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Abstract. Data-centric synchronization groups fields of objects into atomic sets
to indicate they must be updated atomically. Each atomic set has associated units
of work, code fragments that preserve the consistency of that atomic set. We
present a type system for data-centric synchronization that enables separate com-
pilation and supports atomic sets that span multiple objects, thus allowing recur-
sive data structures to be updated atomically. The type system supports full encap-
sulation for more efficient code generation. We evaluate our proposal using AJ,
which extends the Java programming language with data-centric synchronization.
We report on the implementation of a compiler and on refactoring classes from
standard libraries and a multi-threaded benchmark to use atomic sets. Our results
suggest that data-centric synchronization enjoys low annotation overhead while
preventing high-level data races.

1 Introduction

Writing correctly synchronized concurrent programs is challenging, and inconsistent
results may be computed when programmers make mistakes. Traditional approaches
to concurrent programming have an operational, control-centric, flavor. Programmers
must understand where to put invocations to the particular concurrency-control primi-
tives provided by their programming language or operating system of choice. Forget-
ting to protect some path may result in intermittent software faults that are frustratingly
difficult to identify and eradicate. Data-centric synchronization [21] is a declarative
approach to concurrency control. Instead of focusing on the flow of control, program-
mers identify sets of memory locations that share some consistency property and group
those locations in atomic sets that will be updated atomically. The programmer need
not specify where or what kind of synchronization operations to insert; instead, each
atomic set has an associated set of units of work, code fragments that must preserve
the consistency of that atomic set. Synchronization code is automatically generated by
a compiler which is free to choose where and what type of synchronization to insert.
Such a declarative approach allows changing the concurrency-control mechanism, e.g.,
going from standard locks to read/write locks or even to transactional memory, without
changing the program’s source code.

In our previous work, we relied on static whole-program program analysis to in-
fer where synchronization operations should be placed in order to ensure that units
of work are serializable from the perspective of each atomic set, a property we call
atomic-set serializability. We explored the integration of atomic sets in the context of
an object-oriented language; in this language, classes declare atomic sets, the elements



of an atomic set are a subset of the fields of its declaring class and its subclasses, and
the units of work are the methods of the class. Experiments demonstrated that atomic
sets require fewer annotations than implementations based on synchronized blocks in
Java while eliminating known concurrency-related errors [24,12]. However, while the
approach appeared promising, its reliance on whole-program analysis was a limitation
that hindered adoption. Whole-program analysis is prohibitively expensive for large
code bases. Moreover, dynamic loading, native methods and reflection are integral parts
of the Java platform. Disallowing them is completely unrealistic. Our previous work
was also limited by its lack of support for atomic sets spanning multiple objects, which
led to inefficient code.

This paper overcomes the limitations of prior work. Specifically, we present a vari-
ant of the atomic sets model of [21] which introduces a new mechanism for construct-
ing atomic sets that span multiple objects and for internal objects that provide strong
encapsulation for data whose concurrency is managed externally. The new approach
obviates the need for whole-program analysis with a type system that guarantees that
any well-typed program is atomic-set serializable, which intuitively means that all op-
erations performed on locations that belong to an atomic set are serializable. To empiri-
cally evaluate the applicability of our ideas on real-world code, we define a backwards-
compatible extension of Java called AJ and implement it within the Eclipse develop-
ment environment. We then refactor classes from the Java Collections Framework and
a version of the SPECjbb performance benchmark into AJ, and measured annotation
overhead and performance. AJ requires roughly 6.2 annotations per thousand lines of
source code (KLOC) for SPECjbb, and 40 annotations per KLOC for collection classes.
These annotations replace traditional synchronization constructs on blocks and meth-
ods. In terms of performance, the AJ versions of SPECjbb achieve a throughput of
between 54.3% and 80.4% of that of the original Java implementation. The slowdown
is explained in part by the fact that the original code is undersynchronized1, and that our
prototype compiler is a naive translator, and much work on optimization remains to be
done. Therefore, we consider these results an indication that our approach is capable of
generating code with acceptable performance while providing a correctness guarantee
that Java’s current synchronization mechanism does not offer. In summary, we make
the following contributions:

– A data-centric approach to synchronization that permits separate compilation, multi-
object atomic sets and strongly encapsulated objects.

– A formalization of the type system for a core calculus and a proof that any well-
typed program is atomic-set serializable.

– A prototype implementation in a mainstream object-oriented language and an inte-
gration with a development environment.

– An empirical evaluation on 18,200 lines of Java code including widely used li-
braries and a concurrent application.

Code and additional information can be found at http://sss.cs.purdue.edu/projects/aj.
1 It is hard to say with certainty that SPECjbb is buggy, since it is a benchmark and its own self-

checking succeeds even with no synchronization at all. However, we observed clearly related
operations, some of which were synchronized and others which were not. It appeared that this
synchronization was inconsistent.



2 Background and Influences

This paper builds on the atomic set programming model of Vaziri, Tip and Dolby [21].
That work introduced a notion of problematic interleaving scenarios and then used it
to define a correctness criterion, atomic-set serializability, which rules out high-level
data races in code manipulating atomic sets. Subsequent work explored how to detect
concurrency-related errors based on this criterion (statically in [17] and dynamically
in [12]). Atomic sets share characteristics with data groups [18] and regions [10] which
group mutable fields to enable modular verification and reasoning about program trans-
formations. Like atomic sets, regions and groups may be extended in subclasses, but
unlike atomic sets, both are hierarchical and regions overlap. Another data-centric ap-
proach was proposed in [4], with a sketch of a possible transactional memory imple-
mentation. Atomic sets can also be viewed as a generalization of Hoare monitors [15] to
multiple objects. While atomic sets currently lack a counterpart for condition variables,
they add the unitfor construct to temporarily merge distinct atomic sets.

Data-centric concurrency control is but one alternative to explicit locking. Trans-
actional memory [14] approaches concurrency control from a database angle: Certain
code fragments are specified to execute atomically, and it is up to the implementation
to enforce mutual exclusion. While programmers need not worry about which data will
be accessed in a transaction, they still have to identify where to place atomic sections.
Another way to avoid explicit locking is to perform lock inference. Like transactional
memory, programmers must annotate programs with atomic sections, but instead of re-
lying on a transactional memory mechanism, static analysis is used to determine which
locks to acquire [5,19]. While more efficient than transactions, as there is no need to
support abort/undo semantics, lock inference relies on whole-program information and
thus can not deal with dynamic features of Java.

Type systems for atomicity and race-freedom are another influence on our work.
The type system of [1] guarantees the absence of data races. The general approach is
to have a programmer provide redundant type annotations on top of a program with ex-
plicit lock operations. The type system thus only needs to check that the synchronization
and the type annotations are consistent. In that approach, methods declare the locks they
require and a guarded by construct is used to indicate which lock protects a field. With
20 annotations per KLOC for the Java collections framework, the approach is relatively
lightweight, but unlike atomic sets the programmer must add explicit synchronization
to the code. Moreover, atomic-set serializability is a higher level property than data
race freedom. The type system of Flanagan and Qadeer [7] guarantees atomicity, i.e.,
equivalence to a serial execution. As above, fields are annotated with guarded by or
write guarded by to indicate that (write) access to the field must be protected by a lock.
Methods are annotated with atomic to indicate their atomicity and with requires to in-
dicate which locks must be held by callers. Atomic set serializability recognizes more
interleavings as correct than global serializability. Flanagan and Qadeer evaluated their
type system on Java library classes and report an average of 23.3 annotations per KLOC
of code. However, as in [1] and unlike atomic sets, it is assumed that the programmer
has added synchronization to the code. Inference [9] reduces the annotation burden.

