
Declarative Object Identity Using
Relation Types�

Mandana Vaziri, Frank Tip, Stephen Fink, and Julian Dolby

IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
{mvaziri,ftip,sjfink,dolby}@us.ibm.com

Abstract. Object-oriented languages define the identity of an object to
be an address-based object identifier. The programmer may customize
the notion of object identity by overriding the equals() and hashCode()
methods following a specified contract. This customization often intro-
duces latent errors, since the contract is unenforced and at times impos-
sible to satisfy, and its implementation requires tedious and error-prone
boilerplate code. Relation types are a programming model in which ob-
ject identity is defined declaratively, obviating the need for equals()
and hashCode() methods. This entails a stricter contract: identity never
changes during an execution. We formalize the model as an adaptation
of Featherweight Java, and implement it by extending Java with relation
types. Experiments on a set of Java programs show that the majority of
classes that override equals() can be refactored into relation types, and
that most of the remainder are buggy or fragile.

1 Introduction

IX: That every individual substance expresses the whole universe in its own
manner and that in its full concept is included all its experiences together with
all the attendant circumstances and the whole sequence of exterior events.
G. W. Leibniz, Discourse on Metaphysics (1686)

Object-oriented languages such as Java and C# support an address-based no-
tion of identity for objects or reference types. By default, the language consid-
ers no two distinct object instances equal; Java’s java.lang.Object.equals()
tests object identity by comparing addresses. Since programmers often intend
alternative notions of equality, classes may override the equals() method, im-
plementing an arbitrary programmer-defined identity relation.

In order for standard library classes such as collections to function properly,
Java mandates that an equals() method satisfy an informal contract. First, it
must define an equivalence relation, meaning that equals() should encode a
reflexive, symmetric, and transitive relation. Second, the contract states that “it
must be consistent”, i.e., two objects that are equal at some point in time must
remain equal, unless the state of one or both changes. Third, no object must be
� This work has been supported in part by the Defense Advanced Research Projects

Agency (DARPA) under contract No. NBCH30390004.

E. Ernst (Ed.): ECOOP 2007, LNAI 4609, pp. 54–78, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Declarative Object Identity Using Relation Types 55

equal to null. Furthermore, when a programmer overrides equals(), he must
also override hashCode() to ensure that equal objects have identical hash-codes.

Programmer customization of identity semantics causes problems for several
reasons. First, creating an equivalence relation is often non-trivial and, in some
cases, impossible [12] (for details, see Section 2). Second, the language has no
mechanism to enforce the contract either statically or dynamically, leaving plenty
of rope by which programmers routinely hang themselves. We found buggy
or fragile equals() methods in nearly every Java application that we exam-
ined. Third, programmer identity tests often comprise repetitive and error-prone
boiler-plate code, which must be updated manually as the code evolves. Even
more boiler-plate code arises in patterns such as caching via hash-consing [18].

To alleviate these problems, we propose a programming model in which ob-
ject identity is specified declaratively, without tedious and error-prone equals()
and hashCode() methods. The model features a new language construct called
a relation type. A relation type declares zero or more fields, and designates a
(possibly empty) subset of these as immutable key fields, i.e. the field itself may
not be mutated. An instance of a relation type is called a tuple. A tuple’s iden-
tity is fully determined by its type and the identities of the instances referred
to by its key fields. In other words, two tuples a and b are equal if and only if:
(i) a and b are of the same type and, (ii) corresponding key fields in a and b are
equal. Conceptually, our programming model provides a relational view of the
heap, as a map from identities to their associated mutable state. One can think
of tuples with the same identity as pointing to the same heap location, and our
model permits efficient implementations (e.g., the use of space-efficient shared
representations in combination with pointer-equality for fast comparisons).

Our model enforces a stricter contract than Java’s since object identity never
changes, and tuples of different types must have different identities. Several con-
cepts arise as special cases of relation types: (i) a class of objects is one with an
address as its only key field, (ii) a value-type [5,15] is one with only key fields,
and (iii) a Singleton [17] is a type with no key fields.

We formalize our programming model as an adaptation of Featherweight Java,
and prove that hash-consing identities preserves semantics. We implemented
relation types in a small extension of Java called RJ, and created an RJ-to-Java
compiler. We examined the classes that define equals() methods in several Java
applications and refactored these classes to use relation types instead. We found
that the majority of classes that define equals() can be refactored with minimal
effort into relation types, and that most of the remainder are buggy or fragile.

To summarize, this paper makes the following contributions:

1. We present a programming model in which object identity is defined declara-
tively using a new language construct called relation types. By construction,
relation types satisfy a strict contract that prevents several categories of
bugs, and admits efficient implementations. Objects, value types, and sin-
gletons arise as special cases of the model.

2. We formalize the model using an adaptation of Featherweight Java, and
prove that hash-consing is a safe optimization in this model.

56 M. Vaziri et al.

3. We extended Java with relation types (RJ), and created an RJ-to-Java com-
piler. Experiments indicate that the majority of classes that define equals()
in several Java applications can be refactored into relation types, and that
most of the remainder are buggy or fragile.

2 Overview of RJ

This section examines Java’s equality contract and illustrates several motivating
problems. We then informally present our new approach based on relation types.

2.1 Java’s Equality Contract

The contract for the equals() method in java.lang.Object [1] states that:

The equals method implements an equivalence relation on non-null object references:

(1) It is reflexive: for any non-null reference value x, x.equals(x) should return true.
(2) It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if

and only if y.equals(x) returns true.
(3) It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and

y.equals(z) returns true, then x.equals(z) should return true.
(4) It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y)

consistently return true or consistently return false, provided no information used in equals
comparisons on the objects is modified.

(5) For any non-null reference value x, x.equals(null) should return false.

Furthermore, whenever one overrides equals(), one must also override
hashCode(), to ensure that equal objects have identical hash-codes.

class Point {
int x;
int y;
public boolean equals(Object o){

if (!(o instanceof Point))
return false;

return ((Point)o).x == x
&& ((Point)o).y == y;

}
}

class ColorPoint extends Point{
Color color;
public boolean equals(Object o){

if (!(o instanceof Point))
return false;

if (!(o instanceof ColorPoint))
return o.equals(this);

return super.equals(o) &&
((ColorPoint)o).color == color;

}
}

Fig. 1. A class Point and its subclass ColorPoint

This contract has several problems. First, it is impossible to extend an in-
stantiatable class with a new field, and have the subclass be comparable to
its superclass, while preserving the equivalence relation. Consider the example
shown in Figure 1 (taken from [12]). Here, the equals() method of ColorPoint
must be written as such to preserve symmetry. However, this violates transitivity
as indicated in [12]. If one defines three points as follows:

ColorPoint p1 = new ColorPoint(1, 2, Color.RED);
Point p2 = new Point(1,2);
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);

Declarative Object Identity Using Relation Types 57

then p1.equals(p2) is true and so is p2.equals(p3), but p1.equals(p3) is
false since color is taken into account.

A second problem with the contract is that the consistency (non-)requirement
allows the identity relation defined by the equals()method to change over time:
equals() may refer to mutable state. If an object’s identity relation changes
while the object resides in a collection, the collection’s operations (e.g. add()
and remove()) will not function as intended.

Most importantly, neither the compiler nor the runtime system enforces the
contract in any way. If the programmer mistakenly violates the contract, the
problem can easily manifest as symptoms arbitrarily far from the bug source.
A correct implementation involves nontrivial error-prone boilerplate code, and
mistakes easily and commonly arise, as we shall see in Section 2.2.

Java’s contract (but not C#’s) is also under-specified because it permits
equals() and hashCode() to throw run-time exceptions that could be avoided.

2.2 Examples

We carefully examined several applications, and found many problems in imple-
mentations of equals() and hashCode() methods, such as:

(a) Dependence on mutable state. Figure 2(a) shows a fragile code fragment
from org.hsqldb.GroupedResult.ResultGroup in hsqldb, where equals()
and hashCode() refer to a mutable field row of type Object[], which is up-
dated elsewhere. If the program modifies a row while a ResultGroup is
stored in a collection, then subsequent attempts to retrieve elements from
that collection may fail or produce inconsistent results. While the equals()
contract does not prohibit equals() and hashCode() from referring to mu-
table state, it “handles” these cases by declaring that “all bets are off” when
the identity relation changes. The programmer must carefully maintain the
non-local invariant that mutations do not overlap with relevant collection
lifetimes, often resulting in buggy or hard-to-maintain code.

