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Abstract. Class hierarchy composition aims at constructing software
systems by composing a set of class hierarchies into an executable system.
Current composition algorithms cannot provide semantic guarantees. We
present a composition algorithm, together with an interference criterion
and its correctness proof, which guarantees that behavior of the origi-
nal hierarchies is preserved for interference-free compositions. In case of
interference, an impact analysis can determine the consequences of inte-
gration. The method is based on existing program analysis technology
and is illustrated by various examples.

1 Introduction

Class hierarchy composition aims at constructing software systems by composing
the code associated with a set of class hierarchies into an executable system
[5, 19], or by weaving separately written aspects into a class hierarchy [8, 22].
Advocates of composition argue that, by putting the functionality associated
with each system feature in a separate hierarchy, a better separation of concerns
is achieved, resulting in code that is easier to understand, maintain, and change.

Although considerable amounts of work have been devoted to developing
specification formalisms for software composition, and on the methodological
aspects of compositional software development, current techniques and tools for
hierarchy composition operate on a purely syntactical basis and cannot provide
any semantic guarantees about the behavior of the composed hierarchy. It is
thus our aim to develop a semantically well-founded notion of composition that
enables reasoning about the behavior of composed class hierarchies. We have
opted for the following approach:

– We define notions of static interference and dynamic interference that cap-
ture how features in one hierarchy may impact the behavior of code in an-
other. The former notion captures behavioral impact at composition-time,
whereas the latter is concerned with run-time changes in program behavior.



H1
class Course {
Course(Professor p, String name){

prof = p; courseName = name;
students = new HashSet();

}
String toString(){ return courseName; }
void enroll(Student s){

if (!students.contains(s)){
students.add(s);
s.coursesTaken.add(this); }

}
void assign(Professor p){

prof = p;
p.coursesGiven.add(this);}

Set students; Professor prof;
String courseName;

}
class Person {
Person(String n, String a){

name = n; address = a;
}
String name; String address; }

class Student extends Person {
Student(String n, String a){

super(n, a);
coursesTaken = new HashSet(); }

String toString(){
return "student "+name+" takes "+

coursesTaken+"\n"; }
Set coursesTaken;

}
class Professor extends Person {
Professor(String n, String a){

super(n, a);
coursesGiven = new HashSet(); }

String toString(){
return "prof. "+name+" teaches "+

coursesGiven+"\n"; }
boolean approveGraduation(Student s){

return approveCourses(s); }
boolean approveCourses(Student s){

return true; // details omitted
}
Set coursesGiven;

}
class Driver1 {
void main(){

Professor p1 =

new Professor("prof1","padd1"); P1
Student s1 =

new Student("stu1","sadd1"); S1
Course c1 = new Course(p1, "CS121");
c1.enroll(s1); c1.assign(p1);
boolean b = p1.approveGraduation(s1);

}
}

H2

class Person { · · · } // as in H1
class Student {
Student(String n, String a){

· · · // as in H1
}

void setAdvisor(Professor p){
advisor = p; }

Set coursesTaken; Professor advisor;
}
class Professor {

Professor(String n, String a){
· · · // as in H1

}
void hireAssistant(Student s){

assistant = s; }
Set coursesGiven; Student assistant;

}
class Driver2 {

void main(){
Professor p2 =

new Professor("prof2","padd2"); P2
Student s2 =

new Student("stu2","sadd2"); S2
s2.setAdvisor(p2);p2.hireAssistant(s2);

}
}

H3

class Person { · · · } // as in H1
class Student {

Student(String n,String a){
· · · // as in H1

}
Set coursesTaken;

}
class PhDStudent extends Student {

PhDStudent(String n,String a){
super(n,a);

}
}
class Professor {

Professor(String n,String a){
· · · // as in H1

}
boolean approveGraduation(Student s){

boolean approved = approveCourses(s);
if (s instanceof PhDStudent){
approved = approved &&

approveThesis((PhDStudent)s);
}
return approved;

}
boolean approveCourses(Student s){

· · · // as in H1
}
boolean approveThesis(PhDStudent s){

/* details omitted */
}
Set coursesGiven;

}
class Driver3 {

void main(){
Professor p3 =

new Professor("prof3","padd3"); P3
PhDStudent s3 =

new PhDStudent("stu3","sadd3"); S3
p3.approveGraduation(s3);

}
}

Fig. 1. Example hierarchies concerned with different aspects of university life. Alloca-
tion sites are labeled (shown in boxes).



class Course { · · · } // as in H1

class Person { · · · } // as in H1 and H2

class Student extends Person {
Student(String n, String a){ · · · } // as in H1 and H2

String toString(){ · · · } // as in H1

void setAdvisor(Professor p){ · · · } // as in H2

Set coursesTaken;
Professor advisor;

}
class Professor extends Person {

Professor(String n, String a){ · · · } // as in H1 and H2

String toString(){ · · · } // as in H1

boolean approveGraduation(Student s){ · · · } // as in H1

boolean approveCourses(Student s){ · · · } // as in H1

void hireAssistant(Student s){ · · · } // as in H2

Set coursesGiven;
Student assistant;

}
class Driver1 { · · · } // as in H1

class Driver2 { · · · } // as in H2

Fig. 2. A basic composition: H1 ⊕ H2.

– We consider two kinds of compositions. Basic compositions involve hier-
archies that do not statically interfere. Overriding compositions rely on a
mechanism by which a user can explicitly resolve static interference.

– In cases where interference is found, an impact analysis (similar to the one
of [16]) is performed that determines a set of methods in the composed
hierarchy for which preservation of behavior cannot be guaranteed.

Hence, our techniques allow a developer to quickly determine if a proposed com-
position may result in behavioral changes, and—if so—report precisely which
parts of the program may be affected. In the longer term, we hope to incorpo-
rate these techniques in a system such as Hyper/J [19] in the form of a tool that
performs various sanity checks on compositions.

In order to illustrate our techniques, Figure 1 shows three hierarchies that
model a number of aspects of university life. H1 defines classes Course, Person,
Student, and Professor, and provides functionality for enrolling students in
courses, for associating professors with courses, and for professors to approve the
graduation of students (method Professor.approveGraduation()). This latter
operation requires the approval of the courses taken by a student, modeled using
a method approveCourses(). We have omitted the details of approveCourses(),
but one can easily imagine adding functionality for keeping track of a student’s
course load and grades which would be checked by the professor to base his
decision on. Class Driver1 contains a small test driver that exercises the func-
tionality of hierarchy H1.

Hierarchy H2 is concerned with employment and advisory relation-
ships. A student can designate a professor as his/her advisor (method



Student.setAdvisor(), and a professor can hire a student as a teaching assis-
tant using method Professor.hireAssistant(). Class Driver2 exercises the
functionality in this hierarchy.

Hierarchy H3 shows a slightly more elaborate model, where a distinction is
made between (undergraduate) Students and PhDStudents. This impacts the
approval of graduations, because PhDStudents are also required to produce a the-
sis of sufficient quality (modeled by method Professor.approvePhDThesis()).
Due to space limitations, we have omitted the details of this method.

class Course { · · · } // as in H1

class Person { · · · } // as in H1 and H3

class Student extends Person {
Student(String n, String a){ · · · } // as in H1 and H3

String toString(){ · · · } // as in H1

Set coursesTaken;
}
class PhDStudent extends Student { · · · } // as in H3

class Professor extends Person {
Professor(String n, String a){ · · · } // as in H1 and H3

String toString(){ · · · } // as in H1

boolean approveGraduation(Student s){ · · · } // as in H3

boolean approveCourses(Student s){ · · · } // as in H1 and H3

boolean approveThesis(PhDStudent s){ · · · } // as in H3

Set coursesGiven;
}
class Driver1 { · · · } // as in H1

class Driver3 { · · · } // as in H3

Fig. 3. An overriding composition: H1 ⊕ H3.

Let us now consider the composition of H1 and H2. These hierarchies are
not disjoint, since they contain the same classes. However, since there are no
“syntactic collisions” between members in H1 and H2 (i.e., H1 and H2 do not
contain methods with the same name and signatures, but with different bodies),
one can simply construct a hierarchy that contains the union of the classes in
H1 and H2, where each class in the combined hierarchy contains the union of
the methods/fields that occur in the corresponding class(es) in H1 and H2. The
resulting hierarchy is shown in Figure 2. What can be said about the behavior
of H1 ⊕ H2? In this case, our interference check guarantees that the behavior
of the client applications of these hierarchies (modeled by Driver1.main() and
Driver2.main()) are unaffected by the composition. For this specific composi-
tion, we can even provide the stronger guarantee that the behavior of any client
of H1 and H2 is preserved. As we shall see shortly, this is not always the case.

Now consider composing H1 and H3, which contain different methods
Professor.approveGraduation(), an example of static interference. Method
approveGraduation() in H3 is “more general” than approveGraduation() in
H1. In constructing H1 ⊕H3 (see Figure 3), we have assumed that the user spec-



ified that the definition of approveGraduation() in H3 should be preferred over
that in H1. In this case, our techniques report dynamic interference, i.e., preser-
vation of behavior for clients of the original hierarchies cannot be guaranteed.
Impact analysis reports that Driver3.main() is not affected by the composition,
but that the behavior of Driver1.main() may have changed.

2 Composition of hierarchies

One of the first issues that arises when composing two class hierarchies is the
question which classes and methods in the input hierarchies correspond. The
Hyper/J composition system [19] relies on a specification language to express
these correspondences. For example, one can specify “merge-by-name” composi-
tions in which two classes in different input hierarchies are matched if they have
the same name, and one can explicitly specify pairs of matching classes (with
different names) using an “equate” construct.

In order to simplify the presentation in this paper, we will assume that classes
are matched “by name” only. Compositions that are not name-based can be
modeled using an additional preprocessing step in which classes and methods
are renamed appropriately. In particular, manually established relations between
entities in the two hierarchies are assumed to be modeled by appropriate renam-
ing.

2.1 Class hierarchies

Definition 1 defines the notion of a class hierarchy. To keep our definitions simple,
we assume that fields and abstract methods have undefined bodies (body(m) =
⊥), and that fields and abstract methods cannot have the same name.

Definition 1 (class hierarchy). A class hierarchy H is a set of classes together
with an inheritance relation: H = (C, ≤). For a class C ∈ C we also write C ∈ H.
A class C ∈ H has a name and contains a set of members1: C = (n,M), where
name(C) = n, members(C) = M . A member m ∈ members(C) is characterized by
its name, its signature and its body: m = (f, σ, B) where σ ∈ C∗ × C. We will
use namesig(m) to denote the combination 〈f, σ〉 that together uniquely identify
a member within a class, and body(m) to denote the body B of member m.

2.2 Classes and inheritance relations in the composed hierarchy

Semantically sound composition requires that the original inheritance relations
can be order-embedded into the composed hierarchy. That is, a relationship A
instanceof B that holds in an input hierarchy should also hold in the composed
hierarchy. In general, one cannot simply compute the union of the inheritance
relations in the input hierarchies because the resulting hierarchy may contain
1 According to this definition, members(C) does not contain inherited members that

are declared in superclasses of C.



cycles. We therefore use a well-known factorization technique (see, e.g., [3]) that
produces an acyclic hierarchy. This construction has the advantage that hier-
archies can be composed even if there are cycles in the union of the original
inheritance relations – which might sometimes be useful in practice.

Given two input hierarchies H1 and H2, their composition is denoted H1⊕H2.
The construction of H1⊕H2 is given in Definition 2. This involves: creating a set
of pairs of the form 〈 class, hierarchy 〉 (step 1), determining the “union” of the
inheritance relations in the input hierarchies (assuming that classes are matched
by name) (2), determining cycles in the transitive closure of these inheritance
relations, and constructing a set of equivalence classes2 E corresponding to these
cycles (3-5), creation of a class in the composed hierarchy for each equivalence
class in E(6), associating a name and a set of members (7) with each class, and
creation of the inheritance relations in the composed hierarchy (8).

Definition 2 (hierarchy composition). Let H1 = (C1, ≤1) and H2 = (C2, ≤2
) be two class hierarchies. Then, H1 ⊕ H2 = (C,≤), which is defined as follows:

1. S = { 〈C1,H1〉 | C1 ∈ C1 } ∪ { 〈C2, H2〉 | C2 ∈ C2 },
2. 〈C1, H1〉 ≤′ 〈C2, H1〉 ⇐ C1 ≤1 C2, 〈C1, H2〉 ≤′ 〈C2, H2〉 ⇐ C1 ≤2 C2,

〈C1, Hi〉 ≤′ 〈C2, Hj〉 ⇐ name(C1) = name(C2), (i, j ∈ { 1, 2 })
3. x ρ y ⇐⇒ x ≤′∗ y ∧ y ≤′∗ x,
4. ≤ = ≤′∗ /ρ,
5. E = { [x]ρ | x ∈ S },
6. C = { class([x]ρ) | [x]ρ ∈ E },
7. class([x]ρ) = 〈name([x]ρ), members([x]ρ)〉, and
8. class([x]ρ) ≤ class([y]ρ) ⇐⇒ [x]ρ ≤ [y]ρ

The name function determines the name of the composed class from the names of
the classes in equivalence class [C]ρ and will not be formally defined here (some
examples will be given below). Note that the members of a composed class do not
include inherited members from the original classes, but only the members defined
locally in the original classes. Different members operators will be presented for
different kinds of compositions in Definitions 4 and 6 below.

Note that ≤′ is not necessarily transitive, hence the use of the closure oper-
ator. As usual, [x]ρ consists of all classes ρ-equivalent to x, and [x]ρ ≤ [y]ρ ⇐⇒
x ≤′ y; we assume that ≤ is the smallest partial order satisfying the conditions
from the definition. We will use E to denote the set of all equivalence classes
[〈C, H〉]ρ, for any 〈C, H〉 ∈ S. Moreover, we define a partial order on E by:
〈C, H〉 ≤′ 〈C ′,H′〉 ⇐⇒ [〈C, H〉]ρ ≤ [〈C′, H′〉]ρ. Intuitively, one can imagine
this order as the directed acyclic graph of all strongly connected components of
the union of the two input hierarchies.

2 Unfortunately, the term “class” as in “equivalence class” is different from “class” as
in “class hierarchy”; we use this “overloading” in order to be compatible with both
mathematical and computer science conventions.



Example 1. In the hierarchy of Figure 4(a), the transitive closure of ≤1 and ≤2
does not contain any cycles. Hence, we have: E = { {〈A, H1〉, 〈A, H2, 〉}, {〈B, H1〉},
{〈C, H1〉, 〈C, H2, 〉}, {〈D, H1〉}, {〈E, H1〉}, {〈F, H2, 〉}, {〈G, H2, 〉} }. Consequently,
the following inheritance relations are constructed: B < A, F < A, C < F, G <
F, D < C, E < C. Here, class names in the composed hierarchy are generated
from the names of the classes in the corresponding equivalence sets (e.g., class
A corresponds to { 〈A, H1〉, 〈A, H2〉 }). Note that immediate subclass/superclass
relations need not be preserved: F is now between A and C. �

Example 2. For the slightly more interesting example of Figure 4(b), we have:
E = { {〈A, H1〉, 〈A, H2〉, 〈C, H1〉, 〈C, H2〉, 〈F, H2〉}, {〈B, H1〉}, {〈D, H1〉}, {〈E, H1〉},
{ 〈G, H2, 〉} } . The composed hierarchy contains a class for each of these equiva-
lence classes (for the purposes of this example, we assume that the name function
constructs a class name by concatenating the names of elements in the equiv-
alence class). There is an inheritance relation X < Y if the equivalence class
corresponding to X contains a class x, and the equivalence class correspond-
ing to Y contains a class y such that x inherits from y in one or both of the
input hierarchies. For example, class B inherits from ACF because 〈B, H1〉
is part of equivalence class { 〈B, H1〉 }, 〈A, H1〉 is part of equivalence class
{ 〈A, H1〉, 〈A, H2〉, 〈C, H1〉, 〈C, H2〉, 〈F, H2〉 }, and class B inherits from class A
in H1. Again, immediate subclass/superclass relations need not be preserved:
some immediate relations (e.g., F < C) have been collapsed. �

In case classes have been merged, new class names have been introduced as
well (e.g., ACF in the above example). Thus any client code must be trans-
formed accordingly: any occurrence of the old class name x must be replaced by
name([x]ρ). In the example, any occurrence of class names A, C, or F in client
code must be replaced by ACF .

A final issue to note is that the composed inheritance relation may contain
multiple inheritance. This may cause problems in languages such as Java that do
not support general multiple inheritance. We consider this issue to be outside the
scope of this paper, and plan to pursue an approach in which multiple inheritance
is automatically transformed into delegation, along the lines of [20].
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Fig. 4. Hierarchy composition without class merging(a), and with class merging (b).



2.3 Basic composition

In defining the set of members in the composed hierarchy, the question arises of
what to do when two or more classes in an equivalence class [x]ρ define the same
member. We will refer to such cases as static interference. The easiest approach
of dealing with this issue is to simply disallow composition if static interference
occurs. We will refer to this scenario as basic composition. As we shall see shortly,
the absence of static interference does not guarantee preservation of behavior.

Definition 3 defines basic static interference. Note that it does allow situations
where an equivalence class [x]ρ contains two elements 〈C1, H1〉 and 〈C2, H2〉 such
that C1 and C2 each contain a member m, provided that (i) body(m) = ⊥ holds
for at least one of these m’s, or (ii) that the two m’s have the same body.

Definition 3 (basic static interference). E contains basic static interference
if there is an equivalence class [x]ρ ∈ E such that for some 〈C1, H〉, 〈C2, H′〉 ∈
[x]ρ, C1 �= C2, m1 ∈ members(C1), m2 ∈ members(C2), namesig(m1) =
namesig(m2) we have that: body(m1) �= ⊥, body(m2) �= ⊥, and body(m1) �=
body(m2).

Definition 4 defines the set of members in the composed hierarchy. Note that,
in cases where the classes in an equivalence class contain multiple methods with
the same name and signature, the unique method with a non-⊥ body is selected.

Definition 4 (members). Let E be free of basic static interference, and let
[x]ρ ∈ E be an equivalence class. Define:

members([x]ρ) = { m | 〈C,H〉 ∈ [x]ρ, m ∈ members(C),
(〈C ′, H′〉 ∈ [x]ρ, C ′ �= C, m′ ∈ members(C ′),
namesig(m) = namesig(m′) =⇒ body(m′) = ⊥) }

Example 3. The transitive closure of the inheritance relations in H1 and
H2 of Figure 1 does not contain any cycles. Hence, the construction of
Definition 2 produces a hierarchy with classes Course, Person, Student,
Professor, Driver1, and Driver2, with inheritance relations Student <
Person and Professor < Person. The equivalence classes constructed are:
S1 = { 〈Course, H1〉 }, S2 = { 〈Person, H1〉 }, S3 = { 〈Student, H1〉, 〈Student, H2〉 },
S4 = { 〈Professor, H1〉, 〈Professor, H2〉 }, S5 = { 〈Driver1, H1〉 }, and S6 =
{ 〈Driver2, H2〉 }. Definition 3 states that there is basic static interference if an
equivalence class S contains multiple methods with the same name but different
bodies. Singleton equivalence classes such as S1, S2, S5, and S6 cannot give rise
to interference because a class can contain only one method with a given name
and signature. S3 and S4 do not give rise to interference either because Student
and Professor in H1 and H2 do not contain conflicting methods. Hence, there
is no basic static interference. Figure 2 shows the composed hierarchy. �

Example 4. Consider composing the class hierarchies H1 and H3 of Figure 1.
The set equivalence classes E constructed according to Definition 2 contains,



among others, the element S = { 〈Professor, H1〉, 〈Professor, H3〉 }. E ex-
hibits basic static interference because both elements of S contain a member
Professor.approveGraduation(Student) and the bodies of these methods are
different. Hence, basic composition cannot be applied to H1 and H3. �

2.4 Overriding composition

As we have seen in Figure 3, basic static interference is not necessarily an un-
wanted phenomenon. Often, a method from H2 is an “improved” or “generalized”
version of a method in H1. To address such cases, we augment basic composition
with a mechanism that allows one to express conditions such as “member B.m
in H′ has precedence over member A.m in H”. This is captured by a precedence
relation � containing elements 〈H, m1〉 � 〈H′, m2〉 indicating that method m2
of hierarchy H′ has precedence over method m1 of hierarchy H. Note that it
may be the case that H = H′. It is assumed that ‘�’ is a partial order.

The static interference notion of Definition 3 only requires minor modifica-
tions to allow situations where an equivalence class contains two classes C1 and
C2 originating from hierarchies H1 and H2, respectively, such that 〈H1, m1〉 and
〈H2, m2〉 are �-ordered. Definition 5 shows the resulting definition.

Definition 5 (overriding static interference). E contains overriding static
interference w.r.t. ‘�’ if there is an equivalence class [x]ρ ∈ E such that for
some 〈C1,H〉, 〈C2, H′〉 ∈ [x]ρ, C1 �= C2, m1 ∈ members(C1), m2 ∈ members(C2),
and namesig(m1) = namesig(m2) we have that: body(m1) �= ⊥, body(m2) �= ⊥,
body(m1) �= body(m2), 〈H, m1〉 �� 〈H′, m2〉, and 〈H′, m2〉 �� 〈H,m1〉.

Definition 6 shows the members function for overriding compositions. In the
sequel, we will often say “H1 ⊕ H2 is free of overriding syntactic interference” if
it is obvious which ordering ‘�’ is used.