Our type system was influenced by ownership type systems which started out as an
attempt to control the sharing of references [20] and is typically used to enforce a strong



form of encapsulation. Our treatment of internal objects is close to traditional owner-
ship as all references to these objects are encapsulated. But unlike the early owner-as-
dominator type systems [6] there is no single access point. Indeed, in order to support
iterators we have loosened the restriction of a single owner and allow the elements of
atomic sets that are not part of internal classes to be viewed and manipulated from
the outside. The ownership type system of [3] ensures that Java-like programs are data
race-free. In that work, classes are parameterized with a list of owners and methods may
require that their callers hold particular locks. A simple unification-based form of local
type inference is used to reduce the annotation burden. While no direct comparison is
possible as the implementation of [3] is not available, we believe atomic sets have lower
annotation overhead overall, and are better integrated into Java. Deadlocks can also be
ruled out by ownership type systems [2] but this comes at the price of expressiveness
and an increased annotation burden.

3 Data-centric Synchronization with AJ

AJ extends the syntax of the Java programming language with annotations needed to
support the data-centric programming model of [21]. These annotations are summa-
rized in Fig. 1. An AJ class can have zero or more atomicset declarations. Each atomic
set has a symbolic name and intuitively corresponds to a logical lock protecting a set
of memory locations. Associated with each atomic set is a set of units of work, code

atomicset a
A class or interface declaration may have multiple atomic set declarations. Atomic sets are
inherited and can be referred to in subclasses.

atomic(a)
Annotation on instance fields and classes. A field can belong to at most one atomic set.
Annotated fields can only be accessed from the this reference. When added to a class
declaration, this annotation is a shorthand for placing the same annotation on all instance
fields in the class and its subclasses.

unitfor(a)
Each method argument can be annotated by one or more unitfor annotations. When the
name is omitted, the annotated method becomes a unit of work for all atomic sets in the
parameter object.

internal
Annotation on class declarations which must be preserved by inheritance. The type system
tracks internal objects and ensures that no reference to an internal object can leak outside
of the object that constructs it.

|a=this.b|
Annotation on variable declarations and in constructor expressions to indicate that the
atomic set a of the type of the variable or constructed object is aliased with the current
object’s atomic set b.

Fig. 1. Data-centric annotations in AJ.



fragments that, when executed without interruption, preserve the consistency of their
associated atomic sets. AJ assumes that all non-private methods of a class are units of
work for the atomic sets it declares. Given data-centric synchronization annotations, AJ
infers the placement of concurrency control operations in such a way that units of work
are serializable from the perspective of each atomic set, a property we call atomic-set
serializability. The inferred synchronization ensures that any execution is equivalent to
an execution in which, for each atomic set, its units of work occur in some serial order.
One may think of a unit of work as being an atomic section [13] that is only atomic with
respect to a particular set of memory locations. Accesses to locations not in the set are
visible to other threads. The AJ implementation is free to choose the type of concur-
rency control operations and to optimize their placement. Thus, for instance, methods
declared private or called through this usually do not require synchronization as their
calling context has established atomicity. Methods that do not operate on locations that
are within an atomic set will typically not be synchronized either. Fig. 2 shows an inte-
ger counter class with atomic increment and decrement methods.

class Counter {
atomicset a;
atomic(a) int val;
int get() { return val; }
void dec() { val- -; }
void inc() { val++; }

}

Counter c = new Counter();
c.inc();
c.dec();
...

Fig. 2. A simple counter class.

Each instance of Counter has its own instance of its atomic set a. The locations protected
by the atomic sets are identified by annotating the corresponding fields with atomic (a).
Atomic set declarations are inherited by subclasses, so every instance of a subclass of
Counter has its own a and can add some of its fields to the atomic set. AJ requires that
fields belonging to an atomic set must be accessed through the (implicit) this reference.
Note that this is stronger than labeling the field private, as in Java two instances of the
same class can access each others private fields.

It is often the case that an atomic set must protect fields belonging to more than one
object. While it is not possible to refer directly to another object’s atomic set, AJ allows
merging atomic sets using aliasing annotations. An atomic set a in an object pointed
to by a variable x may be aliased with an atomic set b in the object pointed to by this
by placing the alias annotation |a = this.b| on the declaration of x. This has the effect
of merging the atomic sets in these objects. Fig. 3 shows a PairCounter class which has
two integer counters and updates the difference between them. To do this it introduces
a new atomic set b for the diff field, and it aliases the atomic sets of the counters with b
to form a single atomic set.

There are cases where a method needs to coarsen the granularity of atomicity for
some of its arguments. This is achieved by declaring additional units of work by anno-
tating arguments with unitfor(a). If this annotation appears on some parameter p of some
method m of a class D, this indicates that m is an additional unit of work for atomic set



class PairCounter {
atomicset b;
atomic(b) int diff;
Counter|a=this.b| low = new Counter|a=this.b|();
Counter|a=this.b| high = new Counter|a=this.b|();
void incHigh() { high.inc(); diff = high.get()-low.get(); }
...

}
Fig. 3. Aliased atomic sets.

a of object p. Such cases, where a method is a unit of work for multiple atomic sets
are treated as if the method is a unit of work for the union of these atomic sets. Alias
annotations have a similar effect. Fig. 4 illustrates this with a transfer method which
must atomically update two Counter objects with different atomic sets.

class Transfer {
void transfer(unitfor(a) Counter from, unitfor(a) Counter to) { from.dec(); to.inc(); }

}
Fig. 4. Adding atomic sets to a unit of work using unitfor.

For performance reasons it may be advantageous to avoid synchronization around ob-
jects that are used to implement the representation of a given data structure. This is safe
only if it is guaranteed that no reference to these representation objects ever leaks to
clients where it could be manipulated without synchronization. The internal annotation
is used to declare a class, or interface, and all of its subclasses as being private to a data
structure. Internal classes must always have their atomic sets aliased to some enclosing
data structure. The AJ type system enforces encapsulation of internal classes. The ex-
ample of Fig. 5 illustrates the use of internal classes. Class Cell is internal. Class Main
creates an instance of Cell, aliases its atomic set and stores it in field c. The type system
ensures that the Cell object will only be manipulated by the corresponding Main object.

internal class Cell {
atomicset b; atomic(b) Object val;
Object getset(Object o) { Object old = val; val = o; return old; }

}

class Main {
atomicset a; final Cell|b=this.a| c = new Cell|b=this.a|();
void set(Object o) { c.getset(o); }

}
Fig. 5. An internal class.

It is noteworthy to observe that the internal annotation does not change the semantics of
the application; its purpose is to enable the implementation to remove some redundant
synchronization operations. While it would be possible to infer this annotation, doing
so would require interprocedural analysis which we avoid in this work.



3.1 Motivating Example

We present a simplified version of the LinkedList class, a representative of the Java
Standard Collections framework, made thread-safe using data-centric synchronization.
Fig. 6 shows the abstract class AbsList which defines the interface of all lists and a
concrete list, LinkedList. The designer of the abstract list has chosen to equip it with an
atomic set a which is inherited by subclasses. Within AbsList the only field that needs
protection is the integer size. It is annotated atomic(a) to denote that it belongs to a. The
methods of AbsList and its subclasses are the units of work for a.

public abstract class AbsList {
atomicset a;
atomic(a) int size;
public int size(){ return size; }
public abstract ListIterator iterator();
public abstract void add(Object o);
public abstract boolean

addAll(unitfor(a) AbsList c);
public abstract Object get(int i);
}

internal class Entry {
atomicset b;
atomic(b) Object elem;
atomic(b) Entry next|b=this.b|;
atomic(b) Entry prev|b=this.b|;
...
}

class LinkedList extends AbsList {
atomic(a) Entry header|b=this.a|;
public LinkedList() {

header = new Entry|b=this.a|(null,null,null);
header.next = header.prev = header;

}
public void add(Object o) {

Entry newEntry|b=this.a| =
new Entry|b=this.a|(o, header, header.prev);
newEntry.prev.next = newEntry;
newEntry.next.prev = newEntry;
size++;

}
public ListIterator iterator() {

return (ListIterator)
new ListItr|c=this.a|(this,

this.header, 0);
}
... // other list methods

}

Fig. 6. AbsList, LinkedList and Entry classes

The addAll(unitfor(a) AbsList c) method must operate on multiple atomic sets, namely
the receiver and the argument c. Logically, the list c must remain unchanged during
the entire execution of addAll. By annotating parameter c with unitfor(a), we merge the
atomic set a in the receiver object with the atomic set a in the argument object for the
duration of the method’s execution.

In LinkedList, the header field points to a doubly-linked list of Entry objects. Linked-
List adds header to the atomic set of its parent class to ensure that any method accessing
both header and size will have a consistent view of the fields. The above is not sufficient
for the data structure to be thread-safe. It is also necessary to protect the doubly-linked
list itself. This requires defining an atomic set b in class Entry to protect the fields next
and prev. Furthermore, units of work for the LinkedList object must encompass the units
of work for the Entry objects it refers to. This is achieved by using the alias annotation
|b=this.a| to indicate that the atomic set b of the Entry object should be combined with
the list’s atomic set a. These annotations are placed on all allocation sites and variables



of type Entry. Similar annotations, |b=this.b|, are placed on the fields next and prev
of Entry. These imply that the atomic sets b of objects pointed to by these fields are
merged with the atomic set b of this. Together with the annotation on header, they
cause the entire backbone of the LinkedList to be in a single atomic set. Any unit of
work for the list, including its Entry objects, will be performed atomically with respect
to this merged atomic set. As an optimization, Entry is declared internal. This means that
the type system will guarantee that no instance of Entry can be accessed without going
through the methods of LinkedList. Thus, an implementation can omit synchronization
for all of Entry’s methods and leave concurrency control to the list object.

Each expression in our type system potentially has alias information. If there is no
alias information, this means that either the expression represents an object that has no
atomic sets, or that the object is an independent object that performs its own synchro-
nization. The type system tracks aliasing annotations and prevents, e.g., the Entry object
of one linked list from ending up within another linked list. Practically this means that
some types of casts are disallowed. It is allowed to cast away an alias annotation (thus
losing information), but forging an alias annotation is not. For instance, the iterator()
method creates an object of type ListItr (a class that is private to class LinkedList), which
has an atomic set aliased to that of the linked list. This alias information is cast away in
the return statement of the method.

A non-internal class such as LinkedList can be instantiated in two ways: new Linked-
List() and new LinkedList|a=this.x|. The former signifies a new instance of LinkedList
that is responsible for its own synchronization, while the latter means that atomic set
of the new instance is the same as that of atomic set x of the current object. The latter
is especially useful when defining new data structures in terms of other data structures.
One could define a Stack in terms of a LinkedList; correct synchronization behavior can
be achieved by having an atomic set in Stack that is aliased to the atomic set in the
underlying LinkedList. This kind of compositionality is a key contribution of this paper
and was not supported in [21]. For internal classes such as Entry an aliased allocation
site such as new Entry|b=this.a| is the only valid instantiation because an internal ob-
ject must share the atomic set of its creator. As usual with type-based approaches, the
bindings created by aliasing cannot be modified after creation.

3.2 Arrays

Arrays are fully handled by our implementation. Supporting arrays requires being able
to specify atomicity constraints at three different levels. The declaration

atomic(a) B[] vals;

indicates that the reference to array vals is part of atomic set a, however the contents of
the array can be updated without synchronization. The declaration

atomic(a) B[] vals|this.a[]|;

indicates that not only is the reference to the array to be accessed atomically, but the
contents of the array are also part of atomic set a and must be accessed in a synchronized
manner. Finally, the declaration



atomic(a) B[] vals|this.a[]b=this.a|;

indicates that, additionally, the atomic set b of each of the objects contained within the
array should be merged with atomic set a. In our experience, we found all three of these
forms of array annotation to be useful.

3.3 Data Races and Deadlocks

AJ does not completely prevent programmer errors. Data races can occur within a unit
of work if the code manipulates data that is not part of the unit’s atomic set. Thus it is
incumbent on the programmer to correctly annotate all fields which share a consistency
property, and to place unitfor annotations on method parameters as needed. Forgetting
to annotate a field or method parameter can result in concurrency errors.

Our implementation of atomic set associates locks with atomic sets. There is thus
the potential for deadlocks when multiple non-aliased atomic sets are manipulated by
the same unit of work. We support a form of deadlock avoidance for methods that have
unitfor annotations, but cannot prevent deadlock when a unit of work for some atomic
set a (transitively) invokes a unit of work for another atomic set b. In this respect,
AJ programs are neither more nor less prone to deadlock than standard Java programs
that acquire multiple locks out of order. We do, however, believe that the declarative
nature of synchronization annotations in AJ simplifies the design of static analyses for
detecting possible deadlocks.

4 A Formal Account of AJ

We formalize AJ in a core calculus in the style of [25], which is an idealized version
of Java extended with some of the key features of our proposal. The goal of the formal-
ization is to prove soundness of the type system and illustrate its key properties. To this
end, we focus on the essential features of AJ, namely atomic sets, atomic annotations
on fields, alias annotations and internal types. For simplicity, we restrict the formaliza-
tion to a single atomic set per class, and exclude unitfor annotations. While both are
important, they do not affect the type system which tracks aliases and internal classes.
Adding multiple atomic sets would require a small change to the semantics which cur-
rently uses the addresses of objects as identifiers for atomic sets (instead, fresh values
would have to be created for each atomic set). Adding unitfor would only require more
complex traces. For brevity we omit orthogonal features of Java such as interfaces, ex-
ceptions, final variables, primitive data types, arrays, generics, and thread creation and
thread death. We start with a presentation of the syntax (Section 4.1), static and dynamic
semantics (sections 4.2 and 4.3 resp.). Section 4.4 establishes standard properties of the
type system. The concurrency-control policy enforced by AJ is specified in Section 4.5
and a proof of atomic-set serializability is given in Section 4.6.