(b) Asymmetry. Figure 2(b) shows excerpts from two classes from jfreechart,
one a superclass of the other. These equals() implementations are asym-
metric: it is easy to construct a NumberAxis a and a CyclicNumberAxis b
such that a.equals(b) but !b.equals(a). This violates the contract and
may produce inconsistent results if a heterogeneous collection contains both
types of objects.

(c) Contract for equals()/hashCode(). In Figure 2(c), from bcel, equals()
and hashCode() refer to different subsets of the state, so two equal objects
may have different hashcodes. The developers apparently knew of this prob-
lem as is evident from the comment “If the user changes the name or type,
problems with the targeter hashmap will occur”.

(d) Exceptions and null values. Figure 2(d) shows an equals() method
from pmd, which has two immediate problems. First, if the parameter o is
null, the method throws a NullPointerException rather than return false
as per the contract. Second, the code will throw a ClassCastException if
the object is ever compared to one of an incompatible type.

58 M. Vaziri et al.

class ResultGroup {
Object[] row;
int hashCode;
private ResultGroup(Object[] row) {

this.row = row;
hashCode = 0;
for (int i = groupBegin;

i < groupEnd; i++) {
if (row[i] != null) {

hashCode += row[i].hashCode();
}

}
}
public int hashCode() { return hashCode; }
public boolean equals(Object obj) {

if (obj == this) { return true; }
if (obj == null ||
!(obj instanceof ResultGroup)) {
return false;

}
ResultGroup group = (ResultGroup)obj;
for (int i = groupBegin;

i < groupEnd; i++) {
if (!equals(row[i], group.row[i])) {

return false;
}

}
return true;

}
private boolean equals(Object o1,

Object o2) {
return (o1 == null) ? o2 == null

: o1.equals(o2);
}

}

(a) Program fragment taken from hsqldb

public class NumberAxis extends ValueAxis ... {
private boolean autoRangeIncludesZero;
public boolean equals(Object obj) {

if (obj == this) { return true; }
if (!(obj instanceof NumberAxis)) {
return false;

}
if (!super.equals(obj)) { return false; }
NumberAxis that = (NumberAxis) obj;
if (this.autoRangeIncludesZero !=

that.autoRangeIncludesZero) {
return false; }

...
}

public class CyclicNumberAxis
extends NumberAxis {

protected double period;
public boolean equals(Object obj) {

if (obj == this) { return true; }
if (!(obj instanceof CyclicNumberAxis)) {
return false;

}
...

...
if (!super.equals(obj)) { return false; }
CyclicNumberAxis that =

(CyclicNumberAxis) obj;
if (this.period != that.period) {

return false;
}
...

}

(b) Program fragment taken from jfreechart

public class LocalVariableGen implements ... {
public int hashCode() {
//If the user changes the name or type,
//problems with the targeter hashmap
//will occur
int hc = index ^ name.hashCode()

^ type.hashCode();
return hc;

}
public boolean equals(Object o) {
if (!(o instanceof LocalVariableGen)) {

return false;
}
LocalVariableGen l = (LocalVariableGen) o;
return (l.index == index)

&& (l.start == start)
&& (l.end == end);

}
}

(c) Program fragment taken from bcel

public class MethodNameDeclaration
public boolean equals(Object o) {
MethodNameDeclaration other =

(MethodNameDeclaration) o;
if (!other.node.getImage().

equals(node.getImage())) {
return false;

}
...

}

(d) Program fragment taken from pmd

public class emit {
protected static void emit action code(...){
...
if (prod.action() != null &&

prod.action().code string() != null &&
!prod.action().equals(""))
out.println(prod.action().code string());

...
}

}

(e) Program fragment taken from javacup

Fig. 2. Problems with the equality contract encountered in practice

(e) Inadvertent test of incomparable types. Figure 2(e) shows a buggy
code fragment taken from method java cup.emit.emit action code() in
javacup. Here, the last part of the condition, !prod.action().equals(""),

Declarative Object Identity Using Relation Types 59

compares an object of type java cup.action part with an object of type
String. Such objects are never equal to each other, hence the condition triv-
ially succeeds. This bug causes spurious blank lines in the parser that is gen-
erated by javacup. We confirmed with the developers [26] that they intended
to write !prod.action().code string().equals(""). More generally, the
problem stems from the property that objects of arbitrary types may be
considered equal, precluding compile-time type-based feasibility checks.

2.3 Revised Equality Contract

We propose a model that forces programmers to define object identity declar-
atively by explicitly indicating the fields in a type that comprise its identity,
which automatically induces an equivalence relation ==R. Our programming
model enforces a new equality contract that differs from Java’s as follows:

– It is enforced: The language implementation generates ==R automatically
and forbids the programmer from manipulating this relation explicitly.

– It is more strict than the original contract in item (4’); object identity cannot
change throughout the execution.

– The problems with defining an equivalence relation in the presence of sub-
classing are resolved by making relation types and their subtypes incompa-
rable: x ==R y yields false if x and y are not of exactly the same type.

The revised contract, shown below, is consistent with Java’s equality contract.
Note that items (1’), (2’),(3’), and (5’) are essentially the same as before.

Revised Equality Contract for ==R identity relation, on non-null references:

(1’) ==R is reflexive: For any non-null reference value x, x ==R x must return true.
(2’) ==R is symmetric: For any non-null reference values x and y, x ==R y returns true if and

only if y ==R x returns true.
(3’) ==R is transitive: For any non-null reference values x, y, and z, if x ==R y returns true and

y ==R z returns true, then x ==R z must return true.
(4’) For any non-null reference values x and y, multiple tests x ==R y consistently return true,

or consistently return false throughout the execution.
(5’) For any non-null reference value x, x ==R null must return false.

2.4 Relation Types

Our programming model introduces a new notion of class called a relation type.
We informally present the notion here; Section 3 defines the semantics formally.

A relation type resembles a class in Java, except a programmer may not
override the equals() and hashCode() methods. Instead, the programmer must
designate a (possibly empty) subset of instance fields as key fields, using the
keyword key. Key fields are implicitly final and private. We call an instance
of a relation type a tuple, and its identity is fully determined by its type and the
identities of the instances referred to by its key fields.

The programmer does not explicitly allocate a tuple using new; instead, he
calls a predefined id() method, whose formal parameters correspond exactly

60 M. Vaziri et al.

to the types of the key fields (including all those declared in its supertypes).
Informally, the id() method does an associative lookup to find the tuple with
the same identity. If no such tuple is found, id() creates a new tuple.

relation Car {
key String model;
key int year;
key String plate;

}

relation Person {
key int SSN;
Name name;

}

relation Name {
key String first;
key String last;

}

relation FullName extends Name {
key String middle;
String nickname;

}

class Policy { ... }

relation CarInsurance {
key Person person;
key Car car;
Policy policy;
int computePremium() { ... }

}

relation PolicyMgr {
// no key fields
public void addPolicy(Policy p){

policies.add(p);
}

List<Policy> policies =
new ArrayList<Policy>();

}

1. public static void main(String[] args){
2. Person p1 = Person.id(123);
3. Person p2 = Person.id(123);
4. Person p3 = Person.id(456);
5. // p1 == p2
6. // p1 != p3
7. // p1.SSN = 789 --> compile error

8. Name n1 = Name.id("Alice","Jones");
9. Name n2 = FullName.id("Alice","Jones","Leah");
10. p1.name = n1;
11. // n1 != n2
12. // n1 == ((FullName)n2).toName()
13. // p2.name.first == "Alice"
14. // p2.name.last == "Jones"

15. Policy pol1 = new Policy();
16. Policy pol2 = new Policy();
17. // pol1 != pol2

18. Car c1 = Car.id("Chevy",2004,"DZN-6767");
19. CarInsurance cins = CarInsurance.id(p1,c1);
20. cins.policy = pol1;
21. cins.computePremium();

22. PolicyMgr pm = PolicyMgr.id();
23. pm.add(pol1);
24. pm.add(pol2);

25. Set<Person> people = new HashSet<Person>();
26. people.add(p1);
27. people.add(p3);
28. // people.contains(p2) is true

29. p2.name = n2;
30. // ((FullName)p1.name).middle == "Leah";
31. // people.contains(p2) is still true
32. }

Fig. 3. Example of relation types

Figure 3 shows an example of pseudo-code with relation types. Relation type
Car declares key fields model, year, and plate. This means that two cars with
the same model, year and plate have the same identity and are indistinguish-
able. Since Car has no mutable state, it corresponds to a value type [5].

Relation types are more general than value types because tuples may contain
mutable state. Consider relation type Person, which has a key field SSN and a
mutable field Name. This means that there exists at most one Person tuple with
a given SSN, and that assignments to SSN are forbidden. So on the right side
of the example, variables p1 and p2 refer to the same tuple (they are aliased).
Assignments to the non-key field name are allowed (see line 10).

Inheritance among relation types resembles single inheritance for classes: sub-
types may add (but not remove) additional key fields as well as other instance

Declarative Object Identity Using Relation Types 61

fields and methods. A subtype inherits methods and fields declared in a relation
supertype. A relation type and its subtype are incomparable; subtype tuples
have different identities from supertype tuples. Should the programmer want
to compare a tuple to the corresponding subtuple of a subtype, the language
provides predefined coercion methods to convert subtypes to supertypes.

Consider the relation type Name and its subtype FullName in the figure. Tu-
ples of these relations have different identities (see line 11), and the predefined
coercion operator toName() must be used to compare the corresponding key
fields of these relations (see line 12). The assertions shown on lines 13 and 14
follow from the fact that p1 and p2 refer to the same tuple.

Conceptually, Java classes (with address-based identity) correspond to rela-
tion types with an implicitly defined key field address, assigned a unique value
by an object constructor. We use the class keyword to indicate a relation type
with an implicit address field. For example, the tuples (objects) of type Policy
created at lines 15 and 16 have different identities (see line 17). Note that classes
may not explicitly declare key fields or inherit from relation types that do. Our
relation keyword indicates the absence of an address key field.

The relation type CarInsurance illustrates how relation types provide a re-
lational view of the heap. The CarInsurance type maps distinct identities to
mutable state stored in the policy field. By analogy to relational databases,
the CarInsurance type resembles a relational table with three columns, two of
which are keys. The type also defines methods such as computePremium() that
may refer to all of all state of a particular CarInsurance tuple.

If a relation type has no key fields, then it corresponds to the Singleton

design pattern [17], since its identity consists solely of the type. Figure 3 shows
a (singleton) relation type PolicyMgr that provides access to a globally accessible
list of insurance policies. Lines 22–24 access this list.

Finally, lines 25–31 illustrate what happens when we insert tuples into collec-
tions. Here, we define a set people and add p1 and p3 to it. Since p1 and p2
are equal, the test people.contains(p2) returns true. Now if we modify p2 by
changing its name field (line 26), p2 remains in the set as expected (line 28). The
result of the test remains unchanged because the identity of p2 did not depend
on mutable state, and p2 was not removed from the set.

2.5 Lifetime Management and Namespaces

Thus far, we assumed that each relation type provides a global namespace for
tuples of a given type. Under this model, the program can support at most one
tuple with a given identity. Now, consider the case where a tuple t has a non-
key field that points to an object v. Normally, if t becomes garbage, and there
are no other references to v, then v becomes garbage. However, if the program
can reconstruct t’s identity (which is the case if, e.g., all of t’s key fields are of
primitive types), then the implementation cannot know whether the program
will try to retrieve v in the future. In such cases, t and v are immortal and
cannot be garbage-collected, effectively causing a memory leak.

62 M. Vaziri et al.

For a more flexible, practical model, the programmer can use scopes to pro-
vide separate namespaces for a type, and also to control tuple lifetime. Con-
sider the pseudo-code of Figure 4(a). The code creates two Persons, each with
the same identity (3), but which reside in different scopes. First, the program
creates a namespace of type Scope<Person> via a call to a built-in method
Person.newScope(). Type Scope<Person> provides an id() method with the
same signature as that of Person. Then, rather than creating a tuple from global
namespace via Person.id(), the program allocates a tuple from a particular
named scope (e.g., s1.id()).

Regarding garbage collection: a tuple becomes garbage when the program
holds no references to its containing scope (provided all of its key fields have
become garbage). In the example code, if foo returns jack, then jane may be
garbage-collected when foo returns, since there will be no live references to jane
nor its scope s2.

Person foo() {
Scope<Person> s1 = Person.newScope();
Person jack = s1.id(3);
jack.setName(Name.id("Jack","Sprat"));
Scope<Person> s2 = Person.newScope();
Person jane = s2.id(3);
jane.setName(Name.id("Jane","Sprat"));
return (*) ? jack : jane;

}

Person foo() {
Object s1 = new Object();
Person jack = Person.id(3,s1);
jack.setName(Name.id("Jack","Sprat"));
Object s2 = new Object();
Person jane = Person.id(3,s2);
jane.setName(Name.id("Jane","Sprat"));
return (*) ? jack : jane;

}
(a) (b)

Fig. 4. Example of scopes

The base programming model can emulate programming with scopes by adding
to each relation type an implicit key field called scope, whose type is an object.
This will be discussed further in Section 4.1.

3 A Core Calculus for RJ

We formally define a core calculus for the RJ language as an adaptation of Feath-
erweight Java [19] (FJ). For simplicity, we adopt the notation and structures of
the model presented in [19]. RJ differs from Featherweight Java in that it has
relation types instead of classes, and allows assignment.

3.1 Syntax

We use the notation x̄ to denote a possibly empty sequence, indexed starting at
1, and • for the empty sequence. The size of the sequence is indicated by #x̄.
We write x̄ ∈ X to denote x1 ∈ X, · · · , x#x̄ ∈ X (and similarly x̄ �∈ X). For any
partial function F , we write Dom(F) for the domain of F . The notation F (x̄) is
short for the sequence F (x1), · · · , F (xn).

We use L to denote a relation type declaration, and M a method. We write R,
S and T for relation type names; f , g and h for field names; x for variables; e and

Declarative Object Identity Using Relation Types 63

c for expressions; l and a for memory locations, with subscripts as needed. The
notation “R̄ x̄” is shorthand for the sequence “R1 x1, · · · , Rn xn” and similarly
“R̄ f̄ ;” is shorthand for the sequence declarations “R1 f1; · · · Rn fn;” for some n.
The declaration “key R̄ f̄ ;” is similar with the annotation ‘key’ preceding every
declaration in the sequence.

The syntax of the RJ language is shown below:

L ::= relation R extends R { key R̄ f̄ ; R̄ f̄ ; M̄ }
M ::= R m(R̄ x̄) { return e; }
e ::= x | e.f | e.m(ē) | e == e | if e then e else e | e.f ← e | R.id(ē) | l

A relation type is declared to be a subtype of another using the extends keyword
and consists of series of field declarations and a series of method declarations.
Some field declarations are marked with the keyword key and represent the key
fields of the relation type. Key fields are immutable, and non-key fields may or
may not be mutable. We assume that there is an uninstantiatable relation type
Relation at the top of the type hierarchy with no fields and no methods. As
in Featherweight Java, a subtype inherits fields and methods, field declarations
are not allowed to shadow fields of supertypes, and methods may override other
methods with the same signature. A method declaration specifies a method’s
return type, name, formal parameters, and body. The body consists of a single
statement which returns an expression e, which may refer to formal parameters
and the variable this. Note that relation types do not have constructors. Instead,
a tuple is constructed using a method id() with predefined functionality.

An expression consists of a variable, a field access, a method call, an equality
test, or an if–then–else construct. Other forms are an assignment e.f ← e,
which assigns to e.f and evaluates to the value being assigned, or a relation
construction expression R.id(ē), which takes as many parameters as there are
key fields in R and its supertypes (in the same order). Informally, R.id(ē)
refers to the tuple of type R whose arguments are denoted by ē. If such a tuple
already exists, then it is returned (with all existing non-key state), otherwise
it is created with all non-key fields set to null. Finally, an expression may be
a memory location l, which is used for defining semantics only and not by the
programmer.

A relation table RTable is a mapping from a relation type name R to a decla-
ration of the form “relation R ...”. RTable is assumed to contain an entry for
every relation type except for the top level type Relation. The subtype relation
(denoted <:) is obtained in a customary way [19]. An RJ program consists of a
pair (RTable, e) of a relation table and an expression.

3.2 Semantics

Figure 5 shows some auxiliary functions needed to define the reduction rules of
RJ. The function keys() returns the set of key fields of a relation type, while
nonKeys() returns its non-key fields. Function fields() returns the sequence of
all fields of a relation type. Partial function mbody(m, R) looks up the body of

64 M. Vaziri et al.

method named m for relation type R and returns a pair of formal parameters
and the expression that constitutes its body, written as x̄.e. The notation m �∈ M̄
means that there is no method declaration for a method named m in M̄ . We do
not deal with method overloading as in Featherweight Java.

The arity of a relation type R is the number of key fields in R and all its
supertypes, and is denoted by |R|.

Key lookup:

keys(Relation) = • relation R extends S {key T̄ ḡ; R̄ f̄ ; M̄} keys(S) = S̄ h̄

keys(R) = S̄ h̄, T̄ ḡ

Non-Key lookup:

nonKeys(Relation) = •
relation R extends S {key T̄ ḡ; R̄ f̄ ; M̄}

nonKeys(S) = S̄ h̄

nonKeys(R) = S̄ h̄, R̄ f̄

Field lookup:
fields(R) = keys(R), nonKeys(R)

Method body lookup:
relation R extends S {key T̄ ḡ; R̄ f̄ ; M̄} T m(T̄ x̄){ return e; } ∈ M̄

mbody(m, R) = x̄.e
relation R extends S {key T̄ ḡ; R̄ f̄ ; M̄} m �∈ M̄

mbody(m, R) = mbody(m, S)

Fig. 5. Auxiliary functions for RJ

Traditionally, a heap is defined as a map from memory locations and field
names to memory locations. In our programming model, the identity of a tuple
constitutes a high-level address for it. To reflect this, the heap in our model is
comprised of two components: a map from locations to identities, and a map from
identities and field names to locations. There is therefore a level of indirection
to introduce these high-level addresses.

Let Locs be a set of memory locations, Ids a set of identities, and Fields

the set of field names. We use k to denote an identity. Let a heap H be a partial
function of type (Ids,Fields) → Locs, and a heap index L a partial function
of type Locs → Ids. A heap index L corresponds to a heap H if and only if L
is defined for every location in the range of H and every identity in the domain
of H is in the range of L. We use the notation H[(k, f) → l] to denote the heap
function identical to H except at (k, f), which is mapped to l. Similarly, L[l
→ k] denotes heap index L with l mapped to k. We write L[l̄ → k̄] to denote
L[l1 → k1] · · · [ln → kn], where l̄ and k̄ have size n.

The function allocn(L) allocates a sequence of n fresh locations not mapped
by L. We write alloc(L) as a shorthand for alloc1(L).

Finally, we introduce a function I that computes the identity of a tuple,
given its type and the identities of its key fields. Formally, I is a partial injective
function I that maps a relation type and a sequence of identities to an identity

Declarative Object Identity Using Relation Types 65

in Ids. I(R, k̄) is defined when #k̄ = |R|, and undefined otherwise. Note that
the base case for constructing identities is to construct the identity for a relation
type without key fields (i.e., a singleton).

The typing rules for RJ are straightforward adaptations of those for Feather-
weight Java, and can be found in a forthcoming technical report [32].

Figure 6 shows reduction rules for RJ. A reduction step is of the form:
(L, H, e) −→ (L′, H′, e′) and means that e reduces in one step to e′ in
the context of heap index L and heap H, resulting in L′ and H′. We use the
notation −→RJ to denote one step of reduction in RJ, when it is not clear from
context. We write −→∗

RJ to denote the reflexive, transitive closure of the −→RJ

relation.
Rule R-Field reduces expression l.fi, where l is a location, by looking up the

identity that l maps to in L, and the location mapped to by this identity and
field fi in H, i.e. H(L(l), fi).

Rule R-Invk deals with method invocation and applies only after the receiver
and parameters have been reduced to locations. The expression [ā/x̄, l/this]e
denotes e in which formal parameters x̄ and this have been replaced with actual
parameters ā and receiver l, respectively.

Rules R-Eq-True R-Eq-False show how to reduce an equality between two
memory locations l1 and l2. These are equal if they hold the same identity, i.e.,
L(l1) = L(l2).

Rules R-If-True and R-If-False show the reduction for the if-then-else
expression in the obvious way.

Rule R-Assign shows how to reduce an assignment expression l.fi ← a. Field
f must be non-key, and l and a locations. The expression reduces to a and the
heap H is replaced with one that is identical except at (L(l),fi), which is now
mapped to a.

Rule R-Id-NoKey shows the reduction of a constructor expression for a rela-
tion type with no key fields R.id(). This expression is reduced to a fresh memory
location l, which is mapped to the corresponding identity k = I(R) in the new
heap index.

Rule R-Id-Create shows the reduction of a constructor expression R.id(ā)
for the case where the identified tuple has not been created yet. For this rule to
apply, the arguments must have been already reduced to locations ā. The identity
k of the tuple is computed using I(R, L(ā)). The expression l, l̄ = alloc#ā+1(L)
allocates #ā+1 fresh memory locations from L, one for the tuple itself, and #ā
for each of its key fields. The constructor expression reduces to location l, which
is mapped to k in the new heap index. The heap itself is also updated at (k,g)
for each key field g in ḡ of R to a fresh memory location. The notation H[(k, ḡ)
→ l̄] represents H[(k, g1) → l1] · · · [(k, gn) → ln], where ḡ and l̄ have size n. The
typing rules [32] guarantee that the constructor for R has as many arguments
as its number of key fields, which means that sequences ā and ḡ have the same
length. Rule R-Id-Create applies when (k, ḡ) is not in the domain of H and
the tuple is therefore created.

66 M. Vaziri et al.

fields(R) = R̄ f̄ l ∈ Locs li = H(L(l), fi)

(L, H, l.fi) −→ (L, H, li)
(R-Field)

mbody(m, R) = x̄.e l, ā ∈ Locs

(L, H, l.m(ā)) −→ (L, H, [ā/x̄, l/this]e)
(R-Invk)

l1, l2 ∈ Locs L(l1) = L(l2)

(L, H, l1 == l2) −→ (L, H, true)
(R-Eq-True)

l1, l2 ∈ Locs L(l1) �= L(l2)

(L, H, l1 == l2) −→ (L, H, false)
(R-Eq-False)

(L, H, if true then eT else eF) −→ (L, H, eT) (R-If-True)

(L, H, if false then eT else eF) −→ (L, H, eF) (R-If-False)

nonKeys(R) = R̄ f̄ l, a ∈ Locs

(L, H, l.fi ← a) −→ (L, H[(L(l), fi) → a], a)
(R-Assign)

k = I(R) l = alloc(L)

(L, H, R.id()) −→ (L[l → k], H, l)
(R-Id-NoKey)

ā ∈ Locs k = I(R, L(ā)) keys(R) = R̄ ḡ

(k, ḡ) �∈ Dom(H) l, l̄ = alloc#ā+1(L)

(L, H, R.id(ā)) −→ (L[l → k][l̄ → L(ā)], H[(k,ḡ) → l̄], l)

(R-Id-Create)

ā ∈ Locs k = I(R, L(ā)) keys(R) = R̄ ḡ

(k, ḡ) ∈ Dom(H) l = alloc(L)

(L, H, R.id(ā)) −→ (L[l → k][l̄ → L(ā)], H, l)

(R-Id-Find)