Definition 6 (members). Let E be free of overriding static interference w.r.t.
‘�’, and let [x]ρ ∈ E be an equivalence class. Define:

members([x]ρ) = {m1 | 〈C1, H1〉 ∈ [x]ρ, m1 ∈ members(C1),
(〈C2, H2〉 ∈ [x]ρ, C2 �= C1, m2 ∈ members(C2),
namesig(m1) = namesig(m2)) =⇒

body(m2) = ⊥ ∨ 〈H2,m2〉 � 〈H1, m1〉 }
Example 5. Consider an overriding composition of hierarchies H1 and
H3 of Figure 1 using 〈Professor.approveGraduation(Student), H1〉 �
〈Professor.approveGraduation(Student), H3〉. Then, the set of equiva-
lence classes E constructed by Definition 2 is: S1 = { 〈Course, H1〉 }, S2 =
{ 〈Person, H1〉 }, S3 = { 〈Student, H1〉 }, S4 = { 〈Professor, H1〉, 〈Professor, H3〉 },
S5 = { 〈Driver1, H1〉 }, S6 = { 〈PhDStudent,H3〉 }, and S7 = { 〈Driver3, H3〉 }. Since
singleton sets never give rise to interference, we only need to verify that S4
does not cause overriding static interference. This is the case because the only
method that occurs in both Professor classes is approveGraduation(), and
these methods are �-ordered. The composed hierarchy can now be constructed
using Definition 6, and was shown earlier in Figure 3. �



2.5 Type correctness

A class hierarchy is type correct if: (1) any member access e.m(· · · ) refers to a
declared member definition, and (2) for any assignment x = y, the type of x is a
superclass of the type of y. As a first step towards providing semantic guarantees
about the composed class hierarchy, we demonstrate that the composed hierarchy
is type correct. Due to space limitations, we only demonstrate these properties
for basic compositions. The arguments for overriding compositions are similar.

Definition 7 (type correctness). Let H be a hierarchy.

1. The static type of an object or object reference o in a hierarchy is denoted
TypeOf(H, o). For convenience, we use TypeOf(H1,2, o) = C as an abbrevi-
ation for TypeOf(H1, o) = C ∨ TypeOf(H2, o) = C.

2. For a class C ∈ H and m ∈ members(C), we define
StaticLookup(H, C, m) = m′, where m′ ∈ members(C ′) for some class
C ′ such that C ≤ C′, namesig(m) = namesig(m′), and there is no class C ′′

such that C ≤ C ′′ ≤ C ′, m′′ ∈ members(C ′′), namesig(m) = namesig(m′′).
We will use StaticLookup(H1,2, C, m) = m′ as a shorthand for
StaticLookup(H1, C, m) = m′ ∨ StaticLookup(H2, C, m) = m′.

3. A hierarchy H is type correct if for all assignments x = y ∈ H we have that
TypeOf(H, x) ≥ TypeOf(H, y), and for all member accesses o.m(· · · ) ∈ H
we have that: StaticLookup(H, TypeOf(H, o),m) �= ⊥.

Note that if TypeOf(H1,2, o) = C, then by construction TypeOf(H1 ⊕ H2, o) =
class([C]ρ). As an example, consider Figure 4, and assume that v is a variable such
that TypeOf(H1, v) = A. Then, in Figure 4(a) we have that TypeOf(H1 ⊕ H2, v) =
A and in Figure 4(b) that TypeOf(H1 ⊕ H2, v) = ACF . The latter case demon-
strates that sometimes new class names are introduced, and member declarations
must be changed accordingly. In particular, whenever name([C]ρ) �= name(C),
all declarations containing class name C must be updated to reflect the new
class name name([C]ρ). This will only happen if classes have been merged due
to cycles in the transitive inheritance relations of the input hierarchies.

The following two lemmas show that assignments and member lookups in the
composed hierarchy remain type correct. Note that this includes assignments due
to parameter-passing in method calls, and implicit assignments to this-pointers.

Lemma 1 (assignment correctness). Let x = y be an assignment in H1,2.
Then, this assignment is still type correct in H1 ⊕ H2.

Proof. Without loss of generality, let x = y ∈ H1. Then,
TypeOf(H1, x) ≥1 TypeOf(H1, y). By construction, TypeOf(H1 ⊕ H2, x) =
class([TypeOf(H1, x)]ρ) ≥ class([TypeOf(H1, y)]ρ) = TypeOf(H1 ⊕ H2, y). �

Lemma 2 (member access correctness). If H1 and H2 are type correct and
without basic static interference, then StaticLookup(H1,2, TypeOf(H1,2, o), m) �=
⊥ =⇒ StaticLookup(H1 ⊕ H2, TypeOf(H1 ⊕ H2, o), m) �= ⊥



Proof. Without loss of generality, let C = TypeOf(H1, o), and let D be the
class which contains m′ = StaticLookup(H1, TypeOf(H1, o), m). Then, we have
C ≤1 D, m ∈ members(D) and by construction m ∈ members(class([D]ρ))
as there is no static interference. Furthermore, class([C]ρ) ≤ class([D]ρ)
and TypeOf(H1 ⊕ H2, o) = class([C]ρ). m could also occur in a sub-
class of class([D]ρ) in H1 ⊕ H2, but for class D′ which contains m′′ =
StaticLookup(H1 ⊕ H2, TypeOf(H1 ⊕ H2, o), m), we have in any case that D′ ≤
class([D]ρ), hence StaticLookup(H1 ⊕ H2,TypeOf(H1 ⊕ H2, o), m) �= ⊥. �
Corollary 1. For hierarchies H1 and H2 without static interference, H1 ⊕ H2
is type correct.

class A {
void foo(){ · · · }

}
class B extends A {
/* no foo() */

}
class C {
static void main(){

A o = new B(); B1
o.foo();

}
}

class A {
void foo(){ /* same as H1 */ }

}
class B extends A {

void foo(){ · · · }
}

class A {
void foo(){ · · · }

}
class B extends A {
void foo(){ /* from H2 */ }

}
class C {
static void main(){

A o = new B(); B1
o.foo();

}
}

H1 H2 H1 ⊕ H2

Fig. 5. Dynamic interference in a basic composition.

3 Dynamic interference

3.1 Motivating examples

Even basic composition (which makes the strongest assumptions about static
noninterference) does not guarantee preservation of client behavior. This can
be seen in the basic composition of Figure 5, which does not exhibit static
interference. However, H1⊕H2 contains an overriding definition of foo() in class
B, hence the call to foo() in C.main() binds to B.foo() instead of A.foo() as
it did in H1. Hence, behavior of H1’s client C.main() is not preserved.

Figure 6 shows an overriding composition (constructed using 〈H1, A.foo()〉 �
〈H2, A.foo()〉) that is free of overriding static interference. However, in the com-
posed hierarchy, variable x is bound to a B-object instead of an A-object. Thus,
the call x.bar() suddenly resolves to B.bar() instead of A.bar() as in H1.

