically correct�

� Points�to information is used to determine the object v that p points to 
see De��
nition �����

� Another static lookup is performed to determine the de�nition of f
� that would
be statically selected by a call v�f
��

The de�nition of f
� selected in the last step is the same method de�nition as the one
selected by the dynamically dispatched call p� f
��
De�nition ��� below introduces a function static�lookup that models static member

lookup� This function determines the �largest� subobject contained in � that contains
a de�nition of m� If such a unique largest subobject does not exist� the member access
is ambiguous� It will be assumed that programs are type�correct� and in particular that
they do not contain ambiguous member access or type cast operations�

De�nition ��� Let � be a subobject in "
P�� let ��� be the ordering between subobjects�
and let m be the name of a member� Then� the subobject that contains the accessed
member m is de�ned as follows�

static�lookup�
��m� � max
f �
� j ��	��� ldc
��� contains member m g�

Example ��� Consider a lookup d�z� where d is an object of type D� In this case� there is
one de�nition of z in subobject �D	D
� which is located in in subobject �D	D�C
� Therefore�
we have that� static�lookup�
�D	D
� z� � �D	D�C
� �

We have argued that a static member lookup operation in combination with points�to
information is in principle su�cient to reason about dynamic member lookup operations�
Nevertheless� it will be convenient to introduce another approach for reasoning about
dynamic member lookup operations� This alternative approach relies on the fact that
a subobject encodes both the static and the dynamic type of the object that a pointer
points to� in the form of its least derived class and its most derived class� De�nition ���
de�nes how a dynamic lookup for a member m corresponds to selecting the �largest�
subobject contained in the �full object� �mdc
���mdc
��� that contains a de�nition of m�

De�nition ��� Let � be a subobject and let ��� be the ordering between subobjects� Then�
the subobject that contains the dynamically accessed member m is de�ned as follows�

dynamic�lookup�
��m� � max
f�
� j ��	��mdc
���mdc
���� ldc
��� contains member mg�

��



Example ��	 Using the class hierarchy of Fig� �� consider a situation where we have a
pointer cp of type C pointing to an object of type D� and suppose we have a virtual method
call cp� f���
This corresponds to a dynamic method lookup for f�� on subobject �D�D�C�� According

to De�nition ���� we have that�

dynamic�lookup�
�D�D�C�� f� �
dynamic�lookup�
�mdc
�D�D�C���mdc
�D�D�C���� f� �
dynamic�lookup�
�D�D�� f� �
�D�D�B�

In other words� the method invocation cp�f�� will result in the invocation of B��f��� �

Lemma �� formally states the relationship between static and dynamic lookup oper�
ations that we informally discussed above�

Lemma ��
 Let � be a subobject� m a member� and ��� an ordering among subobjects�
Then� we have that�

dynamic�lookup�
��m� � static�lookup�
�mdc
���mdc
����m�

Proof� Follows immediately from De�nition ��� and De�nition ���� �

We now turn our attention to type cast operations� For a cast from type X to type
Y where Y is a transitive base class of X� the unique subobject ��	��X�X� such that
ldc
��� � Y is selected� If there is no unique �� with least derived class Y � the type cast
is ambiguous�

De�nition ��� Let � be a subobject in "
P�� and let ��� be the ordering between subob�
jects� Then� the subobject selected by the type cast to class C is de�ned as follows�

typecast�
��C� � �� when �� is the unique subobject such that ��	��� ldc
��� � C

Example ��� Suppose that the program contains an assignment b � d� where b is of
type B and d is of type D� respectively� For this assignment� the compiler generates a type
cast from type D to type B� For this type cast� we have that� typecast�
�D	D
� B� � �D	D�B
�
This implies that the assignment copies the �D	D�B
�subobject of d into b� �

Section ������ will brie�y discuss how down casts 
cast operations where the target
type is a derived class of the the type of the expression being casted� can be modeled�
We conclude the discussion of subobjects by introducing a composition operator !
� on

�compatible� subobjects 
a subobject �� and a subobject �� are compatible if ldc
��� �
mdc
���� Intuitively� this operator determines a subobject ��	��� such that ldc
��� �
ldc
���� The de�nition below has two cases to re�ect the fact that subobjects only record
the inheritance path from a subobject�s least derived class to its nearest virtual base�

De�nition �� Let �� � �Z�Y� � � �Ym� and �� � �Y �X� � � �Xn� be subobjects such that
Y � Ym� Then� the composition of �� and �� is de�ned as follows�

��
�� �

�
�Z�Y� � � �Ym�� �X� � � �Xn� when Y � X�

�Z�X� � � �Xn� otherwise

Example ���� Using the example class hierarchy of Fig� �� we have that �D	D�B

�B	B�A
 �
�D	D�B�A
 and that �D	D�B

 �B	S
 � �D	S
 �

�



class A f
virtual int foo��f
return x�

g�
int x�

g�
class B � A f

virtual int foo��f
return y�

g�
int y�

g�

class Tf var��ap� g f

virtual int foo��� �	 declaration 	�

g�
class Tf var�a� g � Tf var��ap� g f

virtual int foo��f return x� g�
int x�

g�
class Tf var�b� g � Tf var��ap� g f

virtual int foo��f return y� g�
int y�

g�

void main��f
A a� a
x � ��

B b� b
y � ���

A 	ap�

ap � �a�

int p� p � ap��foo���

ap � �b�

int q� q � ap��foo���

g

void main��f
Tf var�a� g a� a
x � ��

Tf var�b� g b� b
y � ���

Tf var��ap� g 	ap�

ap � �a�

int p� p � ap��foo���

ap � �b�

int q� q � ap��foo���

g

�a� �b�

Figure �� �a� Example program illustrating the purpose of distinguishing between method de�

clarations and method de�nitions� �b� Specialized program and class hierarchy for the program

of �a��

��� Declarations vs� de
nitions of members

We will distinguish between declarations and de�nitions of members� A method�s de��
nition models its implementation� which has a this pointer from which other members
may be accessed� The declaration of a method has the sole purpose of ensuring visibility�
This distinction is important because it enables elimination of spurious dependences in
the presence of virtual method calls�
Fig� � illustrates this issue by way of a simple program that uses two class�typed

variables a and b� and a class�pointer�typed variable ap that points to a or b� We will now
informally discuss the type constraints induced by this program� and how the distinction
between declarations and de�nitions of methods can be exploited� For convenience� we
will frequently write �member m must be visible�accessible�� to variable x� instead of
�member m must be visible�accessible from the type of variable x� in the sequel�
Clearly� the type of �ap must be a base class of the types of a and b� Otherwise� the

assignments ap � �a and ap � �b would not be type�correct� Since virtual method foo

is called from ap� a declaration of foo must be visible to ap� In addition� the de�nition of
A��foo�� must be visible to a because ap may point to a� and the de�nition of B��foo��
must be visible to b because ap may point to b� Data member x must be visible to

�
Since we ignore access rights of members and inheritance relations in the present paper� the notions
of �visible� and �accessible� are equivalent�

��



A��foo�� because it is accessed from A��foo���s this pointer� Similarly� data member y
must be visible to B��foo�� because it is accessed from B��foo���s this pointer� However�
note that A��foo���s de�nition need not be visible to ap� In fact� it is undesirable for
A��foo���s de�nition to be visible to ap� because that would force inclusion of x in b� The
latter fact follows from the following observations in the above discussion� 
i� member
x must be visible to A��foo��� and 
ii� that the type of �ap must be a base class of the
type of b� Hence� making A��foo�� a base class of the type of �ap would include x in b�s
type due to the existence of a transitive inheritance relation between the type containing
x and the type of b�
Fig� �
b� shows the specialized program and class hierarchy for the example of Fig� �
a��

Note that� while the above constraints are met� x has been eliminated from b�
In the sequel� def
A��m� denotes the de�nition of member A��m� whereas dcl
A��m�

denotes its declaration� As the example of Fig� � illustrates� it is useful to separate the
declaration from the de�nition of virtual methods� Since a data member cannot access
any other class members� we treat data members as if they only have declarations� 
For
nonvirtual methods� which are not treated in the present paper� distinguishing between
declarations and de�nitions is not useful� and only a de�nition is required��

��� Type constraints and constraint variables

Type constraints are of the form hS� �� T i� where � is a subobject of the original class
hierarchy� and S and T are sets of constraint variables� as de�ned by De�nition ����
below�

De�nition ���� Let P be a program� Then� the set of constraint variables for P is
de�ned as follows�

CVars
P� � f var
v� j v � ClassVars
P� g �
f var
�p� j p � ClassPtrVars
P�� p is not a method�s this pointer g �
f dcl
X��m� j m �Members
P�� m occurs in class X g �
f def
X��m� j m � VirtualMethods
P�� m occurs in class X g

Example ���� For program P� of Fig� �� we have�

CVars
P�� � f var
a�� var
b�� var
c�� var
�ap�� dcl
A��x�� dcl
B��y�� dcl
C��z��
dcl
A��f�� dcl
A��g�� dcl
B��g�� dcl
C��f�� def
A��f�� def
A��g��
def
B��g�� def
C��f� g

