
A Slicing�Based Approach for Locating Type Errors

T� B� Dinesh Frank Tip

CWI IBM T�J� Watson Research Center

P�O� Box ����� P�O� Box ���

���� GB Amsterdam Yorktown Heights� NY ��	�


The Netherlands USA

dinesh�cwi�nl tip�watson�ibm�com

Abstract

The e�ectiveness of a type checking tool strongly de�
pends on the accuracy of the positional information
that is associated with type errors� We present an
approach where the location associated with an er�
ror message e is de�ned as a slice Pe of the program
P being type checked� We show that this approach
yields highly accurate positional information� Pe is
a program that contains precisely those program con�
structs in P that caused error e� Semantically� we
have the interesting property that type checking Pe
is guaranteed to produce the same error e� Our ap�
proach is completely language�independent� and has
been implemented for a signi�cant subset of Pas�
cal�

� Introduction

Type checkers are tools for determining the con�
structs in a program that do not conform to a lan�
guage�s type system� Type checkers are usually
incorporated in interactive programming environ�
ments where they provide programmers with rapid
feedback on the nature and locations of type errors�
The e�ectiveness of a type checker crucially depends
on two factors�

� The �informativeness� of the type errors re�
ported by the tool�

� The quality of the positional information pro�
vided for type errors�

We believe that the second factor is especially im�
portant� For example	 consider an assignment state�
ment x 
 y where x and y are of two incompatible
types� What is the source of the error� Speci�cally	
one might ask whether the assignment construct it�
self is �causing� the error	 or if the declarations of

x and y	 where the incompatible types are intro�
duced	 constitute the real �source� of the error� As
another example	 consider a situation where a la�
bel is de�ned twice inside some procedure� Ideally	
the location of this error would comprise both oc�
currences of the label�

We pursue a semantically well�founded approach
to answer the question of what the location of a
type error should be� In this approach	 the be�
havior of a type checker is algebraically speci�ed
by way of a set of conditional equations 
��	 which
are interpreted as a conditional term rewriting sys�
tem �CTRS� 
���� These rewriting rules express the
type checking process by transforming a program�s
abstract syntax tree �AST� into a list of error mes�
sages� We use dynamic dependence tracking 
��	 ���
to determine a slice of the original program as the
positional information associated with an error mes�
sage� This approach has the following advantages�

� The tracking of positional information is com�
pletely language�independent and automated�
no information needs to be maintained at the
speci�cation level�

� Unlike previous approaches 
��	 ���	 no con�
straints are imposed on the style in which the
type checker speci�cation is written� Error lo�
cations are always available	 regardless of the
speci�cation style being used�

� The approach is semantically well�founded� If
type checking a program P yields an error mes�
sage e	 then the location Pe associated e is a
projection of P that	 when type checked	 will
produce the same error message e� For details
about semantic properties of slices	 the reader
is referred to 
��	 ����



Figure �� The CLaX environment� The top window is a program editor with two buttons attached to it for

invoking a type checker and an interpreter� respectively� The bottom window shows a list of four type errors reported

by the type checker� After selecting an error message in the bottom window� the Slice button can be pressed to

obtain the associated slice�

Although positional information is always available
for any error message	 the accuracy� of these loca�
tions depends on the degree to which the speci�ed
type checker�s behavior is deterministic� This issue
will be explored in Section ��
We have implemented a prototype type check�
ing system using the ASF�SDF Meta�environment

��	 ���	 a programming environment generator that
implements algebraic speci�cations by way of term
rewriting� Dependence tracking was previously im�
plemented in the ASF�SDF system�s term rewrit�
ing engine for the purpose of supporting dynamic
slicing in generated debugging environments 
����
Figure � shows a snapshot of a type checking envi�
ronment for the language CLaX	 a Pascal�like lan�
guage� The most interesting features of CLaX are�
nested scopes	 overloaded operators	 arrays	 goto
statements	 and procedures with reference and value
parameters� The top window of Figure � is a pro�
gram editor	 which has two buttons labeled �Type�
Check� and �Execute� attached to it	 for invoking
the type checker and the interpreter	 respectively�

� Accuracy indicates the quality of the slice obtained�
Generally� �small� slices� which contain few program con�
structs� are desirable because they convey the most insightful
information�

The bottom window shows a list of four error mes�
sages reported by the type checker for this program�

�� The �rst error	 undefined�label i	 indicates
that the program contains a reference to a label
i	 but there is no statement with label i in the
same scope�

�� The second error message	 multiple�

declaration�in�same�scope n	 points out
that an identi�er n is declared more than once
in the same scope�

�� The third error	 expected�label�found

INTEGER	 indicates that the program contains
an identi�er that has been declared as an inte�
ger	 but which is used as a label�

�� The fourth error	 in�call expected�arg VAR

INTEGER found�arg REAL	 points out a type
error in a procedure call� In particular	 that a
procedure is called with a argument type REAL
when it was expecting an argument of type IN�
TEGER�

Note that these error messages do not provide any
information as to where the type violations occurred
in the program text�



�a� �b�

�c� �d�

Figure �� Slices reported by the CLaX environment for each of the type errors of Figure ��



However	 positional information may be obtained
by selecting an error message and clicking on the
�Slice� button� In Figure ��a���d�	 the slices ob�
tained for each of the four error messages of Figure �
are shown�� Each slice is a view of the program�s
source indicating the program parts that contribute
to the selected error� Placeholders	 indicated by
����� in the �gure	 indicate program components
that do not contribute to the error under considera�
tion� The semantics of �not contributing towards a
certain error message� may be characterized infor�
mally as follows� If a placeholder in the slice with
respect to an error e is replaced with a program
component of the same kind�	 type checking the re�
sulting program is guaranteed to produce the same
error e�

�� Figure ��a� shows the slice for the undefined�
label error� Clearly	 the GOTO i statement
is the source of the error	 because there is no
statement with label i�

�� Figure ��b� shows the slice obtained for the
multiple�declaration�in�same�scope

error� The problem here is that n is a para�
meter as well as a local variable of procedure
square� Note that both declarations of n occur
in the slice�

�� Figure ��c� shows the slice obtained for the
expected�label�found INTEGER error� Note
that	 in addition to the GOTO i statement and
the declaration of i as an INTEGER	 all de�
clarations in the inner scope appear in the
slice� Informally	 this is the case because re�
placing any of these declarations by declara�
tions for variable i may a�ect the outcome of
the type checking process	 in the sense that the
expected�label�found INTEGER error would
no longer occur�

�� Figure ��d� shows the slice
obtained for the in�call expected�arg VAR

INTEGER found�arg REAL error� Observe that
the slice precisely indicates the program com�
ponents responsible for this problem� �i� the
call site square�x� that gave rise to the prob�
lem	 �ii� the type	 INTEGER	 of square�s formal

�An alternativeway for displaying slices would be to high�
light the corresponding text areas in the program editor of
Figure ��

�Although all placeholders are displayed as ����	� place�
holders are typed� In order to preserve syntactic validity of
the program� an expression placeholdermay only be replaced
by another expression� an unlabeled�statement placeholder
may only be replaced by another unlabeled�statement� etc�

parameter �note that the name of this para�
meter is irrelevant�	 and �iii� the declaration of
variable x as a REAL�

The reader may observe at this point that	 in ad�
dition to the program constructs responsible for a
type error	 a slice generally also contains certain
structural information such as BEGIN and END key�
words and declaration and statement list separators
that are not directly related to an error� The oc�
currence of this structural information is due to the
way slices are computed� If desired	 displaying this
information could easily be suppressed to a large ex�
tent� For example	 removal of all BEGIN	 END	 and
DECLARE keywords and list separators from the com�
puted slices would reduce the amount of �noise�
considerably� In certain cases	 slices may contain
IF or WHILE statements whose condition and body
are omitted from the slice �see	 e�g�	 Figure ��d���
Such constructs can also be removed from the slice
without a�ecting the semantic content� We consider
slice postprocessing to be primarily a user�interface
issue	 which is outside the scope of this paper�
The remainder of the paper is organized as follows�
Section � presents our approach for specifying type
checkers� In Section �	 the use of term rewriting for
executing speci�cations is discussed� In addition	
dependence tracking	 the mechanism for computing
slices is presented� Section � is concerned with the
e�ect of determinism in the speci�cation on slice
accuracy� In Section �	 related work is discussed� In
particular	 the slice notion introduced in the present
paper is compared with the traditional notion of a
program slice� Conclusions and possible directions
for future work are stated in Section ��

� Speci�cation of Static Semantics
and Type Checking

A static semantics speci�cation only determines the
validity of a program and is not concerned with
pragmatic issues such as the source location where
a violation of the static semantics occurred	 or even
what program construct caused the violation� A
type checker speci�cation typically uses the static
semantics speci�cation as a guideline	 and speci�
�es the presentation and source location of type
errors in invalid programs� Adding such reporting
information to a static semantics speci�cation is a
cumbersome and error�prone task	 because keeping
track of positional information can be nontrivial	 es�
pecially if multiple program fragments together con�
stitute a type error�



�Eq�� tc�begin Decls Stats end� � dist�Stats� tenv�Decls��

�Eq�� dist�Stat��Stat�� Tenv� � dist�Stat�� Tenv�� dist�Stat�� Tenv�

�Eq�� dist�Id 	� Exp� Tenv� � dist�Id� Tenv� 	� dist�Exp� Tenv�

�Eq�� dist�Exp� 
 Exp�� Tenv� � dist�Exp�� Tenv� 
 dist�Exp�� Tenv�

�Eq�� dist�Id� Tenv� � type�of�Id� Tenv�

�Eq�� type�of�Id� tenv�T�

�
� Id 	 Type� T�

�
�� � Type

�Eq	� natural 
 natural � natural

�Eq
� natural 	� natural � �correct�

Figure �� Static semantics speci�cation for determining the validity of assignments�

In 
���	 we introduced an abstract interpretation
style for writing static semantics speci�cations� In
a nutshell	 this style advocates the following�

� reducing program constructs to their type	

� evaluating type expressions at an abstract level	
and

� only specifying the type�correct cases�

Operationally	 the static semantics speci�cation de�
scribes a transformation of a program to a set of
type�expressions for program constructs that are
type�incorrect�
Figure � shows a tiny static semantics speci�cation
for determining the validity of assignment state�
ments in straight�line �ow programs� The reader
should be aware that this speci�cation only serves
to illustrate the general style of specifying a static
semantics and is incomplete� for example	 it does
not verify if variables are declared more than once�
Equation �Eq�� de�nes a top�level function tc for
checking a program� Informally	 �Eq�� states that
checking a program involves �i� creating an initial
type�environment that contains variable�type pairs	
and �ii� distributing the type�environment over the
program�s statements	 using an auxiliary function
dist� For the simple example we study here	 the
type�environment consists of the declaration section
of the program	 to which the constructor function
tenv is applied� Equation �Eq�� expresses the dis�
tribution of type�environments over lists of state�
ments	 and �Eq�� and �Eq�� the distribution over as�
signment operators and ��� operators	 respectively�
�Eq�� states how an identi�er is reduced to its type	
using an auxiliary function type�of	 which is de�
�ned in �Eq��� Note that the variables T �

�
and T �

�

in �Eq�� match any sublist of �zero or more� dec�
larations in a declaration section� Equation �Eq	�

expresses the abstract evaluation of additions	 and
�Eq
� states that the assignment of a natural expres�
sion to a natural variable is valid�

As an example	 consider checking the following pro�
gram block�

tc�begin x 	 natural
 y 	 string


x 	� x � x
 x 	� y � x end�

Application of �Eq�� results in�

dist�x 	� x � x
 x 	� y � x�

tenv�x 	 natural
 y 	 string��

Application of �Eq�� yields�

dist�x 	� x � x�

tenv�x 	 natural
 y 	 string��


dist�x 	� y � x�

tenv�x 	 natural
 y 	 string��

At this point	 �Eq�� can be applied to both compo�
nents	 producing�

dist�x� tenv�x 	 natural
 y 	 string��

	� dist�x � x�

tenv�x 	 natural
 y 	 string��


dist�x� tenv�x 	 natural
 y 	 string��

	� dist�y � x�

tenv�x 	 natural
 y 	 string��

The left�hand sides of both assignments can be re�
duced to their types using �Eq�� and �Eq��	 resulting
in�

natural 	�

dist�x � x�

tenv�x 	 natural
 y 	 string��


natural 	�

dist�y � x�

tenv�x 	 natural
 y 	 string��

Using �Eq�� and �Eq��	 the right�hand sides of the
assignments can be simpli�ed�

natural 	� natural � natural


natural 	� string � natural



�Er�� msgs�Stat�
Stat�� � msgs�Stat���msgs�Stat��

�Er�� msgs��correct�� � �No errors�

�Er�� Msg�� �No errors�� Msg�� � Msg�� Msg��

�Er�� msgs�T� 	� T�� � msgs�T��

when simpletype�T�� �� true

�Er�� msgs�T� 	� T�� � �Incompatible types in assignment��
when simpletype�T�� � true

�Er�� msgs�T� 
 T�� � �Operands of 
 should have the same type��

�Er	� simpletype�natural� � true

�Er
� simpletype�string� � true

Figure �� Postprocessing to obtain human�readable messages�

Using equation �Eq	�	 the �rst assignment can be
simpli�ed�

natural 	� natural


natural 	� string � natural

Finally	 application of �Eq
� yields the �nal result�

�correct�

natural 	� string � natural

The fact that this term contains a subterm that
cannot be reduced to �correct� indicates that the
program is not type�correct� Note that the non�
�correct� subterm already gives a rough indication
of the nature of the type violation�
Figure � shows a set of equations that de�ne a func�
tion msgs that transforms the cryptic messages pro�
duced by the speci�cation of Figure � into human�
readable form� The equations of Figure � assume
that the term to which they are applied is fully nor�
malized w�r�t� type checking equations of Figure ��
Equation �Er�� distributes function msgs over all
statements in a block� �Er�� transforms the constant
correct	 which was derived froma type�correct pro�
gram construct	 into a message �No errors�� Since
we are not interested in generating messages for
correct statements	 equation �Er�� eliminates �No
errors� from lists of messages� Equations �Er��

and �Er�� perform the post�processing of expressions
that are derived from incorrect assignment state�
ments� Note that these equations are conditional �
they are only applicable if a certain condition holds�
�Here	 the condition veri�es if the right�hand side
of the expression is a simple type	 using auxil�
iary equations �Er	� and �Er
��� �Er�� postprocesses
assignment statements whose right�hand side con�
sists of an irreducible expression� whereas �Er��

postprocesses assignments whose left�hand side and
right�hand side are incompatible� Equation �Er��

postprocesses ��� expressions with incompatible ar�
guments� The reader should observe that the speci�
�cation of Figure � only serves to illustrate the gen�
eral technique and that it is incomplete� For exam�
ple	 it does not handle nested expressions�
As an example	 we �Er�� t�h TDu0002 
[(t�h	�s)-21000(o-12-27999tm 98�999tm 98 TDu00029.9(errors)]T-500r�)]TJ
-b217 0(tec)]TJ
50 TD
[(inly)y000(c)0(esrate)-14000(t)-18999.9(e4�cation)-omplete�of i�4 0 TD
[(es)-11999-17000(w8es)-11-13000(0(nes2
234)�es)-20000(�)]TJ0 7-770.0001 (msgs�1 TD
(�Er��)Tj1(igh)]Tate01 0 00(�)]TJ
)Tj
120f-18000.1 TD
(�Er��)Tj54Tf
270.0001 0 00(�)]TJ




(A2) (A1)

T1T0 T2

creation

residuation

0

intmul

intmul

intsub intsub

intmul

intmul

intsub

0

3

1

2

3

0

1 2

3

Figure �� Example of creation and residuation relations�

gotos	 nested scopes	 and arrays introduce some ad�
ditional complexity	 but we experienced no funda�
mental problems� An annotated listing of the CLaX
speci�cation will appear in a technical report in the
near future 
���� A previous version of the CLaX
speci�cation may be found in 
����

� Term Rewriting and Dependence
Tracking

In the previous section	 speci�cations were �execut�
ed� by repeatedly applying equations to terms�a
mechanism that is usually referred to as term rewrit�
ing� Both theoretical properties of term rewriting
systems 
��� such as termination behavior	 and e��
cient implementations of rewriting systems 
��	 ���
have been studied extensively�
Term rewriting 
��� can be viewed as a cyclic process
where each cycle begins by determining a subterm
t and a rule l 
 r such that t and l match� This
is the case if a substitution � can be found that
maps every variableX in l to a term ��X� such that
t � ��l� �� distributes over function symbols�� For
rewrite rules without conditions	 the cycle is com�
pleted by replacing t by the instantiated right�hand
side ��r�� A term for which no rule is applicable
to any of its subterms is called a normal form� the
process of rewriting a term to its normal form �if it
exists� is referred to as normalizing� A conditional
rewrite rule 
�� �such as �Er�� and �Er�� in Figure ��
is only applicable if all its conditions succeed� this
is determined by instantiating and normalizing the
left�hand side and the right�hand side of each con�
dition� Positive �equality� conditions �of the form

t� 
 t�� succeed i� the resulting normal forms are
syntactically equal	 negative �inequality� conditions
�t� �
 t�� succeed if they are syntactically di�erent�
Thus far	 we have described the process of specifying
a type checker	 and the execution of such speci�ca�
tions by way of term rewriting� In order to obtain
positional information	 we use a technique called de�
pendence tracking that was developed by Field and
Tip 
��	 ���� For a given sequence of rewriting steps
T� � � � � � Tn	 dependence tracking computes a
slice of the original term	 T�	 for each function sym�
bol or subcontext �a notion that will be presented
below� of the result term	 Tn�
We will use the following simple speci�cation of in�
teger arithmetic �taken from 
���� as an example to
illustrate dependence tracking�

�A�� intmul���X� � �

�A�� intmul�intmul�X� Y��Z� �

intmul�X� intmul�Y� Z��

By applying these equations	 the term intsub��	
intmul�intmul��� ��� ��� may be rewritten as
follows �subterms a�ected by rule applications are
underlined��

T� 
 intsub��� intmul�intmul��� ��� ���

�� �A��

T� 
 intsub��� intmul��� intmul��� ����

�� �A��

T� 
 intsub��� ��

By carefully studying this example	 one can observe
the following�

� The outer context intsub��	 �� of T� ���� de�
notes a missing subterm� is not a�ected at all	
and therefore reappears in T� and T��



D�

�

��

C

C

T

T �

C�

C�

D�

Figure �� Depiction of the de�nition of a term slice�

� The occurrence of variables X	 Y	 and Z in both
the left�hand side and the right�hand side of
�A�� causes the respective subterms �	 �	 and �

of the underlined subterm of T� to reappear in
T��

� Variable X only occurs in the left�hand side of
�A��� Consequently	 the subterm intmul��	 ��
�of T�� that is matched againstX does not reap�
pear in T�� In fact	 we can make the stronger
observation that the subterm matched against
X is irrelevant for producing the constant � in
T�� the �creation� of this subterm � only re�
quires the presence of the context intmul��	 ��
in T��

The above observations are the cornerstones of the
dynamic dependence relation of 
��	 ���� Notions
of creation and residuation are de�ned for single
rewrite�steps� The former involves function sym�
bols produced by rewrite rules whereas the latter
corresponds to situations where symbols are copied	
erased	 or not a�ected by rewrite rules�� Figure �
shows all residuation and creation relations for the
example reduction discussed above�
Roughly speaking	 the dynamic dependence relation
for a sequence of rewriting steps � consists of the
transitive closure of creation and residuation rela�
tions for the individual steps in �� In 
��	 ���	 the
dynamic dependence relation is de�ned as a relation
on contexts	 i�e�	 connected sets of function symbols
in a term� The fact that C is a subcontext of a term
T is denoted C v T � For any sequence of rewrite

�The notions of creation and residuation become more
complicated in the presence of so�called left�nonlinear rules
and collapse rules� This is discussed at greater length in
��
� �
��

steps � � T � � � � � T �	 a term slice with respect to
some C� v T � is de�ned as the subcontext C v T

that is found by tracing back the dynamic depen�
dence relations from C�� The term slice C satis�
�es the property that C can be rewritten to a term
D� w C� via a sequence of rewrite steps ��	 where ��

contains a subset of the rule applications in �� This
property is illustrated in Figure ��

Returning to the example	 we can determine the
term slice with respect to the entire term T� by
tracing back all creation and residuation relations
to T�� The reader may verify that the term slice
with respect to intsub��	 �� consists of the context
intsub��	 intmul�intmul��� ��� ����

The bottom window of the CLaX environment of
Figure � is a textual representation of a term that
represents a list of errors� The slices shown in Fig�
ure ��a���d� are computed by tracing back the de�
pendence relations from each of the four �error� sub�
terms�

� The E�ect of Determinism on Slice
Accuracy

We have argued that our approach for obtaining po�
sitional information does not rely on a speci�c spec�
i�cation style� Nevertheless	 experimentation with
the CLaX type checker has revealed that the ac�
curacy of the computed slices inversely depends on
the degree to which the speci�cation is determinis�
tic� As a general principle	 more determinism in a
speci�cation leads to less accurate slices� To under�
stand why this is the case	 consider the nature of
dynamic dependence relations� Suppose that type



checking a program P involves a sequence of rewrite
steps r that ultimately lead to an error e� The slice
Pe associated with e has the property that it can be
rewritten to a term containing e	 using a subset r�

of the rewrite�steps in r� If the rewrite steps in r

encode a deterministic process such as the explicit
traversal of a list of statements	 this deterministic
behavior will also be exhibited by r�	 to the extent
that it contributed to the creation of e�
As an example	 consider rewriting the term�

type�of�tenv� x 	 integer
 y	 string


z 	 integer�� y�

according to the speci�cation of Figure �� By ap�
plying equation �Eq��	 this term rewrites to the con�
stant string� By tracing back the dynamic depen�
dence relations	 we �nd that the context

type�of�tenv��
 y	 string
 ��� y�

was needed to create this result� Now suppose that
instead of equation �Eq��	 we use the following two
equations for reducing the same term�

�Eq�a� type�of�Id� tenv�Id	Type
 D��� �

Type

�Eq�b� type�of�Id� tenv�Id�	Type
 D��� �

type�of�Id� tenv� D���

when Id� �� Id

The resulting term would be the same as before� the
constant string	 which is obtained by �rst apply�
ing equation �Eq�b� followed by applying equation
�Eq�a�� However	 the subcontext needed for creating
this result would now consist of�

type�of�tenv�x 	 �
 y	 string
 ��� y�

The variable x in the �rst element of the type en�
vironment is now included in the slice because the
order in which the type environment is traversed is
made explicit in the speci�cation� Informally stated	
the resulting term string is now dependent on the
fact that the �rst element of the type environment
is not an entry for variable y�
The use of list functions and list matching in speci��
cations �i�e�	 allowing function symbols with a vari�
able number of arguments and variables that match
sublists� has the e�ect of reducing determinism	 and
therefore improving slice accuracy� We believe that
more powerful mechanisms for expressing nondeter�
minism such as higher�order functions 
��� can in
principle improve slice accuracy even further�
Experimentation with the CLaX type checker spec�
i�cation of 
��� revealed a small number of cases
where slices were unnecessarily inaccurate due to

overly deterministic behavior� Virtually all of these
cases consisted of explicit traversals of lists	 with the
purpose of �nding a speci�c list element	 or verify�
ing whether or not a list contained a certain element
more than once� In each of these cases	 the use of
list functions allowed us to specify the same function
nondeterministically with little e�ort� In a forth�
coming technical report 
���	 we will present a brief
overview of a few of the more interesting changes we
made to the CLaX speci�cation in order to make it
less deterministic�

� Related Work

The work presented in this paper is closely related
to earlier work by the same authors� The CLaX
type checker 
��� was developed in the context of
the Compare �compiler generation for parallel ma�
chines� project	 which was part of the European
Union�s ESPRIT�II program� We originally used
origin tracking 
��� to associate source locations
with type errors� Origin tracking is similar in spirit
to dependence tracking in the sense that it estab�
lishes relationships between subterms of terms that
occur in a rewriting process� The key di�erence be�
tween the two techniques is that origin tracking es�
tablishes relationships between equal subterms �ei�
ther syntactically equal	 or equal in the algebraic
sense�	 whereas dependence tracking determines for
each subterm the context needed to create it� The
use of origin tracking for obtaining positional in�
formation was further investigated in 
��	 ���� Al�
though the results were encouraging �in terms of
accuracy of positional information�	 origin track�
ing was found to impose restrictions on the style
in which the type checker speci�cation was written�
Since origin tracking only establishes relationships
between equal terms	 the error messages generated
by the type checker must contain fragments that
literally occur in the program source� otherwise	
positional information is unavailable� In 
��	 ���	
this problem was circumvented by tokenization	 i�e�	
using an applicative syntax structure and rewrit�
ing the speci�cation in such a way that error mes�
sages always contain literal fragments of program
source	 which guarantees the non�emptyness of ori�
gins� Modi�cation of the type checker speci�cation
resulted in adequate positional information for type
errors� By contrast	 our approach does not require
any modi�cations to speci�cations at all� In the
previous section	 we have described techniques for
improving the quality of positional information by
avoiding determinism in speci�cations	 but it should



be emphasized that such improvements are com�
pletely optional�

The dependence tracking relation we use for obtain�
ing positional information was developed by Field
and Tip 
��	 ��� for the purpose of computing pro�
gram slices� A program slice 
��	 ��	 � � is usually
de�ned as the set of statements in a program P that
may a�ect the values computed at the slicing cri�
terion	 a designated point of interest in P � Two
kinds of program slices are usually distinguished�
Static program slices are computed using compile�
time dependence information	 i�e�	 without making
assumptions about a program�s inputs� In contrast	
dynamic program slices are computed for a speci�c
execution of a program� An overview of program
slicing techniques can be found in 
� ��

By applying dependence tracking to di�erent rewrit�
ing systems	 various types of slices can be obtained�
In 
�!� programs are translated to an intermediate
graph representation named Pim 
��	 ��� An equa�
tional logic de�nes the optimization"simpli�cation
and �symbolic� execution of Pim�graphs� Both the
translation to Pim and the equational logic for sim�
pli�cation of Pim�graphs are implemented as rewrit�
ing systems	 and dependence tracking is used to ob�
tain program slices for selected program values� By
selecting di�erent Pim�subsystems	 di�erent kinds
of slices can be computed	 allowing for various
cost"accuracy tradeo�s to be made� In 
���	 dy�
namic program slices are obtained by applying de�
pendence tracking to a previously written speci�ca�
tion for a CLaX�interpreter�

The slice notion presented in the current paper dif�
fers from the traditional program slice concept in
the following way� In program slicing	 the objec�
tive is to �nd a projection of a program that pre�
serves part of its execution behavior� By contrast	
the slice notion we have used here is a projection
of the program for which part of another program
property�type checker behavior�is preserved� It
would be interesting to investigate whether there
are other abstract program properties for which a
sensible slice notion exists�

Another approach to providing positional informa�
tion for type errors is pursued by van Deursen

� 	 ��� Van Deursen investigates a restricted class
of algebraic speci�cations called Primitive Recur�
sive Schemes �PRSs�� In a PRS	 there is an ex�
plicit distinction between constructor functions that
represent language constructs	 and other functions
that process these constructs� Van Deursen extends
the origin tracking notion of 
��� by taking this ad�
ditional structure into account	 which enables the
computation of more precise origins�

Heering 
��� has experimented with higher�order al�
gebraic speci�cations to specify static semantics�
We believe that the approach of this paper would
work very well with higher�order speci�cations	
since these allow one to avoid deterministic behav�
ior	 which adversely a�ects slice accuracy� How�
ever	 this would require extension of the dependence
tracking notion of 
��	 ��� to higher�order rewriting
systems�
Fraer 
� � uses a variation on origin tracking 
�	 �	 !�
to trace the origins of assertions in a program veri�
�cation system� In cases where an assertion cannot
be proved	 origin tracking enables one to determine
the assertions and program components that con�
tributed to the failure of the veri�cation condition�
Flanagan et al� 
��� have developed MrSpidey	 an
interactive debugger for Scheme	 which performs a
static analysis of the program to determine oper�
ations that may lead to run�time errors� In this
analysis	 a set of abstract values is determined for
each program construct	 which represents the set
of run�times values that may be generated at that
point� These abstract values are obtained by de�
riving a set of constraints from the program in
a syntax�directed fashion	 which approximate the
data �ow in the program� In addition	 a value �ow
graph is constructed	 which models the �ow of val�
ues between program points� MrSpidey has an in�
teractive user�interface that allows one to visually
inspect values as well as �ow�relationships�

� Conclusions

We have presented a slicing�based approach for de�
termining locations of type errors� Our work as�
sumes a framework in which type checkers are spec�
i�ed algebraically	 and executed by way of term
rewriting 
���� In this model	 a type check func�
tion rewrites a program�s abstract syntax tree to a
list of type errors� Dynamic dependence tracking

��	 ��� is used to associate a slice 
��	 � � of the
program with each error message� Unlike previous
approac



tial subset of Pascal� Experimentation with CLaX
revealed that the computed slices provide highly in�
sightful information regarding the nature of type vi�
olations� We have observed that the amount of de�
terminism in a speci�cation is an important factor
that determines the accuracy of the computed slices	
and we consider this to be a topic that requires fur�
ther study� As another direction for future work	 we
intend to study the applicability of slicing�based er�
ror location in the related area of type inference 
��	
in particular for object�oriented languages 
�!� and
for ML 
���� Providing accurate positional informa�
tion for type inference errors in ML is a di�cult
problem� Several proposals that rely on adapting or
extending the underlying type system or inference
algorithm have been presented �see	 e�g�	 
�	 ����� In
contrast	 we are interested in an approach that re�
quires no changes to type inference algorithm or the
type system� The basic idea is to apply dependence
tracking to a rewriting�based implementation of an
ML type inferencer� Although a slice can be com�
puted for each reported type inference error	 it is
unclear how accurate such slices will be in practice�

References


�� Bergstra� J�� Dinesh� T�� Field� J�� and
Heering� J� A complete transformational
toolkit for compilers� In Proc� European Sym�
posium on Programming �Link#oping	 Sweden	
April �����	 vol� � �� of Lecture Notes in
Computer Science	 Springer�Verlag� Full ver�
sion� Technical Report CS�R����	 Centrum
voor Wiskunde en Informatica �CWI�	 Amster�
dam� To appear in TOPLAS	 ���!�


�� Bergstra� J�� Heering� J�� and Klint�

P�	 Eds� Algebraic Speci�cation� ACM Press
Frontier Series� The ACM Press in co�operation
with Addison�Wesley	 �����


�� Bergstra� J�� and Klop� J� Conditional
rewrite rules� con�uence and termination�
Journal of Computer and System Sciences �		
� ������	 ��������


�� Bernstein� K� L�� and Stark� E� W� De�
bugging type errors �full version�� Tech� rep�	
State University of New York at Stony Brook	
Computer Science Department	 �����


�� Bertot� Y� Occurrences in debugger spec�
i�cations� In Proceedings of the ACM SIG�
PLAN
�� Conference on Programming Lan�

guage Design and Implementation ������	
pp� ��!���!� SIGPLAN Notices ������


�� Bertot� Y� Une Automatisation du Calcul des
R
esidus en S
emantique Naturelle� PhD thesis	
INRIA	 Sophia�Antipolis	 ����� In French�


!� Bertot� Y� Origin functions in lambda�
calculus and term rewriting systems� In Pro�
ceedings of the ��th Colloquium on Trees in
Algebra and Programming �CAAP 
�	� ������	
J��C� Raoult	 Ed�	 vol� ��� of LNCS	 Springer�
Verlag�


�� Cl�ement� D�� Despeyroux� J�� Despey�

roux� T�� and Kahn� G� A simple applicative
language� Mini�ml� In Proc� ���� ACM Sym�
posium on Lisp and Functional Programming
������	 pp� ����!�


�� Deursen� A� v� Executable Language
De�nitions�Case Studies and Origin Tracking
Techniques� PhD thesis	 University of Amster�
dam	 �����


� � Deursen� A� v� Origin tracking in primitive
recursive schemes� Report CS�R�� �	 Centrum
voor Wiskunde en Informatica �CWI�	 �����


��� Deursen� A� v�� Klint� P�� and Tip� F� Ori�
gin tracking� Journal of Symbolic Computation
�� ������	 ��������


��� Dinesh� T� B� Type checking revisited� Mod�
ular error handling� In Semantics of Speci�ca�
tion Languages ������	 D� J� Andrews	 J� F�
Groote	 and C� A� Middelburg	 Eds�	 Work�
shops in Computing	 Springer�Verlag	 pp� ����
���� Utrecht �����


��� Dinesh� T� B� Typechecking with modular er�
ror handling� In Language Prototyping� An Al�
gebraic Speci�cation Approach	 A� v� Deursen	
J� Heering	 and P� Klint	 Eds� World Scienti�c
Publishing Co�	 ����	 pp� ���� ��


��� Dinesh� T� B�� and Tip� F� Animators and
error reporters for generated programming en�
vironments� Report CS�R����	 Centrum voor
Wiskunde en Informatica �CWI�	 �����


��� Dinesh� T� B�� and Tip� F� A slicing�based
approach for locating type errors� Tech� rep�	
CWI"IBM	 ���!� Forthcoming�


��� Field� J� A simple rewriting semantics for
realistic imperative programs and its applica�
tion to program analysis� In Proceedings of the



ACM SIGPLAN Workshop on Partial Evalua�
tion and Semantics�Based Program Manipula�
tion ������	 pp� ���� !� Published as Yale Uni�
versity Technical Report YALEU"DCS"RR�
� ��


�!� Field� J�� Ramalingam� G�� and Tip� F�

Parametric program slicing� In Conference
Record of the Twenty�Second ACM Symposium
on Principles of Programming Languages �San
Francisco	 CA	 �����	 pp� �!������


��� Field� J�� and Tip� F� Dynamic dependence
in term rewriting systems and its application to
program slicing� In Proceedings of the Sixth In�
ternational Symposium on Programming Lan�
guage Implementation and Logic Programming
������	 M� Hermenegildo and J� Penjam	 Eds�	
vol� ���	 Springer�Verlag	 pp� ��������


��� Flanagan� C�� Flatt� M�� Krishnamuthi�

S�� Weirich� S�� and Felleisen� M� Catch�
ing bugs in the web of program invariants�
In Proceedings of the ���� ACM SIGPLAN
Conference on Programming Language De�
sign and Implementation �PLDI� �Philadel�
phia	 PA	 �����	 pp� ������


� � Fraer� R� Tracing the origins of veri�cation
conditions� In Proceedings of AMAST
�� �Mu�
nich	 Germany	 July �����	 vol� �� �	 Springer�
Verlag LNCS�


��� Heering� J� Second�order term rewriting
speci�cation of static semantics� In Language
Prototyping� An Algebraic Speci�cation Ap�
proach	 A� v� Deursen	 J� Heering	 and P� Klint	
Eds� World Scienti�c Publishing Co�	 ����	
pp� ����� ��


��� Kamperman� J� Compilation of Term Rewrit�
ing Systems� PhD thesis	 University of Amster�
dam	 �����


��� Kamperman� J�� and Walters� H� Minimal
term rewriting systems� In Recent trends in
data type speci�cation � ��th workshop on spec�
i�cation of abstract data types joint with the
�th COMPASS workshop� Oslo� Norway� ���
	��������� � selected papers ������	 vol� ��� of
Lecture Notes in Computer Science	 Springer�
Verlag	 pp� �!���� �


��� Klint� P� A meta�environment for generat�
ing programming environments� ACM Trans�
actions on Software Engineering and Method�
ology 		 � ������	 �!��� ��


��� Klop� J� Term rewriting systems� In Handbook
of Logic in Computer Science� Volume 	� Back�
ground� Computational Structures	 S� Abram�
sky	 D� Gabbay	 and T� Maibaum	 Eds� Oxford
University Press	 ����	 pp� ������


��� Milner� R�� Tofte� M�� and Harper� R�

The De�nition of Standard ML� The MIT
Press	 Cambridge	 MA	 ��� �


�!� Palsberg� J�� and Schwartzbach� M�

Object�Oriented Type Systems� John Wiley $
Sons	 �����


��� Tip� F� Generation of Program Analysis Tools�
PhD thesis	 University of Amsterdam	 �����


��� Tip� F� Generic techniques for source�
level debugging and dynamic program slic�
ing� In Proceedings of the Sixth Interna�
tional Joint Conference on Theory and Practice
of Software Development �Aarhus	 Denmark	
May �����	 P� D� Mosses	 M� Nielsen	 and
M� I� Schwartzbach	 Eds�	 vol� ��� of LNCS	
Springer�Verlag	 pp� ������ �


� � Tip� F� A survey of program slicing techniques�
Journal of Programming Languages �	 � ������	
��������


��� van Deursen� A�� Heering� J�� and Klint�
P�	 Eds� Language Prototyping�An Algebraic
Speci�cation Approach	 vol� � ofAMAST Series
in Computing� World Scienti�c	 �����


��� Wand� M� Finding the source of type errors�
In Conference Record of the Thirteenth ACM
Symposium on Principles of Programming Lan�
guages �St� Petersburg	 FL	 �����	 pp� ������


��� Weiser� M� Program slices� formal� psycho�
logical� and practical investigations of an auto�
matic program abstraction method� PhD thesis	
University of Michigan	 Ann Arbor	 ��!��


��� Weiser� M� Program slicing� IEEE Trans�
actions on Software Engineering ��	 � ������	
������!�


