
Noname manuscript No.
(will be inserted by the editor)

Stubbifier: Debloating Dynamic Server-Side JavaScript
Applications

Alexi Turcotte⇤ · Ellen Arteca⇤ · Ashish Mishra ·
Saba Alimadadi · Frank Tip

Abstract JavaScript is an increasingly popular language for server-side development, thanks
in part to the Node.js runtime environment and its vast ecosystem of modules. With the
Node.js package manager npm, users are able to easily include external modules as depen-
dencies in their projects. However, npm installs modules with all of their functionality, even
if only a fraction is needed, which causes an undue increase in code size. Eliminating this
unused functionality from distributions is desirable, but the sound analysis required to find
unused code is difficult due to JavaScript’s extreme dynamicity.

We present a fully automatic technique that identifies unused code by constructing static
or dynamic call graphs from the application’s tests, and replacing code deemed unreachable
with either file- or function-level stubs. Due to JavaScript’s highly dynamic nature, call
graph construction may suffer from unsoundness, i.e., code identified as unused may in
fact be reachable. To handle such cases, if a stub is called, it will fetch and execute the
original code on-demand to preserve the application’s behavior. The technique also provides
an optional guarded execution mode to guard application against injection vulnerabilities in
untested code that resulted from stub expansion.

This technique is implemented in an open source tool called Stubbifier, designed to help
package developers to produce a minimal production distribution. Stubbifier supports the
ECMAScript 2019 standard. In an empirical evaluation on 15 Node.js applications and 75
clients of these applications, Stubbifier reduced application size by 56% on average while
incurring only minor performance overhead. The evaluation also shows that Stubbifier’s
guarded execution mode is capable of preventing several known injection vulnerabilities that
are manifested in stubbed-out code. Finally, Stubbifier can work alongside bundlers, pop-

⇤ These authors contributed equally to the work.

This research was supported in part by Office of Naval Research (ONR) grants N00014-17-1-2945 and
N00014-21-1-2491, and by National Science Foundation grant CCF-1907727. E. Arteca and A. Turcotte are
supported in part by the Natural Sciences and Engineering Research Council of Canada.

A.Turcotte, E.Arteca, F.Tip
Northeastern University, Boston, MA, USA,
E-mail: {turcotte.al, arteca.e, f.tip}@northeastern.edu

A.Mishra
Purdue University, West Lafayette, IN, USA
E-mail: mishr115@purdue.edu

S.Alimadadi
Simon Fraser University, Vancouver, Canada
E-mail: saba@sfu.ca



2 A. Turcotte and E. Arteca et al.

ular JavaScript tools for bundling an application with its dependencies. For the considered
subject applications, we measured an average size reduction of 37% in bundled distributions.

Keywords debloating, program analysis, JavaScript, Node.js

1 Introduction

JavaScript is one of the most popular programming languages, and has been the lingua
franca of client-side web development for years (GitHub, 2020; Stack Overflow, 2020).
More recently, platforms such as Node.js (OpenJS Foundation, 2021) have made it possible
to use JavaScript outside of the browser. Node.js provides a light-weight, fast, and scalable
platform for writing network-based applications, enabling web developers to use the same
language for both front- and back-end development. As a result, server-side JavaScript de-
velopment has experienced an exponential growth in recent years.

This has given rise to a flourishing ecosystem of libraries, known as Node modules, that
are freely available and widely used. The npm (npm, 2021a) package-management system in
particular has fostered higher developer productivity and increased code reuse by unburden-
ing the programmers from many routine development tasks. As such, a typical Node module
m can directly and indirectly rely on myriad other modules. While an essential attribute of
this ecosystem, in practice, m typically uses only a small fraction of the functionality of its
dependencies, while still encompassing all of their code. In turn, clients of m inherit the
unused functionality of m and its dependencies, as well as that of its own dependencies. The
problem of accumulating code that in practice is never invoked is known as code “bloat”.

While eliminating code bloat is desirable, “debloating” Node.js applications is chal-
lenging since it is nearly impossible to perform sound static analysis on JavaScript due to
the high dynamism of the language. Despite the popularity of Node.js development and the
severity of this issue, there is currently no technique available that can significantly debloat
a modern Node.js application while fully preserving its original behavior.

Previous work on debloating JavaScript applications has been done in the context of
JavaScript bundlers Rollup (2021); webpack (2021). The primary goal of bundlers is to
create self-contained application distributions, but they typically perform an optimization
known as “tree-shaking” (MDN, 2021) on imported external modules, by removing mod-
ules or functions that are unreachable in an application’s import graph. Unfortunately, the
size reduction achieved by bundlers is limited by the all-or-nothing nature of their code min-
imization technique: code that the bundler removes must never be called, else the bundled
application will crash. Moreover, tree-shaking can only be applied to modern JavaScript
code that uses the ECMAScript module system MDN (2021).

Another approach to debloating JavaScript applications was developed by Koishybayev
and Kapravelos (2020), who developed Mininode, a tool for reducing the size of devel-
opment distributions of Node.js applications. In the JavaScript npm package ecosystem, a
distinction is made between an application’s dependencies and development dependencies:
A dependency is another package that the application needs to function (e.g., a utility li-
brary such as lodash), whereas a development dependency is only needed during develop-
ment (e.g., a test runner such as mocha that is needed to run the application’s tests) and is
not normally part of a production distribution. Mininode assumes an application’s develop-
ment distribution as the starting point and considers development dependencies and package
tests as targets for removal. Further, Mininode completely removes code deemed unreach-
able through (unsound) static analysis and it only supports the ECMAScript 5 version of



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 3

JavaScript (which dates back to 2009), which lacks modern JS features such as ES6 mod-
ules, classes, and async/await. Section 4.3 reports on an experiment in which we applied
Mininode to the subject applications that we used to evaluate Stubbifier.

Previous work on debloating in the context of other languages has focused on the use of
static analysis to determine unreachable code (Agesen and Ungar, 1994; Vis, 1997, 1995;
Tip et al., 2002). In many existing techniques, the application stops executing when trying
to invoke code that has been removed by the debloating algorithm and deviates from the
intended behavior of the original application. Despite more recent advances for analyzing
client-side web applications (Livshits and Kiciman, 2008; Andreasen and Møller, 2014;
Jensen et al., 2011; Li et al., 2018a,b; Sridharan et al., 2012), the development of a static
analysis for Node.js that is simultaneously sound, precise, and scalable remains beyond the
current state of the art.

This paper presents a practical technique for reducing the size of production distributions
of Node.js applications while preserving their original behavior. Core application function-
ality, as well as the extent to which an application uses its dependencies, is inferred au-
tomatically from dynamic or static call graphs constructed from the application’s own test
suites (which can be comprehensive, end-to-end test suites). Rather than using a sound call
graph analysis and removing the code entirely, our approach relies on a fast, scalable, un-
sound call graph analysis, and untested, unreachable code is replaced by stub versions in a
technique known as code splitting, pioneered by the DOLOTO tool (Livshits and Kiciman,
2008). If a function or file stub is executed, it will dynamically fetch and execute the orig-
inal code so as to preserve application functionality. The technique has been implemented
in a tool called Stubbifier, designed to be used by package developers looking to prepare a
minimal production distribution for their package. Stubbifier improves on DOLOTO by: (i)
supporting all features of modern JavaScript ECMA International (2019), including classes,
promises, async/await, generators, and modules, (ii) introducing file-level stubs in addition
to function-level stubs (so as to achieve additional debloating by stubbing all code in files
where no code is used, instead of stubbing each of the functions in these files individu-
ally), and (iii) providing an (optional) guarded execution mode, where stubbed-out code is
automatically instrumented to intercept calls to functions such as eval and exec that may
introduce injection vulnerabilities. Most importantly, (iv) Stubbifier is fully automatic by
relying on static analysis or dynamic analysis of the application’s test suite to identify code
that is likely to be unreachable, whereas DOLOTO required traces of users interacting with
the subject application to establish core application functionality.

Stubbifier was evaluated on 15 of the most popular Node.js applications, using five
clients for each subject application to evaluate how much code is loaded dynamically. This
evaluation found that Stubbifier achieves significant size reductions (56% on average), that
the number of stubs expanded during the execution of client applications is relatively small,
and that minimal performance overhead is incurred. Further, experiments with Stubbifier’s
guarded execution mode confirmed that it is capable of preventing known injection vul-
nerabilities. Finally, we confirmed experimentally that, when used in conjunction with the
popular Rollup bundler, Stubbifier achieves significant additional size reductions on previ-
ously bundled applications (37% on average).

In summary, this paper makes the following contributions:

– A fully automated technique for reducing the size of Node.js applications while pre-
serving their original behavior, based on a combination of static or dynamic analysis
and code splitting.



4 A. Turcotte and E. Arteca et al.

– The implementation of this technique in a tool called Stubbifier that supports mod-
ern JavaScript ECMA International (2019). Stubbifier is publicly available as an open-
source tool1, and a self-contained code artifact including reproducible experiments is
also available on Zenodo (Turcotte and Arteca, et al., 2021).

– An empirical evaluation of Stubbifier on 15 open source Node.js applications and 75
clients of these subject applications (five clients per subject), showing that Stubbifier
reduces the size of Node.js applications by 56% on average while incurring only minor
performance overhead. The evaluation also shows that Stubbifier’s guarded execution
mode is capable of preventing several known injection vulnerabilities that are manifested
in stubbed-out code.

2 Background and Motivation

The npm ecosystem includes more than 1.7 million modules2 that provide a wealth of con-
venient features. By importing these libraries and reusing their functionality, programmers
can focus their efforts on features that are unique to their application. However, this con-
venience does not come without its price: importing modules can cause projects to become
excessively large due to the transitive importing of other projects that they depend on. In
practice, it is often the case that a module only uses a small subset of the functions in the
transitive closure of its dependencies.