4.1 Syntax

The AJ syntax is given in Fig. 7. In our core calculus all fields are strongly private
and methods are public. Without loss of generality, we use a “named form,” where the



p ::= cd program
cd ::= ι class C extends D {as fd md} class
as ::= atomicset a | ε
fd ::= α τ f field

md ::= τ m (τ x) {τ z; s;return y} method
s ::= s;s | skip | x =this.f | x =(τ )y | statement

this.f =z | x =new τ () | x =y.m (z)

τ ::= C|a= this.b| |C type
α ::= atomic (a) | ε
ι ::= internal | ε

E ::= [] | E[x : τ ] type env

Fig. 7. AJ’s syntax. C,D are class names, f,m are field and method names, and x, y, z
are names of variables or parameters. this is a distinguished variable. For simplicity, we
assume that names of classes, fields, methods and variables are unique.

results of fields and variable accesses, method calls and instantiations must be immedi-
ately stored in a variable. A further simplification is the elimination of implicit upcasts
for arguments, return values, and assignments. All casts are performed explicitly by cast
statements which simplifies the other rules as they can assume type equality. Downcasts
are safe in AJ because, as in Java, there is a runtime test to check that the object belongs
to the target type and all AJ-specific properties are preserved by subtyping, i.e. subtypes
have the same atomic sets and are internal if their parent is internal. Upcasts are more
interesting as they involve loss of type information. For brevity, we assume the exis-
tence of a well-formed class-table CT . Auxiliary functions are given in Fig. 8. We use
the shorthand x <: τ to denote the pointwise subtype relation x1 <: τ1, . . . , xn <: τn.
The subtyping relation is standard with the exception of the rule for types with alias
annotations, which restricts subtyping to be annotation invariant.

C <: D
C|a= this.b| <: D|a= this.b|

We define the viewpoint adaption predicate adapt such that the value of adapt(τ, τ ′)
is the view of type τ from type τ ′. If τ is a raw type C, then it is unchanged. If τ has
an alias annotation, such as C|a = this.b|, and it is viewed from a type D|b = this.c|,
then the value of this.b is substituted with this.c, yielding C|a= this.c|. In cases where
adapt is undefined a type error will be reported as the type is not accessible from that
particular viewpoint.

adapt(C, τ) = C

adapt(C|a= this.b|,D|b= this.c|) = C|a= this.c|

4.2 Type System

Classes, fields, and methods. A class definition C is well-typed if its fields are well-
typed in the context of C. Furthermore, all methods (including non-overridden inherited
methods) must be well-typed. In case the class inherits an atomic set, then it is not
allowed to define a new one. If the class is declared internal it must have an atomic
set, or inherit one. Finally, internal annotations must be preserved by inheritance. In the
definitions below, we use the notation C has a to indicate that class C declares or inherits



Subtyping:

C <: C
C extends D

C <: D
C <: C′ C′ <: D

C <: D

C <: D
C|a= this.b| <: D|a= this.b|

Extends:
CT (C) = ι class C extends D{as fd md}

C extends D

Type lookup:
τ m(τx x){τz z; s; return y}∈methods(C)

typeof (C.m) = τx → τ

τ f∈fields(C)

typeof (C.f) = τ

Method lookup:
τ m(τx x){τz z; s; return y} ∈ methods(C)

mbody(C.m) = (τx x; τz z; s; return y)

Local vars:
H(F (this)) = C|ω|(r′)

mbody(C.m) = (τx x; τz z; s; return y)
E ≡ x : τx, z : τz, this : C

locals(m, F ) = E

Internal lookup:
CT (C) = internal class C extends D{. . .}

C is internal

Fields lookup:

fields(Object) = ε

CT (C) = ι class C extends D{as fd md}

fields(D) = fd ′

fields(C) = fd ′ fd

Methods lookup:

methods(Object) = ε

CT (C) = ι class C extends D{as fd md}

methods(D) = md ′ md ′′ = md ′ −md

methods(C) = md md ′′

Valid Method overriding:
typeof (C.m) = τ ′ → τ ′ implies

τ = τ ′ and τ = τ ′

override(m,C, τ → τ)

Atomic set lookup:
CT (C) = ι class C extends D{as fd md}

as = ε D has a
C has a

CT (C) = ι class C extends D{as fd md}
as = atomicset a

C has a

Atomic lookup:
atomic(a) τ f∈fields(C)

C.f is atomic

Fig. 8. Auxiliary definitions.

an atomic set a. Atomic sets referred to in field declarations must exist. Checking a
method requires typing its body in an environment E constructed by composing the
disjoint sets of parameters, x, local variables, z and the distinguished variable this. If
class C has an atomic set, the type of this is C|a = this.a|; This is the default case
when an object is in charge of its own synchronization (i.e., its atomic set has not been
aliased) and is needed to ensure that adapt is defined. The type of the local variable y
appearing in the return statement must match the return type of the method, and if this
method overrides an inherited method, the signature must be unchanged.

(T-CLASS)

fd OK in C methods(C) = md ′ md ′ OK in C (D has a implies as = ε)
(ι = internal implies C has a) (D is internal implies ι = internal)

ι class C extends D {as fd md} OK



(T-FIELD)

(τ ≡ D|a= this.b| implies D has a and C has b) (α = atomic (a) implies C has a)

α τ f OK in C

(T-METHOD)

E ≡ x : τx, z : τz, this : τthis E ` s; return y E(y) = τ C extends D
(if C has a then τthis ≡ C|a= this.a| else τthis ≡ C) override(m,D, τx → τ)

τ m(τx x){τz z; s; return y} OK in C

Observant readers will note that we are checking inherited methods with the type of
this bound to subclass C. This prevents the implicit upcast in method invocation from
being used to subvert the type system. Consider the following program which, without
the above treatment of inherited methods, would leak a reference to an internal object.

class Id extends Object {
Id id() { Id x; x = this; return x }

}

internal class E extends Id {
atomicset a;

}

class C extends Object {
atomicset b;
Id m() {

E|a=this.b| y; Id z;
y = new E|a=this.b|(); z = y.id();
return z;

} }

The instance of E is an internal class and should remain private to its owner (an instance
of class C). Yet, if the invocation of id() were allowed, it would be possible to pass off
the E object as an Id which is not protected. In our type system the assignment x=this
does not type check in the context of class E. This problem is standard in ownership
type systems. One could avoid type-checking inherited methods repeatedly by declar-
ing inherited methods anonymous, i.e., that they do not leak the this reference [22] or
inferring the property by whole program analysis as in [11]. In AJ, the only methods
that need this are methods inherited by an internal class.

Statements. There are two type rules for object creation. The first rule, (T-NEW-RAW),
covers the case where the object being created is not annotated with an alias. If class C
has an atomic set, this means we are requesting the construction of an object that can
take care of its own synchronization. The only restriction that must be enforced in this
case is that the class not be declared internal as internal classes always depend on an
owner. The second rule, (T-NEW-ASET), covers the case when a C object is created with
an alias |a = this.b|. In which case, we check that C indeed has an atomic set a and that
this refers to an object which has an atomic set b.

(T-NEW-RAW)

E(x) = C
C not internal

E ` x = new C()

(T-NEW-ASET)

E(x) = C|a= this.b|
C has a E(this) has b

E ` x = new C|a= this.b|()

There are three type rules for upcasts. (T-CAST-PLAIN) covers the case where both
types have no alias annotations. Rule (T-CAST-ASET) allows annotation invariant upcasts.



Finally, (T-CAST-OFF) strips the annotation from a type. This is only allowed for non-
internal classes. The rule for method calls, (T-CALL), checks the types of the arguments
and the return type. Viewpoint adaption is necessary to ensure that the types of the
arguments and the return value are visible from the viewpoint of the receiver.