3.2 Dynamic interference

We will use the term dynamic interference to refer to run-time behavioral changes
such as the ones in the above examples. Some additional definitions are required
to make this notion precise. To this end, we will use an operational semantics,
where the effect of statement execution is described as a state transformation.



class A {
static A x;

void foo(){ x = new A(); } A1
void bar(){ · · · }

}
class B extends A {

void bar(){ · · · }
}
class C {

static void main(){
A a = new B(); B1
a.foo(); A.x.bar();

}
}

class A {
void foo(){

x = new B(); B2
}

}

class A {
static A x;
void foo(){

x = new B(); B2
}
void bar(){ · · · }

}
class B extends A {
void bar(){ · · · }

}
class C {
static void main(){

A a = new B(); B1
a.foo(); A.x.bar();

}
}

H1 H2 H1 ⊕ H2

Fig. 6. Dynamic interference in an overriding composition.

Definition 8 (state, state transformation).

1. A program state maps variables to values: σ ∈ Σ = Var → Value.
2. The effect of executing a statement S is a state transformation: σ

S→ σ′.

Details of Var and Value are left unspecified, as they are not important for
our purposes. The reader may consult [7, 13] for complete operational semantics
of relevant Java subsets. Var includes local variables, parameters, and this-
pointers in method invocation stack frames—note that the domain of Var may
change as execution proceeds. Value comprises primitive values (e.g., integers)
and objects in the heap. In order to model reference-typed fields, we assume that
Var also contains an element for each field f of an object o, where o is an object
in Value whose type contains a field f (either directly or through inheritance).

Now let us assume that we have a hierarchy H together with some client
code K which is type correct with respect to H. We define:

Definition 9 (execution sequence).

1. An execution sequence of a hierarchy H is the (finite or infinite) sequence
of statements E(H,K, I, σ0) = S1, S2, S3, . . . which results from executing
the client code K of H with input I in initial state σ0. The corresponding
sequence of program states is Σ(H, K, I, σ0) = σ0 → σ1 → σ2 → σ3 . . ..

2. The statement subsequence of S1, S2 . . . consisting only of member accesses
(data member accesses or method calls) is denoted M(H, K, I, σ0) = Sν1 , Sν2 , . . .
where Sνi

= Sj ∈ E(H, K, I, σ0). The corresponding sequence of invoked
target methods is denoted T (H, K, I, σ0) = tν1 , tν2 , . . . where each tνi

is the
method that is actually invoked at run-time.

Definition 10 states that two hierarchies H and H′ are behaviorally equivalent
if the same sequence of statements is executed using the two hierarchies, for all
given clients of H with appropriate inputs and initial states. Definition 11 states
that a composed hierarchy H1 ⊕ H2 exhibits dynamic interference if H1 and
H1 ⊕ H2 are not behaviorally equivalent (for some client of H1 with associated
input and initial state), or if H2 and H1 ⊕ H2 are not behaviorally equivalent
(for some client of H2 with associated input and initial state).



Definition 10 (behavioral equivalence). Two hierarchies H, H′ are behav-
iorally equivalent iff for all clients K of H with appropriate inputs and initial
states I, σ0 we have that E(H, K, I, σ0) = E(H′,K, I, σ0).

Definition 11 (dynamic interference). H1 ⊕ H2 contains dynamic interfer-
ence, if (for some H1-client K with associated I, σ0) H1 and H1 ⊕ H2 are not
behaviorally equivalent, or if (for some H2-client K with associated I, σ0) H2
and H1 ⊕ H2 are not behaviorally equivalent.

Remark. From an observational point of view, E(H1, K, I, σ0) = E(H1 ⊕
H2, K, I, σ0) is not a necessary condition for behavioral equivalence, because a
modified sequence of statements might still produce the same visible effects.
However, we are not interested in cases where the observable behavior of a client
of a composed hierarchy is accidentally identical to its original behavior.

3.3 Checking for dynamic interference

We would like to verify whether or not a certain composition exhibits dynamic
interference. In general, determining whether or not two arbitrary programs will
execute the same statement sequences for all possible inputs is undecidable of
course. However, for the compositions studied in this paper, the situation is
not hopeless. Our approach will be to develop a noninterference criterion that
implies E(H1, K, I, σ0) = E(H1⊕H2, K, I, σ0) that is based on static analysis in-
formation. This approach is also used in our earlier work on semantics-preserving
class hierarchy transformations [17, 18]. Being a sufficient, but not a necessary
condition, our criterion may occasionally generate false alarms. However, we be-
lieve that the impact analysis of Section 4 will provide the user with sufficient
information to determine whether reported interferences can occur in practice.

Definition 12 defines a function srcHierarchy that defines the class hierar-
chy that a program construct originated from. The srcHierarchy of an object is
defined as the srcHierarchy of the statement that created it. Definition 13 uses
srcHierarchy to define the projection of a state onto a hierarchy.

Definition 12 (srcHierarchy). For H = (C, ≤), C = 〈c, M〉 ∈ H, m ∈ M ,
and a statement s in body(m), we write srcHierarchy(C) = srcHierarchy(m) =
srcHierarchy(s) = H. Moreover, let s ≡ new C(· · · ) be an object creation
site, and let object o ∈ Value be an instance of C created by s at run-time.
Then, srcHierarchy(o) = srcHierarchy(s). Further, for any x ∈ Var, we define
srcHierarchy(x) = srcHierarchy(s), where s is the static program part responsible
for the creation of x at run-time.

Definition 13 (state projection). The projection of a program state σ onto
a hierarchy H is defined as σ|H = {x �→ v | x �→ v ∈ σ, srcHierarchy(x) = H}.
Moreover, we extend the projection operator to apply to a sequence of program
states as follows: Σ(H1 ⊕ H2, K, I, σ0)|H1 = σ0|H1 → σ1|H1 → σ2|H1 → · · · ,
where Σ(H1 ⊕ H2, K, I, σ0) = σ0 → σ1 → σ2 → · · · .



The noninterference criterion relies on information produced by a points-to
analysis [1]. A points-to analysis computes for each reference-typed variable the
set of objects that it may point to. Definitions 14 and 15 define appropriate
notions ObjectRefs of object references and Objects of objects.

Definition 14 (object reference). Let H be a hierarchy. Then,
ObjectRefs(H) ⊆ Var is the set of all object references in H. This in-
cludes class-typed local variables, method parameters, fields, static variables,
and this pointers of methods.

Definition 15 (object). Let H be a hierarchy. Then, Objects(H) is the set of
all object creation sites in H, that is, all statements S ≡ new C(...); occurring
in some method body. Moreover, for o ∈ Objects(H), o ≡ new C(...), we define
TypeOf(H, o) = C.

Object creation sites in Objects(H) should not be confused with run-time objects
in Value. Finally, Definition 16 formalizes the notion of points-to sets. We do
not make any assumptions about the specific algorithm used to compute these
points-to sets. Any method suitable for object-oriented languages will do (e.g.,
[11, 14]).

Definition 16 (points-to sets). Let H be a hierarchy, and let p ∈
ObjectRefs(H). Then, PointsTo(H, p) ⊆ Objects(H) is the set of all objects
(represented by creation sites) that object reference p might point to at run-time.

The noninterference criterion (Definition 17) states that the method invoked
by a virtual method call p.m(· · · ) (as determined by applying StaticLookup on
the receiver object) in H1 ⊕ H2 is the same as it was in H1. Note that the
condition does not say anything about H2 objects. While the points-to sets in
the composed hierarchy may also contain H2 objects, these objects are never
created by clients of H1, and therefore need not be considered.