�

Type constraints express subtype�relationships between constraint variables� For ex�
ample� hf var
v� g� �� f var
w� gi states that v has the same type as the ��subobject of the
type of w� Type constraints will also be used to express the �locations� of member dec�
larations�de�nitions in objects� For example� the constraint hf dcl
A��m� g� �� f var
w� gi
expresses the fact that the declaration of member A��m occurs in the ��subobject of the
type of w�
For reasons we will discuss shortly in Section ��� this pointers of methods require

somewhat special treatment� De�nition ���� below maps a variable v in the program to
a constraint variable var
v� if v is not the this pointer of a method� and to def
A��m� if
v is the this pointer of some method A��m
��

��



De�nition ���� Let x be an expression such that x � v for some v � ClassVars
P� or
x � �p for some p � ClassPtrVars
P�� Then� a constraint variable in CVars
P� will be
associated with x as follows�

CVarOf
x� �

�
def
X��f� when x � �X��f� for some method X��f
�
var
x� otherwise

Example ���� For program P�� we have CVarOf
a� � var
a� and CVarOf
�A��f� �
def
A��f�� �

The equivalence relation � on variables of de�nition De�nition ���� is now extended
to constraint variables as follows�

De�nition ���	 Let P be a program� and let s and t be constraint variables in CVars
P��
Then�

s�t if and only if s � CVarOf
x�� t � CVarOf
y�� x�y� for some variables x� y

Furthermore� for a given constraint variable s� we will use �s� to denote the equivalence
class containing s�

Remark ���
 In order to simplify notation� we will often identify a singleton equiva�
lence class with the element that it contains� and simply write s instead of f s g� where s
is a constraint variable�

Note that� according to De�nition ����� a constraint variable of the form dcl
C��m�
will always occur in an equivalence class by itself�

Example ���� For program P� of Fig� �� each constraint variable occurs in an equiva�
lence class by itself 	see Example ���
� �

��� Type constraints due to assignments

Consider an assignment v � w



Example ��� For program P� of Fig� �� we have�

AssignTC
P�� � f
hvar
�ap�� �A�A�� var
a�i� hvar
�ap�� �B�B�A�� var
b�i� hvar
�ap�� �C�C�B�A�� var
c�i�
hdef
A��f�� �A�A�� var
a�i� hdef
A��f�� �B�B�A�� var
b�i� hdef
C��f�� �C�C�� var
c�i�
hdef
A��g�� �A�A�� var
a�i� hdef
B��g�� �B�B�� var
b�i� hdef
B��g�� �C�C�B�� var
c�i g

Note� For the sake of readability� we have replaced all singleton equivalence classes in
this example by the sole element that they contain 	see Remark ����
� �

��� Type constraints due to member access

De�nition ���� below de�nes the set of type constraints due to member access� The
de�nition has two cases�
The �rst case deals with situations where only a method declaration is needed� i�e��

when the accessed member m is a data member� or a virtual method that is invoked
from a pointer p� For example� consider the case where a virtual method m is ac�
cessed from a pointer p of type �Y � Then� there must be a unique subobject � �
�Y ���X� � static�lookup�
�Y �Y ��m� such that X contains m� Since the virtual dispatch
mechanism only requires that a declaration of m be present in class X� a constraint
h�dcl
X��m��� �� �var
�p��i is constructed� expressing the fact that the ��subobject of �p
must contain a declaration of method X��m
��
The second case of De�nition ���� addresses the situation where m�s de�nition is

required� i�e�� when a virtual method is invoked from a nonpointer variable v� For ex�
ample� suppose that a virtual method m is accessed from a variable y of type Y � Then�
there must be a unique subobject � � �Y ���X� � static�lookup�
�Y �Y ��m� such that
X contains a de�nition of m� Consequently� a constraint h�def
X��m��� �� �var
y��i is
constructed� expressing the fact that the ��subobject of y must contain a de�nition of
method X��m
��

De�nition ���� Let P be a program� Then� the set of type constraints due to member
access operations is de�ned as follows�

MemberAccessTC
P� �����
���
hS� �� T i

��������

hy�mi �MemberAccess
P�� Y � TypeOf
P � y��

y � �p for some p � ClassPtrVars
P� or m � DataMembers
P���
� � �Y ���X� � static�lookup�
�Y �Y ��m��
S � �dcl
X��m��� T � �CVarOf
y��

����
��	

�

����
���
hS� �� T i

��������

hy�mi �MemberAccess
P�� Y � TypeOf
P � y��

y � v for some v � ClassVars
P� and m � VirtualMethods
P���
� � �Y ���X� � static�lookup�
�Y �Y ��m��
S � �def
X��m��� T � �CVarOf
y��� S �� T

����
��	

Example ���� For program P� of Fig� �� we have�

MemberAccessTC
P�� � f
hdcl
A��x�� �A�A�� def
A��g�i� hdcl
B��y�� �B�B�� def
B��g�i� hdcl
C��z�� �C�C�� def
C��f�i�
hdcl
A��g�� �A�A�� def
A��f�i� hdcl
B��g�� �C�C�B�� def
C��f�i� hdcl
A��f�� �A�A�� var
�ap�i�
hdef
A��f�� �A�A�� var
a�i� hdef
A��f�� �B�B�A�� var
b�i� hdef
C��f�� �C�C�� var
c�i�
hdef
A��g�� �A�A�� var
a�i� hdef
B��g�� �B�B�� var
b�i� hdef
B��g�� �C�C�B�� var
c�i g

��



Note� For the sake of readability� we have replaced all singleton equivalence classes in
this example by the sole element that they contain 	see Remark ����
� �

��	 Treatment of this pointers

We now return to the issue of modeling this pointers of methods� The de�nitions
presented above were designed with the following properties in mind�

� The treatment of this pointers is analogous to that of other 
class�typed and
pointer�to�class�typed� parameters� Both are modeled as assignments between cor�
responding formal and actual parameters�

� Method declarations and method de�nitions are modeled in similar ways�

� The type of a this pointer is not declared explicitly� but determined by the loca�
tion of the associated method in the class hierarchy��� Therefore� any constraint
involving the this pointer of some method is e	ectively a constraint on the location
in the hierarchy of that method�

We obtain the desired properties by mapping this pointers to constraint variables for
the associated method de�nitions 
see De�nition ������ As a result� assignments and
member access operations involving this pointers give rise to constraints involving the
associated method de�nition as follows�

� Accessing a memberm from the this pointer of a method f yields a type constraint
involving the type containing 
the declaration or de�nition of� m� and the type
containing f �s de�nition�

� Assigning the this pointer to a variable v 
either explicitly� or via parameter�
passing� yields a type constraint involving v�s type and the type containing the
de�nition of f �

For example� the access to data member x from A��g���s this pointer gives rise to the
type constraint h�dcl
A��x��� �A�A�� �def
A��g��i� which can be interpreted as !the declaration
of A��x occurs in the �A�A��subobject of the type containing the de�nition of method A��g��
Modeling parameter�passing of this pointers as assignments is consistent with the

treatment of other parameters� but has the slightly odd property that identical type con�
straints occur in AssignTC
P� and MemberAccessTC
P�� For example� the constraint
h�def
A��f��� �A�A�� �var
a��i occurs in both AssignTC
P�� and MemberAccessTC
P�� 
see
Examples ���� and ������ Although it is possible to eliminate this duplication of type
constraints by modifying the de�nitions slightly� we consider the present solution to be
the most consistent approach� The presence of duplicate type constraints is harmless in
the sense that it does not a	ect the specialized class hierarchy�

��� Type constraints for preserving dominance

We have now presented type constraints that express subtype�relationships between vari�
ables 
De�nition ������ and type constraints that express the visibility of members to

��Specically� the this pointer of method C��f has type C�

��



  virtual void f(){ ... };
};
class B {
  virtual void f(){ ... };
};

void main(){
  A a;
  a.f();
  B b;
  b.f();
  a = b;
}

(a)

T
var(a)
    a;

T
var(b)
    b;

T
var(a)

T
def(A::f)

T
def(B::f)

T
var(b)

T
def(A::f)

T
var(a)

T
def(B::f)

T
var(b)

class A {

(d)

(b)

(c) (e)

B

B::f

A

A::f

class A {
  virtual void f(){ ... };
};
class B {
  virtual void f(){ ... };
};

void main(){

A::f B::fA::f B::f

  a.f();

  b.f();
  a = b;
}

Figure � �a� Example program� �b� Original class hierarchy of the program of Fig� �a��

�c� Incorrect specialized class hierarchy obtained by ignoring the hiding relationships between

method de�nitions� �d� Example program of Fig� �a� after updating variable declarations to

re�ect the class hierarchy of Fig� �c�� �e� Correct specialized class hierarchy obtained by taking

into account hiding relationships between method de�nitions�
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variables 
De�nition ������ Together� these constraints capture all the information that
is needed to construct a specialized class hierarchy in which each object contains the ap�
propriate set of members� However� more information is needed to construct a specialized
hierarchy that preserves program behavior�
Fig� 
a� shows a simple example program� in which two objects a and b are created�

with types A and B� respectively� The class hierarchy for this program is depicted in
Fig� 
b�� A virtual method f�� is de�ned in class A and overridden in class B� Observe
that the program contains calls to method f�� on both objects� and an assignment that
copies the �B�B �A��subobject of object b into object a� According to De�nitions ����
and ����� the following type constrains will be constructed for this program�

f hdef
A��f�� �A�A�� var
a�i� hdef
B��f�� �B�B�� var
b�i� hvar
a�� �B�B�A�� var
b�i g

