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Abstract. JavaScript poses significant challenges for points-to analysis,
particularly due to its flexible object model in which object properties
can be created and deleted at run-time and accessed via first-class names.
These features cause an increase in the worst-case running time of field-
sensitive Andersen-style analysis, which becomes O(N4), where N is the
program size, in contrast to the O(N3) bound for languages like Java. In
practice, we found that a standard implementation of the analysis was
unable to analyze popular JavaScript frameworks.
We identify correlated dynamic property accesses as a common code pat-
tern that is analyzed very imprecisely by the standard analysis, and
show how a novel correlation tracking technique enables us to handle
this pattern more precisely, thereby making the analysis more scalable.
In an experimental evaluation, we found that correlation tracking of-
ten dramatically improved analysis scalability and precision on popular
JavaScript frameworks, though in some cases scalability challenges re-
main.
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1 Introduction

JavaScript is rapidly gaining in popularity because it enables programmers to
write rich web applications with full-featured user interfaces and portability
across desktop and mobile platforms. Recently, pointer analysis for JavaScript
has been used to enable applications such as security analysis [10, 12], bug find-
ing [14], and automated refactoring [8].

Real-world web applications increasingly make use of framework libraries
like jquery1 that abstract away browser incompatibilities and provide advanced
DOM manipulation and user interface libraries. A recent survey [27] found that
more than half of all surveyed sites use one of the nine most popular frameworks.
These frameworks present a formidable challenge to static analysis, since they
are relatively large and make frequent use of highly dynamic language features.

In particular, JavaScript’s flexible object model presents a major challenge
for scalable and precise points-to analysis. In JavaScript, an object has zero or
1 http://jquery.com



more properties (corresponding to instance fields in languages like Java), each
identified by a unique name. Properties may contain any kind of value, including
first-class functions, and programmers may define a “method” on an object by
assigning a function to one of its properties, as in the following example:

o.foo = function f1() { return 23; };
o.bar = function f2() { return 42; };
o.foo();

To identify the precise call target for the call o.foo(), an analysis must be able
to compute points-to targets for o.foo and o.bar separately and not conflate
them. This is usually achieved by a field-sensitive analysis [16].

Field-sensitive analysis for JavaScript is complicated by the fact that prop-
erties can be accessed by computed names. Consider the following code:

f = p() ? "foo" : "baz";
o[f] = "Hello, world!";

Here, f is assigned either the value "foo" or the value "baz", depending on the
return value of p. A dynamic property access is then used to store a string value
into a property of object o whose name is determined by the value of f. If f
is "foo", the existing property o.foo is overwritten, otherwise a new property
o.baz is created and initialized to the given value.

In the presence of dynamic property accesses, performing a field-sensitive
analysis poses both theoretical and practical challenges. We show that, surpris-
ingly, extending a standard implementation of field-sensitive Andersen’s points-
to analysis [3] to handle dynamic property accesses causes the implementation
to run in worst-case O(N4) time, where N denotes the size of the program,
compared to the typical O(N3) bound for other programming languages.

This increased complexity is not merely of theoretical interest—we were un-
able to scale a traditional field-sensitive analysis to handle JavaScript frameworks
like jquery. These frameworks generally make heavy use of dynamic property ac-
cesses to reflectively access object properties. In combination with other features
of JavaScript such as first-class functions, these operations cause an explosion in
analysis imprecision that makes call graph construction intractable in practice,
as we illustrate on an example in Section 2. And while these operations are most
idiomatic and common in JavaScript, exactly the same operations can be written
in other scripting languages like Python.

We have devised a technique that helps address issues caused by dynamic
property accesses by making the points-to analysis more precise. We observed
that for property writes that cause imprecision in practice, there is often an
obvious correlation between the updated location and the stored value that is
ignored by the points-to analysis. For example, for the statement x[p] = y[p]
(which copies the value for property p in y to property p in x), a standard
points-to analysis does not track the fact the same property p is accessed on
both sides of the assignment. If p ranges over many possible values, this leads
to conflation of many unrelated property-value pairs and cascading imprecision.
Our technique regains precision by tracking such correlated read/write pairs and
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analyzing them separately for each value of p. The analysis thus ends up only
copying values between properties of the same name, dramatically improving
precision and performance in many cases. This correlation tracking is achieved
by extracting the relevant code into new functions and analyzing them with
targeted context sensitivity.

We implemented our technique as an extension to the Watson Libraries for
Analysis (WALA) [26] and conducted experiments on five widely-used JavaScript
frameworks: dojo, jquery, mootools, prototype.js, and yui. On these benchmarks,
WALA’s default implementation of a field-sensitive Andersen-style analysis usu-
ally is not able to complete analysis within a reasonable amount of time and
produces very imprecise results. We show that correlation tracking significantly
improves both analysis performance and precision: most benchmarks can now
be analyzed in seconds, though some scalability challenges remain.

The presence of eval and other constructs for executing dynamically gener-
ated code means that a (useful) static analysis for JavaScript cannot be sound,
and ours is no exception. Nevertheless, there are interesting applications for un-
sound call graphs in security analysis and bug finding [12, 24], and we expect
existing tools to benefit significantly from our techniques.

The contributions of this paper can be summarized as follows:

– We show that a standard implementation of field-sensitive Andersen’s points-
to analysis extended to handle dynamic property accesses has O(N4) worst-
case running time, in contrast to the O(N3) bound for other languages.

– We demonstrate that this increased complexity has practical repercussions
by showing that a previously developed field-sensitive implementation of An-
dersen’s points-to analysis for JavaScript is unable to analyze several widely-
used JavaScript frameworks.

– We present a technique to address scalability issues caused by dynamic prop-
erty accesses by enhancing the points-to analysis to track correlated dynamic
property accesses that must at run-time refer to properties with the same
name.

– We report on an implementation of our correlation tracking technique on
top of WALA and its application to JavaScript frameworks, demonstrating
significantly improved scalability and precision in many cases.

The remainder of this paper is organized as follows. Section 2 presents a
motivating example that illustrates the complexity of points-to analysis for
JavaScript. Section 3 formulates field-sensitive points-to analysis for JavaScript
and shows the O(N4) worst-case running time of a standard implementation
extended with handling of computed property names. Section 4 presents our
approach for improved handling of dynamic property accesses. Experimental re-
sults are presented in Section 5. Section 6 discusses how similar scalability issues
may arise in other languages, demonstrating that the techniques presented in
this paper may be more widely applicable. Finally, related work is discussed in
Section 7 and conclusions are presented in Section 8.
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6 function extend(destination , source) {
7 for (var property in source)
8 destination[property] = source[property];
9 return destination;

10 }
11
12 extend(Object, {
13 extend: extend,
14 inspect: inspect,
15 ...
16 });
17
18 Object.extend(String.prototype , (function() {
19 function capitalize() {
20 return this.charAt(0).toUpperCase()
21 + this.substring(1).toLowerCase();
22 }
23 function empty() {
24 return this == ’’;
25 }
26 ...
27 return {
28 capitalize: capitalize ,
29 empty: empty,
30 ...
31 };
32 })());
33 "javaScript".capitalize(); // == "Javascript"

Fig. 1. The extend function and some of its uses in prototype.js; the definition of
inspect is omitted.

2 Motivation

In this section, we illustrate how some of JavaScript’s dynamic features impact
points-to analysis and call-graph construction. We illustrate these points using
Figure 1, which shows a few fragments of the widely used prototype.js library.2

2.1 JavaScript Objects and Functions

JavaScript’s model of objects and functions is extremely flexible:

– Unlike class-based languages like Java, JavaScript has no built-in concept
of an object instance method. Instead, functions are first-class values, and
methods are simply functions stored in object properties. For instance on

2 http://www.prototypejs.org/
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lines 12-16 in Figure 1, an object is created with two properties, extend and
inspect, and extend is bound to the function defined on line 6.

– Object properties are dynamic in that they are not declared and can be
accessed with first-class names. On line 8, the destination object has prop-
erties assigned based on the property variable; if a given property exists in
destination, it is overwritten; if not, it is created. Thus, the set of prop-
erties an object may have is not evident from the code, unlike in a static
language like Java.

– The notion of a method call is idiosyncratic; since functions are assigned
dynamically to objects, the notion of a receiver is defined by the call itself.
Consider the extend function defined on line 6. On line 18, this function will
be invoked by the Object.extend call, and this will be bound to Object.
However, on line 12, extend is called directly by name, and this defaults to
the global object.

Since there is no a priori distinction between properties containing values
and properties containing methods, a field-sensitive analysis, which represents
each property of each abstract object separately, is necessary for obtaining a
precise call graph for JavaScript programs. A field-insensitive analysis, which
uses a merged representation for each object’s properties, would conclude that
the invocation of Object.extend could possibly invoke Object.inspect as well,
a very imprecise result.

Several techniques used in other languages to remove obviously invalid re-
sults from points-to sets are not applicable in JavaScript. The language lacks
classes and declared types for variables, so type filters [9] cannot be employed.
Properties are created upon first write, so assignments to non-existent proper-
ties cannot be discarded as invalid by the analysis. Finally, although functions
declare formal parameters, they can be invoked with any number of actual argu-
ments. If too few arguments are passed, the remaining parameters are assigned
the value undefined. All arguments (including those not corresponding to any
declared parameter) can be accessed via the built-in arguments array. This flex-
ibility makes it impossible to perform arity matching to narrow down the set of
functions that may be invoked at a given call site.

As a consequence, local imprecision in the analysis can easily cascade and
pollute much of the analysis result.

2.2 Dynamic Property Accesses

Figure 1 illustrates how JavaScript’s dynamic property accesses pose a major
challenge for points-to analysis. In particular, the example illustrates how pro-
totype.js uses such accesses to dynamically extend objects, a feature often used
within prototype.js itself. Several other frameworks, including jquery, offer simi-
lar functionality.

The program of Figure 1 declares a function extend on lines 6–10. It uses
a for-in loop to iterate over the names of all properties of the object bound
to its source parameter, assigning them to the loop variable property. The
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value of each property is then read using a dynamic property access expres-
sion source[property], and stored in a property of the same name in object
destination by assigning it to destination[property]. The following aspects
of JavaScript’s semantics should be noted:

– The name of the property accessed by a dynamic property access expression
is computed at run-time.

– As mentioned above, a write to a property creates that property if it does
not exist yet.

Together, these observations imply that it is possible for a JavaScript program
to create objects with an unbounded number of properties, which is impossible
in statically typed languages such as Java or C#.

Figure 1 also shows two examples of how extend is used inside the prototype.js
library itself.

– On lines 12–16, extend is called to bind several functions to properties in
the built-in Object object. Note that the extend function itself is bound to
a property extend of Object.

– On lines 18–32, the extend function is invoked as Object.extend to ex-
tend the prototype property of the built-in String object with properties
capitalize and empty. As shown on line 33, these properties then become
available on all String objects, since they have String.prototype as their
prototype object and hence inherit all its properties.

Now, consider applying Andersen’s points-to analysis [3] to the example in
Figure 1. As discussed earlier, field-sensitive analysis is necessary to obtain suf-
ficient precision. To handle dynamic property accesses, the analysis must fur-
thermore track the possible values of property-name expressions (like property
on line 8) and use that information to reason about what properties a dynamic
access can read or write. Section 3 formulates such an analysis in more detail
and discusses the effect of dynamic property accesses on worst-case complexity.

For the example of Figure 1, variable property on line 8 may be bound to the
name of any property of any object bound to source. In particular, property
may refer to any property name of the object passed as the second argument in
the call on line 12 ("extend", "inspect", etc.) and the one passed on line 18
("capitalize", "empty", etc.). This means that the points-to set for the dy-
namic property expression source[property] must include all properties of the
source objects. The write to destination[property] therefore causes Ander-
sen’s analysis to add all of these functions to the points-to sets for properties
"extend", "inspect", "capitalize" etc. in all the destination objects (recall
that a write to a non-existent property creates the property). In particular, such
an analysis would conclude, very imprecisely, that the call Object.extend(...)
on line 18 might invoke any of the functions Object is extended with on line 12.

By the same reasoning, it can be seen that due to the invocation of extend()
at line 18, this points-to analysis would compute for each property added to
String.prototype a points-to set that includes capitalize, empty, and any
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34 function extend(destination , source) {
35 for (var property in source)
36 (function(p){
37 destination[p] = source[p];
38 })(property);
39 return destination;
40 }

Fig. 2. Transformed example

other function stored in the object literal on line 32. Consequently, an invocation
of a function read from one of these properties would be approximated as a call
to any one of them by the analysis. The resulting loss of precision is detrimental
because String objects are used pervasively.

This kind of precision loss arose for several widely-used JavaScript frame-
works that we attempted to analyze (see Section 5), making straightforward
field-sensitive points-to analysis intractable due to the long time it takes to com-
pute the highly imprecise points-to relation, and the excessive space required to
store it. This problem is exacerbated by the fact that JavaScript frameworks use
mechanisms such as the extend function of Figure 1 internally during initial-
ization, which means that merely including the code for these libraries in a web
page will trigger the problem.

Our Technique In Section 4, we propose correlation tracking as a solution to this
problem that can dramatically improve both precision and performance. The key
idea is to enhance Andersen’s analysis to track correlations between dynamic
property reads and writes that use the same property name. For our example,
the value read from source[property] is written into destination[property];
since the value of property cannot have changed between the read and the write,
the enhanced analysis can reason that a property value from source may only
be copied to the property with the same name in destination.

This is implemented by first extracting the relevant code—in this case the
body of the for-in loop—into a new function with the property name as its
only parameter, as shown for function extend in Figure 2.3 The new function is
then analyzed context-sensitively with a separate context for each value of the
property name parameter, thereby achieving the desired precision.

This context-sensitivity policy is reminiscent of Agesen’s Cartesian Product
Algorithm [1] and object-sensitive analyses [18, 20] in the sense that different
contexts are introduced for a function based on the values passed as arguments
(further discussion in Section 4.2). These enhancements enable our analysis to
efficiently compute call graphs for framework-based JavaScript applications in
many cases that could not be handled by the baseline field-sensitive analysis.
3 Other variables of the surrounding scope remain accessible in the extracted code,
since JavaScript supports lexical scoping.
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Statement Constraint

x = {}i {oi} ⊆ pt(x) [Alloc]

v = “name” {name} ⊆ pt(v) [StrConst]

x = y pt(y) ⊆ pt(x) [Assign]

x[v] = y
o ∈ pt(x) s ∈ pt(v)

pt(y) ⊆ pt(o.s)
[StoreField]

y = x[v]
o ∈ pt(x) s ∈ pt(v)

pt(o.s) ⊆ pt(y)
[LoadField]

v = x.nextProp()
o ∈ pt(x) o.s exists

{s} ⊆ pt(v)
[PropIter]

Table 1. Our formulation of field-sensitive Andersen’s points-to analysis in the pres-
ence of first-class fields

3 Field-Sensitive Points-To Analysis for JavaScript

In this section, we formulate a field-sensitive points-to analysis for a core lan-
guage based on the object model of JavaScript. This formulation describes the
existing points-to analysis implementation in WALA [26], which we use as our
baseline. Then, we show that a standard implementation of Andersen’s analysis
runs in worst-case O(N4) time for this formulation, where N is the size of the
program, due to computed property names. Finally, we give a minimal example
illustrating the imprecision that our techniques address.

Formulation The relevant core language features of JavaScript are shown in
the leftmost column of Table 1. Note that property stores and loads act much
like array stores and loads in a language like Java, where the equivalent of array
indices are string constants.4 Property names are first class, so they can be copied
between variables and stored and retrieved from data structures. As discussed
in Section 2, properties are added to objects when values are first stored in
them. The v = x.nextProp() statement type is used to model the JavaScript
for-in construct (see Section 2); it updates v with the next property name of

4 In full JavaScript, not all string values originate from constants in the program text;
as discussed further in Section 5.1, we handle this by introducing a special “unknown”
property name that is assumed to alias all other property names.
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the object x points to.5 So, assuming a corresponding hasNextProp construct,
for (v in x) { B } could be modeled as:

while (x.hasNextProp()) { v = x.nextProp(); B }

The second column of Table 1 presents Andersen-style points-to analysis
rules for the core language. The only way in which this differs from a standard
Andersen-style analysis for Java [21] is that it supports tracking of property
names as they flow through assignments. We represent the points-to set of a
program variable x as pt(x). The rules are presented as inclusion constraints
over points-to sets of program variables and of properties of abstract objects
(e.g., o.name). We assume that object allocations are named with one abstract
heap object per static statement, e.g., abstract object oi for statement i. Note
that pt-sets track not just abstract objects, but also string constants possibly
representing property names.6

Complexity Computing an Andersen-style points-to analysis can be viewed as
solving a dynamic transitive closure (DTC) problem for a graph of constraints
similar to those in Table 1: o ∈ pt(x) iff x is reachable from o in the graph.
Reachability information is stored by maintaining points-to sets for variables and
for fields of abstract-locations, and “propagating” abstract locations to points-to
sets based on the constraint edges [21]. The problem requires dynamic transitive
closure since the StoreField and LoadField rules introduce new constraints
based on other points-to facts, which translates to adding new graph edges based
on other reachability facts. Most efficient implementations of Andersen’s analysis
essentially work by computing a dynamic transitive closure; see previous work
for details [21].

For Java-like languages, the worst-case complexity of the DTC computation
for points-to analysis is O(N3). The key constraint rules to consider are for field
accesses, e.g., the StoreField rule for a statement x.f = y (reasoning about
LoadField is similar):

o ∈ pt(x)
pt(y) ⊆ pt(o.f)

Note that since the field name is manifest in the Java statement, the field-
name precondition seen in Table 1 is not required in this rule. Via this rule, the
algorithm may add O(N) constraints of the form pt(y) ⊆ pt(o.f) to the graph in
the worst case (since |pt(x)| is O(N)). Considering O(N) abstract locations that
may be propagated across each such generated constraint, and O(N) field-write
statements in the program, we obtain an O(N3) worst-case bound on running
time.

5 Property names from objects in the prototype chain are also considered [7, §12.6.4],
but we elide this detail here for clarity.

6 If a non-String object o is used as a property name in a dynamic property access,
a name is obtained by coercing o to a String [7, §11.2.1]; we elide modeling of this
behavior here for clarity.

9



1 src = {}
2 dest = {}
3 src["ext"] = {}
4 src["ins"] = {}
5 prop = (*) ? "ext" : "ins";
6 t = src[prop];
7 dest[prop] = t;

(a)

o4ext

o3

ins

o2

src

dest

prop
“ext”

“ins”

ext

ins

o1

t

(b)

Fig. 3. Imprecisely analyzed property accesses, and the corresponding points-to graph
computed by the analysis in Table 1; the red, dashed edges are spurious.

Now, consider the StoreField rule from Table 1, which includes an addi-
tional pre-condition s ∈ pt(v) to handle computed property names. Unlike Java,
this rule may introduce O(N2) new constraints, one for each (abstract loca-
tion, property name) pair. Factoring in O(N) worst-case propagation work for
each constraint and O(N) store statements in the program now yields an O(N4)
running-time bound for the analysis, worse than that for Java. This bound as-
sumes that the analysis may find each abstract location to have O(N) fields in
the worst-case. In a language with classes, an assumption of a constant num-
ber of fields per object becomes reasonable [21]. But, with JavaScript’s lack of
classes and semantics of creating fields when written, such an assumption cannot
be made. In fact, our techniques are designed to address a common pattern that
causes a blowup in the number of fields per object, as discussed below.

l4
o1 ∈ pt(src)

o4 ∈ pt(o1.ins)

o1 ∈ pt(src) ins ∈ pt(prop)

pt(o1.ins) ⊆ pt(t)
l6

o4 ∈ pt(t)

ext ∈ pt(prop) o2 ∈ pt(dest)

pt(t) ⊆ pt(o2.ext)
l7

o4 ∈ pt(o2.ext)

Fig. 4. Imprecise derivation of o4 ∈ pt(o2.ext) for the example of Figure 3(a), using
the rules of Table 1. Rule applications are labeled with the corresponding line number
from Figure 3(a) as appropriate.

Imprecision Example Consider the sequence of statements in Figure 3(a). This
program is intended to model normalized statements corresponding to the for-in
loop in Figure 1 as they would appear to Andersen’s analysis; identifier names
have been abbreviated.7 The program creates properties ext and ins in the ob-
ject o1 (named by the line number of its allocation), and then copies one of these
properties to object o2. Figure 3(b), which gives the points-to relation computed

7 We avoid full normalization to the statement types of Table 1 to ease readability.
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for the program, shows that the analysis has imprecisely conflated the ext and
ins properties in o2, concluding that they both may point to either o3 or o4.

Figure 4 shows in detail how the analysis imprecisely concludes that o4 ∈
pt(o2.ext), based on the rules of Table 1. Here, the imprecision stems from failing
to take into account that lines 6 and 7 of Figure 3(a) must read the same property
name from variable prop—the rule applied for line 6 uses ins ∈ pt(prop), while
the line 7 rule uses ext ∈ pt(prop).

Note that conversion of JavaScript statements to their normal form for An-
dersen’s analysis (see Table 1) may in fact introduce the imprecision illustrated
above. Say that lines 6 and 7 of Figure 3(a) were written as a single statement
dest[prop] = src[prop]. A points-to analysis that processed this statement di-
rectly could avoid the above imprecision—even without flow sensitivity, it is
clear that prop cannot be re-defined between its two uses in this statement.8
However, a flow-insensitive analysis must allow for prop to be re-defined between
the normalized statements t = src[prop]; dest[prop] = t, adding imprecision.
In contrast to a previous study showing that this normalization does not cause
imprecision for points-to analysis of C in practice [5], we have observed real
examples (e.g., that of Figure 1) where normalization causes imprecision for
JavaScript. Our techniques can recover precision in these cases, and also in cases
where multiple source-level statements are relevant, as discussed in the next
section.

4 Correlation Tracking

We now discuss our correlation tracking technique for improving the scalability
of JavaScript points-to analysis in practice. We first illustrate the technique on
a small example (Section 4.1), and then detail how we achieve the correlation
tracking by extracting code into new functions and analyzing them with targeted
context sensitivity (Section 4.2).

4.1 Example

Recall that in the example from Figure 3 of Section 3 the field-sensitive points-to
analysis of Table 1 imprecisely concluded that o4 ∈ pt(o2.ext) since it did not
track the fact that the property read on line 6 must refer to the same property
name as the write on line 7.

We can force the analysis to recognize this by splitting variable prop, which
contains the property name, into two variables prop1 and prop2, respectively
corresponding to prop’s possible values of "ext" and "ins", as shown in Fig-
ure 5(a).

Considering again the derivation from Figure 4, we see that the analysis can
derive a modified constraint pt(t1) ⊆ pt(o2.ext) for Figure 5(a) (via line 8),
but it cannot derive the corresponding o4 ∈ pt(t1) fact required to imprecisely

8 Unfortunately, no polynomial-time algorithm is known for such an analysis [5].
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1 src = {}
2 dest = {}
3 src["ext"] = {}
4 src["ins"] = {}
5 if (*) {
6 prop1 = "ext";
7 t1 = src[prop1];
8 dest[prop1] = t1;
9 } else {

10 prop2 = "ins";
11 t2 = src[prop2];
12 dest[prop2] = t2;
13 }

(a)

1 src = {}
2 dest = {}
3 src["ext"] = {}
4 src["ins"] = {}
5 prop = (*) ? "ext" : "ins";
6 (function(ff) {
7 t = src[ff];
8 dest[ff] = t;
9 })(prop);

(b)

Fig. 5. Transformed versions of the example of Figure 3, to illustrate our technique

conclude that o4 ∈ pt(o2.ext). Instead, the analysis can only derive o4 ∈ pt(t2)
(via line 11), leading to o4 ∈ pt(o2.ins) (line 12), which is in fact feasible.

This example in Figure 5(a) is handled more precisely since the cloning en-
ables the points-to analysis to track the correlation of the property name between
the copied dynamic property reads and writes—it only copies src["ext"] to
dest["ext"] and src["ins"] to dest["ins"].

In general, of course, it is not straightforward to determine the set of possi-
ble property names a correlated read/write pair may refer to. Thus, instead of
cloning the relevant section of code once for every property name, we extract
it into a fresh anonymous function taking the property name as a parameter as
shown in Figure 5(b).9 Combined with a special context sensitivity policy that
analyses the fresh function separately for every (abstract) parameter value, we
obtain the same precision as with cloning.

4.2 Implementing Correlation Tracking

Identifying Correlations A dynamic property read r and a property write w are
said to be correlated if w writes the value read at r, and both w and r must refer
to the same property name.

We identify such correlated read/write pairs by a data flow analysis on an
intra-procedural def-use graph. Starting from a dynamic property read r of the
form o[p], we follow def-use edges to track where the read value flows. If it may
flow into a dynamic property write w of the form o’[p’] = e and we can prove
that p must have the same value as p’, then r and w are correlated. In practice,
we have found it sufficient to only consider cases where p and p’ refer to the
same local variable p, and p is not redefined between r and w.
9 Note that local variables src and dest are accessible inside the anonymous function
due to JavaScript’s lexical scoping discipline.
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In some cases, r and w may be in different functions. To capture this situa-
tion, we conservatively assume that any called function may perform a dynamic
property write. Thus, if both the value read by r and the value of p flow into a
function call c, we consider r and c to be correlated. The reverse situation, with
the property read occurring in a callee, does not appear to occur in practice and
we do not handle it.

While this analysis is not complete and hence will not identify all correlated
pairs, it is simple to implement and suffices in practice.

Function Extraction Once we have identified a correlation between r and w on
property name p, we extract the snippet of code containing the two accesses into
a new function with p as its parameter. In practice, it turns out to be sufficient
to only consider the case where the read r and the write w (or the call c for
inter-procedural correlations) occur in two statements sr and sw such that sr

precedes sw inside the same block of statements.
If the extraction regions corresponding to different correlated pairs overlap,

they are merged and extracted into a function taking all the relevant property
name parameters as arguments.

Some language constructs need to be treated specially. In particular, the this
value of the enclosing method needs to be passed as a separate parameter to the
extracted function if there are any this references in the extraction region, and
these references must be rewritten to access the parameter instead. We currently
do not extract code that references the arguments array. Finally, unstructured
control flow (such as continue or break) across the boundaries of the extraction
region needs to be rewritten to instead return a special flag value; this value is
checked by the enclosing function, and the appropriate jump is performed. All
these checks and transformations are of the same kind as those performed by
implementations of the Extract Method refactoring [19].

Context Sensitivity To ensure that correlated pairs are analyzed once per prop-
erty name, we analyze the extracted function using the following context sensi-
tivity policy:

If function f uses a parameter p as the property name in a dynamic
property access, f is analyzed context-sensitively, with a separate context
for each value of p.

For the example of Figure 5(b), the policy creates a separate context for each
value of the ff parameter for the function at line 6. This policy effectively clones
the extracted function for each possible value of ff ("ext" and "ins"), matching
the cloning in Figure 5(a) and hence adding the desired correlation tracking. Our
context-sensitivity policy can be viewed as a variant of object sensitivity [18, 20],
using the property name parameter instead of the this parameter to distinguish
contexts.10
10 In the case where a function uses multiple parameters as property names in dynamic

accesses, we choose one such parameter arbitrarily to distinguish contexts. We have
not observed this case in practice.
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The policy is not restricted to functions generated by the extraction of corre-
lated pairs. Thus it is able to handle cases where correlated reads and writes hap-
pen in different functions. For instance, consider the following example (loosely
based on code found in the mootools framework):
function doWrite(d,p,v) { d[p] = v; }
function extend(destination , source) {
for (property in source)

doWrite(destination ,property,source[property]);
}

Here, the read in extend is correlated with the write in doWrite. Our intra-
procedural analysis will identify this correlation due to its conservative treatment
of function calls, hence the call to doWrite will be extracted into a fresh func-
tion with parameter property. Both the fresh function and doWrite use their
parameter as a property name, hence they are both analyzed context sensitively,
yielding the desired precision.

This additional context sensitivity does not improve the worst-case running
time of the analysis; in fact, the analysis could in principle become slower since
more constraints are generated for functions analyzed under the new contexts. As
the next section shows, however, the technique dramatically improves scalability
in practice because we end up creating much sparser points-to graphs.

5 Evaluation

Here we present an experimental evaluation of the effectiveness of our techniques
to make field-sensitive points-to analysis for JavaScript scale in practice.

5.1 Implementation

Our analysis implementation is built on top of WALA [26]. WALA provides a
points-to analysis implementation for JavaScript, which we extended with corre-
lation tracking. WALA’s JavaScript points-to analysis is built on a highly-tuned
constraint solver also used for Java points-to analysis [21], and it has already been
used in production-quality security analyses for JavaScript [12, 24]. Our work
was motivated by the fact that WALA’s analysis could not scale to analyze many
JavaScript frameworks. By building on WALA, we were able to re-use its han-
dling of various intricate JavaScript language constructs such as the prototype
chain and arguments array (also discussed in previous work [10, 14]). WALA
also provides handwritten models of various pre-defined JavaScript objects and
standard library functions.

Default Context Sensitivity WALA’s JavaScript points-to analysis uses context
sensitivity by default to handle two key JavaScript language features, and we
preserved these techniques in our modified version of the analysis. The first con-
struct is new, used to allocate objects. The new construct has a complex seman-
tics in JavaScript based on dispatch to a first-class function value [7, §11.2.2].11

11 In some cases, a new expression may not even create an object [7, §15.2.2.1].
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WALA handles new by generating synthetic functions to model the behaviors
of possible callees. As any one of these synthetic functions may be invoked for
multiple new expressions, they must be analyzed with one level of call-string
context in order to achieve the standard allocation-site-based heap abstraction
of Andersen’s analysis.

Accesses to variables in enclosing lexical scopes are also handled via context
sensitivity by WALA. Handling lexical scoping for JavaScript can be compli-
cated, as nested functions may read and/or write variables declared in enclosing
functions [7, §10.2]. WALA employs contexts to ensure that a lexical access only
reads or writes the appropriate clones of the accessed variable in the call graph.
Without this approach, lexical accesses may lead to merging across call graph
clones, muting the benefits of other context-sensitivity policies. Also, lexical in-
formation is stored in abstract-location contexts for function objects as needed,
to handle closure accesses performed by the function after it is returned from its
enclosing lexical scopes. Note that our function extraction technique is eased by
WALA’s precise treatment of lexical accesses, as fewer parameters and return
values need to be introduced (see Section 4.2).

Unknown Properties While our analysis formulation in Section 3 allowed for only
constant strings as property names, in a JavaScript property access a[e], e may
be an arbitrary expression, computed using user inputs, arithmetic, complex
string operations, etc. Hence, in some cases WALA cannot compute a complete
set of constant properties that a statement may access, i.e., the statement may
access an unknown property. WALA handles such cases conservatively via ab-
stract object properties, each of which represents the values stored in all proper-
ties of some (abstract) object. When created, an abstract property is initialized
with all possible property values discovered for the object thus far. A read of
an unknown object property is modeled as reading the object’s abstract prop-
erty, while a write to an unknown property is treated as possibly updating the
object’s abstract property and any other property whose name is known. This
strategy avoids pollution in the case where all reads and writes are to known
constant property names.

call and apply JavaScript function objects provide two built-in methods call
and apply to reflectively invoke the represented function [7, §15.3.4]. Whenever
the analysis determines that a call may dispatch to one of these methods, it
creates a synthetic stub function that models the reflective call taking place at
this call site.

Soundness WALA’s points-to analysis attempts to treat most commonly used
JavaScript constructs conservatively. However, unsoundness will occur in some
cases:

– We currently do not handle with blocks, which put the properties of an
object in the local scope. Of the frameworks we evaluate, only one (dojo)
uses with blocks in two places. We manually desugared these uses in a similar
way as suggested in [13].
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– We do not model the semantics of eval and the Function constructor as well
as several other constructs for executing dynamically generated code. This is
analogous to how analyses of Java commonly ignore complex reflection and
dynamic code loading.

– Some implicit conversions prescribed by the language standard are not yet
modeled. In particular, some of these conversions can result in calls to
toString or valueOf methods that we currently ignore.

– Our model of the JavaScript library and the DOM is incomplete, which can
lead to unsoundness. Again, this is similar to how analyses of Java work,
few of which model the intricate native implementation of portions of the
libraries.

In spite of possible unsoundness, the points-to analysis is still useful for a variety
of clients, e.g., bug-finding tools [12, 24]. Furthermore, we expect that correlation
tracking would provide significant benefits for a sound approach to JavaScript
points-to analysis as well.

Framework Home Page Version LOC Correlated Pairs
dojo http://www.dojotoolkit.org 1.6.1 4748 20
jquery http://jquery.com 1.6.1 5896 34
mootools http://mootools.net 1.4.0 3815 41
prototype.js http://prototypejs.org 1.7 4956 9
yui http://developer.yahoo.com/yui 2.9 24088 31

Table 2. Overview of the JavaScript frameworks used in our experiments. The “LOC”
column gives the number of lines of non-blank, non-comment source code as determined
by CLOC (http://cloc.sf.net), and the “Correlated Pairs” column gives the number
of correlated access pairs extracted by our technique.

5.2 Experimental Setup

We evaluated our approach on five popular JavaScript frameworks listed in Ta-
ble 2, which are among the most widely used frameworks according to a recent
survey [27]. For each framework, we collected six small benchmark applications
that use the framework, ranging from trivial web pages that do nothing but load
the framework scripts to toy web applications of up to 155 lines of code.12 Note
that even just loading each framework already causes significant initialization
code to run.

For each benchmark, we attempted to construct call graphs (and hence
points-to graphs) using both WALA’s standard points-to analysis and our im-
proved technique. We found that most of the frameworks contain sophisticated
12 A complete list of the benchmark applications used and all of our experimental data

is available online at http://tinyurl.com/JSPointers.
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uses of the above-mentioned reflective methods call and apply. To more clearly
separate out the impact of these features (which is orthogonal to the issue ad-
dressed by correlation tracking) we additionally ran our analysis once with mod-
eling of call and apply, and once without, thus yielding a total of four different
configurations.

From now on, we will refer to the configuration using WALA’s standard
analysis without call/apply support as “Baseline−” and to the one with sup-
port as “Baseline+”; “Correlations−” and “Correlations+” are the corresponding
configurations using correlation tracking.

Table 2 also shows, in its last column, the number of correlated access pairs
that our technique extracts into fresh functions, which is relatively modest. The
benchmark applications themselves did not contain any correlated access pairs.

We performed a separate manual transformation of the extend function in
jquery to eliminate its complex use of the arguments array, which again is or-
thogonal to our focus in this paper. Here is an excerpt of the relevant code:

jQuery.extend = function () {
var target = arguments[0] || {}, i = 1,

length = arguments.length, deep = false;
// Handle a deep copy situation
if ( typeof target === "boolean" ) {

deep = target;
target = arguments[1] || {};
// skip the boolean and the target
i = 2;

}
...
// extend jQuery itself if only one argument is passed
if ( length === i ) {

target = this;
--i;

} ...
}

The function explicitly tests both the number of arguments and their types,
with significantly different behaviors based on the results. If the first argument
is a boolean, its value determines whether a deep copy is performed, and if
there is only one argument, then its properties are copied to this. Any sort
of traditional flow-insensitive analysis of this function gets hopelessly confused
about what is being copied where, since target, the destination of the copy, can
be an argument, a fresh object, or this depending upon what is passed.

We manually specialized the above function for the different possible num-
bers and types of arguments, and this specialized version is analyzed in all four
configurations of the points-to analysis. Without the specialization, neither the
baseline analysis nor our modified version is able to build a call graph for jquery.
We leave it to future work to build an analysis to automatically perform these
specializations.
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All our experiments were run on a Lenovo ThinkPad W520 with a 2.20 GHz
Intel Core i7-2720QM processor and 8GB RAM running Linux 2.6.32. We used
the OpenJDK 64-Bit Server VM, version 1.6.0_20, with a 5GB maximum heap.

5.3 Results

Framework Baseline− Baseline+ Correlations− Correlations+

dojo * (*) * (*) 3.1 (30.4) 6.7 (*)
jquery * * 78.5 *
mootools 0.7 * 3.1 *
prototype.js * * 4.4 4.5
yui * * 2.2 2.1

Table 3. Time (in seconds) to build call graphs for the benchmarks, averaged per
framework; ‘*’ indicates timeout. For dojo, one benchmark takes significantly longer
than the others, and is hence listed separately in parentheses.

Performance We first measured the time it takes to generate call graphs for our
benchmarks using the different configurations, with a timeout of ten minutes.
The results are shown in Table 3. Since our benchmarks are relatively small,
call graph construction time is dominated by the underlying framework, and
different benchmarks for the same framework generally take about the same
time to analyze. For this reason, we present average numbers per framework,
except in the case of dojo where one benchmark took significantly longer than
the others; its analysis time is not included in the average and given separately
in parentheses.

Configuration Baseline− does not complete within the timeout on any bench-
mark except for mootools, which it analyzes in less than a second on average.
However, once we move to Baseline+ and take call and apply into considera-
tion, mootools also becomes unanalyzable.

Our improved analysis fares much better. Correlations− analyzes most bench-
marks in less than five seconds, except for one dojo benchmark taking half a
minute, and the six jquery benchmarks, which take up to 80 seconds. Adding
support for call and apply again impacts analysis times: the analysis now times
out on the jquery and mootools tests, along with the dojo outlier (most likely
due to a sophisticated nested use of call and apply on the latter), and runs
more than twice as slow on the other dojo tests; on prototype.js and yui, on
the other hand, there is no noticeable difference. However, our precision mea-
surements indicate that some progress has been made even for the cases with
timeouts in Correlations+ (see below).

Our timings for the “+” configurations do not include the overhead for finding
and extracting correlated pairs, which is very low: on average, the former takes
about 0.1 seconds, and the latter even less than that.
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In summary, correlation tracking speeds up the analysis dramatically in most
cases, though reflective language features like call and apply still present a
challenge for some of the benchmarks.

Memory Consumption Introducing a more sophisticated context sensitivity pol-
icy may in general lead to larger points-to graphs since the same function may
now be analyzed under many more contexts than before, which in turn leads to
increased memory consumption. For our benchmarks, we measured the number
of points-to edges as a proxy for memory consumption. We found that correla-
tion tracking usually decreases this number by two to three orders of magnitude,
indicating that the less precise analysis configurations build much denser graphs.

There are two exceptions to this pattern. On jquery, the decrease only amounts
to 60% to 90%. On mootools, there is a case where correlation tracking leads to
larger points-to graphs: Correlations− on average yields about four times as
many points-to edges as Baseline−. This is not surprising, since mootools is the
only benchmark that the imprecise analysis configurations can actually handle.

Framework Baseline− Baseline+ Correlations− Correlations+

dojo ≥ 60.8% (≥60.4%) ≥ 60.5% (≥60.1%) 16.7% (24.5%) 18.8% (≥28.3%)
jquery ≥ 35.9% ≥ 36.2% 26.7% ≥ 31.5%
mootools 9.5% ≥ 35.5% 9.5% ≥ 10.9%
prototype.js ≥ 40.5% ≥ 40.7% 17.8% 18.7%
yui ≥ 16.6% ≥ 16.6% 12.0% 12.2%

Table 4. Percentage of functions considered reachable by our analysis, averaged by
framework; ‘≥’ indicates that the number is a lower bound due to analysis timeout. As
before, numbers for the outlier on dojo are given separately.

Reachable Functions To assess the quality of the generated call graphs, we mea-
sured the percentage of functions the analysis considers reachable. In cases of
timeout, we base our measurements on the partial call graphs available after ten
minutes; the numbers then represent lower bounds.

For every framework under every configuration, Table 4 shows the average
percentage of reachable functions over all the benchmarks; variance between
benchmarks was very low except for the same dojo benchmark that produced
atypical timings, which is again listed separately. The baseline configurations
consistently deem more functions to be reachable than the correlation tracking
configurations, in many cases dramatically so, indicating poor call graph quality.

Polymorphism As a final measure of call graph quality, Table 5 shows the number
of highly polymorphic call sites with more than five targets. Once more, these
tend to be very similar for benchmarks based on the same framework, so we
average over frameworks, except for the by now well-known outlier on dojo.
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Framework Baseline− Baseline+ Correlations− Correlations+

dojo ≥239.4 (≥240) ≥226.4 (≥225) 0.0 (1) 1.0 (≥11)
jquery ≥244.0 ≥249.0 3.0 ≥9.0
mootools 0.0 ≥29.2 0.0 ≥0.0
prototype.js ≥164.5 ≥166.0 0.0 0.2
yui ≥29.0 ≥34.5 0.0 0.0

Table 5. Number of highly polymorphic call sites (i.e., call sites with more than five
call targets) for the benchmarks, averaged per framework; ‘≥’ indicates that the result
is a lower bound due to timeout. The outlier on dojo is separated out.

The correlation-tracking configurations report very few highly polymorphic
call sites: the maximum number is 11 such sites on the problematic dojo bench-
mark under configuration Correlations+, and the maximum number of call tar-
gets is 22 on some of the jquery benchmarks. We inspected several of these sites
and found that they involved higher-order functions and callbacks, justifying
the higher call graph fanout. The baseline configurations, on the other hand,
produce very dense call graphs with many highly imprecisely resolved call sites,
some with more than 300 call targets.

Note that even for cases where Correlations+ times out, the number of highly-
polymorphic call sites is dramatically reduced compared to Baseline+. This result
is an indication that correlation tracking is still helpful in these cases, even
though further work on scalability is needed. For clients that do not require a
full call graph, the partial call graph computed by Correlations+ would likely be
more useful than that of Baseline+ due to its lower density.

In summary, these results clearly show that correlation tracking significantly
improves scalability and precision of field-sensitive points-to analysis for a range
of JavaScript frameworks.

6 Other Languages

We have shown that correlation tracking improves analysis of several common
JavaScript frameworks. But while our work focuses on JavaScript, there are
analogs in other languages. Some languages allow writing code equivalent to the
extend function from prototype.js, and most languages provide string-indexed
maps that can cause a similar precision loss. We briefly discuss both cases.

Dynamic property accesses in Python. Like JavaScript, Python is a highly dy-
namic scripting language with features for reflective property access: dir lists all
properties of an object, and getattr and setattr provide first-class property
access. An equivalent of the extend function of Figure 1 can easily be written:

def extend(a, b):
for f in dir(b): setattr(a, f, getattr(b, f))
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This style is less idiomatic and pervasive in Python, however, so the kind of
imprecision we see when analyzing JavaScript is less likely to occur in practice.