Definition 17 (noninterference criterion).
A composition H1 ⊕ H2 meets the noninterference criterion if for all

p ∈ ObjectRefs(H1), for all method calls p.m(· · · ) in H1, and for all
o ∈ PointsTo(H1 ⊕ H2, p) ∩ Objects(H1) we have that StaticLookup(H1, T, m)
= StaticLookup(H1 ⊕ H2, T

′, m) where T = TypeOf(H1, o), and T ′ =
TypeOf(H1 ⊕ H2, o).

The use of points-to information deserves a few more comments. First, one
might wonder about the consequences of using imprecise points-to information
(i.e., overly large points-to sets). In this case, the “for all o” in the noninterference
criterion runs over a larger scope than necessary, making the criterion stronger
than necessary, and spurious interference may be reported. However, the criterion
is safe in the sense that it will never erroneously report non-interference.

Note also that the criterion is much more precise than the static checks from
Section 2. To see this, consider again the examples of Figures 5 and 6. One could
argue that the simple interferences in these examples are not really dynamic. In



fact, one could report static interference in the examples of of Figures 5 and 6 by
modifying members(C) to also include members in superclasses of C (as opposed
to only the members defined locally in C). So why use the more complex criterion
of Definition 17? The reason is that, for large programs, the suggested modified
static interference check will report interference even if the class exhibiting the
changed behavior is never used in the program. In Definition 17, the scope of
the key condition

StaticLookup(H1 ⊕ H2, T, m) = StaticLookup(H1, T
′, m)

is limited by the size of the points-to set associated with the receiver of the
method call. This effectively restricts the condition to method calls that are
actually reachable, and to many fewer calling relationships than those that are
possible, resulting in many fewer spurious interferences being reported.

Most points-to analysis algorithms compute information that is valid for a
specific client K. This has the advantage that the points-to sets are more precise,
reducing the number of false alarms. However, in this case the noninterference
criterion only holds for the client K. To compute results that are safe for any
client, one could employ algorithms such as [15] that are capable of analyzing
incomplete programs.

Concerning the complexity of the interference test, it is dominated by the
computation of points-to information, as the test itself just performs two static
lookups per member access, which is linear in the program size. Various points-
to algorithms of various precision are known, ranging from Steensgaard’s almost
linear algorithm (which scales to millions of LOC) to Andersen’ cubic algorithm
which has recently been scaled to a million-line C-program [6] by using a new
approach for dynamically computing transitive closures. The performance of this
algorithm on object-oriented applications is still unknown, as far as we know.

3.4 Justification

We will now demonstrate that the noninterference criterion of Definition 17
ensures that the behavior of client K of H1 is preserved. The analogous argument
for H2 is completely symmetrical.

Lemma 3 states that it is sufficient to demonstrate that the sequence of call
targets in H1 does not change after composition.

Lemma 3. For all K, I and σ0, we have that: T (H1, K, I, σ0) = T (H1 ⊕
H2, K, I, σ0) =⇒ E(H1, K, I, σ0) = E(H1 ⊕ H2, K, I, σ0) and therefore:
T (H1, K, I, σ0) = T (H1⊕H2, K, I, σ0) =⇒ Σ(H1, K, I, σ0) = Σ(H1⊕H2, K, I, σ0)|H1

Proof. The proof is by induction on the length n of sequence E(H1, K, I, σ0).
For n = 0, the statement is trivial, as both hierarchies start in state σ0. Now
consider statement Sn in E(H1, K, I, σ0). By induction, the previously executed
statements S1, S2, . . . Sn−1 are the same in both E(H1, K, I, σ0) and E(H1 ⊕
H2, K, I, σ0), and lead to corresponding states σn−1 and σn−1|H1, respectively.



Now, Sn is a statement at some position π in some method m1 of H1. By
assumption, the sequence of executed method bodies is the same in H1 ⊕ H2.
Since there is no static interference, we may conclude that we are at the same
position π in some method m2 in H1 ⊕ H2, for which body(m1) = body(m2).
Hence, Sn is also the next statement to be executed in E(H1 ⊕ H2, K, I, σ0).

Now there are two cases. 1) Sn is a method call p.m(· · · ). Then, by assump-
tion, this call resolves to the same target tνi

which is executed in the same state
σn−1. Thus, after execution of the method body, both hierarchies are in the same
state σn at the same position π′ in the same method bodies m1 and m2. 2) Sn is
not a method call. Then, it must be the same in m1 and m2 due to the absence
of static interference. Hence, after execution, the same state σn is reached. �
Theorem 1 (correctness of criterion). Let H1 ⊕ H2 be a composition
that meets the noninterference criterion of Definition 17. Then, we have
that: E(H1, K, I, σ0) = E(H1 ⊕ H2, K, I, σ0) and Σ(H1, K, I, σ0) = Σ(H1 ⊕
H2, K, I, σ0)|H1, for all K, I, σ0.

Proof. Again the proof is by induction on n. For n = 0 the statement is trivial, as
both hierarchies start in state σ0. Now consider statement Sn in E(H1, K, I, σ0).
By induction, the previously executed statements S1, S2, . . . Sn−1 are the same in
both E(H1, K, I, σ0) and E(H1 ⊕ H2, K, I, σ0) and lead to corresponding states
σn−1 and σn−1|H1, respectively. As in the previous lemma, we may conclude that
Sn is the same in both execution sequences. (This time the necessary fact that the
previous call targets have been the same is not by assumption, but by induction:
if S1, S2, . . . are the same in both E(H1, K, I, σ0) and E(H1 ⊕ H2, K, I, σ0), so
are Sν1 , Sν2 , . . . and tν1 , tν2 , . . .).

Now there are two cases. If Sn is not a method call or data member ac-
cess, we may conclude that the corresponding states σn and σn|H1 are pro-
duced in Σ(H1, K, I, σ0) and Σ(H1 ⊕ H2, K, I, σ0)|H1, respectively. In case
Sn = p.m(x), we know σn−1(p) ∈ PointsTo(H1 ⊕ H2, p) (remember that σn−1
was reached in both H1 and H1 ⊕ H2). Furthermore, σn−1(p) ∈ Objects(H1),
as σn−1|H1 ∈ Σ(H1, K, I, σ0), and H1 does not contain H2 objects. We know
StaticLookup(H1, TypeOf(H1, o), m) �= ⊥ and by the type correctness lemma
thus StaticLookup(H1 ⊕ H2, TypeOf(H1 ⊕ H2, o), m) �= ⊥. By the static nonin-
terference criterion, both static lookups must compute the same result, namely
method definition (resp. data member) m. After execution of m’s body (resp.
access to m’s value in state σn−1), we may as in the above lemma conclude that
execution of both hierarchies is in the same state σn. �
Example 6. For the example of Figure 5, we have PointsTo(H1, o) =
PointsTo(H1 ⊕ H2, o) = {B1}. For the method call o.foo(), we obtain
StaticLookup(H1, TypeOf(H1, B1), foo()) = StaticLookup(H1, B, foo()) =
A.foo(), but StaticLookup(H1 ⊕ H2, TypeOf(H1 ⊕ H2, B1), foo()) =
StaticLookup(H1 ⊕ H2, B, foo()) = B.foo(). Hence, dynamic interference
is reported. �

In Example 7 and in subsequent examples, we use the labels shown in boxes
in Figure 1 to identify object creation sites.