To illustrate this, consider the example of a popular node application css-loader
(webpack-contrib, 2021), a utility package for loading, parsing, and transforming CSS files
and further supporting applications designed to use CSS. css-loader is one of the most
popular modules on npm, with nearly 15 million weekly downloads, and it is imported by
over 15,000 modules.

css-loader has 13 third-party production dependencies3 (i.e., modules upon which its
functionality depends). The stand-alone css-loader module contains only 16 files com-
prising 110KB. However, installing css-loader with direct and transitive production de-
pendencies creates a package with 1299 files and total code size of 2764KB. This is a >81x
and >25x increase in number of files and code size respectively.

To determine what part of the resulting installation constitutes application bloat, we
examined css-loader to determine which functions and files are reachable from the ap-
plication’s test suite. Using a simple static analysis that traces function calls to build a list
of unreachable functions and files, 209 files were found to be potentially unreachable, and
6 unreachable functions were identified in otherwise reachable files. Given the extreme dy-
namicity of JavaScript, sound static analysis is not possible (see, e.g., Richards et al. (2011);
Sridharan et al. (2012); Jensen et al. (2012); Madsen et al. (2015); Stein et al. (2019)). Since
in practice all static analyses for JavaScript suffer from unsoundness, some of the functions
and files that they identify as being unreachable may indeed be reachable. Nevertheless, if
one could devise a technique to remove all of this code, the application’s size would be
reduced by 80%.

Consider semver (npm, 2021b), a package that css-loader depends on. Only two
functions from semver are used in css-loader: The satisfies function is imported

1See https://github.com/emarteca/stubbifier.
2See http://www.modulecounts.com/.
3Many npm modules rely on additional development dependencies (sometimes referred to as “devDe-

pendencies”) that are needed only for development purposes, e.g., for running tests. These dependencies are
typically not installed by clients.



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 5

specifically as part of the primary css-loader functionality, and the inc function is used
once as a helper in the css-loader tests.

Given that, it seems wasteful to include the entire semver code in css-loader.
In subsequent sections, we will describe our approach to addressing this issue of code

bloat, and describe our implementation of this approach in a tool called Stubbifier. The in-
tended user of our tool is a package developer looking to prepare a minimal production
distribution for their package, e.g., a developer of css-loader might run Stubbifier on the
package before a release. Stubbifier identifies the extent to which css-loader’s dependen-
cies are used. For example, one of css-loader’s dependencies is semver: this developer
would note that Stubbifier identifies 27 of semver’s files and six semver functions inside of
css-loader to be potentially unreachable, i.e., css-loader imports semver but only uses
a subset of imported functionality 4. The six unreachable functions are in the file that exports
the inc function. After debloating, the code in the semver package is reduced from 57KB
to 35KB, a 38% size reduction. Overall, the size of css-loader as a whole is reduced by
80%, from 2.8MB to 0.6MB.

Note that the majority of the code removal is in the dependencies of css-loader.
To illustrate, note that the initial size of css-loader, before installing any dependen-
cies, is 110KB. The size of css-loader with all dependencies installed is 2.8MB, and
Stubbifier reduces this to 0.6MB. This is 2.2MB of reduction, and since the original size of
css-loader is just 110KB, Stubbifier must have mostly removed code in the dependencies
of css-loader.

css-loader has approximately 14.8 million weekly downloads, so an 80% size reduc-
tion would translate to a reduction in weekly data transfer from 41.4TB to 8.8TB. We will
elaborate on this in Section 4.

The next sections will present our debloating technique and its evaluation.

3 Approach

The debloating technique presented in this paper involves several key steps, illustrated in
the diagram in Figure 1. First, a call graph is computed for the project using its own tests as
entry points, either dynamically by running the tests with instrumentation, or statically by
running a static analysis. The project source code and call graph are input to the debloating
algorithm: the technique essentially replaces functions and files that are not in the call graph
with stubs, which are smaller but are equipped to fetch and load the code dynamically if
they are invoked. The end result is a debloated project that is ready to deploy.

We envision this technique to be used by developers that wish to create minimal dis-
tributions for their applications. The purpose of using an application’s tests to infer unused
functionality is to automatically determine the extent to which the application exercises
its direct and transitive dependencies: If application tests had 100% coverage and the ap-
plication fully exercised its dependencies, then no stubs would be introduced. In practice,
however, a package will not use all of the code in its dependencies (e.g., css-loader in-
cludes semver but uses only a few of its functions). Note that the ideal scenario is when
an application’s tests have 100% application code coverage: in such cases, the unused parts
of the application’s dependencies would be replaced with stubs and nothing would ever be
loaded dynamically.

The remainder of this section will discuss each step of the approach in detail.

4There is more unreachable code in css-loader, but we focus on semver for the sake of illustration



6 A. Turcotte and E. Arteca et al.

Fig. 1: Overview of approach. A call graph is computed from a project using its tests as
entry points. A call graph construction algorithm maps call sites to functions; e.g., here the
runTests function contains two function calls foo(1, 2) and foo(3, 4), both of which
are mapped to the foo function, which contains a call bar(z, y) that is mapped to bar.
Then, our debloating technique performs a code transformation to replace unreachable
code (according to the call graph) with stubs that can dynamically load the code on-demand.
Function baz is deemed unreachable since it does not appear in the call graph, and hence is
replaced with a stub.

3.1 Call Graph Construction

In principle, any call graph can be used to determine which files and functions should be
replaced with stubs. The soundness and precision of the call graph will impact the size of
the initial distribution and the amount of code that needs to be loaded dynamically.