(T-CAST-PLAIN)

E(x) = D E(y) = C D <: C

E ` y = (C)x

(T-CAST-ASET)

E(x) = D|a= this.b| E(y) = C|a= this.b|
C has a E(this) has b D <: C

E ` y = (C|a= this.b|)x
(T-CAST-OFF)

E(x) = C|a= this.b| C not internal
E(y) = C

E ` y = (C)x

(T-CALL)

E(y) = τy typeof (τy.m) = τ → τ E(z) = τz

τz = adapt(τ , τy) τ ′ = adapt(τ, τy) E(x) = τ ′

E ` x = y.m(z)

Consider for instance calls (1) and (2) to method m() in the example below. The return
type of m is τ ≡ C|c = this.a|. At (1) τy ≡ A|a = this.b|, the value of adapt(τ, τy) =
C|c = this.b| indicating, as expected, that the C object shares the same atomic set as
the receiver. On the other hand, a2 is created with its own atomic set. Thus, at (2), the
result of adapt(τ,A) is undefined. The call does not type check because it would return
a value with an unknown alias.

class A extends Object {
atomicset a;
C|c=this.a| m(){

C|c=this.a| x;
x=new C|c=this.a|();
return x;

}
}
class C extends Object {

atomicset c;
}

class B extends Object {
atomicset b;
A f() {

A|a=this.b| a1; C|c=this.b| c1; A a2;
a1 = new A|a=this.b|();
c1 = a1.m(); //(1) OK
a2 = new A();
c1 = a2.m(); //(2) ERROR
return a2;

}
}

The rules for field selection and update check that the type of the field matches that of
the variable it is stored into.

(T-SELECT)

E(this) = τ E(x) = τf
typeof (τ.f) = τf

E ` x = this.f

(T-UPDATE)

E(this) = τ E(y) = τf
typeof (τ.f) = τf

E ` this.f = y

4.3 Dynamic Semantics

We formulate AJ’s dynamic semantics as a small-step operational semantics. See Fig. 9
for syntax. An AJ configuration H;T consists of a single heap H of locations mapped
to objects and a collection of threads T . Each thread T has its own stack S, plus a
unique thread id denoted ρ. A stack S is a sequence of triples 〈mF s〉 consisting of
a method name m, a stack frame F mapping variables to locations, and a statement s.



H ::= [] | H[r 7→ v] heap
T ::= ρS | ρNPE thread
S ::= ε | S 〈mF s〉 stack

F ::= [] | F [y 7→ r] stack frame
v ::= C|ω|(r) object
ω ::= r | ε owner atomic set

Fig. 9. Syntax for heaps, threads, stacks, frames and objects.

At run-time, an object C|ω|(r), consists of a class C, an atomic set owner ω (either a
location r or empty) and values r for the object’s fields (either locations or null).
We model multi-threaded Java programs with a fixed set of threads, T , each of which
initially starts with a call to a run method. Threads are terminated either when the run

method returns or by a null pointer exception (NPE). The reduction relation `−→ρ rep-
resents a step of evaluation. The label ` describes the action and the thread identifier ρ
specifies the thread that performed it. Action labels can be one of the following: ↑ r.f
(field select), ↓ r.f (field update), ← r.m (method return), → r.m (method call), or
ε (empty action). Labels will be used in Section 4.5 to define traces, they record op-
erations that may lead to a data race (reads/writes) and operations that correspond to
potential unit of work boundaries (calls/returns). Basic thread-scheduling is modeled
as a non-deterministic choice in (D-SCHEDULE). Each step picks one of the threads for
reduction, we assume a fixed number of threads.

(D-SCHEDULE)

H;T T ′ T
`−→ρ H

′;T T ′ T ′

H;T T T ′
`−→ρ H

′;T T ′ T ′

We abuse syntax a little bit and treat return y as a statement. Returning from a call
implies popping the topmost frame off the stack, and capturing the return value. Upcasts
and skip statements have the expected semantics.

(D-RETURN)

F (y) = r F (this) = r′

H;T ρS 〈m′ F ′ x = y′.m(z); s′〉〈mF return y〉 ←r
′.m−→ ρ H;T ρS 〈m′ F ′[x 7→ r] s′〉

(D-CAST)

H;T ρS 〈mF x=(τ)y; s〉 ε−→ρ H;T ρS 〈mF [x 7→F (y)] s〉
Field selection extracts one of the references stored in the object, while field update
modifies the content of the object at the proper location. We define H(r.fi) as follows:
H(r.fi) = ri if H(r) = C|ω|(r1 . . . ri . . . , rn) and fields(C) = f1, . . . fi . . . , fn.

(D-SELECT)

F (this) = r H(r.fi) = ri

H;T ρS 〈mF x= this.fi; s〉 ↑r.fi−→ρ H;T ρS 〈mF [x 7→ ri] s〉
(D-UPDATE)

F (this) = r F (x) = rx H(r) = C|ω|(r, ri, r′) H ′ ≡ H[r 7→ C|ω|(r, rx, r′)]

H;T ρS 〈mF this.fi=x; s〉 ↓r.fi−→ρ H
′;T ρS 〈mF s〉

Object creation comes in three flavors. (D-NEW-PLAIN) covers the construction of plain
Java objects where the owner is empty. (D-NEW-SELF) takes care of creation of an in-
stance of a class that has an atomic set and for which no alias annotation is specified.



In this case, the owner is the newly created object itself. Lastly, (D-NEW-ALIAS) is for
the construction of objects which have an alias annotation of the form |a= this.b|. For
those, we look up the owner of this and set it as the owner of the newly created object.

(D-NEW-PLAIN)

v ≡ C|ε|(null1...nulln) r is fresh not C has a
H ′ ≡ H[r 7→ v] |fields(C)| = n F ′ ≡ F [x 7→ r]

H;T ρS 〈mF x = new C(); s〉 ε−→ρ H
′;T ρS 〈mF ′ s〉

(D-NEW-SELF)

v ≡ C|r|(null1...nulln) r is fresh C has a H ′ ≡ H[r 7→ v]
|fields(C)| = n F ′ ≡ F [x 7→r]

H;T ρS 〈mF x=new C(); s〉 ε−→ρ H
′;T ρS 〈mF ′ s〉

(D-NEW-ALIAS)

H(F (this)) = D|r′|(r) r is fresh v ≡ C|r′|(null1...nulln) H ′ ≡ H[r 7→ v]

|fields(C)|=n T ≡ ρS 〈mF [x 7→r] s〉

H;T ρS 〈mF x=new C|a= this.b|(); s〉 ε−→ρ H
′;T T

Method calls push a new frame on the stack with local variables initialized to null
and parameters bound to corresponding arguments. For brevity, null-pointer exceptions
cause threads to immediately get stuck. More accurate treatment of exceptions (e.g.,
catch-blocks and stack unwinding) is unnecessary for the problem at hand.

(D-CALL)

F (y) = r F (z) = r H(r) = C|ω|(r′) mbody(C.m) = (τx x′; τy y; s′; return y′)

F ′ ≡ [y 7→ null][x′ 7→ r][this 7→ r] S′ ≡ S 〈m′ F x=y.m(z); s〉〈mF ′ s′; return y′〉

H;T ρS 〈m′ F x=y.m(z); s〉 →r.m−→ ρ H;T ρS′

(D-CALL-NPE)

H;T ρS 〈m′ F [y 7→ null] x=y.m(z); s〉 ε−→ρ H;T ρNPE

4.4 Properties

We now proceed to establish preservation and progress for our type system. As usual the
proofs rely on a notion of well-formed heaps, threads and configurations as well as run-
time subtyping. We start with these auxiliary definitions. In a heapH , let ownerH (r) =
ω, if H(r) = C|ω|(r). Let internalH (r) hold if H(r) = C|ω|(r) and C is internal. τ
is raw means that type τ is of the form C and has no alias annotation. We write τ not raw
to denote not τ is raw.

