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T
he popularity of the Java pro-
gramming language [2] has
resulted in significant growth
of the number of third-party
class libraries that perform
common tasks such as creat-
ing and manipulating collec-

tions of objects, parsing XML files, and
constructing graphical user interfaces. The use
of these libraries can greatly increase developer
productivity and code reliability.
Developers can focus on the aspects
that are unique to the application
they are developing without being
burdened with the unexciting task
of building (and debugging!) stan-
dard infrastructure.

Unfortunately, the use of class
libraries also has a disadvantage: the
prerequisite libraries that a given applica-
tion depends on may not be available in the
deployment environment. Therefore, if an
application uses, say, the Xerces (see
xml.apache.org) library for parsing XML
files, one must either require users to down-
load and install Xerces, or one must ship
Xerces along with the application. The for-

mer approach is often undesirable because it
makes the installation process more cumber-
some and error-prone (for example, customers
may inadvertently install an incompatible ver-
sion of Xerces, which may cause unexpected
failures). The latter approach—shipping pre-
requisite libraries along with applications that
use them—often significantly increases the size
of the distribution. Increased distribution size

has the disadvantage of increased download
time for applications distributed via the

Internet, and increased cost and
power consumption for embedded

applications stored in Read-Only or
Flash Memory. Some embedded
environments have imposed physi-

cal restrictions on the size of appli-
cations. For example, certain kinds of

J2ME-enabled phones have a maximum
size of 64K for an application JAR and 512K
total storage space for all applications.
Clearly, the smaller the application, the more
opportunity exists for increasing either the
quality or the quantity of downloadable
applications. In fact, it is precisely the exis-

tence of this type of constraint that led to
the development of a standardized small
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Java environment such as the Java 2 Platform, Micro
Edition (J2ME). 

Although the use of prepackaged libraries con-
taining reduced functionality such as J2ME is an
important step in the right direction, more
advanced techniques are often needed to meet strin-
gent space requirements. Application extraction
techniques [1] reduce code size by extracting exactly
those parts from referenced class libraries used by a
specific application, and then optimizing the code
that remains.

Third-party class libraries are often distributed in
the form of Java bytecode [5]. To use extraction tools
with distributions that include bytecode libraries,
such tools must be able to operate on this presenta-
tion. Fortunately, Java bytecode is a high-level repre-
sentation amenable to precise analysis because of the
existence of class hierarchies, the availability of type
information, and the absence of type-unsafe casting
and pointer arithmetic.1 Consequently, extraction
tools can accurately determine the library functional-
ity that is needed. This environment differs consid-
erably from those in which native-code post-pass
compaction tools must operate.

Application extraction tools rely on a static analy-
sis of the program. These tools read the class files [5]
associated with a Java application and its prerequi-
site libraries, and perform a static analysis to deter-
mine which classes, methods, and fields are actually
used. After removing unused classes, methods, and
fields, various size-reducing program transforma-
tions (including name compression and class hierar-
chy transformations) are applied to what remains
and a JAR file is produced containing the extracted
application. This extracted application has the same
behavior as the original application, but is typically
much smaller (in the benchmarks we examined, on
average, applications are reduced to less than 40% of
their original size). 

Extraction techniques are particularly effective
where applications rely on third-party class libraries.
This is the case because applications tend to use only
a small fraction of the functionality of the libraries
they rely on. Application extractors are especially
effective in “pruning away” unused library function-
ality.

We have experimented with a number of extrac-
tion techniques in the context of Jax, an application
extractor developed at IBM Research. Here, we pre-
sent a high-level overview of the various extraction

techniques implemented in Jax and assess the
impact of these techniques on a set of benchmark
applications.

T
he first step of the extraction
process consists of loading the seed
classes from the original applica-
tion that contain the application’s
entry points. For each class loaded,
an in-memory representation is
constructed. Other classes in the

application and its prerequisite libraries that are
directly or indirectly referenced by the seed classes
are also loaded. Some size reductions can be
obtained by discarding class file attributes such as
line number tables and local variable name tables
only essential for symbolic debugging.

The first step identifies the set of classes the appli-
cation might use, but in general, only a subset of the
methods in these classes will be needed. There are
various reasons why unreachable methods may arise.
For example, an application may contain code asso-
ciated with features that have become obsolete, or
that is associated with features that have not yet been
completed. Of particular interest to us is the situa-
tion where an application uses a class library that
was developed elsewhere. In this case, unreachable
methods may arise because the application uses only
a small fraction of the library’s functionality. 

To identify unreachable methods, a call graph is
constructed. A call graph is a conservative approxi-
mation of the calls between methods that might
arise during program execution. The key step in call
graph construction for OO languages is to approxi-
mate conservatively the “target” methods that can be
invoked by dynamically dispatched method calls.
Starting from the application’s entry points, each
method body is examined to identify call sites and to
approximate their potential targets. This is an itera-
tive process: as new reached methods are encoun-
tered, additional call sites may need to be examined,
which may lead to the identification of still more
reached methods. The process terminates when no
additional methods are found. At that point, all
methods that are not reached can be removed. 

Many call graph construction algorithms for OO
languages have been proposed [4]. These algorithms
differ in the tradeoffs they make between cost and
precision, which both increase as more accurate type
information is computed by an algorithm. We orig-
inally used the RTA algorithm [3], which is very effi-
cient because only a single set of types is computed,
and which computes call graphs that are reasonably
precise. Later, we adopted the more precise XTA

1In principle, the extraction techniques presented here can be applied to other lan-
guages (for example, C++), provided suitable high-level representations (for example,
source code) are available for analysis. 
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algorithm [9], which computes significantly more
precise call graphs in some cases, and still has accept-
able performance characteristics. XTA computes one
set of types for each method in the program. For an
in-depth comparison of the performance of these
algorithms, see [11]. 

The elimination of methods can give rise to
redundant fields: any field that is only accessed from
unreachable methods can be removed from the
application. Moreover, fields that are only written to
(but not read) can also be removed because their
value cannot affect the program’s behavior [8]. In the
latter case, instructions that store values into the
redundant field must also be removed. The removal
of such “write-only” fields is particularly worthwhile
in situations where fields are initialized in the con-
structor of a class, but never subsequently used
because the field is only accessed by unreachable
methods. This frequently happens in cases where
unused library functionality is removed.

Although our primary goal has been the reduction
of application size, we also mention a few simple
performance optimizations that can be performed
during extraction. These include call devirtualiza-
tion, the inlining of method calls in situations where
this does not increase application size, and intra-
method bytecode optimizations.

Class Hierarchy Transformations
When an application uses only part of a library’s func-
tionality, there may be opportunities to reduce appli-
cation size through compaction of the class hierarchy.
For example, if a given class and its members are not
referenced from any reachable method, it is possible
to remove that class under certain conditions such as
when a class has no subclasses. Furthermore, merging
classes that are adjacent in the hierarchy can be done
without affecting program behavior and without
increasing runtime object size. Determining whether
or not program behavior is affected and runtime
object size is increased involve structure analysis of the
class hierarchy, and information about which classes
are instantiated [10]. Class merging reduces applica-
tion size because in Java, each class file is self-con-
tained, and has its own pool of constants and literals.
Merging classes reduces the duplication of literals
across constant pools.

Name Compression
A Java class file is a self-contained unit of executable
code [5]. References to other classes, methods, and
fields are made through string literals. For example, if
a class contains a method call Thread.sleep(500), the
constant pool for that class contains the strings

“java/lang/Thread,” “sleep',” and “(J)V,” representing
the fully qualified class name, the method name, and
a string representation of the method’s signature (one
argument of type long; returning void ). Because all
linking information is represented in string form, and
is replicated in each class file, it is obvious that short-
ening class, method, and field names will result in
smaller archives. Our approach is to rename classes,
methods, and fields to a, b, c … More ambitious
naming schemes, in which methods with different
signatures get the same name, are possible.

Extraction Hazards
Although we have offered readers a sense of the
number of important extraction techniques in the
preceding sections, some issues that complicate
extraction are described here. 

In general, a static analysis cannot determine the
classes, methods, and fields that are accessed using
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dynamic loading or reflection.2 Certain special cases
can be detected (for example, through the propaga-
tion of string constants), but this will not always be
possible. Since removing or transforming these arti-

facts may affect program
behavior, the user must iden-
tify all uses of reflection and
dynamic loading and list
them in a configuration file.

There are cases where
unreachable methods cannot

be removed for syntactic reasons. For example, if a
(non-abstract) class implements an interface, all of
the methods declared in the interface must be
retained, even though some of these methods may
be unreachable. In such cases, one can still replace
the body of such unreachable methods with a single
return statement.

Merging classes across package boundaries may
require that classes, methods and fields need to be
made public. If security concerns are an issue, class
merging needs to be disallowed in such cases.

Java code may contain native methods that are
implemented in a different language (for example,
C). Such methods may instantiate classes, invoke
methods, and access fields. As native code is difficult
to analyze, a common approach is to rely on the user
or library designer to specify the behavior of native
methods [7].

Some names cannot be compressed. These
include any name of a class, method, or field in an
external library; a method that overrides a method
in an external library; the name of any program
component accessed using reflection; the name of
the class containing the main routine; and the

names of constructors and static initializers.
When a program is modified by the extractor, the

extractor must ensure that the order in which Java
classes are loaded by the runtime system remains the

same because some applications
rely on that order.