The implementation of Stubbifier includes mechanisms for constructing a static or dy-
namic call graph. In each case, Stubbifier uses the test suite of the input application as the
entry point for the analysis, and so the call graph represents the tested code. Any function
that is not in the call graph is deemed unreachable and untested and will be replaced with
a (function-level or file-level) stub. Both analyses are configured to consider depended-upon
modules (in the node_modules directory), though note that development dependencies are
excluded as they are typically not packaged and shipped with the subject application.

Below, we provide some further detail on the specific static and dynamic call graph
construction techniques that Stubbifier supports.

Dynamic Call Graphs. To compute dynamic call graphs, code coverage is determined using
Istanbul’s command line tool nyc (Istanbul, 2021), that computes statement, line, branch,
and function coverage for Node.js applications. By default, nyc ignores a project’s depen-
dencies, but Stubbifier automatically generates a configuration file that specifies that cover-
age of non-development, production dependencies should be computed. Stubbifier then runs
nyc on the application’s tests, to determine which functions and files are invoked during
testing (and by exclusion, which were not invoked).



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 7

Static Call Graphs. To compute the static call graphs, we developed an analysis using
CodeQL (Avgustinov et al., 2016), GitHub’s declarative language for static analysis, using
its extensive libraries for writing static analyzers (GitHub, 2021). In particular, CodeQL’s
dataflow library contains functionality for tracking calls through local module imports, and
we implemented an extension to recognize modules in a project’s node modules direc-
tory, and extended CodeQL’s libraries to track data flow through these modules. Then, a
call graph construction algorithm was implemented on top of this analysis, which uses the
application’s tests as entry points for the analysis.

This is an unsound analysis, as the use of dynamic features such as eval and dynamic
property access expressions may give rise to missing edges in the call graph. We found
that these dynamic features are so prevalent in modern JavaScript applications that using
a sound, conservative call graph analysis is impractical (making conservative assumptions
in the presence of these dynamic features would result in almost all code to be deemed
reachable). In our approach, reachable code mistakenly classified as unreachable due to the
unsoundness of the analysis does not result in an error when called: rather, it is dynamically
loaded via the stub.

3.2 Introducing Stubs

After constructing a call graph, Stubbifier creates lists of unreachable functions and files.
Here, unreachable files are those in which none of the functions are reachable, and unreach-
able functions are those functions that are not reachable but that are in a file where at least
one other function is reachable.

Next, Stubbifier parses the application’s source code, including any dependencies, and
replaces unreachable functions and files with stubs via transformations on the program’s
Abstract Syntax Tree (AST). Note that Stubbifier does not replace functions or files with
stubs if they are shorter than the stubs that would replace them.

File Stubs. Each unreachable file is replaced with a file stub. The code in this stub imple-
ments Algorithm 1, which depicts the general logic for file stub expansion.

Algorithm 1: ExpandFileStub
1 perform all imports;
2 let fileo := fetchOriginalFileCode();
3 let filee := eval(fileo);
4 replace this file with fileo;
5 perform all exports;

At a high level, file stub expansion amounts to: (i) performing all imports that were in the
original code (line 1), (ii) fetching the original code and evaluating it (lines 2-3), (iii) replac-
ing the contents of the stubbed file with the original file (line 4), and finally (iv) performing
necessary exports (line 5). More specifically, in files that rely on the CommonJS mecha-
nisms (i.e., require for importing and module.exports for exporting), simply storing the
original code elsewhere and eval-ing it as needed suffices, as these mechanisms can be
used anywhere in a source file. However, the ECMAScript Module System (ESM) (ECMA
International, 2021)’s static import/export constructs cannot be executed in an eval (see



8 A. Turcotte and E. Arteca et al.

section 15.2 of ECMA International (2019)), so all import and export statements are
hoisted out of the original code and into the stub. The original code is then transformed to
properly produce the values of the exports. To illustrate, consider the example in Figure 2.

1 // file.js before stubs are introduced
2 export function foo() { /* ... */ }
3 import { A };
4 function bar() { /* ... */ }
5 export default bar;
6
7
8 // file.js after stubs are introduced
9 import { A };

10 exportObj = eval(stubs.getCodeForFile("file.js"));
11
12 let foo_UID = exportObj["foo"];
13 export {foo_UID as foo};
14 export default exportObj["default"]

Fig. 2: File before and after stubs are introduced.

In Figure 2, we see import and export statements interspersed through the file be-
fore stubs are introduced. In the lower part of the figure, we see that the file stub gener-
ated by Stubbifier contains all import statements as-is, and export statements are mod-
ified (lines 13 and 14) to get their values from the dynamically executed code (i.e., from
exportObj, line 10).

To allow this exporting, the original code from Figure 2 is modified to construct an
object containing all of the original exports. This constructed object is the last statement
that will be executed when the code is passed to eval, and is therefore the return value of
eval. This is illustrated in Figure 3.

15 function foo() { /* ... */ }
16 function bar() { /* ... */ }
17
18 { foo: foo ,
19 default: bar };

Fig. 3: Modified original code with ES6 imports and exports (this is what would be eval’d).