Run-time Subtyping Relation. The run-time subtyping relation, r <:ro,H τ indicates
that a reference r is an instance of type τ at run-time, in the context of a reference ro
and a heap H . Since types may contain alias annotations that refer to this, we need
a reference ro to give meaning to this. There are three cases, if H(r) is null then the
relation holds for all τ . If H(r) is C|ω|(r) then if τ is a raw type, D, the relation holds
if C <: D and if C is not an internal class (to prevent leaking an internal object). The



last case is if τ is an aliased type D|a = this.b| in which case we must check that r has
the same owner as ro.

null <:ro,H τ

H(r) = C|ω|(r) C <: D
C not internal
r <:ro,H D

H(r) = C|ω|(r) C <: D
ownerH (r) = ownerH (ro)

r <:ro,H D|b= this.a|

Notice that the runtime subtyping relation satisfies the following property. If r <:ro,H τ
and r 6= null, then if τ is raw then not internalH (r), and if τ not raw then ownerH (r) =
ownerH (ro).

Well-formed configurations. A configuration is well-formed, written H;T is WF, if the
heap and threads are well-formed and the class table is well-typed. A heap H is well-
formed if it is empty or if all fields of all objects it contains are well-typed, meaning that
the reference corresponding to each field is a runtime subtype of the static type of that
field. A thread T is well-formed, written T is WF in H , if it is stuck on a null pointer
exception, or if all of its frames are well-formed, and it satisfies the following property:
for each frame on the stack, if the this reference belongs to an internal class, then there
exists another frame earlier in the stack with the same owner, but that is not internal.

A frame F is well-formed if for each variable x in the domain of F , the correspond-
ing reference is a runtime subtype of the static type of x. The rules appear in Fig. 10.

(WF-CONFIGURATION)

H is WF in H T is WF in H ` CT

H;T is WF

(WF-EMPTY-HEAP)

[] is WF in H

(WF-NPE-THREAD)

ρNPE is WF in H

(WF-THREAD-BOT)

〈runF s〉 is WF in H

not internalH (F (this))

ρ 〈runF s〉 is WF in H

(WF-THREAD)

〈mF s〉 is WF in H S ≡ S′〈m′ F ′ x = y.m(z′); s′′〉
ρS is WF in H

(∃〈m′′ F ′′ s′′〉 ∈ S〈mF s〉, not internalH (F ′′(this))

and ownerH (F ′′(this)) = ownerH (F (this)))

ρS〈mF s〉 is WF in H

(WF-HEAP)

(C has a implies ω 6= ε) H ′ is WF in H

fields(C) = α τ f rz <:r,H τ

H ′[r 7→ C|ω|(rz)] is WF in H

(WF-FRAME)

locals(m, F ) = E E ` s
∀ x ∈ dom(F ), F (x) <:F (this),H E(x)

〈mF s〉 is WF in H

Fig. 10. Well-formedness rules.

Type Soundness. We prove type soundness of AJ by showing preservation and progress.
Here, preservation means that reduction of a well-formed configuration results in a well-
formed configuration, and the proof of preservation states that after a step of reduction
a well-formed configuration remains well-formed.



Theorem 1. Preservation. If H;T T T ′ is WF and H;T T T ′ `−→ρ H
′;T T ′ T ′, then

H;T T ′ T ′ is WF.

We define the notion of an active thread as a thread that it has not stumbled on a NPE
or returned from its bottommost stack frame.

Definition 1. A thread T ≡ ρS is active, denoted active(T ), if S 6≡ NPE and S 6≡
〈runF return y〉.
Progress requires that if there exists an active thread in a well-formed configuration,
this thread should be allowed to make a step.

Theorem 2. Progress. IfH;T T T ′ is WF and active(T ), thenH;T T T ′ `−→ρH
′;T T ′ T ′.

4.5 Concurrency Control

The AJ semantics is purposefully silent about synchronization to allow for different
concurrency-control strategies. The implementation presented in this paper uses mutual
exclusion locks, our previous work used read-write locks, and we are experimenting
with a transactional implementation.

The execution of a program can be characterized by a trace t which is a sequence
of events e1 . . . en performed by individual threads. For any implementation of AJ, we
define the concurrency-control policy as a predicate over traces. We say that any trace
accepted by an implementation is well-formed. The current implementation disallows
multiple invocations of methods on objects having the same owner to execute concur-
rently by associating mutual exclusion locks to atomic set instances. We formalize this
with the following definition of valid event. Let an event e be a tuple (H,T , `, ρ) con-
sisting of a configuration, an action label and a thread id. We say that an event is valid
if it has any action label other than a method call. An event with a method call on an
object of an internal class is valid. For calls to non-internal classes, an event is valid if
there are no outstanding method calls of objects with the same owner in other threads.

Definition 2. An event e = (H,T , `, ρ) is valid if and only if, when ` =→ r.m,
H(r) = C|r′|(r) and C not internal then 6 ∃ ρ′S ∈ T .ρ′ 6= ρ and 〈mF s〉 ∈ S and
H(F (this)) = D|r′|(z).
In our implementation, a well-formed trace is a trace in which every event is valid and
every configuration is WF. This property, enforced by the AJ runtime system, is not
sufficient in itself to prevent data races. The type system guarantees that all objects
belonging to an atomic set (in particular internal objects) are accessed only through
methods that are units of work for the atomic set.

4.6 Atomic-Set Serializability

Serializability of atomic set operations follows from the above restriction to valid traces
(mutual exclusion of methods of non-internal classes operating on the same atomic set)
and the fact that all fields labeled atomic(a), including those of internal classes, are
accessed within a method of a non-internal class operating on that atomic set. Given a
well-formed trace t and an event e in t, asett(e) gives the owner atomic set accessed by
e, if any.



asett(e) =


r′ if e = (H,T , `, ρ) ∧ ` ∈ {↑ r.f, ↓ r.f}
∧ H(r) = C|r′|(r) ∧ C.f is atomic

ε otherwise.

We introduce unit of work identifiers, ranged over by meta variable u, in a trace t as
follows. We consider the projection of t onto each thread ρ, which is a succession of
events from the same thread. By considering method calls and returns (→ r.m,← r.m),
we determine where units of work start and end. We assign each unit of work a unique
identifier u, and update all frames in the trace t to reflect not only the method name,
but also the unit of work identifier u, as follows: 〈muF s〉. Given a well-formed trace
t, and an event e, uowt(e) is the unit of work to which e belongs. uowt(e) is computed
by examining the call stack of the thread that performs e, finding the first frame on the
stack with a method on an object having the same owner as asett(e), declared in a non-
internal class, and returning the unit of work identifier corresponding to this method.

uowt(e) =



u if e = (H,TρS, `, ρ) ∧ ∃〈muF s〉 ∈ S s.t.
ownerH (F (this)) = asett(e)
∧ not internalH (F (this))
∧ 6 ∃〈m′ u′ F ′ s′〉 . . . 〈muF s〉 ∈ S
s.t. ownerH (F ′(this)) = asett(e)
∧ not internalH (F ′(this))

⊥ otherwise

Lemma 1. If e = (H,T , `, ρ) is an event in a well-formed trace t and asett(e) 6= ε, then
uowt(e) 6=⊥.