Jax
We implemented the techniques
discussed here in Jax, an applica-
tion extraction tool. Jax was orig-
inally developed at IBM Research
as a vehicle for research on appli-
cation extraction [7, 10, 11] and
call graph construction [9], and
has been available from IBM’s
alphaWorks Web site since June
1998. A number of software
products (both inside and outside

of IBM) have been shipped after extracting them
with Jax. Moreover, a number of major components
of Jax have recently been incorporated in the link-
time optimizer of IBM’s WebSphere Studio Device
Developer (see www.ibm.com/embedded), an inte-
grated environment for developing embedded 
systems applications in Java, in order to reduce the
size of embedded Java applications. An evaluation
copy of Jax can be downloaded for free from
www.alphaworks.ibm.com/tech/jax. 

Table 1 lists the size, essential characteristics, and
a short description of each of a collection of Java
applications used to evaluate the effectiveness of Jax.
Figure 1 shows, for each of the benchmark applica-
tions, the size of the ZIP file containing the
extracted application as a percentage of the size of
the ZIP file containing the original application.

Figure 2 shows, for each benchmark application,
the number of classes, methods, and fields in the
extracted application as a percentage of the number
of classes, methods, and fields that were originally
present. As can be seen in Figure 1, the applications
are reduced to 37.5% of their original size on aver-
age,3 but in some cases even greater reductions can
be achieved. The size of the mBird benchmark is
reduced dramatically because we extracted only the
batch client from a distribution containing both a
batch client and a GUI-based client, and shows that
Jax is very effective at removing the unused (GUI-
related) functionality. The other benchmarks for
which we obtained significant size reductions
(Hanoi, eSuite Sheet, eSuite Chart, and Hyper/J) all
use one or more class libraries, and a large part of the
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3All average percentages reported here are computed using the geometric mean. 

Figure 1. Size of the
extracted benchmark 
applications as a 
percentage of the size 
of the original archive.
Resource files are 
excluded from both the 
initial and processed
archives.

2Dynamic loading and reflection are mechanisms that allow programmers to load and
instantiate classes, invoke methods, and access fields, using runtime (string) values to
identify the accessed program constructs.



reported reductions is attributable to removing
unused library functionality. It is clear from the sim-
ilarity of the shapes of the bar charts of Figures 1 and
2 that the reduction in distribu-
tion size is strongly correlated to
the number of classes, methods,
and fields that are removed. 

O
ne benchmark on
which Jax is partic-
ularly effective is
Hyper/J (see Figure
1). Table 2 shows
how the reduction
of Hyper/J to

27.8% of its original size can be
attributed to the various steps
performed by Jax. Removing
unreferenced classes reduces the
ZIP file to 86.0% of its original
size. Next, removing redundant
attributes further reduces the
ZIP file to 67.1% of its original
size. A similar amount of space is
taken up by unreachable meth-
ods, and removing these results
in a ZIP file that is 46.7% of the
original size. The combined
impact of dead field removal,
inlining, and devirtualization is
a relatively minor 4.1%, shrink-
ing the ZIP file to 42.6% of its
original size. The contribution
of class hierarchy transforma-
tions is quite noticeable. Hyper/J is written in a
highly OO style, with heavy use of interfaces. Large
sections of the class hierarchy are compacted by Jax,
which reduces the number of classes from 789 to
428, and the ZIP file is reduced to 35.2% of its orig-
inal size. Finally, name compression reduces Hyper/J
to a mere 27.8% of its original size. In our experi-
ence, the techniques described here are highly scal-
able. For example, processing Reservation System,
the largest of our benchmarks, with Jax, takes about
4 minutes on an 800MHz Intel-based machine with
512MB of memory.

Conclusion
We have demonstrated that application extraction
techniques can significantly reduce the size of Java
applications by constructing an application extractor
called Jax. Extraction techniques incorporated in Jax
include the removal of unreachable methods and
redundant fields, and compaction of the class hierar-
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Figure 2. Number of classes, methods, and fields in the extracted
benchmark applications shown as a percentage of the original

number of classes, methods, and fields, respectively. 

Table 1. Characteristics of the benchmark applications used to
evaluate Jax. The size of the initial archive shown here is in

bytes and excludes any resource files contained in the shipped
archives. The CindyApplet and Cinderella benchmarks are 

a closely related applet and application that are contained 
in the same distribution. 

Table 2.  Archive size for Hyper/J as a percentage of the original
archive size after (1) removal of unreferenced classes, (2) removal

of redundant attributes, (3) removal of unreachable methods, 
(4) removal of redundant fields, (5) method inlining/devirtualizing,

(6) class hierarchy transformations, and (7) name compression.  
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chy. We evaluated Jax on a collection of large
benchmark applications, and measured that, on
average, these benchmarks are reduced to 37.5% of
their original size. Extraction techniques are partic-
ularly effective for applications that rely on class
libraries because they are very effective at removing
unused library functionality. This largely eliminates
the main drawback of using third-party class
libraries.
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