(L, H, e) −→ (L′, H′, e′)

(L, H, e.f) −→ (L′, H′, e′.f)
(RC-Field)

(L, H, e) −→ (L′, H′, e′)

(L, H, e.m(c̄)) −→ (L′, H′, e′.m(c̄))
(RC-Invk-Recv)

(L, H, e) −→ (L′, H′, e′) l, ā ∈ Locs

(L, H, l.m(ā, e, c̄)) −→ (L′, H′, l.m(ā, e′, c̄))
(RC-Invk-Arg)

(L, H, e) −→ (L′, H′, e′)

(L, H, e == c) −→ (L′, H′, e′ == c)
(RC-Eq-1)

(L, H, e) −→ (L′, H′, e′) l ∈ Locs

(L, H, l == e) −→ (L′, H′, l == e′)
(RC-Eq-2)

(L, H, e) −→ (L′, H′, e′)

(L, H, e.f ← c) −→ (L′, H′, e′.f ← c)
(RC-Assign-1)

(L, H, e) −→ (L′, H′, e′) l ∈ Locs

(L, H, l.f ← e) −→ (L′, H′, l.f ← e′)
(RC-Assign-2)

(L, H, e) −→ (L′, H′, e′) ā ∈ Locs

(L, H, R.id(ā, e, c̄)) −→ (L′, H′, R.id(ā, e′, c̄))
(RC-Id-Arg)

Fig. 6. Computation and Congruence Rules for RJ

Declarative Object Identity Using Relation Types 67

Rule R-Id-Find is similar, except that the tuple exists in the heap and it is
therefore not updated. The constructor expression still reduces to a fresh memory
location l, which is mapped to the identity k in the new heap index.

The rest of the reduction rules (Figure 6) ensure that an expression is reduced
in a deterministic fixed order.

RJ’s computation on a program (RTable, e) starts in a state (L, H, e), where
L and H have empty domains, and consists of a sequence of states obtained by
applying the reduction rules, until none applies.

3.3 The RJ-HC Language

In this section, we prove that the hash-consing optimization [18], which consists
of storing equal values at the same memory location, preserves semantics for
RJ. To this end, we present RJ-HC, a version of the core calculus of RJ with a
hash-consing operational semantics.

RJ-HC has the same syntax and auxiliary functions as RJ, except for memory
allocation, which performs hash-consing. The auxiliary function allocRJ-HC(L, k)
in RJ-HC returns a location l that maps to k in L, if such a location exists,
and a fresh location otherwise. We write allocRJ-HC(L, k̄) to denote the sequence
allocRJ-HC(L, k1), · · · , allocRJ-HC(L, kn), where n is the length of k̄.

The reduction rules of RJ-HC are identical to RJ, except for R-Id-NoKey,
R-Id-Create, and R-Id-Find. Figure 7 shows these new rules for RJ-HC. Rule
R-Id-NoKey-HC is similar to that in RJ, except that it uses the new allocation
function. There is a single rule R-Id-HC for the constructor expression, which
also uses the hash-consing allocation function. It always updates the heap H,
possibly rewriting it with existing values.

We use the notation −→RJ-HC to denote one step of reduction in RJ-HC, when
it is not clear from context. We write −→∗

RJ-HC to denote the reflexive, transitive
closure of the −→RJ-HC relation.

k = I(R) l = allocRJ-HC(L, k)

(L, H, R.id()) −→ (L[l → k], H, l)
(R-Id-NoKey-HC)

ā ∈ Locs k = I(R, L(ā)) keys(R) = R̄ ḡ

l = allocRJ-HC(L, k) l̄ = allocRJ-HC(L, L(ā))

(L, H, R.id(ā)) −→ (L[l → k][l̄ → L(ā)], H[(k,ḡ) → l̄] , l)

(R-Id-HC)

Fig. 7. New Computation Rules for RJ-HC

We now show that RJ and RJ-HC have the same behavior on the same pro-
gram (RTable, e). First, some definitions:

Definition 1 (Well-Formed State). A state (L, H, e) in a computation
of RJ (RJ-HC) is well-formed if L corresponds to H and for every location l
appearing in e, L is defined at l.

68 M. Vaziri et al.

It is easy to show that reduction preserves well-formedness both in RJ and
RJ-HC.

Definition 2 (Structural Equivalence). We say that two well-formed states
(L, H, e) and (L′, H′, e′) are structurally equivalent if:

1. H and H′ have the same domain and for all (k,f) in that domain: L(H(k, f))
= L′(H′(k, f))

2. [L(l̄)/l̄]e = [L′(l̄′)/l̄′]e′, where l̄ and l̄′ are sequences of locations appearing
in e and e′, respectively. To denote this condition we write e ≡ e′ when L
and L′ are clear from the context.

In Definition 2, item 1 states that the heaps and heap indices must have the
same structure. Item 2 states that expressions e and e′ where all locations are
substituted with their corresponding identities are syntactically identical.

Lemma 1. Assume that (Lo, Ho, eo) and (L, H, e) are structurally equivalent
states resulting from the computation of RJ-HC and RJ, respectively, on the
same program. If (Lo, Ho, eo) −→RJ-HC (L′

o, H′
o, e′o) then there exists a state

(L′, H′, e′), such that (L, H, e) −→RJ (L′, H′, e′) and (L′
o, H′

o, e′o) and
(L′, H′, e′) are structurally equivalent.

Proof. By induction on the derivation of (Lo, Ho, eo) −→RJ-HC (L′
o, H′

o, e′o)
with a case analysis on the last reduction rule used. The proof can be found in
[32].

Theorem 1. Assume that (Lo, Ho, eo) and (L, H, e) are structurally equiv-
alent states resulting from the computation of RJ-HC and RJ, respectively, on
the same program. If (Lo, Ho, eo) −→∗

RJ-HC (L′
o, H′

o, e′o) then there exists a
state (L′, H′, e′), such that (L, H, e) −→∗

RJ (L′, H′, e′) and (L′
o, H′

o, e′o)
and (L′, H′, e′) are structurally equivalent.

Proof. By induction on the length n of reduction sequence (Lo, Ho, eo) −→∗
RJ-HC

(L′
o, H′

o, e′o).

Case: n = 0. Trivial.

Case: (Lo, Ho, eo) −→RJ-HC (L′′
o, H′′

o, e′′o) −→∗
RJ-HC (L′

o, H′
o, e′o).

By Lemma 1, we know that there exists a state (L′′, H′′, e′′) such that (L, H, e)
−→RJ (L′′, H′′, e′′) and (L′′

o, H′′
o, e′′o) and (L′′, H′′, e′′) are structurally equiv-

alent. By the induction hypothesis, there exists a state (L′, H′, e′) such that
(L′′, H′′, e′′) −→∗

RJ (L′, H′, e′), and (L′, H′, e′) and (L′
o, H′

o, e′o) are struc-
turally equivalent. ��

4 Implementation and Evaluation

To evaluate the utility of relation types, we extended Java with relation types and
developed a compiler for translating programs written in the resulting RJ lan-
guage to Java. We examined the classes that define equals() and hashCode() in

Declarative Object Identity Using Relation Types 69

a number of open-source Java applications. For each application, we determined
if and how these classes could be rewritten with relation types.

4.1 Implementation

RJ adds a few minor extensions to Java syntax:

– The relation keyword indicates that a class or interface is a relation type.
– The key keyword indicates that a field in a relation type is a key field. A

relation class may have zero or more key fields.
– Each relation class R implicitly defines an id() method with return type R

and argument types corresponding to the key fields in R and its supertypes.

Conceptually, the hierarchy of relation types is completely distinct from the
hierarchy of (non-relation) reference types. For pragmatic reasons, the implemen-
tation makes java.lang.Object the implicit supertype of a all relation types,
but relation types cannot inherit explicitly from a reference type or vice versa.

We have implemented RJ using the Java 5.0 metadata facility. Embedding the
RJ language in Java enabled us to leverage the Eclipse JDT refactoring frame-
work as the basis for our compiler. Concretely, relation types are annotated with
a @Relation annotation and key fields with a @Key annotation. Furthermore,
we model the implicitly defined id() method as a constructor annotated with
the @Id annotation1. Since our experiments target converting Java classes into
relation types, our RJ implementation allows non-relation types and relations
to co-exist. Specifically, we allow the declaration of equals() and hashCode()
methods in non-relation Java classes.

We implemented a simple type checker for RJ that enforces the following
constraints on relation types:

– Up-casts (implicit or explicit) from a relation type to Object are disallowed.
– Key fields must be private and final, but there is no restriction on the

type of objects they point to.
– Declaring equals() and hashCode() in a relation type is disallowed.
– In order to avoid programmer errors, the application of the == and != oper-

ators to one operand of a relation type and another operand of a reference
type results in a type error.

– Calling equals() on an expression of a relation type is a type error.

The RJ compiler translates RJ to Java using the AST rewriting infrastruc-
ture in Eclipse. The translation involves the following steps: (i) generation of a
nested Key class that contains the key fields declared in a relation type and that
implements appropriate equals() and hashCode() methods, (ii) generation of
a static map that contains the relation’s tuples, (iii) generation of a constructor
that initializes the key fields from corresponding formal parameters, (iv) gener-
ation of the id() method that returns a tuple with a given identity if it already
1 In a full language implementation, the programmer would not need to declare an
id() method; our prototype implementation requires the explicit constructor as an
expedient way to interoperate with the Eclipse Java development tools.

70 M. Vaziri et al.

exists, and creates such a tuple otherwise, and (v) updating the references to key
fields (necessary because these fields are moved into the generated Key class).
Figure 8 shows the annotated source and generated code for the Person class
from Figure 3.

@Relation public class Person {
@Key private final int SSN;
@Key private final Name name;
@Id private Person(int SSN, Name name) {

this.SSN = SSN;
this.name = name;

}
}

public class Person {
protected final Key key;
protected Person(Key key) {

this.key = key;
}
public static Person id(int SSN, Name name) {

Key k = new Key(SSN, name);
Person c = m.get(k);
if (c == null) {
c = new Person(k);
m.put(k, c);

}
return c;

}
private static Map<Key, Person> m =

new HashMap<Key, Person>();

protected static class Key {
public Key(int SSN, Name name) {
this.SSN = SSN;
... // continued on right column

...
this.name = name;

}
public boolean equals(Object o) {

if (o = null &&
getClass().equals(o.getClass())) {
Key other = (Key) o;
return SSN == other.SSN &&
(name == null) ? (other.name == null)
: name.equals(other.name);

}
return false;

}
public int hashCode() {

return 6079 * SSN + 6089 *
((name == null) ? 1 : name.hashCode());

}
private final int SSN;
private final Name name;

}
}

Fig. 8. RJ source code implemented with Java annotations (top), and generated Java
implementation (bottom)

In the basic implementation discussed so far, tuples are never garbage col-
lected. Therefore we extended our implementation to use weak references, so
tuples can be collected when their identity becomes unreachable, as discussed
in Section 2.5. In this approach, key fields use WeakReferences as pointers, and
relation types use the ReferenceQueue notification mechanism to remove a tu-
ple when any of its weak referents becomes dead. Additionally, the canonicalized
tuple objects are cached using SoftReferences. If none of the key fields of a re-
lation type are of reference types, the scope mechanism discussed in Section 2.5
can be used. A scope is a reference, so when the scope dies, so do its tuples.

Our current prototype implementation maximizes the amount of sharing and
follows one of many possible implementation strategies. This strategy was chosen
in part because it results in significant changes to the aliasing patterns in our
benchmarks, and hence makes a good test that our rewriting was done correctly.
Note that while hash-consing is often regarded as an optimization, it is unlikely
that our prototype implementation actually maximizes performance, since the

Declarative Object Identity Using Relation Types 71

benefits of hash-consing need to balanced against costs such as finding the hash-
consed objects when needed. Furthermore, our implementation uses ordinary
java.util.HashMap objects to implement hash-consing, which will hurt our
performance since the standard hash tables employ a rather allocation-intensive
mechanism for defining hash keys. For this reason, we do not present performance
results for our current prototype.

Beyond the current prototype, there are many implementation tradeoffs to
consider. We have considerable freedom to copy and move objects around in our
model, and this may allow an implementation to base decisions about copying
on the likely impact on locality; this could even be based on runtime feedback if
sufficient support were included in a virtual machine. Our model also provides
greater freedom to use aggressive optimizations such as object inlining [16] that
involve re-arranging objects in memory. It remains as future work to evaluate op-
timized implementations to discover empirically what implementation tradeoffs
work well in practice.

4.2 Case Study: javacup

We now describe in detail one case study, investigating how javacup (version
11a), an LALR parser generator written in Java, can be refactored to use relation
types. We examined each class that overrides equals(), identified the intended
key fields by examining the equals() and hashCode() implementations, and
then manually rewrote the class into a relation type. We then compiled the
resulting RJ version of javacup into Java, ran both the original version and
this generated version on a grammar for Java 5 and ensured that the resulting
generated parsers are identical.

In the course of this exercise, we needed to apply a number of refactorings
that preserve the behavior of javacup, but that ease the introduction of relation
types. The most significant of these refactorings consisted of:

– Key fields were made private and final. In a few cases, methods that
initialize these fields were inlined into a calling constructor, or eliminated
as dead code. In a few cases, some minor code restructuring was needed to
eliminate “spurious mutability”.

– Nontrivial constructors were replaced by a combination of (i) simple con-
structors that only initialize key fields, and (ii) factory methods [17] that
contain the remaining initialization code for, e.g., initializing mutable fields.

– In a few cases, the code contained implicit up-casts to type Object because
tuples were stored into collections. In such cases, we parameterized uses of
collection types with parameters of the appropriate relation type in order to
avoid the up-cast.

After performing these steps, we deleted the equals() and hashCode()methods,
added @Relation, @Key, and @Id annotations, and ensured that the resulting
code could be compiled and executed successfully.

Interestingly, we found that the resulting version of javacup produced a parser
with significantly different source text than the parser produced by the original

72 M. Vaziri et al.

Table 1. Summary of results for javacup case study

class actions performed
java cup.production part Converted into relation type: 1 key field, 0 non-key fields
java cup.action part Converted into relation type: 1 key field, 0 non-key fields
java cup.symbol part Converted into relation type: 1 key field, 0 non-key fields

java cup.parse action
Converted into singleton relation type (0 key fields, 0 non-
key fields)

java cup.nonassoc action
Converted into singleton relation type (0 key fields, 0 non-
key fields)

java cup.shift action Converted into relation type: 1 key field and 0 non-key fields

java cup.reduce action
Converted into relation type: 1 key field, 0 non-key fields.
Error in use of equals() previously discussed in Section 2.2.

java cup.production Converted into relation type: 1 key field, 14 non-key fields
java cup.action production Converted into relation type: 0 key field, 2 non-key fields

java cup.lr item core
This class and its subclass lalr item were refactored into a
combination of 2 classes without equals()/hashCode() and
one relation type with 2 key fields and 0 non-key fields.

java cup.lalr item See comments for java cup.lr item core.
java cup.lalr state Converted into relation type: 1 key field, 2 non-key fields

java cup.symbol set
Not converted because equals() refers to mutable state.
Note: equals() is dead, so could simply be removed.

java cup.terminal set

Not converted because equals() refers to mutable state.
Note: equals() is dead, so could simply be removed. Does
not declare hashCode(), hence equals()/hashCode() contract
violated.

java cup.lalr item set Not converted because equals() refers to mutable state.

javacup, but that these parsers behave identically when applied to a number of
inputs. Further investigation revealed that the output of the original version de-
pended on iterators whose order relied on hash-codes of the elements stored in
hash-tables. The hashCode() methods in our generated code differ from those
in the original javacup, which resulted in different (but equivalent) generated
parsers. As a further experiment, we rewrote javacup to use LinkedHashMaps2 in-
stead of Hashtables, and repeated the entire experiment. The resulting javacup
produced a parser that was syntactically identical to the original javacup output.

Table 1 shows, for each class in javacup with an application-defined equals()
method, the outcome of this exercise. As the table shows, of 15 classes with
application-defined equals() methods, 12 could be converted into relation
types, and most of them with relatively little effort. Classes lr item core and
lalr item required a somewhat nontrivial transformation. The equals() meth-
ods in these classes do not reflect general object identity, but only apply within
the context of an lalr item set. We therefore removed these equals() meth-
ods and rewrote lalr item set to appropriately manipulate these objects using
a newly created relation type ItemKey. Another item of note was a bug in a use
of reduce action.equals() that we previously discussed in Section 2.2. Classes
symbol set, terminal set and lalr item set could not be converted because
their equals() methods refer to mutable collections. Interestingly, the equals()
methods in symbol set and terminal set are dead, and could be removed.

2 A LinkedHashMap is a hash-table for which the iteration order is determined by the
order in which elements are inserted instead of depending on the hash-codes of the
elements.

Declarative Object Identity Using Relation Types 73

Furthermore, class terminal set violates the equals()/hashCode()contract by
not overriding Object.hashCode().

4.3 Other Benchmarks

We repeated the methodology of the case study on a number of open-source Java
applications.

The benchmarks ant, hsqldb, jfreechart3, lucene, and pmd are open-source
codes; we used the versions collected in the DaCapo benchmarks [11], version
dacapo-2006-10. Bcel is the Apache Bytecode Engineering Library [4], version
5.2. Shrike is the com.ibm.wala.shrike project from the T. J. Watson Libraries
for Analysis (WALA) [2], version 1.0. We use shrike regularly, and chose it for
consideration based on prior knowledge that it would suit relation types. Shrike
also has sophisticated, hand-rolled hash-consing, which is now generated auto-
matically by the RJ compiler. The other benchmarks were chosen based on their
having a reasonable number of equals() methods, and based on the availability
of some drivers to test for correct behavior.

As described for javacup earlier, we transformed each code by hand where
necessary to make fields private and final, remove unnecessary mutable state,
and similar local changes. While we believe our transformations were correct
(modulo erroneous existing behavior), we have no mechanical proof that the
changes are semantics-preserving. We ran a number of dynamic tests for each
code, including unit tests where available, the DaCapo drivers, and other drivers
we created, and verified that for each test the RJ implementation behaves identi-
cally to the original implementation. This methodology gives us some confidence
that the RJ versions are correct.

Table 2 summarizes our findings. The columns of the table show, for each
benchmark, from left to right:

1. The number of equals() methods originally declared.
2. The number of equals()methods eliminated by conversion to relation types.
3. The percentage of eliminated equals() methods.
4. The total number of relation types introduced.
5. The number of relation types that correspond to value types (i.e., all fields

are key fields).
6. The number of relation types that correspond to singletons.
7. The number of relation types that have non-key fields.
8. A summary of the bugs and issues that we encountered, as explained in the

legend of the table.

As the table reflects, during this exercise we were able to convert the majority
of candidate classes to relation types with little program modification. Most of
these types actually represent values with no mutable state. As is well known,

3 jfreechart has more than 200 equals() methods—a daunting number to study
by hand. So we looked only at the first two packages in lexicographic order:
org.jfree.chart.annotations and org.jfree.chart.axis.

74 M. Vaziri et al.

Table 2. Summary of results

benchmark #equals() #relation types bugs/issues
orig. removed % total value sing. non-value

ant 12 9 75.0 9 3 0 6 H,M
bcel 20 14 70.0 22 11 5 11 F,H,M
hsqldb 12 2 16.7 2 0 0 2 E,F,M,S
javacup 14 11 78.6 11 8 2 3 H,M,T
jfreechart 46 33 71.7 40 40 1 0 H,M,S
lucene 27 27 100.0 27 23 0 4 E,M
pmd 12 5 41.7 5 3 2 2 E,F,M,N,S
shrike 32 32 100.0 61 55 3 6 M

Explanation of codes used for Bugs/Issues:
E equals() method throws exception if passed unanticipated argument
F fragile (e.g., equals() defined in terms of toString())
H equals()/hashCode() contract violated
M equals()/hashCode() depends on mutable state
N violates contract for equals(null)
S symmetry requirement in equals() contract violated
T inadvertent test of incomparable types

programming in a functional style without mutation eliminates many classes of
bugs and generally leads to more robust, maintainable code. Relation types fit
well into such a programming style.

The last column of the table shows that we found violations of the contract
and other problems in every code. This reinforces our claim that the current
unenforced contract leads to fragile and error-prone code. Relation types en-
courage more robust code by enforcing a stricter contract and removing the
need for tedious, error-prone boiler-plate code.

Of the types which we did not convert to relation types, most fall into one
of two categories. The first category comprises types where the programmer
had already manually applied hash-consing or other caching and pooling op-
timizations. In such cases, the program complexity exceeded our threshold for
rewriting in these experiments. Relation types would obviate the need for such
manual storage optimizations, since the compiler can implement hash-consing
and related representation transformations automatically.

The other category comprises types where identity depends on mutable state.
Many instances of mutable identity appear spurious, and could be eliminated
with a slightly more functional design. We also found a fairly large number of
cases we call piecemeal initialization. In these cases, the program incrementally
builds up an object’s state piecemeal; for example, the program parses an XML
document and mutates an object to represent the state as it parses. However,
the object becomes logically immutable after initialization. To support such pat-
terns, we plan to extend RJ with a facility to “freeze” a mutable object into an
immutable relation tuple. Note that, in our current model, it is not possible to

Declarative Object Identity Using Relation Types 75

construct two tuples t1 and t2 such that the identity of t1 is determined by t2
and vice versa. The proposed extension would remedy this limitation.

5 Related Work

Baker [6] studies issues related to object identity in Common Lisp and concludes
that the existing functions for testing equality in that language are problematic
for a number of reasons, chiefly the fact that successive calls to EQUAL may
produce different answers if there is a dependence on mutable state. Although
the languages under consideration are quite different, Baker’s proposed solution
is similar in spirit to ours in the sense that objects of different types are never
equal, and that an object’s identity should not rely on mutable state.

The C# language [24] supports both reference equality, i.e. equal object iden-
tifiers, and value equality. As in Java, C# Equals() supports reference equality
by default for reference types. The C# programmer can override Equals and ==
to support structural or value equivalence as desired, raising the same issues as
when overriding equals() in Java. C# also supports built-in structural equality
for C# value types, but restricts value types to structs and enumerations, with
no inheritance.

A relation type’s key annotation enforces an immutability constraint on the
annotated field. Several other works have addressed language designs that incor-
porate immutability concepts. Pechtchanski and Sarkar [25] propose a framework
of immutability specification along three dimensions: lifetime, reachability, and
context. Our key annotation indicates persistent and shallow immutability: The
value of a key field never changes but there is no constraint on mutability of state
reached from a key field (similar to “final” in Java). Of course, a key annotation
conveys more information than immutability constraints by identifying the state
that contributes to object identity.

Much other work defines analyses and languages for immutability constraints
(see [10,13,20,28,29]). Javari [29] adds support for reference immutability to Java,
and enforces specifications expressing transitive immutability constraints. Javari
also allows for the declaration of read-only methods that cannot modify the
state of the receiver object, and read-only classes for which all instance fields are
implicitly read-only. Our programming model could be combined with language
extensions such as those in Javari, to support immutability constraints on non-
key fields which do not contribute to the identity relation.

In our model, a relation type that has only key fields is a value type. Value
types [5,15,24,33] provide many benefits for the programmer. For example, they
provide referential transparency: functions that manipulate only values have de-
terministic behavior. Since values are immutable, they eliminate aliasing issues
and make code less error-prone. From an implementation viewpoint, value types
simplify analyses that allow a number of aggressive compiler optimizations, such
as unboxing [27], object inlining [16], memoization [23], data replication in dis-
tributed or cluster computing settings [15], and hash-consing [18].

