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Abstract. Java 1.5 generics enable the creation of reusable container classes with
compiler-enforced type-safe usage. This eliminates the need for potentially un-
safe down-casts when retrieving elements from containers. We present arefac-
toring that replaces raw references to generic library classes with parameterized
references. The refactoring infers actual type parameters for allocation sites and
declarations using an existing framework of type constraints, and removes casts
that have been rendered redundant. The refactoring was implemented in Eclipse,
a popular open-source development environment for Java, and laid the grounds
for a similar refactoring in the forthcoming Eclipse 3.1 release. We evaluated
our work by refactoring several Java programs that use the standard collections
framework to use Java 1.5’s generic version instead. In these benchmarks, on
average, 48.6% of the casts are removed, and 91.2% of the compiler warnings
related to the use of raw types are eliminated. Our approach distinguishes itself
from the state-of-the-art [8] by being more scalable, by its ability to accommo-
date user-defined subtypes of generic library classes, and by being incorporated
in a popular integrated development environment.

1 Introduction

Java 1.5 generics enable the creation of reusable class libraries with compiler-enforced
type-safe usage. Generics are particularly useful for building homogeneous collections
of elements that can be used in different contexts. Since the element type of each
generic collection instance is explicitly specified, the compiler can statically check
each access, and the need for potentially unsafe user-supplied downcasts at element
retrieval sites is greatly reduced. Java’s standard collections framework in package
java.util undoubtedly provides the most compelling uses of generics. For Java 1.5,
this framework was modified to include generic versions of existing container classes4

such asVector . For example, an application that instantiatesVector<E> with, say,
String , obtainingVector<String> , can only add and retrieveString s. In the
previous, non-generic version of this class, the signatures of access methods such as
Vector.get() refer to typeObject , which prevents the compiler from ensuring

4 For convenience, the word “class” will frequently be used to refer to a class or an interface.



type-safety of vector operations, and therefore down-casts toString are needed to
recover the type of retrieved elements. When containers are misused, such downcasts
fail at runtime, withClassCastException s.

The premise of this research is that, now that generics are available, programmers
will want to refactor [10] their applications to replace references to non-generic li-
brary classes with references to generic versions of those classes, but performing this
transformation manually on large applications would be tedious and error-prone [15].
Therefore, we present a refactoring algorithm for determining the actual type parame-
ters with which occurrences of generic library classes can be instantiated5. This refac-
toring rewrites declarations and allocation sites to specify actual type parameters that
are inferred by type inference, and removes casts that have been rendered redundant.
Program behavior is preserved in the sense that the resulting program is type-correct
and the behavior of operations involving run-time types (i.e., method dispatch, casts,
and instanceof tests) is preserved. Our approach is applicable to any class library for
which a generic equivalent is available, but we will primarily use the standard collec-
tions framework to illustrate the approach.

Our algorithm was implemented in Eclipse (seewww.eclipse.org ), a popular
open-source integrated development environment (IDE), and parts of this research im-
plementation will be shipped with the forthcoming Eclipse 3.1 release. We evaluated
the refactoring on a number of Java programs of up to 90,565 lines, by refactoring these
to use Java 1.5’s generic container classes. We measured the effectiveness of the refac-
toring by counting the number of removed downcasts and by measuring the reduction
in the number of “unchecked warnings” issued by the Java 1.5 compiler. Such warn-
ings are issued by the compiler upon encountering raw occurrences of generic classes
(i.e., references to generic types without explicitly specified actual type parameters). In
the benchmarks we analyzed, on average, 48.6% of all casts are removed, and 91.2%
of the unchecked warnings are eliminated. Manual inspection of the results revealed
that the majority of casts caused by the use of non-generic containers were removed
by our refactoring, and that the remaining casts were necessary for other reasons. The
refactoring scales well, and takes less than 2 minutes on the largest benchmark.

The precision of our algorithm is comparable to that by Donovan et al. [8], which is
the state-of-the-art in the area, but significant differences exist between the two ap-
proaches. First, our approach is more scalable because it does not require context-
sensitive analysis. Second, our method can infer generic supertypes for user-defined
subtypes of generic library classes6 (e.g., we can infer that a classMyIterator ex-
tendsIterator<String> ). The approach of [8] is incapable of making such infer-
ences, and therefore removes fewer casts on several of the benchmarks we analyzed.
Third, Donovan et al. employ a strict notion of preserving behavior by demanding that
the program’s erasure [4] is preserved. In addition to this mode, our tool supports more
relaxed notions of preserving behavior that allow the rewriting of other declarations.
Our experiments show that, in some cases, this added flexibility enables the removal
of more casts and unchecked warnings. Fourth, our implementation is more practical

5 This problem is referred to as the instantiation problem in [8].
6 The version of our refactoring that will be delivered in Eclipse 3.1 will not infer generic su-

pertypes and will always preserve erasure.
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because it operates on standard Java 1.5 source code, and because it is fully integrated
in a popular IDE.

The remainder of the paper is organized as follows. Section 2 overviews the Java
1.5 generics, and Section 3 presents a motivating example to illustrate our refactoring.
Sections 4–6 present the algorithm, which consists of the following steps. First, a set of
type constraints[17] is inferred from the original program’s abstract syntax tree (AST)
using two sets of generation rules: (i) standard rules that are presented in Section 4 and
(ii) generics-related rules that are presented in Section 5. Then, the resulting system
of constraints is solved, the program’s source code is updated to reflect the inferred
actual type parameters, and redundant casts are removed, as discussed in Section 6.
Section 7 discusses the implementation of our algorithm in Eclipse, and experimental
results are reported in Section 8. We report on experiments with a context-sensitive ver-
sion of our algorithm in Section 9. Finally, related work and conclusions are discussed
in Sections 10 and 11, respectively.

2 Java Generics

This section presents a brief, informal discussion of Java generics. For more details,
the reader is referred to the Java Language Specification [4], and to earlier work on the
Pizza [16] and GJ [5, 13] languages.

In Java 1.5, a class or interfaceC may haveformal type parametersT1, · · · , Tn that
can be used in non-static declarations withinC. Type parameterTj may bebounded
by typesB1

j , · · · , Bk
j , at most one of which may be a class. Instantiating a generic class

C<T1, · · · , Tn> requires thatn actual type parametersA1, · · · , An be supplied, where
eachAj must satisfy the bounds (if any) of the corresponding formal type parameterTj .
Syntactically, (formal and actual) type parameters follow the class name in a comma-
separated list between ‘<’ and ‘>’, and bounds on formal type parameters are specified
using the keywordextends (multiple bounds are separated by ‘&’). A class may in-
herit from a parameterized class, and its formal type parameters may be used as actual
type parameters in instantiating its superclass. For example:

class B<T1 extends Number>{ ... }
class C<T2 extends Number> extends B<T2>{ ... }
class D extends B<Integer>{ ... }

shows: (i) a classB that has a formal type parameterT1 with an upper bound of
Number, (ii) a classC with a formal type parameterT2 (also bounded byNumber)
that extendsB<T2>, and (iii) a non-parametric classD that extendsB<Integer> . B
andC can be instantiated with any subtype ofNumber such asFloat , so one can
write:

B<Float> x = new C<Float>();
B<Integer> y = new D();

Unlike arrays, generic types arenot covariant:C<A> is a subtype ofC<B> if and
only if A = B. Moreover, arrays of generic types are not allowed [14].
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Type parameters may also be associated with methods. Such parameters are sup-
plied at the beginning of the generic method’s signature, after any qualifiers. For exam-
ple, a class may declare a generic method as follows:

public <T3> void zap(T3 z){ ... }

Calls to generic methods do not need to supply actual type parameters because these
can be inferred from context.

Wildcards [21] are unnamed type parameters that can be used in declarations. Wild-
cards can be bounded from above or below, as in? extends B , or ? super B ,
respectively. For example, interfaceCollection<E> of the Java 1.5 standard collec-
tions library defines a method

boolean addAll(Collection<? extends E> c){ ... }

in which the wildcard specifies the “element type” of parameterc to be a subtype of
formal type parameterE, thus permitting one to add a collection of, say,Float s to a
collection ofNumbers.

For backward compatibility, one can refer to a generic class without specifying
type parameters. Operations on such “raw types” result in compile-time “unchecked
warnings”7 in cases where type-safety cannot be guaranteed (e.g., when calling certain
methods on a receiver expression of a raw type). Unchecked warnings indicate the po-
tential for class-cast exceptions at run-time, and the number of such warnings is a rough
measure of the potential lack of type safety in the program.

3 Motivating Example

We will use the Java standard collections library in packagejava.util to illustrate
our refactoring. In Java 1.5,Collection and its subtypes (e.g.,Vector andList )
have a type parameter representing the collection’s element type,Mapand its subtypes
(e.g.,TreeMap andHashtable ) have two type parameters representing the type of
its key and its value, respectively, andIterator has a single type parameter repre-
senting the type of object returned by thenext() method.

Figure 1 shows a Java program making nontrivial use of several kinds of contain-
ers. In this program, classIntList contains an array ofint s, and provides an iter-
ator over its elements, and a method for summing its elements. Theiterator()
method creates aListIterator , a local implementation ofIterator that re-
turnsInteger objects wrapping the values stored in anIntList . ClassExample ’s
main() method createsIntList s as well as several objects of various standard li-
brary types. Executing the example program prints the list[[2.0, 4.4]] . The ex-
ample program illustrates several salient aspects of the use of standard container classes:

– nested containers (here, aVector of Vector s), on line 14,
– iterators over standard containers, on line 19,

7 Unchecked warnings are issued by Sun’s javac 1.5 compiler when given the
-Xlint:unchecked option.
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(1) public class Example {
(2) public static void main(String[] args) {
(3) Map m1 = new HashMap();
(4) Double d1 = new Double(3.3);
(5) Double d2 = new Double(4.4);
(6) IntList list1 = new IntList(new int[] { 16, 17 });
(7) IntList list2 = new IntList(new int[] { 18, 19 });
(8)

:::::::::::
m1.put(d1,

:::::::::
list1);

::::::::::::
m1.put(d2,

::::::::
list2);

(9) Vector v1 = new Vector();
(10)

:::::::::::
v1.add(new

:::::::::::::::
Float(2.0));

(11) List list5 = new ArrayList();
(12)

:::::::::::::::::::::
list5.add(find(m1,

::::::
37));

(13)
::::::::::::::::::
v1.addAll(list5);

(14) Vector v2 = new Vector();
(15)

:::::::::::
v2.add(v1);

(16) System.out.println(v2);
(17) }
(18) static Object find(Map m2, int i) {
(19) Iterator it = m2.keySet().iterator();
(20) while (it.hasNext()) {
(21) Double d3 = (Double)it.next();
(22) if (((IntList)m2.get(d3)).sum()==i) return d3;
(23) }
(24) return null;
(25) }
(26) }
(27) class IntList {
(28) IntList(int[] is) { e = is; }
(29) Iterator iterator() { return new ListIterator(this); }
(30) int sum() { return sum2(0); }
(31) int sum2(int j) {

return (j==e.length ? 0 : e[j]+sum2(j+1)); }
(32) int[] e;
(33) }
(34) class ListIterator implements Iterator {
(35) ListIterator(IntList list3) {

list4 = list3; count = 0; }
(36) public boolean hasNext() {

return count+1 < list4.e.length; }
(37) public Object next() {

return new Integer(list4.e[count++]); }
(38) public void remove() {

throw new UnsupportedOperationException(); }
(39) private int count;
(40) private IntList list4;
(41) }

Fig. 1. Example program that uses non-generic container classes. Program constructs that give
rise to unchecked warnings are indicated using wavy underlining.
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(1) public class Example {
(2) public static void main(String[] args) {
(3) Map<Double,IntList> m1 = new HashMap<Double,IntList> ();
(4) Double d1 = new Double(3.3);
(5) Double d2 = new Double(4.4);
(6) IntList list1 = new IntList(new int[] { 16, 17 });
(7) IntList list2 = new IntList(new int[] { 18, 19 });
(8) m1.put(d1, list1); m1.put(d2, list2);
(9) Vector<Number> v1 = new Vector<Number> ();
(10) v1.add(new Float(2.0));
(11) List<Double> list5 = new ArrayList<Double> ();
(12) list5.add(find(m1, 37));
(13) v1.addAll(list5);
(14) Vector<Vector<Number>> v2 = new Vector<Vector<Number>> ();
(15) v2.add(v1);
(16) System.out.println(v2);
(17) }
(18) static Double find(Map<Double,IntList> m2, int i) {
(19) Iterator<Double> it = m2.keySet().iterator();
(20) while (it.hasNext()) {
(21) Double d3 = it.next() ;
(22) if ((m2.get(d3)) .sum() == i) return d3;
(23) }
(24) return null;
(25) }
(26) }
(27) class IntList {
(28) IntList(int[] is) { e = is; }
(29) ListIterator iterator() { return new ListIterator(this); }
(30) int sum() { return sum2(0); }
(31) int sum2(int j) {

return (j==e.length ? 0 : e[j]+sum2(j+1)); }
(32) int[] e;
(33) }
(34) class ListIterator implements Iterator<Integer> {
(35) ListIterator(IntList list3) {

list4 = list3; count = 0; }
(36) public boolean hasNext() {

return count+1 < list4.e.length; }
(37) public Integer next() {

return new Integer(list4.e[count++]); }
(38) public void remove() {

throw new UnsupportedOperationException(); }
(39) private int count;
(40) private IntList list4;
(41) }

Fig. 2. Refactored version of the program of Figure 1. Underlining indicates declarations and
allocation sites for which a different type is inferred, and expressions from which casts have been
removed.
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– methods likeCollection.addAll() that combine the contents of containers,
on line 13,

– methods likeMap.keySet() that expose the constituent components of standard
containers (namely, ajava.util.Set containing theMap’s keys), on line 19,

– a user-defined subtype (ListIterator ) of a standard container type, on line 34,
and

– the need for down-casts (lines 21 and 22) to recover type information.

Compiling the example program with Sun’s javac 1.5 compiler yields six unchecked
warnings, which are indicated in Figure 1 using wavy underlining. For example,
for the call m1.put(d1, list1) on line 8, the following message is produced:
“warning: [unchecked] unchecked call toput(K,V) as a member of the raw type
java.util.Map ”.

Figure 2 shows the result of our refactoring algorithm on the program of Fig-
ure 1. Declarations and allocation sites have been rewritten to make use of generic
types (on lines 3, 9, 11, 14, 18, and 19), and the down-casts have been removed
(on lines 21 and 22). Moreover, note thatListIterator (line 34) now imple-
mentsIterator<Integer> instead of rawIterator , and that the return type of
ListIterator.next() on line 37 has been changed fromObject to Integer .
This latter change illustrates the fact that inferring a precise generic type for declara-
tions and allocation sites may require changing the declared types of non-containers in
some cases. The resulting program is type-correct, behaves as before, and compiling it
does not produce any unchecked warnings.

4 Type Constraints

This paper extends a model of type constraints [17] previously used by several of the
current authors for refactorings for generalization [20] and for the customization of Java
container classes [7]. We only summarize the essential details of the type constraints
framework here, and refer the reader to [20] for more details.

In the remainder of the paper,P will denote the original program. Type constraints
are generated fromP ’s abstract syntax tree (AST) in a syntax-directed manner. A set of
constraint generation rules generates, for each program construct inP, one or more type
constraints that express the relationships that must exist between the declared types of
the construct’s constituent expressions, in order for that program construct to be type-
correct. By definition, a program istype-correctif the type constraints for all constructs
in that program are satisfied. In the remainder of this paper, we assume thatP is type-
correct.

Figure 3 shows the notation used to formulate type constraints. Figure 4 shows the
syntax of type constraints8. Figure 5 shows constraint generation rules for a number

8 In this paper, we assume that type information about identifiers and expressions is available
from a compiler or type checker. Two syntactically identical identifiers will be represented by
the same constraint variable if only if they refer to the same entity. Two syntactically identical
expressions will be represented by the same constraint variable if and only if they correspond
to the same node in the program’s abstract syntax tree.
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M, M ′ methods (signature, return type, and a reference to the method’s
declaring class are assumed to be available)

m, m′ method names
F, F ′ fields (name, type, and declaring class are assumed to be available)
f, f ′ field names
C, C′ classes and interfaces
K, W, V, T formal type parameters
E, E′, E1, E2, . . . expressions (corresponding to a specific node in the program’s AST)

[E] the type of expression or declaration elementE
[E]P the type ofE in the original programP
[M ] the declared return type of methodM
[F ] the declared type of fieldF
Decl(M) the class that declares methodM
Decl(F ) the class that declares fieldF
Param(M, i) thei-th formal parameter of methodM
T (E) actual type parameterT in the type of the expressionE
T (C) actual type parameterT of classC

RootDefs(M) { Decl(M ′) | M overridesM ′, and there exists noM ′′(M ′′ 6= M ′)
such thatM ′ overridesM ′′ }

Fig. 3.Notation used for defining type constraints.

α = α′ typeα must be the same as typeα′

α≤α′ typeα must be the same as, or a subtype of typeα′

α≤α1 or · · · or α≤αk α≤αi must hold for at least onei, (1 ≤ i ≤ k)

Fig. 4. Syntax of type constraints. Constraint variablesα, α′, . . . represent the types associated
with program constructs and must be of one of the following forms: (i) a type constant, (ii) the
type of an expression[E], (iii) the type declaring a methodDecl(M), or (iv) the type declaring a
field Decl(F ).

of language constructs. These rules are essentially the same as in [20, 7], but rely on a
predicateisLibraryClassto avoid the generation of constraints for: (i) calls to methods
(constructors, static methods, and instance methods) declared in generic library classes,
(ii) accesses to fields in generic library classes, and (iii) overriding relationships involv-
ing methods declared in generic library classes. Note the assumption that the program
is already using a generic version of the library. Therefore,[E]P may denote a generic
type. Section 5 will discuss the generation of constraints that are counterparts to (i)–(iii)
for references to generic library classes.

We now study a few of the constraint generation rules of Figure 5. Rule (1) states
that an assignmentE1 = E2 is type correct if the type ofE2 is the same as or a subtype
of the type ofE1. For a field-access expressionE ≡ E0.f that accesses a fieldF
declared in classC, rule (2) defines the type ofE to be the same as the declared type
of F and rule (3) requires that the type of expressionE0 be a subtype of the typeC
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P contains assignmentE1 = E2

[E2]≤[E1] (1)

P contains field accessE ≡ E0.f to fieldF , C = Decl(F ), ¬IsLibraryClass(C)

[E] = [F ] (2)
[E0]≤C (3)

P contains constructor callE ≡ new C(E1, · · · , Ek)

[E] = C (4)

P contains constructor callnew C(E1, · · · , Ek) to constructorM ,
¬IsLibraryClass(C), E′

i ≡ Param(M, i), 1 ≤ i ≤ k

[Ei]≤[E′
i] (5)

P contains callE0.m(E1, · · · , Ek) to virtual methodM ,
RootDefs(M) = { C1, · · · , Cq }

[E0]≤C1 or · · ·or [E0]≤Cq (6)

P contains callE ≡ E0.m(E1, · · · , Ek) to virtual methodM ,
¬IsLibraryClass(Decl(M)), E′

i ≡ Param(M, i), 1 ≤ i ≤ k

[E] = [M ] (7)
[Ei]≤[E′

i] (8)

P contains direct callE ≡ C.m(E1, · · · , Ek) to static methodM ,
¬IsLibraryClass(C), E′

i ≡ Param(M, i), 1 ≤ i ≤ k

[E] = [M ] (9)
[Ei]≤[E′

i] (10)

P contains cast expressionE ≡ (C)E0

[E] = C (11)

P contains down-cast expressionE ≡ (C)E0, C is not an interface,[E0]P is not an interface
C≤[E0] (12)

M contains an expressionE ≡ this , C = Decl(M)

[E] = C (13)

M contains an expressionE ≡ return E0

[E0]≤[M ] (14)

M ′ overridesM , 1 ≤ i ≤ NrParams(M ′), Ei ≡ Param(M, i), E′
i ≡ Param(M ′, i),

¬IsLibraryClass(Decl(M))

[Ei] = [E′
i] (15)

[M ′]≤[M ] (16)

Fig. 5. Inference rules for deriving type constraints from various Java constructs.
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in which F is declared. Here, the predicateIsLibraryClass(C) is used to restrict the
generation of these constraints to situations where classC is not a library type.

Rules (6)–(8) are concerned with a virtual method callE ≡ E0.m(E1, · · · , Ek)
that refers to a methodM . Rule (6) states that a declaration of a method with the same
signature asM must occur in some supertype of the type ofE0. The complexity in
this rule stems from the fact thatM may override one or more methodsM1, · · · ,Mq

declared in supertypesC1, · · · , Cq of Decl(M), and the type-correctness of the method
call only requires that the type of receiver expressionE0 be a subtype of one of theseCi.
This is expressed by way of a disjunction in rule (6) using auxiliary functionRootDefs
of Figure 3. Rule (7) defines the type of the entire call-expressionE to be the same as
M ’s return type. Further, the type of each actual parameterEi must be the same as or a
subtype of the type of the corresponding formal parameterE′

i (rule (8)).
Rules (11) and (12) are concerned with down-casts. The former defines the type of

the entire cast expression to be the same as the target typeC referred to in the cast. The
latter requires thisC to be a subtype of the expressionE0 being casted.

The constraints discussed so far are only concerned with type-correctness. Addi-
tional constraints are needed to ensure that program behavior is preserved. Rules (15)
and (16) state that overriding relationships inP must be preserved in the refactored pro-
gram (note that covariant return types are allowed in Java 1.5). Moreover, if a method
m(E1, · · · , Ek) overloads another method, then changing the declared type of any for-
mal parameterEi may affect the specificity ordering that is used for compile-time over-
load resolution [11]. To avoid such behavioral changes, we generate additional con-
straints[Ei] = [Ei]P for all i (1 ≤ i ≤ k) to ensure that the signatures of overloaded
methods remain the same. Constraints that have the effect of preserving the existing
type are also generated for actual parameters and return types used in calls to methods
in classes for which source code cannot be modified.

5 Type Constraints for Generic Libraries

Additional categories of type constraints are needed for: (i) calls to methods in generic
library classes, (ii) accesses to fields in generic library classes9, and (iii) user classes that
override methods in generic library classes. We first discuss a few concrete examples of
these constraints, and then present rules that automate their generation.

5.1 New Forms of Type Constraints

Consider the callm1.put(d1,list1) on line (8) of Figure 1, which resolves to
methodV Map<K, V>.put(K, V) . This call is type-correct if: (i) the type of the
first actual parameter,d1 , is a subtype of the first actual type parameter of receiverm1,
and (ii) the type of the second actual parameter,list1 , is a subtype of the second
actual type parameter ofm1. These requirements are expressed by the constraints[ d1
]≤K(m1) and [ list1 ]≤V(m1), where the notationT (E) is used for a new kind of

9 These can be handled in the same way as calls to methods in generic library classes, and will
not be discussed in detail.
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P contains callErec.put(Ekey, Evalue) to methodV Map < K, V > .put(K, V)

[Ekey] ≤ K(Erec)
[Evalue] ≤ V(Erec)

[Erec.put(Ekey, Evalue)] = V(Erec)

[put ]

P contains callErec.get(Ekey) to methodV Map < K, V > .get(Object)

[Erec.get(Ekey)] = V(Erec)
[get ]

P contains callErec.addAll(Earg) to method
boolean Collection < E > .addAll(Collection <? extends E >)

[Earg] ≤ Collection
E(Earg) ≤ E(Erec)

[addAll ]

Fig. 6. Constraint generation rules for calls toV Map<K,V>.put(K,V) , V Map<K,V>.get(Object) ,
andboolean Collection<E>.addAll(Collection<? extends E>) .

constraint variable that denotes the value of actual type parameterT in the type of the
expressionE. Similar constraints are generated for return values of methods in generic
library classes. For example, the call tom2.get(d3) on line (22) of Figure 1 refers to
methodV Map<K, V>.get(Object) . Here, the type of the entire expression has
the same type as the second actual type parameter of the receiver expressionm2, which
is expressed by:[ m2.get(d3) ] = V(m2). Wildcards are handled similarly. For ex-
ample, the callv1.addAll(list5) on line (13) of Figure 1 resolves to method
boolean Collection<E>.addAll(Collection<? extends E>) . This
call is type-correct if the actual type parameter oflist5 is a subtype of the actual
type parameter of receiverv1 : E(list5 ) ≤E(v1 ).

Figure 6 shows rules that could be used to generate the type constraints for the calls
to put , get , andaddAll that were just discussed. Observe that the formal parameter
of the get method has typeObject and no relationship exists with the actual type
parameter of the receiver expression on whichget is called10.

We generate similar constraints when a user class overrides a method in
a generic library class, as was the case in the program of Figure 1 where
ListIterator.next() overridesIterator.next() . Specifically, if a user
classC overrides a method in a library classL with a formal type parameterT , we
introduce a new constraint variableT (C) that represents the instantiation ofL from
whichC inherits. Then, if a methodM ′ in classC overrides a methodM in L, and the
signature ofM refers to a type parameterT of L, we generate constraints that relate the
corresponding parameter or return type ofM ′ to T (C).

10 While it might seem more natural to defineget as V Map<K,V>.get(K) instead of
V Map<K,V>.get(Object) , this would require the actual parameter to be of typeK at
compile-time, and additionalinstanceof -tests and downcasts would need to be inserted if
this were not the case. The designers of the Java 1.5 standard libraries apparently preferred the
flexibility of being able to pass any kind of object over the additional checking provided by
a tighter argument type. They adopted this approach consistently for all methods that do not
write to a container (e.g.,contains , remove , indexOf ).
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For example, method ListIterator.next() on line (37) of
Figure 1 overrides Iterator<E>.next() . Since the return type of
Iterator.next() is type parameter E, we generate a constraint
[ ListIterator.next() ] = E(ListIterator) . Note that this con-
straint precisely captures the required overriding relationship because
ListIterator.next() only overrides Iterator<Integer>.next() if
the return type ofListIterator.next() is Integer .

5.2 Constraint Generation Rules for Generic Libraries

While type constraint generation rules such as those of Figure 6 can be written by the
programmer, this is tedious and error-prone. Moreover, it is clear that their structure
is regular, determined by occurrences of type parameters in signatures of methods in
generic classes. Figure 7 shows rules forgenerating constraints for calls to methods
in generic classes. For a given call, rule (r1) creates constraints that define the type
of the method call expression, and rule (r2) creates constraints that require the type of
actual parameters to be equal to or a subtype of the corresponding formal parameters.
A recursive helper functionCGenserves to generate the appropriate constraints, and
is defined by case analysis on its second argument,T . Case (c1) applies whenT is a
non-generic class, e.g.,String . Case (c2) applies whenT is a type parameter. In the
remaining cases the function is defined recursively. Cases (c3) and (c4) apply whenT is
an upper or lower-bounded wildcard type, respectively. Finally, case (c5) applies when
T is a generic type.

CGen(α, T , E, op) =

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

{α op C} whenT ≡ C (c1)

{α op Ti(E)} whenT ≡ Ti (c2)

CGen(α, τ, E,≤) whenT ≡ ? extends τ (c3)

CGen(α, τ, E,≥) whenT ≡ ? super τ (c4)

{α op C} ∪ whenT ≡ C < τ1, . . . , τm > (c5)
CGen(Wi(α), τi, E, =) andC is declared as

C < W1, . . . , Wm >, 1 ≤ i ≤ m

P contains callE ≡ Erec.m(E1, . . . , Ek) to methodM, 1 ≤ i ≤ k

CGen([E], [M ]P , Erec, =) ∪ (r1)
CGen([Ei], [Param(M, i)]P , Erec, ≤) (r2)

Fig. 7. Constraint generation rules for calls to methods in generic classes.

We will now give a few examples that show how the rules of Figure 7 are used to
generate type constraints such as those generated by the rules of Figure 6. As an exam-
ple, consider again the callm1.put(d1, list1) to V Map<K,V>.put(K,V)

12



on line 8 of the original programP. Applying rule (r1) of Figure 7 yieldsCGen([
m1.put(d1, list1) ], V, m1, =), and applying case (c2) of the definition ofCGen
produces the set of constraints{[ m1.put(d1, list1) ] = V(m1)}. Likewise, for
parameterd1 in the callm1.put(d1, list1) on line 8, we obtainm1.put(d1,

list1)
r2⇒CGen([ d1 ], K, m1,≤ )

c2⇒{[ d1 ]≤ K(m1)}. Two slightly more interesting
cases are the following:

line 13: v1.addAll(list5)
r2⇒

CGen([ list5 ], Collection<? extends E> , v1 ,≤)
c5⇒

{[ list5 ] ≤ Collection } ∪ CGen(E(l ), ? extends E , v1 , =)
c3⇒

{[ list5 ] ≤ Collection } ∪ CGen(E(l ), E, v1 ,≤)
c2⇒

{[ list5 ] ≤ Collection } ∪ {E(l ) ≤ E(v1 )}
line 19: m2.keySet()

r1⇒ CGen([ m2.keySet() ], Set<K> , m2, =)
c5⇒

{[ m2.keySet() ] = Set } ∪ CGen(E(m2.keySet() ), K, m2, =)
c2⇒

{[ m2.keySet() ] = Set } ∪ {E(m2.keySet() ) = K(m2)}

Table 1 below shows the full set of generics-related type constraints computed for
the example program in Figure 1. Here, the appropriate rules and cases of Figure 7 are
indicated in the last two columns.

line code type constraint(s) rule cases
[ d1 ] ≤ K(m1) r2 c2

8 m1.put(d1, list1) [ list1 ] ≤ V(m1) r2 c2
[ m1.put(d1, list1) ] = V(m1) r1 c2
[ d2 ] ≤ K(m1) r2 c2

8 m1.put(d2, list2) [ list2 ] ≤ V(m1) r2 c2
[ m1.put(d2, list2) ] = V(m1) r1 c2

10 v1.add(new Float(2.0)) [ new Float(2.0) ] ≤ E(v1 ) r2 c2
12 list5.add(find(m1, 37)) [ find(m1, 37) ] ≤ E(list5 ) r2 c2
13 v1.addAll(list5) [ list5 ] ≤ Collection r2 c5, c3, c2

E(list5 ) ≤ E(v1 )
15 v2.add(v1) [ v1 ] ≤ E(v2 ) r2 c2
19 m2.keySet() [ m2.keySet() ] = Set r1 c5, c2

E(m2.keySet() ) = K(m2)
19 m2.keySet().iterator() [ m2.keySet().iterator() ] = r1 c5, c2

Iterator
E(m2.keySet().iterator() ) =

E(m2.keySet() )
21 it.next() [ it.next() ] = E(it ) r1 c2
22 m2.get(d3) [ m2.get(d3) ] = V(m2) r1 c2
37 override of [ ListIterator.next() ]=

E Iterator<E>.next() E(ListIterator )
Table 1. Generics-related type constraints created for code from Figure 1. The labels in the two
rightmost columns refer to rules and cases in the definitions of Figure 7.
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Our algorithm also creates type constraints for methods in application classes that
override methods in generic library classes. For example, the last row of Table 1 shows
a type constraint required for the overriding of methodE Iterator<E>.next()
in classListIterator . The rules for generating such constraints are similar to those
in Figure 7 and have been omitted due to space limitations.

5.3 Closure Rules

Thus far, we introduced additional constraint variables such asK(E) to represent the
actual type parameter bound toK in E’s type, and we described how calls to methods
in generic libraries give rise to constraints on these variables. However, we have not yet
discussed how types inferred for actual type parameters are constrained by language
constructs such as assignments and parameter passing. For example, consider an as-
signmenta = b , wherea andb are both declared of typeVector<E> . The lack of
covariance for Java generics implies thatE(a) = E(b) . The situation becomes more
complicated in the presence of inheritance relations between generic classes. Consider
a situation involving class declarations11 such as:

interface List<E l> { ... }
class Vector<E v> implements List<E v> { ... }

and two variables,c of typeList andd of typeVector , and an assignmentc = d .
This assignment can only be type-correct if the same type is used to instantiateEl in the
type ofc andEv in the type ofd. In other words, we need a constraintEl(c ) = Ev(d).
The situation becomes yet more complicated if generic library classes are assigned to
variables of non-generic supertypes such asObject . Consider the program fragment:

Vector v1 = new Vector();
v1.add("abc");
Object o = v1;
Vector v2 = (Vector)o;

Here, we would like to inferEv(v1 ) = Ev(v2 ) = String , which would require tracking
the flow of actual type parameters through variableo12.

The required constraints are generated by a set of closure rules that is given in
Figure 8. These rules infer, from an existing system of constraints, a set of additional
constraints that unify the actual type parameters as outlined in the examples above. In
the rules of Figure 8,α andα′ denote constraint variables that are not type constants.
Rule (17) states that, if a subtype constraintα≤α′ exists, and another constraint implies
that the type ofα′ or α has formal type parameterT1, then the types ofα and α′

11 In the Java collections library, the type formal parameters of bothVector andList have the
same name,E. In this section, for disambiguation, we subscript them withv andl, respectively.

12 In general, a cast to a parameterized type cannot be performed in a dynamically safe manner
because type arguments are erased at run-time. In this case, however, our analysis is capable
of determining that the resulting cast toVector<String> would always succeed.
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α≤α′ T1(α) or T1(α
′) exists

T1(α) = T1(α
′)

(17)

T1(α) exists
C1〈T1〉 extends/implements C2〈T 〉

C2 is declared asC2〈T2〉
CGen(T2(α), T , α, =)

(18)

Fig. 8. Closure rules.

must have the same actual type parameterT1
13. This rule thus expresses the invariant

subtyping among generic types. Observe that this has the effect of associating type
parameters with variables of non-generic types, in order to ensure that the appropriate
unification occurs in the presence of assignments to variables of non-generic types. For
the example code fragment, a constraint variableEv(o) is created by applying rule (17).
Values computed for variables that denote type arguments of non-generic classes (such
asObject in this example) are disregarded at the end of constraint solution.

Rule (18) is concerned with subtype relationships among generic library classes
such as the one discussed above between classesVector andList . The rule states
that if a variableT1(α) exists, then a set constraints is created to relateT1(α) to the
types of actual type parameters of its superclasses. Note that rule (18) uses the function
CGen, defined in Figure 7. For example, if we have two variables,c of typeList and
d of type Vector , and an initial system of constraints[ d ] ≤ [ c ], andString ≤
Ev(d) , then using the rules of Figure 8, we obtain the additional constraintsEv(d) =
Ev(c ), El(d) = Ev(d), El(c ) = El(d) andEl(c ) = Ev(d).

We conclude this section with a remark about special treatment of theclone()
method. Although methods that overrideObject.clone() may contain arbitrary
code, we assume that implementations ofclone() are well-behaved (in the sense
that the returned object preserves the type arguments of the receiver expression) and
generate constraints accordingly.

6 Constraint Solving

Constraint solution involves computing a set of legal types for each constraint variable
and proceeds in standard iterative fashion. In the initialization phase, an initial type es-
timate is associated with each constraint variable, which is one of the following: (i) a
singleton set containing a specific type (for constants, type literals, constructor calls,
and references to declarations in library code), (ii) the singleton set{B } (for each
constraint variableK(E) declared in library code, whereK is a formal type param-
eter with boundB, to indicate thatE should be left raw), or (iii) the type universe
(in all other cases). In the iterative phase, a work-list is maintained of constraint vari-
ables whose estimate has recently changed. In each iteration, a constraint variableα is
selected from the work-list, and all type constraints that refer toα are examined. For

13 Unless wildcard types are inferred, which we do not consider in this paper.
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each type constraintt = α≤α′, the estimates associated withα andα′ are updated
by removing any element that would violatet, andα and/orα′ are reentered on the
work-list if appropriate (other forms of type constraints are processed similarly). As es-
timates monotonically decrease in size as constraint solution progresses, termination is
guaranteed. The result of this process is a set of legal types for each constraint variable.

Since the constraint system is typically underconstrained, there is usually more than
one legal type associated with each constraint variable. In the final solution, there needs
to be a singleton type estimate for each constraint variable, but the estimates for differ-
ent constraint variables are generally not independent. Therefore, a single type is cho-
sen from each non-singleton estimate, after which the inferencer is run to propagate that
choice to all related constraint variables, until quiescence. The optimization criterion of
this step is nominally to select a type that maximizes the number of casts removed. As a
simple approximation to this criterion, our algorithm selects an arbitrary most specific
type from the current estimate (which is not necessarily unique). Although overly re-
strictive in general (a less specific type may suffice to remove the maximum number of
casts/warnings), and potentially sub-optimal, the approach appears to be quite effective
in practice. The type selection step also employs a filter that avoids selecting “tagging”
interfaces such asjava.lang.Serializable that define no methods, unless such
are the only available choices14.

In some cases, the actual type parameter inferred by our algorithm is equal to the
bound of the corresponding formal type parameter (typically,Object ). Since this does
not provide any benefits over the existing situation (no additional casts can be removed),
our algorithm leaves raw any declarations and allocation sites for which this result is
inferred. The opposite situation, where the actual type parameter of an expression is
completely unconstrained, may also happen, in particular for incomplete programs. In
principle, any type can be used to instantiate the actual type parameter, but since each
choice is arbitrary, our algorithm leaves such types raw as well.

There are several cases where raw types must be retained to ensure that program
behavior is preserved. When an application passes an objecto of a generic library class
to an external library15, nothing prevents that library from writing values intoo’s fields
(either directly, or by calling methods ono). In such cases, we cannot be sure what
actual type parameter should be inferred foro, and therefore generate an additional
constraint that equates the actual type parameter ofo to be the bound of the correspond-
ing formal type parameter, which has the effect of leavingo’s type raw. Finally, Java
1.5 does not allow arrays of generic types [4] (e.g., typeVector<String>[] is not
allowed). In order to prevent the inference of arrays of generic types, our algorithm
generates additional constraints that equate the actual type parameter to the bound of
the corresponding formal type parameter, which has the effect of preserving rawness.

Constraint solution yields a unique type for each constraint variable. Allocation
sites and declarations that refer to generic library classes are rewritten if at least one of
its inferred actual type parameters is more specific than the bound of the corresponding
formal type parameter. Other declarations are rewritten if their inferred type is more spe-

14 Donovan et al. [8] apply the same kind of filtering.
15 The situation where an application receives an object of a generic library type from an external

library is analogous.
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cific than its originally declared type. Any cast in the resulting program whose operand
type is a subtype of its target type is removed.

7 Implementation

We implemented our algorithm in the context of Eclipse, using existing refactoring
infrastructure [3], which provides abstract syntax trees (with symbol binding resolu-
tion), source rewriting, and standard user-interface componentry. The implementation
also builds on the type constraint infrastructure that was developed as part of our ear-
lier work on type-related refactorings [20]. Much engineering effort went into making
the refactoring scalable, and we only mention a few of the most crucial optimizations.
First, a custom-built type hierarchy representation that allows subtype tests to be per-
formed in constant time turned out to be essential. This is currently accomplished by
maintaining, for each type, hash-based sets representing its supertypes and subtypes.
However, we plan to investigate the use of more space-efficient mechanisms [22]. Sec-
ond, as solution progresses, certain constraint variables are identified as being identi-
cally constrained (either by explicit equality constraints, or by virtue of the fact that
Java’s generic types are invariant, as was discussed in Section 2). When this happens,
the constraint variables areunified into an equivalence class, for which a single esti-
mate is kept. A union-find data structure is used to record the unifications in effect as
solution progresses. Third, a compact and efficient representation of type sets turned
out to be crucially important. Type sets are represented using the following expressions
(in the following,S denotes a set of types, andt, t′ denote types): (i)universe, repre-
senting the universe of all types, (ii)subTypes(S), representing the set of subtypes of
types inS, (iii) superTypes(S), representing the set of supertypes of types inS, (iv)
intersect(S, S), (v) arrayOf (S), representing the set of array types whose elements
are inS, and (vi){t, t′, . . .}, i.e., explicitly enumerated sets. In practice, most subtype
queries that arise during constraint solving can be reduced to expressions for which
obvious closed forms exist, and relatively few sets are ever expanded into explicitly
represented sets. Basic algebraic simplifications are performed as sets are created, to
reduce their complexity, as inintersect(subTypes(S), S)) = subTypes(S). Fourth,
we use a new Eclipse compiler API that has been added to improve performance of
global refactorings, by avoiding the repeated resolution of often-used symbol bindings.

The refactoring currently supports three modes of operation. Inbasicmode arbi-
trary declarations may be rewritten, and precise parametric supertypes may be inferred
for user-defined subtypes of generic library classes. Innoderivedmode, arbitrary decla-
rations may be rewritten, but we do not change the supertype of user-defined subtypes
of generic library classes. Thepreserve erasuremode is the most restrictive because it
does not change the supertype of user-defined subtypes of generic library classes and
it preserves the erasure of all methods. In other words, it only adds type arguments to
declarations and hence preserves binary compatibility.

The forthcoming Eclipse 3.1 release will contain a refactoring calledINFER

GENERIC TYPE ARGUMENTS, which is largely based on the concepts and models pre-
sented in this paper and has adopted important parts of the research implementation.
Currently, only thepreserve erasuremode is supported.
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8 Experimental Results

We evaluated our method on a suite of moderate-sized Java programs16 by inferring
actual type parameters for declarations and allocation sites that refer to the standard
collections. In each case, the transformed source was validated using Sun’sjavac
1.5 compiler. Table 2 states, for each benchmark, the number of types, methods, total
source lines, non-blank non-comment source lines, and the total number of declarations,
allocation sites, and casts. We also give the number of allocation sites of generic types,
generic-typed declarations, subtypes of generic types, and “unchecked warnings.”

benchmark benchmark size       generics-related measures

types methods LOC NBNC LOC decls allocs casts allocs decls subtypes warnings

JUnit 59 382 5,265 2,394 1,012 305 54 24 48 0 27

V_poker 35 279 6,351 3,097 1,044 198 40 12 27 1 47

JLex 22 121 7,842 4,333 668 146 71 17 33 1 40

DB 32 222 8,594 3,363 939 225 78 14 36 1 652

JavaCup 36 302 11,087 3,833 1,065 341 595 19 62 0 55

TelnetD 52 397 11,239 3,219 995 128 46 16 28 0 22

Jess 184 756 18,199 7,629 2,608 654 156 47 64 1 692

JBidWatcher 264 1,830 38,571 21,226 5,818 1,698 383 76 184 1 195

ANTLR 207 2,089 47,685 28,599 6,175 1,163 443 46 106 3 84

PMD 395 2,048 38,222 18,093 5,163 1,066 774 75 286 1 183

HTMLParser 232 1,957 50,799 20,332 4,895 1,668 793 72 136 2 205

Jax 272 2,222 53,897 22,197 7,266 1,280 821 119 261 3 158

xtc 1,556 5,564 90,565 37,792 14,672 3,994 1,114 330 668 1 583

Table 2.Benchmark characteristics.

benchmark             casts removed  unchecked warnings remaining program entities rewritten (basic) time (sec.)

basic noderived preserve basic noderived preserve generic generic all generic (basic)

erasure erasure allocs decls decls subtypes

JUnit 24 24 21 2 2 8 24 57 79 0 9.9

V_poker 32 25 25 0 0 1 12 31 31 1 8.4

JLex 48 47 47 6 6 6 16 28 29 1 5.7

DB 40 40 37 0 634 634 13 32 43 1 8.7

JavaCup 488 488 486 2 2 2 19 70 81 0 9.0

TelnetD 38 38 37 0 0 0 15 27 30 0 6.8

Jess 83 83 82 9 642 642 42 58 68 1 15.9

JBidWatcher 207 204 177 5 5 25 74 195 238 3 64.5

ANTLR 86 84 82 5 7 8 45 80 202 1 32.1

PMD 154 135 132 21 35 36 64 278 322 9 42.0

HTMLParser 172 170 168 7 13 13 70 154 220 2 34.6

Jax 158 139 132 82 82 82 87 188 301 2 45.4

xtc 398 394 327 71 73 136 315 664 1,138 3 113.9

Table 3.Experimental results.

We experimented with the three modes—basic, noderived, andpreserve erasure—
that were discussed in Section 7. The results of running our refactoring on the bench-
marks appear in Table 3. The first six columns of the figure show, for each of the three
modes, the number of casts removed and unchecked warnings eliminated. The next four
columns show, for thebasicmode only, the number of generic allocation sites rewritten,
the number of generic declarations rewritten, the total number of declarations rewrit-
ten, and the number of user-defined subtypes for which a precise generic supertype is
inferred, respectively. The final column of the figure shows the total processing time

16 For more details, see:www.junit.org , www.cs.princeton.edu/ ∼appel/modern/java/JLex/ ,
www.cs.princeton.edu/ ∼appel/modern/java/CUP/ , www.spec.org/osg/jvm98/ , vpoker.

sourceforge.net , telnetd.sourceforge.net , www.antlr.org , jbidwatcher.sourceforge.

net , pmd.sourceforge.net , htmlparser.sourceforge.net , andwww.ovmj.org/xtc/ .
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Fig. 9. Percentages of casts removed, for each of the three modes.
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Fig. 10.Percentages of unchecked warnings eliminated, for each of the three modes.

in basicmode (the processing times for the other modes are similar). Processingxtc,
our largest benchmark, took slightly under two minutes on a 1.6GHz Pentium M17 and
about 500Mb of heap space. These results clearly demonstrate our algorithm’s scalabil-
ity and we expect our technique to scale to programs of 500 KLOC or more.

8.1 Casts Removed

Figure 9 shows a bar chart that visualizes the percentage of casts removed in each
benchmark, for each of the three modes. As can be seen from this figure, thebasic
mode removes an average of 48.6% of all casts from each benchmark, thenoderived
mode is slightly less effective with an average of 46.6% of all casts removed, and the
preserve erasuremode is the least effective with 44.5% of all casts removed. When
considering these numbers, the reader should note that the total number of casts given in
Table 2 includes casts that are not related to the use of generic types. However, a manual
inspection revealed that our tool removes the vast majority of generics-related casts,
from roughly 75% to 100%. For example, we estimate that only one-fifth ofANTLR’s
total number of casts relates to the use of collections, which is close to our tool’s 19.4%
removal rate.

17 The processing time forxtccan be broken down as follows: 26.6 seconds for constraint gener-
ation, 71.1 seconds for constraint solving, and 16.3 seconds for source rewriting.
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8.2 Unchecked Warnings Eliminated

A clearer indication of the effectiveness of our algorithm is apparent in the high pro-
portion of “unchecked warnings” eliminated. This statistic is a rough measure of the
improvement in the degree of type safety in the subject program. Figure 10 visualizes
the percentage of unchecked warnings eliminated in each benchmark, for each of the
three modes. As can be seen from this figure, thebasicmode eliminates an average of
91.2% of all unchecked warnings for each benchmark, followed by thenoderivedmode
with an average of 75.6% and thepreserve erasuremode with 72.0%. Note that the
lower averages for thenoderivedand andpreserve erasuremode are largely due to the
very low percentages of unchecked warnings removed on theDB andJessbenchmarks.
We will discuss these cases in detail shortly.

8.3 Analysis of Results

We conducted a detailed manual inspection of the source code of the refactored bench-
marks, in order to understand the limitations of our analysis. Below is a list of several
issues that influenced the effectiveness of our analysis.

arrays. Several benchmarks create arrays of collections. For example,JLexcreates
an array ofVector s, andxtc creates several arrays ofHashMaps. Since Java 1.5
does not permit arrays of generic types, raw types have to be used, resulting in several
unchecked warnings, and preventing some casts from being removed (8 casts in the case
of JLex).

wildcard usage.Several benchmarks (JBidWatcher, HTMLParser, JUnit, Jax and
xtc) override library methods such asjava.lang.ClassLoader.loadClass()
that return wildcard types such asjava.lang.Class<?> . Our method is incapable
of inferring wildcard types, and leaves the return types in the overriding method defini-
tions raw, resulting in unchecked warnings.

polymorphic containers. In several benchmarks (JBidWatcher, Jax, Jess, andxtc),
unrelated types of objects are stored into a container. In such cases, the common upper
bound of the stored objects isjava.lang.Object , and the reference is left raw. The
most egregious case occurs inJax, where many differentHashtable s are stored in a
single local variable. Splitting this local variable prior to the refactoring results in the
elimination of an additional 71 unchecked warnings.

use of clone().Various benchmarks (JBidWatcher, JUnit, JavaCup, Jess, ANTLR,
and xtc) invoke theclone() method on container objects, and cast the result to a
raw container type. Although our analysis tracks the flow of types through calls to
clone() , rewriting the cast is not helpful, because the compiler would still produce a
warning18. Our tool does not introduce casts to parameterized types, which means that
unchecked warnings will remain.

static fields. The xtc benchmark contains 11 references to
Collections.EMPTY LIST , a static field of the raw typeList . Several

18 While casts to parameterized types such asVector<String> are allowed in Java 1.5, such
casts will succeed if the expression being casted is an instance of the corresponding erased
type (Vector ), and compilers produce a warning to inform users of this unintuitive behavior.
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declarations will need to remain raw, resulting in unchecked warnings. It is interesting
to note that the Java 1.5 standard libraries provide a generic method<T> List<T>
emptyList() that enables polymorphic use of a shared empty list.

user-defined subtypes of generic library classes.In most cases, the in-
ference of precise generic supertypes for user-defined subclasses of generic
library classes has little impact on the number of casts removed and warn-
ings eliminated. However, theDB and Jess benchmarks both declare a sub-
class TableOfExistingFiles of java.util.Hashtable that con-
tains 600+ calls of the formsuper.put(s1,s2) , where s1 and s2 are
String s. In basic mode, TableOfExistingFiles is made a subclass
of Hashtable<String,String> and the unchecked warnings for these
super-calls are eliminated. In thenoderived and preserve erasuremodes,
TableOfExistingFiles remains a subclass of rawHashtable , and a
warning remains for each call toput , thus explaining the huge difference in the
number of unchecked warnings.

9 Context Sensitivity

Conceptually, our analysis can be extended with context-sensitivity by simply gener-
ating multiple sets of constraints for a method, one for each context. In principle, this
can result in tighter bounds on parametric types when collections are used in polymor-
phic methods, and in the removal of more casts. Moreover, we could introduce type
parameters on such polymorphic methods to accommodate their use with collections
with different type parameters.

Figure 11(a) shows an example program that illustrates this scenario using a method
reverse() for reversing the contents of aVector . Thereverse() method is in-
voked by methodsfloatUse() andintUse() , which pass itVector s ofFloat s
andInteger s, respectively. Applying the previously presented analysis would deter-
mine that both vectors reach methodreverse() and infer an element type that is a
common upper bound ofFloat andInteger such asNumber. Therefore, all allo-
cation sites and declarations in the program would be rewritten toVector<Number> ,
and neither of the two casts could be removed.

However, if we create two analysis contexts forreverse —one for each call site—
then one can infer bounds ofFloat andInteger for the two creation sites of vec-
tors. Conceptually, this is equivalent to analyzing a transformed version of the pro-
gram that contains two clones of thereverse() method, one of which is called from
intUse() , the other fromfloatUse() . The two contexts ofreverse would re-
ceive different type estimates for parameterv , and our code transformation could ex-
ploit this information by transformingreverse() into a generic method, and remove
both casts. This result is shown in Figure 11(b).

We implemented a context-sensitive version of the previously presented algorithm,
in which we used a low-cost variant of Agesen’s Cartesian Product Algorithm [1, 2]
to determine when different contexts should be created for a method, and reported the
results in a previous technical report [19]. To our surprise, we could not find any non-
synthetic benchmarks where the use of context-sensitive analysis resulted in the removal
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class ContextExample {
void floatUse() {

Vector v =
new Vector();

v.add(new Float(3.14));
reverse(v);
Float f = (Float)v.get(0);

}
void intUse() {

Vector v =
new Vector();

v.add(new Integer(6));
reverse(v);
Integer i = (Integer)v.get(0);

}
void reverse(Vector v) {

for(int i=0;i<v.size()/2;i++) {
Object temp = v.get(i);
v.set(i,v.get(v.size() - i));
v.set(v.size() - i,temp);

}
}

}

class ContextExample {
void floatUse() {

Vector<Float> v =
new Vector<Float> ();

v.add(new Float(3.14));
reverse(v);
Float f = v.get(0) ;

}
void intUse() {

Vector<Integer> v =
new Vector<Integer> ();

v.add(new Integer(6));
reverse(v);
Integer i = v.get(0) ;

}
<T> void reverse(Vector<T> v) {

for(int i=0;i<v.size()/2;i++) {
T temp = v.get(i);
v.set(i,v.get(v.size() - i));
v.set(v.size() - i,temp);

}
}

}

(a) (b)

Fig. 11.Example program that illustrates the need for context-sensitive analysis.

of additional casts. We believe that there are two major reasons why context-sensitive
analysis was not useful. The first is that the standard libraries already provide a rich set
of functionality, and there is relatively little need for writing additional helper methods.
Second, the relatively few applications that do define helper methods that operate on
collections tend to use these methods monomorphically. An investigation of larger ap-
plications might turn up more opportunities for context-sensitive analysis, but it is our
conjecture that there will be relatively few such opportunities.

10 Related Work

The work most closely related to ours is that by Donovan et al. [8], who also designed
and implemented a refactoring for migrating an application to a generic version of a
class library that it uses. Like us, Donovan et al. evaluate their algorithm by inferring
generic types for occurrences of the standard collections in a set of Java benchmarks,
and measure their success in terms of the number of casts that can be removed. There
are a number of significant differences between the two approaches.

First, the approach by Donovan et al. relies on a context-sensitive pointer analysis19

based on [24, 1] to determine the types stored in each allocation site for a generic li-
brary class. Moreover, Donovan et al. create “guarded” constraints that may or may not
be applied to the type constraint system depending on the rawness of a particular decla-
ration, and their solving algorithm may require (limited) backtracking if such a rawness

19 The context-sensitive variant of our algorithm [19] discussed in Section 9 is also based on the
Cartesian Product Algorithm, but it uses context-sensitivity for a different purpose, namely to
identify when it is useful to create generic methods.
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decision leads to a contradiction later on. Our approach is simpler because it requires
neither context-sensitive analysis nor backtracking, and therefore has greater potential
for scaling to large applications. The differences in observed running times seem to
bear this out (Donovan et al. report a running time of 462 seconds on the∼27 KLOC
HTMLParserusing a 3GHz Pentium 4 with 200Mb heap, while our tool requires 113.9
seconds on a∼90 KLOC program using a 1.6GHz Pentium M using 512Mb heap).

Second, there are several differences in the kinds of source transformations allowed
in the two works: (i) Donovan et al. restrict themselves to transformations that do not
affect the erasure of a class, while our approach allows the modification of declarations,
(ii) Donovan’s work was done prior to the release of Java 1.5 and their refactoring tool
conforms to an earlier specification of Java generics, which does not contain wildcard
types and which allows arrays of generic types, and (iii) our method is capable of infer-
ring precise generic supertypes for subtypes of generic library classes that are defined in
application code (see, e.g., Figure 2 in which we infer that classMyIterator extends
Iterator<String> ). Third, our tool is more practical because it is fully integrated
in a popular integrated development environment.

For a more concrete comparison, we manually inspected the source generated by
both tools for 5 of the 7 benchmarks analyzed in [8]:JLex, JavaCup, JUnit, V poker
andTelnetD. A head-to-head comparison onANTLRandHTMLParserwas impossible
due to differences in the experimental approach taken20.

In most cases, our tool was able to remove the same or a higher number of generics-
related casts than did Donovan’s, in a small fraction of the time. The differences in
casts removed derive from several distinct causes. First, our tool’s ability to infer type
parameters for user-defined subtypes of parametric types permits the removal of addi-
tional casts (e.g., 6 additional casts could be removed inV poker in clients of a local
class extendingHashtable ). Second, Donovan’s tool was implemented before the
final Java 1.5 specification was available and conforms to an early draft, in which pa-
rameterized types were permitted to be stored in arrays; the final specification, however,
requires that such generic types be left raw. As a result, Donovan’s tool infers non-raw
types for certain containers inJLexthat our tool (correctly) leaves raw, preventing the
removal of certain casts. Third, our algorithm modelsObject.clone() so that type
parameter information is not lost across the call boundary. As a result, our tool removes
all 24 generics-related casts fromJUnit, while Donovan’s tool only removes 16.

Von Dincklage and Diwan [23] address the problems of converting non-generic Java
classes to use generics (parameterization) and updating non-generic usages of generic
classes (instantiation). Their approach, like ours, is based on constraints. Von Dinck-
lage’s tool employs a suite of heuristics that resulted in the successful parameterization
of several classes from the Java standard collections. However, the code of those classes
had to be manually modified to eliminate unhandled language constructs before the tool
could be applied. The tool’s correctness is based on several unsound assumptions (e.g.,
public fields are assumed not to be accessed from outside their class, and the type of

20 Donovan et al. identified classes in these benchmarks that could be made generic, manually
rewrote them accordingly, and treated them as part of the libraries. As a result, the number
of removed casts that they report cannot be directly compared to ours, as it includes casts
rendered redundant by the generics that they manually introduced.
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the argument toequals is assumed to be identical to the receiver’s type), and it can
alter program behavior by modifying virtual method dispatch due to changed overriding
relationships between methods. No results are given about how successful the tool is in
instantiating non-generic classes with generic information.

The problem of introducing generic types into a program to broaden its use has
been approached before by several researchers. Siff and Reps [18] focused on trans-
lating C functions into C++ function templates by using type inference to detect latent
polymorphism. In this work, opportunities for introducing polymorphism stem from
operator overloading, references to constants that can be wrapped by constructor calls,
and from structure subtyping. Duggan [9] gives an algorithm (not implemented) for
genericizing classes in a small Java-like language into a particular polymorphic vari-
ant of that language. This language predated the Java 1.5 generics standard by several
years and differs in a nontrivial number of respects. Duggan does not address the prob-
lem of migrating non-generic code to use generics. The programming environments
CodeGuide [6] and IntelliJ IDEA [12] provide “Generify’’ refactorings that are similar
in spirit to ours. We are not aware of the details of these implementations, nor of the
quality of their results.

11 Conclusions and Future Work

We have presented a refactoring that assists programmers with the adoption of a generic
version of an existing class library. The method infers actual type parameters for decla-
rations and allocation sites that refer to generic library classes using an existing frame-
work of type constraints. We implemented this refactoring in Eclipse, and evaluated the
work by migrating a number of moderate-sized Java applications that use the Java col-
lections framework to Java 1.5’s generic collection classes. We found that, on average,
48.6% of the casts related to the use of collections can be removed, and that 91.2% of the
unchecked warnings are eliminated. Our approach distinguishes itself from the state-
of-the-art [8] by being more scalable and by its ability to accommodate user-defined
subtypes of generic library classes. The “Infer Generic Type Arguments” in the forth-
coming Eclipse 3.1 release is largely based on the concepts presented in this paper, and
has adopted important parts of our implementation.

Plans for future work include the inference of wildcard types. As indicated in Sec-
tion 8.3, doing so will help remove additional casts and unchecked warnings.
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3. BÄUMER, D., GAMMA , E., AND K IEŻUN, A. Integrating refactoring support into a Java
development tool. InOOPSLA’01 Companion(October 2001).

4. BRACHA, G., COHEN, N., KEMPER, C., ODERSKY, M., STOUTAMIRE, D., THORUP, K.,
AND WADLER, P. Adding generics to the Java programming language, final release. Tech.
rep., Java Community Process JSR-000014, September 2004.

5. BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND WADLER, P. Making the future safe
for the past: Adding genericity to the Java programming language. InProc. of OOPSLA
(1998), pp. 183–200.

6. Omnicore codeguide.http://www.omnicore.com/codeguide.htm .
7. DE SUTTER, B., TIP, F., AND DOLBY, J. Customization of Java library classes using type

constraints and profile information. InProc. of ECOOP(2004), pp. 585–610.
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