Here, we see that the export was removed from the definition of foo, and that foo
was added to an object on line 18, which also includes an entry for bar, the default export.
The last statement in an eval-ed code block is implicitly returned—here, that is an object
containing the exports—allowing the stub to retrieve the exported values (as in line 10 of
Figure 2).

Function Stubs. Functions deemed unreachable are replaced with function stubs. These
stubs implement Algorithm 2, which depicts the general logic for dynamically loading and



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 9

executing code upon stub expansion. When a stub is expanded, it first fetches the code,

Algorithm 2: ExpandFunctionStub
Data: args: function arguments
Data: uid: unique ID for this function stub

1 if uid cached then
2 let funstr := code cached at uid;
3 else
4 let funstr := fetch original function code;

5 let fune := eval(funstr);
6 copy function properties to fune;
7 if can replace function definition then
8 replace stub with fune;
9 else

10 cache funstr;

11 call fune with args;
12 return result;

either by retrieving it from a cache, fetching it from a server, or otherwise retrieving it from
storage. Either way, the code is evaluated into a function, and function properties are copied
from the stub version to the newly created function object. If possible, Stubbifier will replace
the stub with the freshly evaluated original function (the conditions where this is or is not
possible are discussed below). If not, the code is cached, and then the function is executed.

Stubbifier’s caching strategy differs from DOLOTO’s (Livshits and Kiciman, 2008):
where DOLOTO caches function objects, Stubbifier caches the code, and we discuss the
reasoning behind this shortly.

A concrete example of a function stub can be found in Figure 4, where we show the stub
for getValidHeaders from the node-blend (nod, 2021) project.

20 function getValidHeaders(headers) {
21 let toExec = eval(stubs.getCode("UID_for_LOC"));
22 stubs.cpFunProps(getValidHeaders , toExec );
23 getValidHeaders = toExec;
24 return toExec.apply(this , arguments );
25 }

Fig. 4: Example of a stubbed function.

First, note that Stubbifier outfits each file with a global stubs object containing the code
cache and functionality to fetch code. We see a call to stub.getCode("UID_for_LOC")
on line 21, which fetches the original function definition (found through "UID_for_LOC",
a unique ID for the function that Stubbifier generates from the code location when the stub
is created). That code is then passed to eval, which will return a function object containing
the original code. Line 22 copies any function properties from getValidHeaders to the
fresh function5. Finally, line 23 redefines the getValidHeaders with the expanded stub,

5Recall that in JavaScript functions are objects, and can have properties assigned dynamically.



10 A. Turcotte and E. Arteca et al.

26 function(headers) {
27 let toExecString = stubs.getStub("UID_for_LOC");
28 if (! toExecString) {
29 toExecString = stubs.getCode("UID_for_LOC");
30 stubs.setStub("UID_for_LOC", toExecString );
31 }
32 let toExec = eval(toExecString );
33 toExec = stubs.cpFunProps(this , toExec );
34 return toExec.apply(this , arguments );
35 }

Fig. 5: Example of stubbed anonymous function.

and line 24 calls the function with its original arguments6. Since getValidHeaders has
reassigned itself on line 23, any subsequent calls to this function will call the expanded stub,
with no need to re-eval the code.

The above discussion covered the general approach for introducing function stubs. How-
ever, several types of functions require special treatment, as will be discussed next.

Anonymous Functions. In JavaScript it is possible to create a function without a name, an
idiom that is commonly seen when functions are passed as callback arguments to higher-
order functions. In these cases, the function cannot reassign itself as is done on line 23
in the above example (since it has no name to refer to itself by), so the loaded code is
cached, and future stub expansions eval the cached code. For example, Figure 5 displays
the getValidHeaders stub that we would create if this function did not have a name. Here,
rather than immediately passing the code loaded with stubs.getCode("UID_for_LOC")
to eval, the stubs cache is accessed on line 27. Code is only loaded on a cache miss, in
which case the loaded code is immediately cached.

One might wonder why the function stub expansion caches the loaded code, evaluating
it every time the stub is invoked, rather than caching the expanded function object. This is
necessary because, in JavaScript, functions are closures that close variables from surround-
ing scopes directly into the object. Therefore, generating a stub for a function that is nested
inside another would include the function arguments of the latter in its closure. If we were
to cache this object, any subsequent call to the function would refer to the values of function
arguments when the stub was first expanded, which may lead to incorrect program behavior.
Thus, we have to eval every time. Note that this problem does not arise for functions with
a name, as the function reassigning itself does not store a closure.

DOLOTO cached function closures, which is problematic for the reasons discussed above;
we conjecture that the authors did not evaluate their tool on code where this issue would
arise.

Class and Object Methods. When replacing object or class methods with stubs, an issue
arises that relates to references to this. In functions outside a class or object, this refers to
the function object itself, while in a class/object, this refers to the object instance on which
the function was invoked. These class methods need to be referenced in a different way to
allow for function property copying and reassignment.

6apply calls its receiver as a function, binding its first argument to this inside the function, and passing
the other arguments as function arguments. arguments is a metavariable available inside functions that refers
to its arguments.



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 11

Fortunately, class and object methods can be accessed as properties of this, and so if
getValidHeaders were a method in a class, the following replacements would be made:

36 // outside a class/object
37 stubs.cpFunProps(getValidHeaders , toExec );
38 getValidHeaders = toExec;
39
40 // inside a class/object
41 stubs.cpFunProps(this.getValidHeaders , toExec );
42 this.getValidHeaders = toExec;

For class/object methods with no ID, we generate a dynamic property access on this
to reassign the function object as at code generation time, we know the key corresponding
to nameless object properties. Specifically, this means that instead of this.functionName
we use this[${generate(key)}$], where ${generate(key)}$ is a string generated at
parsing runtime, to reference the function as a dynamic property access on this.

Classes and objects can also have getter and setter methods, as is illustrated in the ex-
ample below:

43 class A {
44 get propName () { console.log("getter"); }
45 set propName () { console.log("setter"); }
46 }
47 let x = new A();
48 x.a; // prints "getter"
49 x.a = 5; // prints "setter"

Getter and setter stubs are generated with special reassignment code. Dynamically accessing
and defining a getter for some property "p" is done using this.__lookupGetter__("p")
and this.__defineGetter__("p") respectively (and similarly for setters); these calls are
used in place of direct accesses as properties of this in the stub.

Arrow Functions. Arrow functions were introduced in ECMAScript 2015, and provide a
more concise syntax for functions. When creating stubs for arrow functions, we run into an
issue as the metavariable arguments cannot be used to reference the function arguments.
To get around this, we make use of the rest parameter (Mozilla, 2021), also introduced
with ES6. By replacing the original function parameters with a rest parameter, we have
essentially recreated the functionality of arguments. For example, if getValidHeaders
were an arrow function, it would be written as:

50 let getValidHeaders = (headers) => { /* elided function body */ }

and its stub would resemble:
51 let getValidHeaders = (... args_UID) => {
52 // only change the last line of the stub
53 getValidHeaders.apply(this , args_UID );
54 }

Unstubbable Functions. Stubbifier does not transform generators, as yield cannot be
present inside of an eval, nor does it transform constructors. Constructors necessitate that
super be called before any use of the this keyword. Generating constructor stubs would
require a more sophisticated analysis of constructor code, and as sound static analysis of
JavaScript is still very challenging, we decided against stubbifying them altogether. We do
not consider this to be a big issue, as these types of functions are fairly rare; we only en-
countered a few instances of unreachable constructors or generators in our evaluation.



12 A. Turcotte and E. Arteca et al.

Manually specifying functions not to stub. Users may be interested in specifying some
functions that should never be replaced with stubs, regardless of their classification in the
generated call graph. To accommodate this, we added functionality to allow users to man-
ually flag a function so it will be ignored by Stubbifier. To illustrate the usefulness of this
feature, consider a developer that has been using Stubbifier for some time. This developer
may note that Stubbifier classified some function as unreachable, but that function is nearly
always loaded dynamically in clients of the developer’s package. Instead of writing tests for
this function (e.g., perhaps the function is difficult to write unit tests for), the developer can
configure Stubbifier to ignore that function to avoid it needing to be loaded dynamically.

3.3 Guarded Execution Mode

Since Stubbifier builds the input call graph using the application’s tests, the stubbed code is
also the untested code. Dynamically loading and executing this code could pose a security
risk, as it may include injection vulnerabilities that were not encountered during testing.

To address such concerns, Stubbifier includes an option to detect calls to a pre-specified
list of “dangerous” functions in expanded code. This is achieved by intercepting all func-
tion calls and checking whether or not the function is (perhaps an alias of) one of these
dangerous functions. In our current implementation, the list of these functions consists of:
eval, process.exec, and child_process.{fork, exec, execSync, spawn}, com-
mon functions that enable the execution of arbitrary code. It is trivial to include other func-
tions to this list, so users can customize what functions they want guard against. We include
an example of the code with guards in the supplementary material.

These checks can be configured to generate a warning, or exit the application if a dan-
gerous function is about to be called. This transformation is run on the original code so that,
when a stub is expanded, the loaded code includes guards.

Since these functions could be aliased, we must wrap every function call with these
checks. As such, the size of the loaded code (i.e., the expanded stubs) is increased dramati-
cally. The guards also incur more runtime overhead, as will be discuss in Section 4.

3.4 Asynchrony

JavaScript is a single-threaded language, and so our approach need not deal with the multi-
threaded setting. That said, JavaScript does provide several mechanisms for asynchronous
programming (event-driven programming, promises and async/await), and the use of these
features may give rise to imprecision and unsoundness during call graph construction. Our
approach addresses this by not assuming soundness in the first place–stubs are introduced
in cases where the analysis has identified a function as being unreachable. Unsoundness
will cause more stubs to be introduced, which increases runtime overhead when they are
expanded.

3.5 Bundler Integration

Many JavaScript projects use bundlers such as webpack (webpack, 2021) and Rollup
(Rollup, 2021) to package an application along with all the modules that it depends on
into a single-file distribution that includes all required functionality. Such a bundle can be



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 13

included in another application using require or import, so that users do not need to go
through additional installation steps.