Example 7. For client Driver1.main() in Figure 2, we obtain
PointsTo(H1 ⊕ H2, c1) ∩ Objects(H1) = { C1 }, PointsTo(H1 ⊕ H2, p1) ∩
Objects(H1) = { P1 }. Hence, StaticLookup(H1,TypeOf(H1, C1), enroll()) =
Course.enroll() = StaticLookup(H1 ⊕ H2,TypeOf(H1 ⊕ H2, C1), enroll()).
Moreover, we have that StaticLookup(H1, TypeOf(H1, C1), assign()) =
Course.assign() = StaticLookup(H1 ⊕ H2,TypeOf(H1 ⊕ H2, C1), assign()),
and that StaticLookup(H1, TypeOf(H1, P1), approveGraduation())
= Professor.approveGraduation() = StaticLookup(H1 ⊕
H2,TypeOf(H1 ⊕ H2, P1), Professor.approveGraduation()). Similar ar-
guments can be made for all other method calls in Figure 2. Hence, the behavior
of Driver1.main() in H1 is preserved in H1 ⊕ H2. �

In fact, the basic composition in Figure 2 preserves the behavior of any possi-
ble client. Potential clients may introduce arbitrary allocation sites and arbitrary
points-to relationships. A conservative approximation must therefore assume
that for any member access p.m(· · · ) ∈ H1, PointsTo(H1 ⊕ H2, p)∩Objects(H1)
contains all allocation sites S ∈ Objects(H1) where TypeOf(H1 ⊕ H2, S) ≤
TypeOf(H1 ⊕ H2, p). Nevertheless, StaticLookup(H1, TypeOf(H1, S), m) =
StaticLookup(H1 ⊕ H2, TypeOf(H1 ⊕ H2, S), m), because in the example the
methods from H1 and H2 are either disjoint or identical.

3.5 Overriding compositions

The noninterference criterion was designed for basic compositions. It can be
applied to overriding compositions as well, but will report failure as soon as a
method call p.m(· · · ) resolves to methods that have different bodies in H1 and
H1 ⊕ H2. Nevertheless, interference checks may still succeed if the overridden
methods are not reachable from client code. Constructing an interference check
for overriding compositions that ignores conflicts that users are aware of (via the
�-ordering) is a topic for future research.

Example 8. Let us apply the criterion to Figure 6. We have
PointsTo(H1, a) = PointsTo(H1 ⊕ H2,a) = { B1 }, but due to the over-
riding, StaticLookup(H1, TypeOf(H1, B1),foo()) = A.foo()H1

�= A.foo()H2
=

StaticLookup(H1 ⊕ H2, TypeOf(H1 ⊕ H2, B1), foo()). Here, we use sub-
scripts H1 and H2 to indicate the hierarchies that the different methods
A.foo() originate from. Hence, the behavior of call a.foo() is not pre-
served. For call x.bar(), we obtain PointsTo(H1 ⊕ H2, x) = { B2 }, hence
PointsTo(H1 ⊕ H2, x) ∩Objects(H1) = ∅. Thus the criterion is trivially satisfied
for x.bar(). �

Remark: In Example 8, one might wonder why the criterion is satisfied for
x.bar() despite the fact that the behavior of this call obviously changed: We
have that B.bar() is called in H1 ⊕ H2 whereas A.bar() was called in H1.
This secondary behavioral change is caused by another change in behavior (in
this case, the changed behavior of call a.foo(), which causes x to be bound



to an object of type B). While the noninterference criterion does not necessar-
ily detect secondary behavioral changes, it does find all primary changes, which
suffices to guarantee behavioral equivalence. We plan to use impact analysis to
obtain a more precise understanding of where behavioral changes occur, as will
be discussed in Section 4.

4 Impact Analysis

When the purpose of composition is to add functionality that is not completely
orthogonal to the system’s existing functionality, changes in behavior are often
unavoidable. The interference check of Section 3 determines whether the be-
havior of a specific client K is affected. In principle, one could manually apply
the interference check to successively smaller clients to determine the impact of
the composition. However, such a non-automated process is tedious and labor-
intensive, and problematic in cases where it is not possible to partition the code
in K. In order to provide a less labor-intensive approach, we plan to adapt the
change impact analysis of [16] in order to automatically determine the set of
program constructs affected by a composition. The remainder of this section
presents some preliminary ideas on how this can be accomplished.

4.1 Change impact analysis

We begin with a brief review of the change impact analysis of [16]. In this
work, it is assumed that a program is covered by a set of regression test drivers
T = t1, · · · , tn. Each test driver is assumed to consist of a separate main routine
from which methods in the application are called. Prior to the editing session,
a call graph Gi is built for each ti. Any of several existing call graph construc-
tion algorithms can be used. We plan to employ an algorithm that has been
demonstrated to scale to large applications [21].

After the user has ended the editing session, the edits are decomposed into
a set A of atomic changes. A consists of (i) a set AC of (empty) classes that
have been added, (ii) a set DC of classes that have been deleted, (iii) a set AM
of methods that have been added, (iv) a set DM of methods that have been
deleted, (v) a set CM of methods whose body contains one or more changed
statements, (vi) a set AF of fields that have been added, (vii) a set DF of fields
that have been deleted, and (viii) a set LC of elements of the form 〈T, C.m()〉,
indicating that the dispatch behavior for a call to C.m() on an object of type T
has changed. In general, a simple user edit can imply several atomic changes. For
example, addition of a method may involve the addition of an empty method (in
AM), a change in dispatch behavior (in LC) of existing call sites in cases where
the added method overrides an existing method, and a change of a method body
(in CM).

By analyzing the call graphs Gi and the set of atomic changes A, a subset of
affected tests T ′ ⊆ T is determined. Figure 7 shows how correlating the nodes
and edges in the call graphs for the test drivers with the CM, DM, and LC



AffectedTests(T , A) = { ti | ti ∈ T , Nodes(P, ti) ∩ (CM ∪ DM)) �= ∅ } ∪
{ ti | ti ∈ T , n ∈ Nodes(P, ti), n→BA.m ∈ Edges(P, ti),

〈B, X.m()〉 ∈ LC, B<∗A≤∗X }

Fig. 7. Definition of AffectedTests (taken from [16]).

changes leads to the identification of a set of affected tests ti. Here, Nodes(P, ti)
and Edges(P, ti) denote the set of nodes resp. edges in the call graph for test
driver ti. Informally, the formula shown in the figure states that a test driver ti is
potentially affected if a node in the call graph for ti corresponds to a deleted or
changed method (line 1), or if one of the edges in the call graph for ti corresponds
to a dispatch relation that has been changed (lines 2 3).

Any test driver that is not in T ′ is guaranteed to have the same behavior as
before. If a test driver ti occurs in T , the user can run this test to determine
if the new behavior of the test meets his expectations. If this is not the case,
an additional analysis (also based on call graphs) determines a subset of atomic
changes A′ ⊆ A that contribute to ti’s altered behavior. The user can apply
successively larger subsets of A′ to identify the change that “broke” test driver
ti. Alternatively, divide-and-conquer strategies similar to the ones in [23] can be
applied to quickly narrow down the search space.