Imprecision with maps. Maps are a core data structure in many applications
and can cause precision loss in the same manner as dynamic property accesses
in JavaScript. Most maps have accessors to get and set entries and to list all keys.
Consider an example in Java: for server-side web applications, the HttpSession
class stores state that persists across multiple user interactions with a server
that share a session; the following code, to enhance security, sanitizes all this
persistent state:

for(String n : session.getAttributeNames())
session.setAttribute(n, sanitize(session.getAttribute(n)));

This is essentially the same pattern as extend, and will cause imprecision in
modeling session state, unless techniques like correlation tracking are employed.

7 Related Work

We distinguish several threads of related work.

Complexity Chaudhuri [6] presents an optimization to CFL-reachability / recur-
sive state machine algorithms (which can handle standard field-sensitive points-
to analysis [22]) that yields O(N3/log(N)) worst-case running time. We conjec-
ture that similar techniques could shave a logarithmic factor from our O(N4)
bound for points-to analysis in the presence of dynamic property accesses, but
devising and analyzing such an algorithm remains as future work.

JavaScript Semantics Guha et al. [13] present a formalization of a core calculus
λJS for JavaScript, which includes computed property names, prototype chains
and other troublesome features, but excludes eval. Our implementation is not
based on translating JavaScript to λJS , but even with such an approach the
key analysis challenges that we face would remain. A complete formalization of
JavaScript (again without eval) is described by Maffeis et al. [17], but their
semantics is too complex to be useful for reasoning about static analyses.

Argument sensitivity The Cartesian product algorithm [1] (CPA) and object
sensitivity [18] both inspired our context-sensitivity policy for extracted func-
tions (see Section 4.2). These techniques create contexts based on the concrete
types of arguments at call sites, thus allowing analysis of a function to be spe-
cialized based on what types of values are being passed to it. CPA does this for
all parameters, and object sensitivity applies just to the receiver argument.

Smaragdakis et al. [20] conduct a thorough analysis of object sensitivity,
classifying the prior work in terms of how it chooses contexts based on receiver
objects. They also introduce type sensitivity in which contexts are distinguished
not based on abstract objects themselves, but rather on their types. They show
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that this is a promising approach for improving the cost/precision balance in
analysis, but clearly it depends on having a useful notion of static types, which
JavaScript lacks.

Other JavaScript Analyses JavaScript combines the program analysis challenges
of a higher-order functional language with those of a very dynamic scripting
language, and considerable work has focused on addressing some of these issues.

– Jensen et al. [14, 15] deal with issues arising from JavaScript’s prototype-
based inheritance and the use of automatic coercions. They construct a de-
tailed lattice of types and adapt the recency abstraction of Balakrishnan
et al. [4] to precisely handle writes to inherited properties in constructors.
The JSRefactor refactoring tool for JavaScript [8] also includes a points-to
analysis for JavaScript, which is influenced by this line of work.

– Vardoulakis and Shivers [25] introduce CFA2 to tackle the limitations of CFA
with respect to the deep nesting of first-class function calls common in higher-
order languages. They use a continuation passing style transformation of the
code and a summarization scheme based on local state to match deeply-
nested calls and returns. The DoctorJS type inference tool13 is based on
CFA2; it uses a special form of context sensitivity to analyze for-in loop
bodies once for every abstract value of the loop variable, thus achieving (for
this special case) a similar effect to our more general technique.

These techniques mostly address other challenges that arise when analyzing dy-
namic languages such as JavaScript, and are complementary to our work. There
is also much work that focuses on problems that are specific to JavaScript:

– Zheng et al. [28] present a JavaScript analysis to find data races in code used
in asynchronous ways in a Web browser. They analyze JavaScript code that
uses several of the popular frameworks that we handle (jquery, prototype.js,
and yui); however, they do not actually analyze the framework code, but
instead design inference rules with the framework semantics encoded.

– Guarnieri and Livshits’s Gatekeeper [10] and Gulfstream [11] tools perform
points-to analyses for JavaScript for use in security analysis, with a focus on
incremental analysis in the face of dynamically loaded code on Web pages.
They treat dynamic property accesses precisely when a single possible prop-
erty name can be determined statically (by a separate constant propagation
pass), and otherwise assume that any property might be referenced. They
do not focus on the problems caused by constructs such as for-in loops.

To the best of our knowledge, none of these systems is able to analyze
JavaScript frameworks.

Dynamic Type Inference for Scripting Languages An et al. [2] present a dynamic
analysis for inferring static types in Ruby,14 sidestepping many of the challenges
13 www.doctorjs.org.
14 http://www.ruby-lang.org/
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a static analysis for Ruby would have to face, which are similar to the issues
arising in JavaScript. Despite being dynamic, however, their analysis is sound.
Their focus is on type inference, so they do not track some information needed
for our analysis, like the values of different string constants. Also, their technique
requires test inputs, which are not readily available for JavaScript frameworks.

Field Sensitivity Tripp et al. [23] present a taint analysis for Java that imple-
ments a form of field sensitivity when handling common J2EE idioms.15 J2EE
uses a context structure that is essentially a hash table, and it is usually refer-
enced in practice with constant strings as keys. They employ an abstraction of
the semantics of the context object rather than the actual Java code, applying
field sensitivity to distinguish different constant keys used in each context.

8 Conclusions

JavaScript is a uniquely challenging language for pointer analysis: ubiquitous use
of dynamic property accesses and of idioms for iterating across all of an object’s
properties together complicate points-to analysis in a fundamental way.

We introduce correlation tracking, a technique for targeted context sensitivity
to handle situations where values from dynamic property reads flow to dynamic
writes of the same property. We show that this technique aids analyzing common
JavaScript frameworks, dramatically improving scalability and precision in many
cases. We also provide a sense of why analysis is so much more expensive by
showing that extending a standard implementation of Andersen’s analysis with
support for dynamic property accesses increases its worst-case running time from
O(N3) to O(N4), where N is the size of the program.

Work remains to further improve points-to analysis for JavaScript; while
correlation tracking makes many popular frameworks tractable, there are some
that still cannot be fully analyzed. Hence, our future work will focus on find-
ing and solving the further causes of complexity in these frameworks, including
better handling of call and apply and automation of the precise handling of
the arguments array that was crucial for jquery (see Section 5). We also plan
to integrate our current analysis with existing tools [12, 24], as we expect cor-
relation tracking to significantly improve their effectiveness on framework-based
web sites.

15 http://download.oracle.com/javaee
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