Bundlers perform a limited form of code debloating known as “tree-shaking”, which
identifies functions and classes that are unused based on a static analysis of the import
relationships between modules. If the project relies on require statements to import ex-
ternal functionality, the required files are simply included in the bundle in their entirety;
if the project relies on the ECMAScript Module System, parts of an imported module can
be removed if they are not referenced in the importing module. The size reductions that
can be achieved using tree-shaking can be significant, but they are still limited by the fact
that soundness is required, because the removal of code that is used could cause a bundled
application to crash.

The use of Stubbifier in combination with a bundler requires a few additional steps in
the previously discussed transformation pipeline. First, bundling must always happen before
applying Stubbifier, as bundlers perform their own code transformations. For example, when
merging all the application code into a single file, bundlers often refactor the code so as to
avoid variable name conflicts, repeated imports, etc. If Stubbifier were run on the application
before bundling, the bundler would only perform its analysis on the code that is not replaced
with stubs, since the code to be loaded dynamically is just stored as plain text. As a result,
expanding a stub would result in code that does not match, e.g., the changed variable names
in the bundle, which is likely to result in errors.

To prevent such issues, Stubbifier should be applied to an application after it has been
processed by a bundler. One minor obstacle here is that Stubbifier uses an application’s
tests as the entry points for call graph construction, and tests are nearly always based on
the original project source code, and not on a bundle. To address this, Stubbifier determines
a mapping of the functions to be stubbed from their positions in the original code to their
positions in the bundle. Then, it constructs call graphs from tests as discussed before, and it
consults the mapping to determine where stubs should be introduced in the bundle. This is
all illustrated in the diagram in Figure 6, which is expanded from the diagram in Figure 1.
The major difference with the approach illustrated in Figure 1 is the use of a bundler after the
call graph is computed, but before debloating; the result of this entire process is a debloated
application bundle.

The evaluation presented in Section 4 will examine how much additional code size re-
duction can be achieved by Stubbifier on applications after they have been bundled using
Rollup.

4 Evaluation and Discussion

This section presents an evaluation of Stubbifier that aims to answer the following research
questions:

– RQ1. How much does Stubbifier reduce application size, and which type of call graphs
(static or dynamic) is more effective for reducing application size?

– RQ2. How much code is dynamically loaded due to stub expansion?
– RQ3. How much overhead is incurred due to stub expansion?
– RQ4. How much time does Stubbifier need to transform applications?
– RQ5. How much run-time overhead is incurred by guarded execution mode and can it

detect security vulnerabilities?
– RQ6. How much does Stubbifier reduce the size of applications that have been bundled

using Rollup?



14 A. Turcotte and E. Arteca et al.

Fig. 6: Stubbifier overview with bundler integration. As in Figure 1, a call graph is computed
from the project and its test suite, but here the project is bundled before being transformed.
The code transformation is applied to the bundle w.r.t. the call graph computed from the
application (note: test suites typically rely on the non-bundled application, which is why the
call graph is not computed over the bundle directly).

4.1 Experimental Setup and Methodology

To evaluate Stubbifier, we selected 15 projects from the most popular projects published by
npm; specifically, we listed projects in descending order by number of weekly downloads,
and went down this list, selecting a project if it met the following two criteria: first, we
required that the project installed, was able to build without error, and had a running test
suite with no failing tests (as Stubbifier uses the test suite to generate call graphs). If a
project satisfied these criteria, we then randomly selected from its dependents, or clients,
and attempted to install, build, and run their tests; if the project had five such clients, it was
selected for our evaluation. The selection criterion that was the most difficult to satisfy is
that subject applications needed to have at least 5 client packages that had fully passing test
suites. The availability of such client packages is critical to our evaluation since this provides
us with a way to assess frequency and cost of stub expansion in a realistic setting (since we
introduce stubs in an application based on its own tests, running the same tests to evaluate
stub expansion would have yielded biased results).

The intended user of Stubbifier is a package developer: when the developer is ready to
prepare a production distribution of their package, they can run Stubbifier. Based on the
application’s tests, Stubbifier will determine the extent of the package code that is reach-
able, as well as the extent that the package exercises its dependencies. Thus, it is likely that
Stubbifier will remove large swathes of the package’s production dependencies. The devel-
oper is left with a minimal distribution that they should feel safe distributing to users. The
evaluation described here is intended to simulate that experience: we run Stubbifier on a
package, and then insert the stubbified version of that package in five of the package’s de-
pendents to confirm that the debloated distribution works, and evaluate the extent to which
our technique was effective (by running the tests of the dependents).



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 15

Table 1a lists the projects used for the evaluation, as well as some relevant metrics. The
first row reads: the project memfs has 18k lines of code (LOC) in the analyzed files7, and
there are 133 files analyzed (Num files). The memfs test suite has 284 tests, which have
a coverage of 80.7% of the source code of the project (Coverage: Src), and a coverage
of 37.23% of its production dependencies (Coverage: Deps). memfs has one production
dependency (Deps), and its analyzed code comprises 146 KB (Size). Note that the number
of dependencies includes both direct and transitive dependencies.