Fig� 
c� shows the 
incorrect� specialized class hierarchy that is obtained by simply
interpreting these type constraints as subtype�relationships� Fig� 
d� shows how the
declarations of a and b in the program of Fig� 
a� are updated to take into account the
hierarchy of Fig� 
c�� Observe that method de�nitions def
A��f� and def
B��f� are both
visible to object b� Since def
B��f� does not hide or dominate def
A��f�� the call to f��
on object b is ambiguous�
The ambiguity of member access b�f�� in the above example is due to the fact that

the �hiding� of method de�nition def
A��f� by member de�nition def
B��f� is not pre�
served� Our solution to this problem is to model hiding and dominance relations between
members as type constraints as well� In the case of our example� a type constraint�

hdef
A��f�� �B�B�A�� def
B��f�i

is generated to express that the type containing method de�nition def
A��f� must be a
base class of the type containing method de�nition def
B��f�� Fig� 
e� shows the 
cor�
rect� specialized class hierarchy that is constructed by taking this constraint into account�
Although this example only illustrates the need for modeling hiding�dominance relations
between de�nitions of methods� similar constraints are necessary to model hiding between
de�nitions and declarations� and among declarations�
De�nition ���� formally de�nes the set of all type constraints that model hiding and

dominance relations between declarations and de�nitions of members with the same
name� In Phase III� a correct specialized class hierarchy is generated by selecting from
this set the minimal set of dominance constraints that su�ces to preserve the non�
ambiguity of accessed members�
Formally� De�nition ���� states that if there are subobjects �� with least derived class

A and �� with least derived class B such that �� is contained in ��� and A and B both
contain a declaration of member m� then a constraint h�dcl
A��m��� �� �dcl
B��m��i� is
constructed� Here� � is the subobject such that �� � ��
�� Similar relationships are
constructed for cases where A and B contain de�nitions of m�

De�nition ���� Let P be a program� Then� the set of type constraints that re�ect the
hiding�dominance relations between same�named members in the original hierarchy is

��



de�ned as follows�

DomTC
P� �����
���
h�dcl
A��m��� �� �dcl
B��m��i

��������

��� �� are subobjects in "
P�� �� �� ���

�� � ��
�� ldc
��� � A� ldc
��� � B�

class A contains a declaration of member m�
class B contains a declaration of member m

����
��	

�

����
���
h�dcl
A��m��� �� �def
B��m��i

��������

��� �� are subobjects in "
P�� �� � ��
��
ldc
��� � A� ldc
��� � B�

class A contains a declaration of member m�
class B contains a de�nition of member m

����
��	

�

����
���
h�def
A��m��� �� �dcl
B��m��i

��������

��� �� are subobjects in "
P�� �� �� ���

�� � ��
�� ldc
��� � A� ldc
��� � B�

class A contains a declaration of member m�
class B contains a de�nition of member m

����
��	

�

����
���
h�def
A��m��� �� �def
B��m��i

��������

��� �� are subobjects in "
P�� �� �� ���

�� � ��
�� ldc
��� � A� ldc
��� � B�

class A contains a declaration of member m�
class B contains a de�nition of member m g

����
��	

Example ���� For program P� of Fig� �� we have�

DomTC
P�� � f
hdcl
A��f�� �A�A�� def
A��f�i� hdcl
A��f�� �C�C�B�A�� dcl
C��f�i�
hdcl
A��f�� �C�C�B�A�� def
C��f�i� hdef
A��f�� �C�C�B�A�� dcl
C��f�i�
hdef
A��f�� �C�C�B�A�� def
C��f�i� hdcl
C��f�� �C�C�� def
C��f�i g
hdcl
A��g�� �A�A�� def
A��g�i� hdcl
A��g�� �B�B�A�� dcl
B��g�i�
hdcl
A��g�� �B�B�A�� def
B��g�i� hdef
A��g�� �B�B�A�� dcl
B��g�i�
hdef
A��g�� �B�B�A�� def
B��g�i� hdcl
B��g�� �B�B�� def
B��g�i g

Note� For the sake of readability� we have replaced all singleton equivalence classes in
this example by the sole element that they contain 	see Remark ����
� �

� Phase III� Generating a Specialized Hierarchy

In Phase III� a subobject graph for the specialized class hierarchy is constructed� Then�
the specialized hierarchy itself is derived from the new subobject graph� and variable
declarations in the program are updated to take the new hierarchy into account�

��� Classes of the specialized hierarchy

The specialized hierarchy contains classes TS � where S is an equivalence class of constraint
variables� as was de�ned in De�nition �����

��



B��g��

Tf var��ap� g��B�B�A��f var�b� g

Tf var�b� g��B�B��f var�b� g

Tf def�A��f� g��B�B�A��f var�b� g Tf def�B��g� g��B�B��f var�b� g

Tf dcl�B��y� g��B�B��f var�b� gTf dcl�A��g� g��B�B�A��f var�b� gTf dcl�A��f� g��B�B�A��f var�b� g

f��� g��� y

A��f��

Figure �� Specialized subobject graph for object b of example program P� of Fig� ��

Example 	�� For program P� of Fig� �� the specialized class hierarchy contains the
following classes�

NewClasses
P�� � f Tf var�a� g� Tf var�b� g� Tf var�c� g� Tf var��ap� g� Tf dcl�A��x� g�

Tf dcl�B��y� g� Tf dcl�C��z� g� Tf dcl�A��f� g� Tf dcl�A��g� g� Tf dcl�B��g� g�

Tf dcl�C��f� g� Tf def�A��f� g� Tf def�A��g� g� Tf def�B��g� g� Tf def�C��f� g g

�

��� The specialized subobject graph

De�nitions ��� through ��� below together de�ne the subobject graph hN��i of the
specialized class hierarchy as a set of nodes N on which a containment ordering !�� is
de�ned� In the following de�nitions S� T � and U denote equivalence classes of constraint
variables�
De�nition ��� uses the type constraints in AssignTC
P� and MemberAccessTC
P� to

construct the set of nodes N of the specialized subobject graph�

De�nition 	�� Let P be a program� Then� the set of nodes N of the specialized subobject
graph is inductively de�ned as follows�

T�var�v������var�v�� � N when v � ClassVars
P�� V � TypeOf
P� v�� � � �V �V �

TQ���
���S � N when TR����S � N�

hQ� ��� Ri � 
AssignTC
P� �MemberAccessTC
P��

De�nition ��� below de�nes the most derived class and the least derived class for nodes
in N �

��



De�nition 	�� Let n � TQ���S be a node in N � Then� we de�ne the most derived class

mdc
n� of n and the least derived class ldc
n� of n as follows�

ldc
TQ���S � � TQ

mdc
TQ���S � � TS

De�nition ��� below de�nes a mapping from subobjects in the specialized class hierar�
chy to subobjects in the original class hierarchy�

De�nition 	�� Let N be the set of nodes of the specialized subobject graph� Then� we
de�ne a function � that maps nodes in N to subobjects in the original subobject graph as
follows�

�
TQ���S � � �

De�nition ��� below de�nes a containment relation !�� on subobjects in N � The !
�
operator used in this de�nition was introduced in Section ���� The ��relationships 
cf�
subtype�relationships� between the nodes in N are determined by the constraints in
AssignTC
P�� MemberAccessTC
P�� as well as those in DomTC
P�� This approach has
the e	ect of selecting the appropriate subset of dominance relationships fromDomTC
P�
needed to preserve the behavior of type casts and member lookups in P�

De�nition 	�	 Let N be the set of nodes in the new subobject graph� Then� the con�
tainment ordering ��� on subobjects in N is de�ned as follows� For nodes n� n� � N we
have that�

n� n� when

����
���

�
n� � �
n��
��
ldc
n� � TQ� ldc
n

�� � TR�

mdc
n� � mdc
n���
hQ� ��Ri � 
AssignTC
P� �MemberAccessTC
P� �DomTC
P��

Remark 	�
 In principle� a ��relationship that is due to constraints in AssignTC
P�
and MemberAccessTC
P� could be constructed by modifying the inductive clause of De��
nition ���� However� as was discussed in Section ���� additional subtype�relationships are
required in order to preserve hiding and dominance relationships between methods� De�n�
ition ��� provides a uniform approach for constructing all required subtype�relationships�

Example 	�� Fig� � shows the specialized subobject graph for object b� Nodes in this
graph correspond to subobjects in the specialized subobject graph� and edges in the graph
re�ect the ����containment relation between nodes�
In order to clarify the construction of the subobject graph of Fig� �� we will study the

construction of nodes Tf var��ap� g��B�B�A��f var�b� g and Tf var�b� g��B�B��f var�b� g
in N � and the ��relationship between these nodes in some detail�
Node Tf var�b� g��B�B��f var�b� g is added to N by the �rst part of De�nition ���� using

v � b� V � B� and � � �B�B�� Similarly� node Tf var��ap� g��B�B�A��f var�b� g is added

to N by the second part of De�nition ���� using Tf var�b� g��B�B��f var�b� g � N and

hf var
�ap� g� �B�B�A�� f var
b� gi � AssignTC
P�� 	see Example ����
� such that Q �
f var
�ap� g� R � f var
b� g� S � f var
b� g� �� � �B�B�A�� and �� � �B�B��

�



The ��relationship between these nodes is constructed
by De�nition ��� using hf var
�ap� g� �B�B�A�� f var
b� gi � AssignTC
P��� where n �
Tf var��ap� g��B�B�A��f var�b� g � n� � Tf var�b� g��B�B��f var�b� g � ldc
n� � Tf var��ap� g�

ldc
n�� � Tf var�b� g� mdc
n� � mdc
n�� � Tf var�b� g� Q � f var
�ap� g� R � f var
b� g�
and � � �B�B�A��

�

��� The specialized class hierarchy

We are now in a position to construct the specialized class hierarchy� using the subobject
graph hN��i� De�nition ��� de�nes how this hierarchy is constructed�

De�nition 	�� The new class hierarchy contains a class TS for each equivalence class
of constraint variables S 	see De�nitions ��� and ����
� Class TS contains the following
members�

� For each dcl
X��m� in S� class TS contains a declaration of member m� similar to
the declaration of m in class X of the original hierarchy�

� For each def
X��m� in S� class TS contains a de�nition of member m� similar to
the de�nition of m in class X of the original hierarchy�

The inheritance relations of the specialized hierarchy are constructed as follows� For
two subobjects n� n� � N such that n�n�� class ldc
n� is an immediate base class of class
ldc
n��� This inheritance relation is virtual if all of the following hold�

�� there is a node n� � N such that ldc
n�� � ldc
n��

�� n��n�� for some n� � N with ldc
n�� � ldc
n���

� n��n�� for some n� � N such that n� �� n�� and

�� n�v�n� and n�v�n�� for some n� in N �

Otherwise� the inheritance relation between ldc
n� and ldc
n�� is nonvirtual�

The �nal part of Phase III consists of updating the declarations in the program in order
to re�ect the new class hierarchy� This is accomplished by giving type T�var�v�� to each
variable v in ClassVars
P�� and type �T�var��p�� to each variable p in ClassPtrVars
P�
which is not the this pointer of a method� In C�� 
and L�� this pointers are not
declared explicitly� but the type of a this pointer is determined by the location of the
associated method de�nition in the hierarchy� Hence� there are no declarations that need
to be updated in this case�

Example 	� Fig� � shows the new program and hierarchy constructed for program P�

of Fig� �� The behavior of this program is identical to that of the original program� and the
reader may verify that members have been eliminated from certain objects� e�g�� objects b
and c no longer contain member x� However� due to an abundance of virtual inheritance
in the transformed hierarchy� the objects in the transformed program may have become
larger than before the transformation 	virtual inheritance increases member access time�

��



class Tf dcl�A��x� g f

int x�
g�
class Tf dcl�A��f� g f

virtual int f���
g�
class Tf dcl�A��g� g f

virtual int g���
g�

class Tf dcl�B��y� g f

int y�
g�

class Tf dcl�B��g� g � virtual Tf dcl�A��g� g f

virtual int g���
g�

class Tf dcl�C��z� g f

int z�
g�

class Tf def�A��g� g � Tf dcl�A��x� g

virtual Tf dcl�A��g� g f

virtual int g��f return x� g�
g�

class Tf def�A��f� g � virtual Tf dcl�A��g� g

virtual Tf dcl�A��f� g f

virtual int f��f return g��� g�
g�

class Tf def�B��g� g � Tf dcl�B��y� g

virtual Tf dcl�A��g� g virtual Tf dcl�B��g� g f

virtual int g��f return y� g�
g�

class Tf def�C��f� g � Tf dcl�C��z� g

virtual Tf dcl�A��f� g

virtual Tf dcl�B��g� g f

virtual int f��f return g�� � z� g�
g�

class Tf var��ap� g � virtual Tf dcl�A��f� g f g�

class Tf var�a� g � Tf def�A��f� g

Tf def�A��g� g

Tf var��ap� g f

g�

class Tf var�b� g � Tf def�A��f� g

Tf def�B��g� g

Tf var��ap� g f

g�

class Tf var�c� g � Tf def�C��f� g

Tf def�B��g� g

Tf var��ap� g f

g�

void main��f
Tf var�a� g a� Tf var�b� g b� Tf var�c� g c�

Tf var��ap� g �ap�

if ����� f ap 	 
a� g
else if ����� f ap 	 
b� g
else f ap 	 
c� g
ap��f���

g

�a�

Tf var�c� g

f��� y

x g��� g��� z

A��g�� A��f�� B��g�� C��f��

Tf dcl�A��f� g Tf dcl�B��y� g

Tf dcl�A��x� g Tf dcl�A��g� g Tf dcl�B��g� g Tf dcl�C��z� g

Tf def�A��g� g Tf def�A��f� g Tf var��ap� g Tf def�B��g� g Tf def�C��f� g

Tf var�a� g Tf var�b� g

�b�

Figure �� �a� Class hierarchy and program generated by Phase III for program P� of Fig� ��

�b� Pictorial view of the class hierarchy of Fig� ��
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and may increase object size
� Using the object model of the IBM xlC C�� compiler�
object a now occupies �� bytes 	was �
� object b �� bytes 	was ��
� and object c �� bytes
	was ��
� �

Phase IV of the algorithm addresses this problem by applying a set of transformation
rules that simplify the class hierarchy� and reduce object size by eliminating virtual
inheritance� These transformations are discussed in Section ��

� Representability issues

The purpose of the partitioning of variables into equivalence classes that was introduced
in De�nition ���� is to ensure that the generated class hierarchy can be expressed using
the inheritance mechanisms of C��� In the absence of such a partitioning� a pair of
assignments x � y� y � x would lead to a situation where the type of x is a base class of
the type of y� and the type of y is a base class of the type of x� and such cyclic inheritance
class hierarchies are not valid in C��� The approach we follow� partitioning variables
into equivalence classes and generating one type per equivalence class� prevents these
problems�
Unfortunately� there is another situation that leads to irrepresentable inheritance struc�

tures in situations where the original class hierarchy contains classes X and Y such that
a Y �object may contain multiple X�subobjects 
due to multiple nonvirtual inheritance��
Specialization may e	ectively transform each such X�subobject into a shared subobject�
However� the virtual inheritance mechanism of C�� is not su�ciently powerful to model
multiple� distinct shared subobjects of the same type�
Fig� �
a� shows a program that illustrates this situation� Note that the special�

ized subobject graph for this program� shown in Fig� �
b�� contains two distinct nodes
Tf dcl�A��x� g��D	D�B�A
�f var�d� g and Tf dcl�A��x� g��D	D�C�A
�f var�d� g that have same

least derived class� Tdcl�A��x�� Unless countermeasures are taken� the algorithm of Sec�
tion ��� will construct the incorrect specialized class hierarchy of Fig� �
c�� This hierarchy
is incorrect because program behavior is not preserved� the program of Fig� �
c� com�
putes the value �� for variable result� whereas the program of Fig� �
a� computes the
value ���
The above problem only occurs in the presence of objects that contain multiple� distinct

subobjects that have the same least derived class� De�nition �� formalizes the concept of
a replicated class� which will be a key notion in our approach for avoiding irrepresentable
inheritance structures�

De�nition 
�� Let P be a program� Then� a class X in P is a replicated class if there
is some class Y in P such that �Y �Y � contains multiple subobjects whose least derived
class is X� We will use ReplClasses	P
 to denote the set of all replicated classes in P �

We will use De�nition �� to modify the equivalence relation !�� on constraint variables
in such a way that�

� The type T�var�v�� associated with a variable v whose type in the original hierarchy
is a replicated class has at most one derived class in the specialized class hierarchy�

��



Tf var�cp�� g��D�D�C��f var�d� g

x x

Tf var�d� g��D�D��f var�d� g

Tf dcl�A��x� g��D�D�B�A��f var�d� g Tf dcl�A��x� g��D�D�C�A��f var�d� g

Tf var�cp�� g��D�D�C��f var�d� gTf var�bp�� g��D�D�B��f var�d� g

Tf var�bp�� g��D�D�B��f var�d� g

�b�

class A f int x� g� class Tf dcl�A��x� g f int x� g� class Tf dcl�A��x� g f int x� g�

class B � A f g� class Tf var��bp�� g �

virtual Tf dcl�A��x� g f g�

class Tf var��bp�� g �

virtual Tf dcl�A��x� g f g�

class Tf var��bp��� var��bp�� g �

Tf dcl�A��x� g f g�

class C � A f g� class Tf var��cp�� g �

virtual Tf dcl�A��x� g f g�

class Tf var��cp�� g �

virtual Tf dcl�A��x� g f g�

class Tf var��cp��� var��cp�� g �

Tf dcl�A��x� g f g�

class D � B� C f g� class Tf var�d� g �

Tf var��bp�� g� Tf var��bp�� g�

Tf var��cp�� g� Tf var��cp�� g
f g�

class Tf var�d� g �

Tf var��bp��� var��bp�� g�

Tf var��cp��� var��cp�� g f g�

void main��f
D d�

B �bp��

B �bp��

C �cp��

C �cp��

bp� 
 �d�

bp� 
 �d�

cp� 
 �d�

cp� 
 �d�

bp���x 
 ���

bp���x �
 ���

cp���x 
 ���

cp���x �
 ���

int result�

result 
 bp���x�

g

void main��f
Tf var�d� g d�

Tf var��bp�� g �bp��

Tf var��bp�� g �bp��

Tf var��cp�� g �cp��

Tf var��cp�� g �cp��

bp� 
 �d� bp� 
 �d�

cp� 
 �d� cp� 
 �d�

bp���x 
 ���

bp���x �
 ���

cp���x 
 ���

cp���x �
 ���

int result�

result 
 bp���x�

g

void main��f
Tf var�d� g d�

Tf var��bp��� var��bp�� g �bp��

Tf var��bp��� var��bp�� g �bp��

Tf var��cp��� var��cp�� g �cp��

Tf var��cp��� var��cp�� g �cp��

bp� 
 �d� bp� 
 �d�

cp� 
 �d� cp� 
 �d�

bp���x 
 ���

bp���x �
 ���

cp���x 
 ���

cp���x �
 ���

int result�

result 
 bp���x�

g

�a� �c� �d�

Figure �� �a� Example program� �b� Specialized subobject graph �irrepresentable�� �c�

Specialized class hierarchy and program �incorrect�� �d� Correct specialized class hierarchy and

program obtained using the equivalence relation of De�nition ���
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� The type T�dcl�m�� or T�def�m�� associated with a memberm that occurs in a replicated
class in the original hierarchy has at most one derived class in the specialized class
hierarchy�

Since this implies that elements of the specialized subobject graph corresponding to
�replicated� subobjects in the original hierarchy are no longer shared� it is guaranteed
that no irrepresentable inheritance structures can occur��� De�nition �� shows the
modi�ed de�nition of !���

De�nition 
�� Let P be a program� Then� the equivalence relation ��� on the variables
in P is de�ned as follows�

x� y when hx� y�i� � � � � hyn� yi� hy� x�i� � � � � hxm� xi � Assignments
P�

x� y when

��
�

hv� xi� hv� yi � Assignments
P��
TypeOf
P� v� � ReplClasses
P��
TypeOf
P� x� � TypeOf
P � y�

x� y when

����
���

hx�mi� hy�mi � MemberAccess
P��
X � TypeOf
P� x� � TypeOf
P � y��
static�lookup�
�X�X��m� � n�
ldc
n� � ReplClasses
P�

for some x�� � � � � xm� y�� � � � � yn in 
ClassVars
P� �ClassPtrVars
P���

The �rst clause of this de�nition is the same as before� The second clause states that
if a variable v whose type is a replicated class is assigned two other variables� x and y�
then the types of x and y are merged� The third clause states that if a member in a
replicated class is accessed from two variables x and y� the types of these variables must
be merged� The e	ect of the additional equivalence rules is that any replicated class in
the specialized class hierarchy has no more than one derived class� As a result� such a
class will never be required to be a virtual base class of another class�
This scheme is su�cient to prevent the representability problem mentioned above�

provided that the following requirements are met�

� If the program contains an assignment x � z� and the type of x is a replicated class
X� and the type of z is Z� then X � Z� or X is an immediate base class of Z�

� If the program contains a member access v�m or v � m that statically resolves to
a member m in a replicated class X� then v�s type is X�

These assumptions are nonrestrictive� any L�program that does not conforms to these
assumptions can be trivially transformed into an equivalent L�program that meets our
requirements�
Returning to the example of Fig� �
a�� Fig� �
d� shows the specialized class hierarchy

and program obtained using the modi�ed de�nition of !�� of De�nition ��� Variables

��An alternative approach for avoiding irrepresentable structures might be to make the access to
multiple shared subobjects with the same least derived class explicit� by introducing a data member
that contains a pointer to the subobject under consideration�

��



bp� and bp�� and variables cp� and cp� now occur in the same equivalence class� causing
their types to be merged in the specialized hierarchy� As a result� the inheritance relation
between these �merged� types� and type Tf dcl�A��x� g is now non�virtual�
Representability issues become a much more prominent issue for object�oriented lan�

guages such as Java ���� that have more limited facilities for expressing inheritance than
L� The inheritance structures that result from class hierarchy specialization are derived
from the member access and assignment operations in a program� and do not conform
�naturally� to a language�s limitations on inheritance� For example� multiple inheritance
arises naturally in the generated subobject graphs because any variable from which n
members are accessed may have up to n base classes 
the exact number of base classes de�
pends on how many of these members occur in the same equivalence class�� If a language
for example does not support multiple inheritance� types of variables must be merged
until all use of multiple inheritance is eliminated�

� Justi	cation

In this section� we demonstrate that class hierarchy specialization is a semantics�preserving
program transformation� Since only the class hierarchy and the declarations of variables
are a	ected by the transformation� it su�ces to show that the behaviors of member
lookup and type cast operations are preserved� In order to do so� we need to reason
about �corresponding� subobjects in the original and specialized class hierarchy� and
�corresponding� lookup and type cast operations that are performed on the original and
the specialized subobject graphs� To this end� we use the � mapping of Section ����
Informally� a subobject n in N corresponds to a subobject � � "
P� if �
n� � ��
In order to uniformly refer to the types of variables� member declarations� and member

de�nitions� we extend TypeOf to constraint variables as follows�

De�nition ��� Let P be a program� and let e be a constraint variable in CVars
P��
Then�

TypeOf
P � e� �

��
�

TypeOf
P� x� when e � var
x�
C when e � dcl
C��m�
C when e � def
C��m�

Lemma ��� states that all constraint variables in an equivalence class have the same
type�

Lemma ��� Let e and f be constraint variables such that e � f � Then�

TypeOf
P � e� � TypeOf
P � f�

Proof� Follows directly from De�nition ��� �

Lemma ��� establishes a relationship between the types of the constraint variables in
S� and the least derived class of a subobject �� for a given type constraint hS� �� T i that
is due to an assignment or member access�

Lemma ��� Let P be a program and let hS� �� T i be a type constraint in AssignTC
P� or
MemberAccessTC
P�� Then� for each constraint variable e in S� we have that ldc
�� �
TypeOf
P � e��

��



Proof� Follows directly from De�nitions ���� and ����� and Lemma ���� �

Lemma ��� establishes a relationship between the least derived class of a subobject�
and the subobject composition operator�

Lemma ��� Let �� and �� be subobjects such that mdc
��� � ldc
���� Then� we have
that ldc
��
��� � ldc
����

Proof� Follows directly from De�nition ���� �

Lemma ��� states that for any subobject n in N with least derived class T�e�� the least
derived class of �
n� is the same as the type of e in the original class hierarchy�

Lemma ��	 Let n be a subobject in hN� ���i such that ldc
n� � T�e�� Then�

ldc
�
n�� � TypeOf
P � e�

Proof� This can be shown inductively� by showing that the property holds for any node
added to N in De�nition ����
The base case consists of nodes n such that n � T�var�v������var�v��� for some v �

ClassVars
P�� V � TypeOf
P� v�� and � � �V �V �� The property follows trivially for v�
and from Lemma ��� it follows that the property holds for all elements of �var
v���
For the inductive case� assume that the property holds for a node n� � N � Let n be a

node that is added by the inductive clause of De�nition ��� such that n� � TT ����U �

and hS� ��� T i � 
AssignTC
P� � MemberAccessTC
P��� Then� we have that n �
TS���
���U � The property follows from Lemma ��� and Lemma ���� �

Lemma ��
 Let n and n� be subobjects in N such that n��n� Then �
n��	��
n� and
mdc
n�� � mdc
n��

Proof� Follows directly from De�nitions ��� and ���� �

Lemma��� states that casting a subobject � to its least derived class results in selection
of � itself�

Lemma ��� Let � be a subobject� Then� we have that�

typecast�
�� ldc
��� � �

Proof� Follows immediately from De�nition ���� �

Theorem ��� states that assignment behavior is preserved� Speci�cally� we demonstrate
that if 
i� there is an assignment hx� yi � Assignments
P�� 
ii� � and n are corresponding
subobjects in "
P� and N � respectively� and 
iii� the least derived classes of � and n
both correspond to the type of object y� then execution of the assignment will result in
the selection of corresponding subobjects in "
P� and N �

Theorem ��� Let P be a program with initial subobject graph h"
P�� ���i and specialized
subobject graph hN� ���i� Let n be a subobject in N such that ldc
n� � T�CVarOf�y��� and
let hx� yi � Assignments	P
� Then�

�
typecast�
n� T�CVarOf�x���� � typecast�
�
n��TypeOf
P � x��

��



Proof� We distinguish two cases�

�� CVarOf
x��CVarOf
y�� We will demonstrate that the left�hand side and right�
hand side of the equation reduce to the same subobject�

For the left�hand side� we have that�

�
typecast�
n� T�CVarOf�x���� � �
typecast�
n� T�CVarOf�y���� � �
n� � �

using �CVarOf
x�� � �CVarOf
y�� for the �rst step� and ldc
n� � T�CVarOf�y�� and
De�nition ��� for the second step��

For the right�hand side� we have that�

typecast�
�
n��TypeOf
P � x�� � typecast�
��TypeOf
P � y�� � �

using � � �
n�� CVarOf
x��CVarOf
y�� and Lemma ��� for the �rst step� The sec�
ond step relies on Lemmas ��� and ��� to demonstrate that ldc
�� � TypeOf
P� y��
and hence that typecast�
��TypeOf
P � y�� � ��

�� CVarOf
x���CVarOf
y�� Let n � T�CVarOf
y������T
� From hx� yi �

Assignments
P� and De�nition ����� it follows that there exists a type constraint
h�TCVarOf�x��� ��� �TCVarOf�y��i in AssignTC
P�� for some ��� From De�nitions ���
and ���� it follows that n� � T�CVarOf
x�����
���T

� N � and that n��n�

This demonstrates that n contains a subobject n� whose least derived class is of
the correct type 
the target type of the cast operation��

What remains to be demonstrated is that n does not contain another subobject n��

with the same least derived class that would render the cast operation ambiguous�
Formally speaking� we will show by contradiction that there is no n�� in N such that
n��v�n� n�� �� n�� and ldc
n��� � T�CVarOf�x��� Assume there is such an n

��� Then�
from Lemma �� it follows that ��	

��� ldc
��� � X ��	
��� ldc
��� � X� and

�� �� �� where X � TypeOf
P� x�� � � �
n�� �� � �
n��� and �� � �
n��� From
De�nition ���� it follows that the type cast to type X in the original class hierarchy
is ambiguous� Since we assume the program to be type�correct� this is impossible�
Therefore� the property also holds in the case where CVarOf
x���CVarOf
y��

�

The following lemma is crucial in proving that the behavior of static lookup operations
is preserved� Informally speaking� it states that the declaration�de�nition of a member
m that is accessed in a lookup operation dominates all other visible declarations and
de�nitions of m�

Lemma �� Let n�� n�� and n� be nodes in N such that n� � TS����T �

n� � T��
Y ��m�����
���T
� and n� � T��
X��m�����
���T

� n��n�� n�v�n��

h��
Y ��m��� ��� Si �MemberAccessTC
P�� and �� � in f dcl� def g� Then n��n��

Proof� Let X � TypeOf
P� �
X��m�� and Y � TypeOf
P � �
Y ��m��� From De�ni�
tion ���� it follows that classes X and Y both contain a declaration�de�nition of m�
From Lemma ��� n��n�� and n�v�n� � it follows that ��
��	

��� and ��
��	
����

��



From the above information� De�nition ����� and De�nition ���� it follows that
��
��	

���
��� It can easily be seen that this implies that ��	
����

We have now demonstrated that the occurrences of m in subobjects n� and n� are
both visible in subobject n�� and that there exists a containment relationship between
corresponding subobjects in the original hierarchy� �� and ��� Informally speaking�
this containment relation implies that the m in subobject �� hides or dominates the
m in subobject ��� The dominance type constraints of De�nition ���� were introduced
to capture the appropriate hiding�dominance relations so they can be retained in the
specialized subobject graph�
Formally� De�nition ���� states that there is a constraint h��
X��m��� �� ��
Y ��m��i in

DomTC
P�� where ��
� � ��� Hence� De�nition ��� implies that n��n�� �

Theorem ���� states that the behavior of static lookup operations is preserved� Infor�
mally� the theorem states that if 
i� memberm is accessed from object y� 
ii� � and n are
corresponding subobjects in "
P� and N � respectively� and 
iii� the least derived class of
� and n correspond to the type of object y then the static lookup operation will select
corresponding subobjects in "
P� and N �

Theorem ���� Let P be a program with initial subobject graph h"
P�� ���i and special�
ized subobject graph hN� ���i� Let n be a subobject in N such that ldc
n� � T�CVarOf�y���
and let hm� yi �MemberAccess
P�� Then�

�
static�lookup�
n�m�� � static�lookup�
�
n��m�

Proof� Let n � T�CVarOf
y������T
� There are two cases�

�� y � ClassPtrVars
P� or m � DataMembers
P�� According to De�nition ����
there is a type constraint h�dcl
X��m��� ��� �CVarOf
y��i � MemberAccessTC
P��
where Y � TypeOf
P� y�� and ��
�� � �Y ���X� � static�lookup�
�Y �Y ��m��
From De�nition ��� and ���� it follows that n� � T�dcl
X��m�����
���T

� N �

and that n��n� From Lemma ��� it follows that for every n�� in N ldc
n��� �
T���W ��m�� for someW and some x � fdcl� def g� and n��v�n� we have that n��v�n��
From De�nition ��� it follows that static�lookup�
n�m� � n�� and hence that
�
static�lookup�
n�m�� � static�lookup�
�
n��m��

�� y � ClassVars
P� and m � VirtualMethods
P�� According to De�nition ���� there
is a type constraint h�def
X��m��� �� �CVarOf
y��i � MemberAccessTC
P�� where
Y � TypeOf
P� y�� and � � �Y ���X� � static�lookup�
�Y �Y ��m�� From De�ni�
tion ��� and ���� it follows that n� � T�def
X��m�����
���T

� N � and that n��n�

From Lemma ��� it follows that for every n�� in N ldc
n��� � T���W ��m�� for someW
and some x � f dcl� def g and n��v�n� we have that n��v�n�� From De�nition ��� it
follows that static�lookup�
n�m� � n

�� and hence that �
static�lookup�
n�m�� �
static�lookup�
�
n��m��

�

Theorem ���� states a correspondence between static lookup operations in the original
and specialized class hierarchies� However� in order to argue that program behavior
is preserved� it is necessary to make a similar claim about dynamic member lookup

��



operations that arise from dynamically dispatched method calls� We �rst introduce
another lemma�
Lemma ���� establishes a relationship between a subobject�s most derived class� and

the subobject mapping of De�nition ����

Lemma ���� Let n be a subobject in the specialized class hierarchy� Then� we have that�

�
�mdc
n��mdc
n��� � �mdc
�
n���mdc
�
n���

Proof� Follows directly from De�nitions ��� and ���� �

Theorem ���� uses Lemma ���� to demonstrate that dynamic lookup behavior is pre�
served�

Theorem ���� Let P be a program with initial subobject graph h"
P�� ���i and special�
ized subobject graph hN� ���i� Let n be a subobject in N such that ldc
n� � T�CVarOf�y���
and let hm� yi �MemberAccess
P�� Then�

�
dynamic�lookup�
n�m�� � dynamic�lookup�
�
n��m�

Proof� Using Lemma ��� we have that

�
dynamic�lookup�
n�m�� � �
static�lookup�
�mdc
n��mdc
n���m��

Using Theorem ����� this can be restated as�

static�lookup�
�
�mdc
n��mdc
n����m�

According to Lemma ����� this can be rewritten to�

static�lookup�
�mdc
�
n���mdc
�
n����m�

According to De�nition ���� this is the same as�

dynamic�lookup�
�
n��m�

�


 Phase IV� Simpli	cation

Phase IV of the algorithm consists of the application of a set of semantics�preserving
transformation rules to the specialized class hierarchy��� These rules simplify the 
vir�
tual� inheritance structures of the class hierarchy in order to reduce the number of
compiler�generated �elds in objects� and consequently reducing member access time
and�or object size� It is important to realize that the number of explicit 
i�e�� user�
de�ned� members contained in each object is not a	ected by the transformations� with
the exception that a member�s declaration and de�nition may be merged�

��Alternatively� the set of type constraints could be simplied before the specialized class hierarchy is
generated� However� since these transformationsare of interest in their own right �e�g�� as an optimization
performed subsequent to class hierarchy slicing ���� or application extraction ������ we have chosen to
present them as general transformations that may be applied to any class hierarchy�

�



Tf var�c� g

f��� y

x g��� g��� z

A��g�� A��f�� B��g�� C��f��

Tf dcl�A��f� g Tf dcl�B��y� g

Tf dcl�A��x� g Tf dcl�A��g� g Tf dcl�B��g� g Tf dcl�C��z� g

Tf def�A��g� g Tf def�A��f� g Tf var��ap� g Tf def�B��g� g Tf def�C��f� g

Tf var�a� g Tf var�b� g

�a�

Tf dcl�C��z�� def�C��f� g

g��� f��� g���

x

A��g��
A��f��

z

C��f��

y

B��g��

Tf var�a� g Tf var�b� g Tf var�c� g

Tf dcl�A��f�� var��ap� gTf dcl�A��g� g Tf dcl�B��g� g

Tf dcl�A��x�� def�A��g� g Tf def�A��f� g Tf dcl�B��y�� def�B��g� g

�b�

Tf var�b� g

g��� f��� g���

A��f��
y

B��g��

x

A��g��

z

C��f��

Tf dcl�A��f�� var��ap� gTf dcl�A��g� g Tf dcl�B��g� g

Tf def�A��f� g Tf dcl�B��y��def�B��g� g

Tf dcl�A��x��def�A��g�� var�a� g Tf dcl�C��z�� def�C��f�� var�c� g

�c�

Figure ��� Illustration of the class hierarchies that result from applying the simpli�cation rules

of Section � to the specialized class hierarchy of Fig� �� In the �gure� boxes indicate classes� solid

arrows indicate nonvirtual �replicated� inheritance� and dashed arrows indicate virtual �shared�

inheritance� An unquali�ed member name inside a box �e�g�� f���� indicates that a declaration

of that member occurs in the class� A quali�ed member name �e�g�� A��g��� indicates a member

de�nition and the class in the original hierarchy from where it originated �A��
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�d�

Figure ��� Illustration of the class hierarchies that result from applying the simpli�cation

rules of Section � to the specialized class hierarchy of Fig� � �continuation of Fig� ����
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��� The R�Rule Removal of redundant inheritance relations

The R�Rule states that a virtual inheritance relation between classes X and Z can be
removed if there exists a class Y such that�

�� X is an immediate virtual base class of Y �

�� X is an immediate virtual base class of Z� and

�� Y is a 
direct or indirect� base class of Z�

��� The D�Rule De�virtualizing an inheritance relation

The D�Rule�� states that the virtual inheritance between classes X and Y can be replaced
by a nonvirtual inheritance relation when�

�� X is an immediate virtual base class of Y � and

�� there is no class Y � �� Y such that 
i� X is an immediate virtual base class of Y ��
and 
ii� there is a class Z that directly or indirectly inherits from both Y and Y ��
and

�� there is no type W such that subobject �W �W � contains multiple� distinct subob�
jects with least derived class X�

��� The M�Rule Merging two classes

In the description of the rule below� the �merging� of two classes X and Y 
where X is
a base class of Y � involves the creation of a new class Z that 
virtually� inherits from
each 
virtual� base class of X and Y� and which contains all members of X and Y � In
addition� each class Z� that inherits from X or Y is made to inherit from Z instead�
This inheritance relation is virtual if the inheritance relation between X and Y or the
inheritance relation between X and Z� or Y and Z� is virtual� otherwise it is nonvirtual�
All variables of type X and Y are given type Z� and all variables of type X� and Y � are
given type Z�� The �nal part of the merge operation consists of the removal of classes
X and Y from the hierarchy�
The M�Rule states that we merge a base class X with a derived class Y if all of the

following conditions hold�

�� X and Y have no members in common� except for the fact that for any member
m� X may contain a declaration of m� and Y a de�nition of m�

�� There is no class Z which is a direct nonvirtual base class of both X and Y �

�� If there is a direct base class X� �� X of Y � and a direct derived class Y � �� Y of
X� then X � is an indirect base class of Y ��

�� Y is not a replicated class�

��The original formulation of this rule in ���� contained an error�

��



�� If there are any variables in the program whose type is X� or any type Y � �� Y

directly or indirectly derived from X� then neither Y nor any direct or indirect
base class X� �� X of Y contains any data members�

� If there are any variables in the program whose type is X� or any type Y � �� Y

directly or indirectly derived from X� and if Y or any direct or indirect base class
X� �� X of Y contains a declaration�de�nition of a virtual method� then X contains
a declaration�de�nition of a virtual method�

Conditions 
��#
�� ensure that the class hierarchy is still valid after the merge and that
member lookup behavior is preserved� Condition 
�� ensures that no object becomes
larger due to the addition of a data member of method as a result of the merge� and
condition 
� ensures that no object becomes larger due to the addition of a virtual
function table pointer���

��� Example

As an example� we will study the simpli�cation of the specialized class hierarchy that
was shown in Fig� ��
Fig� ��
a� depicts this class hierarchy before any simpli�cations have been per�

formed� In Fig� ��
b�� the class hierarchy is shown after merging class Tf dcl�A��x� g with
class Tf def�A��g� g 
M�� merging Tf dcl�B��y� g and Tf def�B��g� g 
M�� merging Tf dcl�C��z� g and
Tf def�C��f� g 
M�� eliminating the inheritance relation between Tf dcl�A��g� g and Tf def�B��g� g


R�� and merging Tf dcl�A��f� g and Tf var��ap� g 
M�� Fig� ��
c� depicts the class hierarchy
after eliminating the inheritance relation between Tf dcl�A��f�� var��ap� g and Tf var�a� g 
R��
eliminating the inheritance relation between Tf dcl�A��f�� var��ap� g and Tf var�b� g 
R�� elim�
inating the inheritance relation between Tf dcl�A��f�� var��ap� g and Tf var�c� g 
R�� merging
Tf dcl�A��x��def�A��g� g and Tf var�a� g 
M�� and merging Tf dcl�C��z�� def�C��f� g and Tf var�c� g 
M��
Fig� ��
a� shows the hierarchy after eliminating the inheritance relation be�

tween Tf dcl�A��g� g and Tf dcl�A��x�� def�A��g�� var�a� g 
R�� eliminating the inheritance rela�
tion between Tf dcl�B��g� g and Tf dcl�C��z��def�C��f�� var�c� g 
R�� merging Tf dcl�B��g� g and
Tf dcl�B��y��def�B��g� g 
M�� and merging Tf dcl�A��f�� var��ap� g and Tf def�A��f� g 
M�� Note that
merging Tf dcl�A��f�� var��ap� g with its other derived class� Tf dcl�C��z�� def�C��f�� var�c� g� is
not permitted because that would violate condition 
�� of the M�Rule� Another
point to note is that� as a result of the merge� the inheritance relations between
the newly created �merged� classes and their derived classes have become virtual�
Fig� ��
b� shows the hierarchy after merging Tf dcl�A��g� g and Tf dcl�A��f�� var��ap��def�A��f� g


M�� Fig� ��
c� shows the hierarchy after eliminating the inheritance relation between
Tf dcl�A��g��dcl�A��f�� var��ap�� def�A��f� g and Tf var�b� g 
R�� eliminating the inheritance relation
between Tf dcl�A��g�� dcl�A��f�� var��ap��def�A��f� g and Tf dcl�C��z��def�C��f�� var�c� g 
R�� and merging
Tf dcl�B��y��def�B��g� g and Tf var�b� g 
M�� The �nal result� shown in Fig� ��
d� is obtained
by replacing all virtual inheritance relations by nonvirtual inheritance relations 
three
applications of the D�Rule�� This is the same hierarchy that was shown earlier in Fig� ��

��Condition ��� is dependent on the object model� This condition may require modication if a
di�erent object model is used�
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� Interaction with other Optimizations

Class hierarchy specialization may interact with a number of existing program optimiza�
tions and transformations in interesting ways� In Section ���� we discuss a number of
program transformations that may improve the results when applied before specializa�
tion� Section ��� discusses optimizations that may be enabled by specialization�

��� Optimizations to be performed before specialization

Removing dead or useless code may improve the result of specialization� In particular�
eliminating assignments and member access expressions may reduce the number of in�
heritance relations in the specialized hierarchy� and eliminating declarations of variables
reduces the number of classes� Various techniques for eliminating useless code may be
used� including elimination of unreachable methods ����� dead code elimination ����� and
program slicing ��� ����
Sometimes programmers reuse variables in order to save space� This situation is il�

lustrated by Fig� ��
a�� where variable ap is declared once� and used in two di	erent�
unrelated contexts$note that the second assignment to ap �kills� the previous value�
Reusing variables may adversely a	ect specialization because the di	erent �uses� of the
variable access di	erent members� and be involved in di	erent subtype�relationships with
other variables� The result of specializing the program is shown in Fig� ��
b�� Note that
a better result can be obtained by �rst �splitting� variable ap 
see Fig� ��
c��� followed
by specialization 
see Fig� ��
d���
We conclude this discussion by mentioning that� in certain cases� a better specialization

result can be achieved by transforming nonvirtual methods into virtual methods� This
is the case because virtual methods are more ��exible� than nonvirtual methods in the
sense that the de�nition of the method need not be visible to the caller�

��� Optimizations to be performed after specialization

The example of Fig� � illustrates how class hierarchy specialization may enable the trans�
formation of virtual methods into nonvirtual methods� This may in turn create oppor�
tunities for inlining methods� and various intraprocedural optimizations�

�� Conclusions and Future Work

���� Discussion

We have presented an algorithm that computes a new class hierarchy for a program� and
updates the declarations of variables in the program accordingly� This transformation
may remove unnecessary members from objects� and it may eliminate virtual 
shared�
inheritance 
which decreases member access time� and which may decrease object size��
The advantages of specialization are reduced space requirements at run�time� and re�
duced time requirements through the reduced cost of object creation�destruction� and
indirectly through caching�paging e	ects� In addition� specialization may create addi�
tional opportunities for existing optimizations such as virtual function call resolution�
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class A f
virtual int f��f return x� g�
int x�
int z�

g�
class B � A f

virtual int f��f return y� g�
int y�

g�

void main��f
A a�

B b�
A �ap�
���
ap 	 
a�
ap��z 	 ���

int p� p 	 ap��f���
���
ap 	 
b�
int q� q 	 ap��f���

g

class Tf var��ap� g f

virtual int f���

int z� g�
class Tf var�a� g � Tf var��ap� g f

virtual int f��f return x� g�
int x�

int z�
g�
class Tf var�b� g � Tf var��ap� g f

virtual int f��f return y� g�
int y�

g�

void main��f
Tf var�a� g a�

Tf var�b� g b�

Tf var��ap� g �ap�

���
ap 	 
a�

ap��z 	 ���
int p� p 	 ap��f���
���
ap 	 
b�
int q� q 	 ap��f���

g

�a� �b�

class A f
virtual int f��f return x� g�
int x�
int z�

g�
class B � A f

virtual int f��f return y� g�
int y�

g�

void main��f
A a�

B b�
A �ap��
���
ap� 	 
a�
ap���z 	 ���

int p� p 	 ap���f���
���
A �ap��
ap� 	 
b�

int q� q 	 ap���f���
g

class Tf var�a� g f

virtual int f��f return x� g�
int x�
int z�

g�
class Tf var�b� g f

virtual int f��f return y� g�
int y�

g�

void main��f
Tf var�a�� var��ap�� g a�

Tf var�b�� var��ap�� g b�

Tf var�a�� var��ap�� g �ap��

���

ap 	 
a�
ap��z 	 ���
int p� p 	 ap��f���
���

Tf var�b�� var��ap�� g �ap��

ap� 	 
b�
int q� q 	 ap���f���

g

�c� �d�

Figure ��� �a� Example program� �b� Specialized program class hierarchy�
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Much of the complexity of the formalization of class hierarchy specialization is due to
the complexity of multiple non�virtual inheritance� In the presence of single inheritance�
and multiple virtual inheritance� each object can be characterized as a set of members�
because an object always contains at most one subobject of any given type� In the
presence of non�virtual multiple inheritance� this is no longer the case� and subobject
information needs to be encoded in type constraints� Virtual inheritance does not pose
many problems by itself� because even for languages with only single inheritance� the hi�
erarchies generated by Phase III naturally exhibit virtual multiple inheritance� However�
as we mentioned in Section � additional work would be involved in transforming these
intermediate results into hierarchies with only single inheritance�
While we do not have empirical data of the space savings due to class hierarchy spe�

cialization� less sophisticated member elimination techniques ���� ��� have shown to be
highly e	ective in reducing the number of class members� Speci�cally� ���� reports an
average of ����� dead data members in C�� applications� and ���� reports an aver�
age of ����� dead �elds� and an average of ����� dead methods in Java applications�
We believe that the better results in the context of Java are due to the fact that Java
applications are written in a more object�oriented style and tend to rely more on class
libraries� but also because in the approach of ���� dead methods are removed prior to
the transformations of the class hierarchy� Being a more precise analysis� class hierarchy
specialization should produce better results� How much better the results would be in
practice is a topic for future research�

���� Accommodating other language features

We have presented our de�nitions and formalism for a small object�oriented language in
order to prevent our de�nitions from becoming too unwieldy� However� the application
of class hierarchy specialization to a real language such as C�� or Java requires that a
number of additional language features be modeled�

������ Nested structures

Nested structures arise when the type of a data member is a class� or a pointer to a class�
Applying specialization to such structures a	ects a data member C��m of type D in two
�orthogonal� dimensions�

� The �location� of m in the class hierarchy is a	ected by changing the number of
objects that contain this �eld� This is no di	erent from data members of built�in
types�

� The type of m is replaced by a specialized version of D� containing a subset of D�s
members� This is no di	erent from the way we treat variables�

Consequently� data members of class�based types should be modeled as built�in data
members and as variables� This is accomplished by introducing constraint variables
dcl
C��m� and var
C��m�� which represent the �data member� view and the �variable
view� of m� respectively� Constructing the type constraints involving these constraint
variables is completely analogous to the case with only data members of built�in types�
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������ Down casts and type�test operations

Down casts are type cast operations where the �target� type T of the cast operation is
a derived class of the static type S of the casted expression� Down casting is generally
discouraged because a run�time error or exception occurs if the run�time type of the
expression is not a class transitively derived from T � However� many realistic programs�
especially languages such as Java that lack parametric polymorphism� use downcasting
heavily� Type test operations are closely related to down casts� and allow a user to test
if a pointer or reference is a 
subtype of� a speci�ed type� and compute a boolean or
integer value indicating the result� For example� Java allows expressions of the form e

instanceof X� to test if the object pointed to by e is a subtype of X� Both down casts
and type test operations can be transformed into virtual method calls�	� allowing us to
simply rely on the previously discussed mechanisms�

������ Miscellaneous other features

Other language features that need to be modeled include�

� User�de�ned constructors and destructors� Typically� a constructor initializes all
members of a class� The algorithm presented in the present paper would not be
able to omit any members accessed from a constructor�s this pointer�

� Static members� Although member lookup works somewhat di	erently for static
members ����� we do not think that there are any conceptual di�culties here� From
a space savings point of view� static members are not very interesting because there
is only one such member per class�

� Re�ection and dynamic loading� Re�ective features allow one to access an ob�
ject�s class� and from such a class�object members in that class can be inspected
or accessed� Since it is in general impossible to determine using static analysis
which members may be accessed using re�ection� additional user input would be
required to perform class hierarchy specialization on programs that use re�ection

the approach taken in ������

Other pragmatic issues that need to be addressed in order to make class hierarchy spe�
cialization practical are separate compilation and the use of class libraries for which only
object code is available�

���� Simpli
cation rules

While the simpli�cation rules of Section � are su�cient for the examples presented in
this paper� further research is needed to determine if additional rules are required in
other cases� In addition� simpli�cation rules would ideally allow for certain time�space
tradeo	s� For example� one might think of a situation where a virtual inheritance relation
can be eliminated if a data member m is added to a certain object that does not need
m� We intend to investigate whether rewriting systems ��� �� can be used as a formal
means to reason about class hierarchy simpli�cations�

��This transformation was proposed by M� Streckenbach� and is presented in detail in �����
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���� Implementation plans

We have started work on an implementation of class hierarchy specialization in the
context of Jax ����� an application extraction tool for Java which is currently being
developed at IBM Research�
� The main goal of Jax is to reduce the time required
to download applications over the internet by reducing application size� In ����� Jax
is evaluated on a number of realistic benchmark applications� and an average ZIP �le
size reduction of ����� is reported� Jax incorporates a number of recently developed
whole�program analysis techniques such as Rapid Type Analysis �� �� and the dead data
member detection algorithm of �����
We have adapted the class hierarchy simpli�cation rules of Section � to Java� and

implemented them in the context of Jax� Java provides a limited form of multiple in�
heritance for interface classes� and does not make an explicit distinction between virtual
and non�virtual inheritance��� Therefore� only the M�Rule and the R�Rule of Section �
have been implemented� For the benchmark applications of ����� the simpli�cation rules
reduce the number of classes by an average of ������ This has a nontrivial impact on
application size because in the Java class �le representation� each class has a local copy
of the literal values it refers to� and merging classes reduces the duplication of constants
in di	erent classes�

A Language L

Language L is a small C���like language with virtual 
shared� and nonvirtual 
repli�
cated� multiple inheritance� We omitted many C�� features from L� including user�
speci�ed constructors and destructors� nonvirtual methods� pure virtual methods and
abstract base classes� access rights 
for members and inheritance relations� members
and subobjects are accessible from anywhere within an L�program�� multi�level pointers�
functions� operators� overloading� dynamic allocation� pointer arithmetic� pointers�to�
members� the !��� direct method call operator� explicit casts� typedefs� templates� excep�
tion handling constructs� Furthermore� we assume that data members are of a built�in
type� For convenience� we allow classes to contain the declaration of a method without
an accompanying de�nition if the method under consideration is not called� All vari�
able�parameter types are either int or a class� data members are always of type int�
and members may only be accessed from a variable� Fig� �� shows a BNF grammar for
L�
Without loss of generality we assume that the program does not contain variables�

parameters� members� and classes with the same name 
if this is not the case� some
name�mangling scheme can be applied�� The only exception to this rule is that we allow
a virtual method to override another virtual method with the same name�

��More information about Jax can be found at www	research	ibm	com�jax� A free evaluation copy
can be downloaded from www	alphaWorks	ibm	com�tech�jax�

��Since interfaces cannot contain non	static elds� and all of the declarations of a method in di�erent
interfaces refer to the same method� virtual and non	virtual inheritance would have exactly the same
semantics anyway�
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Program ��� Hierarchy void main�� f S List g
Hierarchy ��� ClassDef j ClassDef Hierarchy

ClassDef ��� class Id � � I List � f M List g�
I List ��� � virtual � Id j � virtual � Id I List

M List ��� Member� j Member� M List

Member ��� virtual int Id� � D List � � � f S List g � j
virtual Id Id� � D List � � � f S List g � j int Id

S List ��� Stat� j Stat� S List

Stat ��� Decl j IfStat j AssignStat j ReturnStat j CallStat

Decl ��� int Id j Id � � � Id
D List ��� Decl j Decl D List

IfStat ��� if �Id� f S List g � else f S List g �
AssignStat ��� � � � Id � Exp j Id M Op Id � Exp

ReturnStat ��� return Exp

CallStat ��� CallExp

Exp ��� IntConst j Id j �Id j 
Id j Exp � Id j CallExp

CallExp ��� Id M Op Id� � Exp List �� j Id M Op Id j Id � � Exp List ��
Exp List ��� Exp j Exp Exp List

IntConst ��� ��� j �� j � j � j ���
M Op ��� � j ��

Figure ��� BNF grammar for L�
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