76 M. Vaziri et al.

Bacon’s Kava language [5] is a variation on Java with a uniform object model
that supports user-defined value types. Kava’s notion of a value is that of an
immutable object, with all fields pointing to other values. All value types are
subclasses of a type Value, and they may inherit from other value types and
from interfaces. In our experience, Java programs commonly include “value-
like” classes that define equality and hashcode based on an immutable subset of
instance fields, but that also have some mutable state associated with them. Our
relation types allow for such classes, and unify values and objects by providing a
generalization of both as relations that map key fields to some possibly mutable
state. Furthermore, due to this uniformity, we need not segregate type hierarchies
for values and non-values, and a relation type may inherit from a value.

Our value-types are also more general than Titanium’s [33] immutable classes,
and C#’s value types [24], which do not support inheritance for“value-like”
classes. Fortress’s value objects [3] also do not support “value-like” classes, but
they do allow fields of values to be set in order to allow piecemeal initialization.

Tuples have been added to object-oriented languages in various work (for
example [21,30,22]). Our tuples differ in that they have keys, similar to primary
keys in a row of a relational database, and relation types implicitly define a map
from keys to non-keys. A relation type does not contain two tuples with equal
keys but different non-key parts.

Some languages integrate object and relational data models to facilitate com-
munication with a database (see, e.g., [22,7]), or provide first-class language
support for relationships (see, e.g., [9]). The focus of our programming model is
to view the heap itself as a relational database, and use concepts from databases
such as primary keys to express identity. In future work, we plan to investigate
the application of relation types to support data access integration.

Linda’s [14] data model introduced an associative memory called a tuplespace
as a model for sharing data in parallel programming. Relation types could per-
haps be applied in this setting, providing a strong coupling between the object-
oriented language and the distributed tuplespace. Relation types would also
facilitate optimizations for data replication, as mentioned previously.

We formalized relation types using an adaptation of Featherweight Java (FJ),
a functional language. Other extensions of FJ introduce mutation [8], using a
heap that maps memory locations to mutable state. Our model provides a level
of indirection in the heap, augmenting values with mutable state, thus providing
a uniform framework for the functional and non-functional language aspects.

6 Summary and Future Work

We presented a programming model that provides a relational view of the heap.
In this model, object identity is specified declaratively using a new language
construct called relation types and programmers are relieved from the burden
of having to write error-prone equals() and hashCode() methods. We formal-
ized the model as an extension of Featherweight Java and implemented it as
an extension of Java. Our experiments indicate that the majority of classes that

Declarative Object Identity Using Relation Types 77

override equals() can be refactored into relation types, and that most of the
remainder are buggy or fragile.

We plan to extend the model with other features that borrow from database
concepts (e.g., atomic sets [31]), and raise the level of abstraction for navigating
the heap. Some of our ideas include a query language on top of relation types and
features for pattern matching. We also plan to support delayed initialization of
key fields, and to experiment with optimized representations for relation types.

Acknowledgments. We are grateful to David Bacon, Michael Ernst, Doug Lea,
Jan Vitek, Michael Weber, and the anonymous ECOOP reviewers for their con-
structive feedback. Bob Fuhrer’s help with the implementation was invaluable.

References

1. http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
2. T. J. Watson Libraries for Analysis(December 2006) http://wala.sourceforge.

net
3. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele, G.,

Tobin-Hochstadt, S.:The Fortress language specification, http://research.sun.
com/projects/plrg/fortress.pdf

4. Apache Jakarta Project. BCEL (December 2006), http://jakarta.apache.org/
bcel/

5. Bacon, D.F.: Kava: A Java dialect with a uniform object model for lightweight
classes. Concurrency—Practice and Experience 15(3–5), 185–206 (2003)

6. Baker, H.G.: Equal rights for functional objects or, the more things change, the
more they are the same. OOPS Messenger 4(4), 2–27 (1993)

7. Bierman, G., Meijer, E., Schulte, W.: The essence of data access in Cω. In: Black,
A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, Springer, Heidelberg (2005)

8. Bierman, G., Parkinson, M.J., Pitts, A.M.MJ.: An imperative core calculus for Java
and Java effects. Tech. Rep. 563, Computer Laboratory,University of Cambridge
(April 2003)

9. Bierman, G.M., Wren, A.: First-class relationships in an object-oriented language.
In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 262–286. Springer, Hei-
delberg (2005)

10. Birka, A., Ernst, M.D.: A practical type system and language for reference
immutability. In: Proceedings of the 19th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications (OOP-
SLA’04), pp. 35–49. ACM Press, New York (2004)

11. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and Applications
(OOPSLA’06), Portland, OR, USA, oct 2006, ACM Press, New York (2006)

12. Bloch, J.: Effective Java, Programming Language Guide. Addison-Wesley(2001)
13. Boyland, J., Noble, J., Retert, W.: Capabilities for sharing: A generalisation of

uniqueness and read-only. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 2–27. Springer, Heidelberg (2001)

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://wala.sourceforge.net
http://wala.sourceforge.net
http://research.sun.com/projects/plrg/fortress.pdf
http://research.sun.com/projects/plrg/fortress.pdf
http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/

78 M. Vaziri et al.

14. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458 (1989)
15. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A.,

Ebcioglu, K., von Praun, C., and Sarkar, V. X10: an object-oriented ap-
proach to non-uniform cluster computing. In Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming, systems, languages, and
applications (OOPSLA’05) (2005), pp. 519–538.

16. Dolby, J., Chien, A.: An automatic object inlining optimization and its evaluation.
ACM SIGPLAN Notices 35(5), 345–357 (2000)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

18. Goto, E.: Monocopy and Associative Algorithms in an Extended Lisp. Tech. Rep.
74-03, Information Science Laboratory, University of Tokyo (1974)

19. Igarashi, A., Pierce, B.C, Wadler, P.: Featherweight Java: A minimal core cal-
culus for Java and GJ. ACM Transactions on Programming Languages and Sys-
tems 23(3), 396–450 (2001)

20. Kniesel, G., Theisen, D.: Jac – access right based encapsulation for Java. Software:
Practice and Experience 31(6), 555–576 (2001)

21. Krall, A., Vitek, J.: On extending Java. In: Mössenböck, H. (ed.) JMLC 1997.
LNCS, vol. 1204, Springer, Heidelberg (1997)

22. Meijer, E., Shulte, W.: Unifying tables, objects and documents. In: DB-COOL
(2003)

23. Michie, D.: Memo functions and machine learning. Nature, 218, 19–22
24. Microsoft. C# Language Specification. Microsoft Press (2001)
25. Pechtchanski, I., Sarkar, V.: Immutability specification and its applications. In:

Java Grande, pp. 202–211 (2002)
26. Petter, M.: personal communication (October 2006)
27. Peyton-Jones, S., Launchbury, J.: Unboxed values as first class citizens. In: Func-

tional Programming Languages and Computer Architecture: 5th ACM Conference,
Berlin, Germany, ACM Press, New York (1991)

28. Porat, S., Biberstein, M., Koved, L., Mendelson, B.: Automatic detection of im-
mutable fields in Java. In: CASCON (2000)

29. Tschantz, M.S., Ernst, M.D.: Javari: adding reference immutability to Java. In:
Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications (OOPSLA’05), pp. 211–230.
ACM Press, New York (2005)

30. van Reeuwijk, C., Sips, H J.: Adding tuples to Java: a study in lightweight data
structures. In: JGI’02 (2002)

31. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data
in an object-oriented language. In: POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 334–
345. ACM Press, New York, NY, USA (2006)

32. Vaziri, M., Tip, F., Fink, S., Dolby, J.: Declarative object identity using relation
types.Tech. rep.IBM Research (Forthcoming 2007)

33. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B.: abd Paul Hilfin-
ger, A. K., Graham, S., Gay, D., Colella, P., and Aiken, A. Titanium: A high-
performance Java dialect. Concurrency—Practice and Experience, Java Special
Issue (1998)

	Introduction
	Overview of RJ
	Java's Equality Contract
	Examples
	Revised Equality Contract
	Relation Types
	Lifetime Management and Namespaces

	A Core Calculus for RJ
	Syntax
	Semantics
	The RJ-HC Language

	Implementation and Evaluation
	Implementation
	Case Study: javacup
	Other Benchmarks

	Related Work
	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