4.2 Impact analysis for composition

We plan to adapt the analysis of [16] to determine the impact of a composi-
tion H1 ⊕ H2 on a set of test drivers T = t1, · · · , tk associated with hierarchy
Hi by interpreting a composition as a set of changes w.r.t Hi. To do so, we
need to establish a relationship between classes/members in H1 ⊕ H2, and the
classes/members in H1 and H2 that these classes/members originate from. This
is expressed by Definition 18 below.

Definition 18 (origin). Let H1 = (C1, ≤1) and H2 = (C2, ≤2) be two class
hierarchies, let H = H1 ⊕ H2 = (C, ≤), and let E be the set of equivalence
classes constructed by Definition 2. Furthermore, let C be a class in C, and let
m ∈ members(C). Define:

origin(C) = { 〈C ′, H〉 | S ∈ E , name(S) = name(C), 〈C ′, H〉 ∈ S }
origin(m) = { 〈C ′, m′, H〉 | 〈C ′,H〉 ∈ origin(C), m′ ∈ members(C ′),

namesig(m) = namesig(m′), body(m) = body(m′)

Definition 18 defines the origin of a class C in C as the set of (class,hierarchy)
pairs in its equivalence class, and the origin of a method m in C is the set of
methods in each such class with the same name and body as m. Note that these
definitions work with both of the members definitions given earlier.

Example 9. For hierarchy H = H1 ⊕H3 of Figure 3 we have origin(Professor) =
{ 〈Professor, H1〉, 〈Professor,H3〉 } and origin(Professor.approveGraduation) =
{ 〈Professor, approveGraduation, H3〉 }. �



It is now straightforward to construct the sets of atomic changes w.r.t. one of
the original hierarchies. For example, for the composition H = H1 ⊕ H3, where
H = 〈C, ≤ 〉, H1 = 〈C1, ≤1 〉, and H3 = 〈C4, ≤4 〉, the sets AC and CM w.r.t.
H1 may be computed as:

AC = { C ′ | 〈C′, H′〉 ∈ origin(C), C ∈ C, H′ �= H1 }
CM = { m′ | 〈C′, H1〉 ∈ origin(C), C ∈ C,m′ ∈ members(C),

origin(m′) = ∅, � ∃m in members(C’) s.t.
namesig(m) = namesig(m′) and body(m) = body(m′) }

The other sets of atomic changes are computed similarly. We can now apply the
analysis of [16] to determine the impact of the composition.

Example 10. Consider the overriding composition of Figure 3, for which we
previously found that behavior could not be preserved (see Example 8). We
will now apply impact analysis to obtain a more precise understanding of
where the interferences occur. Interpreting H1 ⊕ H3 as a set of changes
w.r.t. H1, we find that Driver1.main() is affected, because CM contains
method Professor.approveGraduation(), which occurs in the call graph for
Driver1.main(). Moreover, interpreting H1 ⊕ H3 as a set of changes w.r.t.
H3, we find that Driver3.main() is not affected, because the call graph for
Driver3.main() does not contain any added, changed, or deleted methods, or
any edges corresponding to a changed dispatch behavior.

Thus far, we have computed the impact of a composition on a set of test
drivers. In order to obtain more fine-grained information, one could construct
a separate call graph for each method m in hierarchy H1 (using appropriate
conservative assumptions about the run-time types of parameters and accessed
fields), and proceed as before. Then, impact could be reported as the set of meth-
ods whose behavior might have changed. For example, if separate call graphs
are constructed for all methods of H1 in the overriding composition H ⊕ H3
of Figure 3, we can report that only the behavior of methods Driver1.main()
and Professor.approveGraduation() is impacted by the composition because
these are the only methods that transitively call methods whose behavior may
have changed. Space limitations prevent us from providing more details.

5 Related work

Research on aspect-oriented software development has been gaining in popular-
ity recently [24]. In essence, the goal of this field is to obtain more extensible and
reusable designs by distributing unrelated functionality over disjoint hierarchies
or aspects. To achieve this, a mechanism for composing these functionalities into
executable code is needed. In our setting, this is accomplished by composing
hierarchies. Aspect-oriented languages such as AspectJ [8] have language con-
structs that allow one to specify the conditions under which a piece of advice is
“woven in” at a joint point. Until recently, there has been very little work on the
semantic foundations of composition.



The work most closely related to ours is the Aspect Sandbox (ASB) project
by Wand et al. [22], who incorporate several key aspect-oriented language con-
structs such as join points, pointcut designators, and advice into a simple lan-
guage with procedures, classes, and objects. Wand et al. formalize the semantics
of this language using a denotational semantices. Wand et al. do not provide
any guarantees about the noninterference of aspects, nor do they determine the
semantic impact of “weaving in” an aspect.

Ernst presented a class hierarchy composition system, where the composi-
tion operator is built into the syntax of the programming language gbeta [4].
Explicitely specified compositions may trigger propagation of implicit compo-
sitions, for example an explicit combination of methods or classes may trigger
implicit composition of other (e.g. auxiliary) methods or classes. Ernst showed
that his composition system and propagation mechanism preserve static type
correctness, but nothing is said about preservation of dynamic client behaviour.

Our approach is similar in spirit to the work by Binkley et al. [2] on the
integration of C programs that are variations of a common base, by analyzing
and merging their program dependence graphs. Similar to our work, Binkley et
al. use an interference test, which is a sufficient criterion for noninterference. The
main differences between [2] and our work is that [2] operates at the statement
level, whereas our techniques operate on calling relationships between methods.
Binkley et al. do not consider object-oriented language features.

Composition of object-oriented programs has been studied by other authors
in the context of component-based systems (see [12] for a collection of relevant
articles). One approach is concerned with the dynamic interaction of concur-
rent objects, and the goal is to create new behavior as a composition of given
behavior. Our approach aims to preserve old behavior while combining given
behavior. Another line of research has investigated the composition of systems
from components, where the components are treated as black boxes and come
with some interface specification, usually in the form of a type system.

We already discussed how our impact analysis is a derivative of the change
impact analysis of [16]. Offutt and Li [10, 9] also presented a change impact anal-
ysis for object-oriented programs, which only relies on structural relationships
between classes and members (e.g., containment), and is therefore much less
precise than approaches such as [16] that rely on static analysis.

6 Future Work

The work presented in this paper represents a first step in an ongoing effort to
provide better semantic support for composition-based software development.
We plan to implement the compositions and interference check of this paper,
and gain practical experience with the approach. Other future work includes:

– The current paper abstracts away from peculiarities of specific programming
languages. Programming languages such as Java contain several features that
require further thought (e.g., exception handling).



– We plan to explore more complex compositions such as “merging” compo-
sitions, in which two interfering methods m1 and m2 are “merged” in some
user-specified way (e.g., by constructing a new method that first executes
the body of m1 and then that of m2).

– We plan to investigate more sophisticated interference tests can that can
provide behavioral guarantees even in the presence of dynamic interference,
by taking into account those conflicts that users have explicitly resolved.

– We have outlined how the impact analysis of [16] can be used to obtain a
more detailed view of where behavioral interferences occur. We consider this
to be a topic that needs much further thought.

– In practice, class hierarchy compositions are often performed with the in-
tention of changing program behavior. We consider methods for distinguish-
ing behavioral changes expected by the user from unanticipated behavioral
changes to be an important research topic. Such methods could be used to
filter the information produced by the impact analysis.
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