Proof. Let e = (H,TρS〈m′ F ′ s′〉, `, ρ). Since asett(e) = r′ 6= ε, we have ` ∈ {↑
r.f, ↓ r.f},H(r) = C|r′|(r), and C.f is atomic. Fields can only be accessed from this, so
r = F ′(this). By (WF-THREAD), we know that there exists a frame 〈mF s〉 in S such
that ownerH (F (this)) = ownerH (F ′(this)) = asett(e), and not internalH (F (this)).
Therefore, uowt(e) 6=⊥.

The events of a unit of work u in a trace t are all the events e in t such that uowt(e) =
u. Given a well-formed trace t and an atomic set r, we define the set of units of work
corresponding to r as the set that contains uowt(e) for each e in t such that asett(e) =
r. By Lemma 1, we know that uowt(e) is well-defined for an event e such that asett(e)
6= ε, meaning each access to a location in an atomic set is performed within a unit of
work corresponding to that atomic set. Since valid traces provide mutual exclusion of
units of work, we obtain atomic-set serializability.

Theorem 3. Atomic-Set Serializability. Given a well-formed trace t and an atomic set
r, the events of each of the units of work corresponding to r happen serially.



5 Implementation

We implemented a proof-of-concept AJ-to-Java compiler as an Eclipse refactoring that
rewrites the original source into a new project that holds the transformed code. The
type checker assumes that data-centric synchronization annotations are given as Java
comments. It parses these annotations and enforces the type rules of Section 4. Type
errors are reported using markers in the Eclipse editor. The compiler uses standard Java
synchronized blocks to enforce exclusion for each atomic set. Each non-private method
of a non-internal class acquires the locks for all atomic sets for which it is a unit of
work. The transformation has four steps:
(1) Create lock fields. The compiler generates a lock field $lock S in any class C that
declares an atomic set S. Atomic sets declared in super interfaces of C will have a lock
field in C unless that same atomic set is present in C’s superclass. For each lock field,
an accessor method getLockForS() is created.
(2) Transform constructors. Constructors of classes with atomic sets are transformed
to take additional parameters that are the lock objects to use. For classes that declare
atomic sets, the constructors assign these parameters to the lock fields; for classes that
inherit atomic sets, these lock objects are passed to superclass constructors.
(3) Transform object allocations to set locks. For objects not involved in alias relation-
ships, new statements are transformed by passing a fresh lock object to the constructor.
For objects in an alias relationship, the lock to use is read from the owner by calling the
getLockForS() accessor method and passed to the constructor to initialize the lock field.
(4) Transform units of work to acquire all needed locks. This involves taking the
lock of the atomic set of the declaring class and the locks for the atomic sets of any
unitfor parameters. If only a single lock is required, a single synchronized block suffices.
However, when multiple locks are needed, they must be acquired without inducing
unnecessary deadlock. This is accomplished by ordering: each lock object is given an
id when allocated, and locks are acquired in order of increasing id. There is a minor
complication here: when the type of the argument is too general to denote an atomic
set unambiguously, a unitfor must be used that omits the name of the atomic set (this
situation arises, e.g., for the argument of equals() methods). To this end, each class with
atomic sets implements an interface Atomic, which declares a method getLock() that
returns the lock for its atomic set.

A few straightforward optimizations were implemented. If the compiler can deter-
mine that all members of an atomic set accessed in a method and in any methods it
may call are final, then it will not introduce locking code. Furthermore, all transformed
methods have two versions, one with locking code and one without; when the compiler
can determine that any needed lock is already held, it will call the version that does not
take locks. Currently, this is done for calls on this and calls on objects annotated to
be part of an atomic set of this.

A limitation of our prototype is that it currently only supports one atomic set per
class. Furthermore, it does not yet handle generics and nested classes. We emphasize
that this is not a limitation of the approach, but an engineering tradeoff. With Eclipse’s
rudimentary support for AST manipulation handling those features would entail a con-
siderable effort. Therefore, when these features are encountered in Java code to be used
in AJ, we perform manual refactorings to side-step the problem. Generics are elimi-



nated by removing type parameters and replacing occurrences of these type parameters
with type Object. Nested classes are dealt with in two steps. First, any non-static nested
class is changed into a static nested class by introducing an explicit pointer to the sur-
rounding object. Then, the nested classes are changed into top-level classes.

We also experimented with an alternative implementation, based on reentrant locks
from java.util.concurrent but found the performance inferior to the current implementa-
tion that is based on synchronized blocks.

6 Empirical Evaluation

We report on experiments using AJ. All measurements were taken on a 2.6.32.3 Linux
workstation with a 2.3GHz Intel Xeon 8-way processor and 8GB of RAM, using Sun’s
Java 1.6.0 17.

6.1 Java Collections Framework

As a first experiment, we investigate the effort involved in using atomic sets to cre-
ate properly synchronized versions of representative classes from the Java Collections
Framework. Specifically, we selected ArrayList, LinkedList, HashMap, LinkedHashMap,
LinkedHashSet, HashSet, and TreeMap from package java.util in Sun’s JDK 1.5 class
libraries, along with any types on which these classes transitively depend. Each of these
classes depends on several supertypes as well as several auxiliary classes (e.g., TreeMap
declares nested classes SubMap and EntryIterator, as well as several anonymous nested
classes). In total we included 63 types comprising 10,338 LOC.

Determining the placement of atomicset and atomic annotations was straightfor-
ward. The collection classes we consider are comprised of 5 distinct inheritance sub-
hierarchies, and we introduce one atomic set in each of the types Collection, Map, Iter-
ator, LinkedList Entry, and Map Entry, which are the roots of these sub-hierarchies. All
instance fields were added to the atomic set that we introduced for the sub-hierarchy in
which its declaring class occurs. This is accomplished by adding an atomic annotation
to the class declaration. We placed unitfor annotations on constructors that take other
collections as an argument, on “bulk” methods such as addAll(), and on equals() meth-
ods in order to avoid concurrency bugs that could otherwise arise if the collection object
that is passed as an argument is modified concurrently during the manipulation of the
collection object pointed to by this. Such concurrency-related bugs are problematic in
the Java Collections Framework [8,23,12] and our approach completely avoids them.

Introducing alias annotations required somewhat more thought, as this involves
atomic sets in two classes. For example, the allocation of an AbstractList ListItr ob-
ject in class AbstractList was annotated as follows: new AbstractList ListItr |I=this.L|(...),
indicating that atomic set I in the newly created iterator-object is aliased with atomic
set L in the list pointed to by this. Of the classes we annotated, only LinkedList Entry
was made internal. Map Entry could not be made internal because it is exposed to client
code via methods such as Map.entrySet() that provide a direct view on the map. Our
type system prohibits this as internal types cannot be returned by public methods.



type #
atomicset 0
atomic class 5
atomic 0
unitfor 55
alias 330
array object 24
array element 16
TOTAL 430

type #
atomicset 1
atomic class 14
atomic 25
unitfor 0
alias 8
array object 0
array element 1
TOTAL 49

(a) (b)
Table 1. (a) Number of annotations required for annotating 63 classes (10,860 LOC)
from the Java Collections Framework. (b) Number of annotations required for SPECjbb
(7,891 LOC). 125 synchronized annotations could be removed in SPECjbb.

The introduction of annotations required a few minor textual code changes.
In particular, atomic fields must be accessed through accessor methods. Making
LinkedList Entry internal caused the LinkedList.addBefore() method to be rejected by
our type-checker as it returned an internal class. This method could not be made private
because it was invoked by LinkedList ListItr.add(). However, as add() ignored the return
value of this method call, we resolved the problem by creating a method addBefore2()
with identical functionality as addBefore(), but with return type void.

Table 1(a) classifies the annotations in the 63 annotated classes. As the table shows,
we need a total of 430 annotations in 63 classes comprising 10,860 LOC. The majority
of these annotations are related to ownership (aliasing), due to the pervasive use of it-
erators and auxiliary data structures such as list entries. This amounts to approximately
40 annotations per KLOC of source code, which is somewhat higher than the annota-
tion overhead of the type systems by Flanagan et al. that guarantee race-freedom [8,1]
or atomicity [7]. However, in our case, we generate properly synchronized code and
guarantee serializability from these annotations alone, whereas Flanagan et al. require
a program that is already synchronized using Java’s synchronized construct.

6.2 SPECjbb

We refactored a widely used multi-threaded performance benchmark, SPECjbb,2 to use
atomic sets. SPECjbb simulates a server-side application with classes representing en-
tities like companies, customers, warehouses, and performing activities such as gener-
ating orders and making deliveries. Customers are represented by driver threads and
database storage is simulated using the TreeMap binary tree class. SPECjbb uses syn-
chronized statements and methods for ensuring mutual exclusion during order process-
ing and wait()/notify() for coordinated ramp up and shut down of threads. We studied the
existing synchronization in SPECjbb’s source code in order to understand how atomic
sets could be introduced. In the course of this analysis, we observed several issues:

Inconsistent synchronization. Synchronization appears to be somewhat haphazard.
For instance, class Customer initializes shared fields in its constructor and in set-

2 http://www.spec.org/jbb2005



UsingRandom(). Some of these fields have synchronized accessors, whereas oth-
ers, like address, have unsynchronized accessors. Several methods (e.g., TreeMap-
DataStorage.deleteFirstEntities()) should logically be executed atomically, but there
is no synchronization to enforce this.

Redundant synchronization. Many accessor methods in class Stock are synchronized
even though the accessed fields are written only once, in a method called only by
the constructor (e.g., Stock.getId()).

Use of wait/notify. The wait() and notify() methods are used to implement barriers
that coordinate the threads of the multiple warehouses so that they ramp up, run
and shut down in a synchronized manner. According to monitor semantics, when a
thread calls wait(), it releases its receiver object’s lock and is suspended until it is
“woken up” when another thread calls notify() on the same object.

Ownership issues. Several data structures rely on collections from the Java Col-
lections Framework to store data. For example, TreeMapDataStorage relies on a
TreeMap to store its data. As mentioned, several methods of this class (e.g., delete-
FirstEntities()) should logically be executed atomically but do contain synchroniza-
tion to achieve this.

Our approach was to add atomic sets in a straightforward way. Since we did not
know the exact semantics of SPECjbb and the benchmark does not perform meaningful
self-checking, we assumed that it was correct and verified that any synchronized section
in the original code would be a unit of work in the AJ version. This check was done
manually, by comparing the transformed AJ code to the original benchmark. The atomic
set annotations solved the issue of inconsistent synchronization mentioned above, as all
accesses to fields that are part of an atomic set are guaranteed to be protected. For the
ownership issue related to collections, our code reused the AJ versions of the collections
of Section 6.1. Dealing with wait()/notify() required a bit of work as this idiom is not
supported by our model and care is required to avoid deadlocks when calling wait(). We
chose to break up units of work that contain a wait() call in two distinct units of work,
one for the code before the call and one for the code after, and leave the call to wait() in
a non-unit-of-work body.

Table 1(b) shows the number of annotations required for creating the resulting basic
AJ version of SPECjbb. Only 49 annotations were required, that is approximately 6.2
annotations per KLOC. These annotations replace 125 occurrences of synchronized in
the original code.3 The annotation overhead is significantly lower than for the Java
Collections Framework because very few ownership issues occurred in SPECjbb that
require the use of aliasing.

After obtaining the basic AJ version of the benchmark, we investigated how to
improve its performance by decreasing the number of synchronization operations per-
formed at run time. After some profiling, we identified two small improvements that
could be easily applied to the code to yield a tuned version. First, we found that SPECjbb
does not use any Map.Entry objects, which allowed us to refactor the java.util library
from the previous experiment to make this interface and its subclasses internal. Sec-
ond, SPECjbb contains several transactions that iterate over a thread-local collection.

3 A small number of occurrences of synchronized remain, they are related to uses of wait() and
to synchronization in static methods.
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Fig. 11. Performance measurements for SPECjbb. The figure shows the average num-
ber of bops (a measure of throughput, higher is better) and standard deviation achieved
by the original code, and by the basic and tuned AJ implementations, for up to 8
threads.

However, the basic AJ version acquired a lock for each hasNext() and next() call. We
refactored these loops into a new method where the Iterator is a unitfor parameter, so that
the Iterator’s lock is acquired only once and all the above calls use the internal version
which omits locking. Our benchmarking demonstrates that these two changes result
in a substantial speed up. The tuned version of SPECjbb requires 3 additional unitfor
annotations; the numbers of the other types of annotations remain as in Table 1(b).

Figure 11 compares the performance of the original implementation of SPECjbb
to that of the basic and tuned AJ implementations. It reports the average and standard
deviation in SPECjbb2005 bops, which is a measure of the number of transactions per
second, obtained from 10 series of 2-minute runs with increasing numbers of threads
(ranging from 1 to 8) for each version. From these measurements, it can be seen that,
for a single thread, the basic AJ implementation of SPECjbb achieves a throughput of
approximately 63.6% of that of the original implementation. The tuned implementation
performs better, reaching 80.4% of the throughput of the original implementation. The
graph shows that while the AJ version scales, it does not do as well as the original
SPECjbb code. Specifically, for the situation with 8 threads, we measure a throughput of
54.3% and 61.4% of that of the original Java version, for the basic and tuned versions,
respectively. This can be attributed to some of the additional locking introduced by
atomic sets and reducing this overhead is clearly an important topic for future work.



To provide a rough assessment of the cost of locking, we ran a version of SPECjbb
with no synchronization in single-threaded mode. The unsynchronized version achieves
32712 bops, compared to 27801 bops for the original code and 22350 for the tuned AJ
code.

7 Conclusions

We have presented a type-based approach for data-centric synchronization, based on
atomic sets and units of work. Our new type system guarantees atomic-set serializabil-
ity while enabling separate compilation and atomic sets that span multiple objects. We
implemented this approach in AJ, a significant subset of Java extended with atomic sets,
and created an AJ-to-Java compiler. We demonstrated that our approach has low annota-
tion overhead, by manually rewriting into AJ several classes from the Java Collections
Framework, and SPECjbb, a widely used multi-threaded performance benchmark. In
our experiments, the annotation overhead ranged from approximately 40 annotations
for each KLOC of source code in Java Collections, to only 6.2 annotations per KLOC
in SPECjbb. We expect SPECjbb to be representative of the majority of user written
code where concurrency concerns are only a small part of the code. As performance op-
timizations were not the main focus of this work we consider the reported results to be
encouraging as our approach is capable of generating code with acceptable performance
while providing a correctness guarantee that Java’s current synchronization mechanism
does not offer. In future work, we plan to explore several avenues for improving perfor-
mance, including the use of program analyses to tighten the scope of synchronization.
We also plan to explore the use of static analysis for detecting possible deadlock.
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