We have created a code artifact (Turcotte and Arteca, et al., 2021) to accompany this
paper: the artifact includes each project cloned at the version on which we ran the evaluation,
the experimental infrastructure used to conduct said evaluation, as well as the full source
code of Stubbifier.

Selecting subject applications. Each subject application was processed twice with Stubbifier,
once using static call graphs and once using dynamic call graphs. In each case, files and
functions deemed unreachable were replaced with stubs. To address RQ4, the time required
for the entire process was measured. For RQ1, the size of the application before and af-
ter introducing stubs was compared. We compute the size of source code (excluding tests),
including production dependencies and excluding development dependencies.

To address RQ2 and RQ3, we selected five clients of each subject package from its list
of dependents that is published on npm. These clients were essentially selected randomly,
but we excluded clients without tests or with failing tests. We also confirmed that the de-
pendency is actually used in the client: there are some projects that list a package as a de-
pendency but no longer use in the source code, and we excluded these. Finally, we exclude
clients that require the use of older versions of Node.js. We did not run an application’s
own test suite to explore RQ2 and RQ3 because it was debloated based on those very same
tests. Further, the use case envisioned is that of a developer debloating their own project, and
clients importing the debloated version; examining how the debloated version of a project
behaves in the setting of one of its clients replicates this.

Conducting performance measurements. To determine the performance overhead caused
by stub expansion, we compared the runtime of each of these clients’ tests when using
the stubbed and original subject application. When running the test suite with the stubbed
application, we also tracked the total size and number of stub expansions to determine how
much code is loaded dynamically. In our evaluation, stubs were loaded from local storage
on the machine running the evaluation.

To mitigate noise and bias caused by caching, all test suites were executed 10 times after
two test runs before the timed experiments; the reported results are the average of these 10
test runs. Furthermore, since some of the tests generate files in /tmp, this directory is cleared
between every test suite run.

Finally, to mitigate versioning errors, we run our experiments on a client using the same
version of the dependency as the one that we transform. Specifically, we do the following
when testing a client:

– npm or yarn install in the root of the client project.
– Replace the dependency in question in the client’s node modules with a symbolic link

to the source code of the dependency that we will transform.
– Run the client’s tests.

7The metrics in the table reflect the project’s own source code (excluding tests), and all its (transitive)
production dependencies, but excluding devDependencies. .



16 A. Turcotte and E. Arteca et al.

Test Coverage Size
Project (citation) Commit LOC # files # tests Src Deps Deps (KB)
memfs (mem (2021a)) a9d2242 18k 133 284 80.7% 37.2% 1 146
fs-nextra (fsn (2021)) 6565c81 11k 184 138 99.0% 99.0% 0 52
body-parser (bod (2021)) 480b1cf 20k 210 231 99.7% 29.6% 21 364
commander (com (2021b)) 327a3dd 13k 177 351 48.8% 48.8% 0 70
memory-fs (mem (2021b)) 3daa18e 14k 167 44 97.4% 58.9% 11 120
glob (glo (2021)) f5a57d3 13k 175 1706 95.9% 72.0% 10 86
redux (red (2021)) b5d07e0 105k 4491 82 96.9% 0.5% 2 267
css-loader (css (2021)) dcce860 71k 1299 430 99.3% 4.88% 36 2764
q (q (2021)) 6bc7f52 16k 135 243 42.9% 14.9% 0 281
send (sen (2021)) de073ed 14k 157 152 100% 68.5% 17 97
serve-favicon (ser (2021a)) 15fe5e3 10k 121 30 100% 58.8% 5 20
morgan (mor (2021)) 19a6aa5 14k 159 81 100% 73.6% 8 55
serve-static (ser (2021b)) 94feedb 13k 160 90 100% 48.4% 19 106
prop-types (pro (2021)) d62a775 15k 152 287 98.0% 1.48% 4 106
compression (com (2021a)) 3fea81d 13k 149 38 100% 40.6% 11 66

(a) Summary of projects used for evaluation
Project Size (KB) Reduction % Expanded (KB) Red after exp (%)
memfs 19 87% [19, 138] [87%, 5%]
fs-nextra 31 39% [31, 45] [39%, 14%]
body-parser 65 82% [211, 297] [42%, 18%]
commander 68 2% [68, 68] [2%, 2%]
memory-fs 41 66% [41, 87] [66%, 27%]
glob 61 28% [70, 80] [18%, 7%]
redux 201 25% [221, 221] [17%, 17%]
css-loader 559 80% [559, 895] [80%, 68%]
q 37 87% [37, 100] [87%, 64%]
send 59 39% [59, 92] [39%, 5%]
serve-favicon 15 24% [15, 18] [24%, 8%]
morgan 25 55% [41, 45] [25%, 20%]
serve-static 38 64% [38, 83] [64%, 21%]
prop-types 18 83% [56, 56] [48%, 48%]
compression 24 63% [24, 24] [63%, 63%]

(b) Size of projects stubbified with static CG
Project Size (KB) Reduction % Expanded (KB) Red after exp (%)
memfs 17 89% [17, 136] [89%, 7%]
fs-nextra 47 10% [47, 47] [10%, 10%]
body-parser 173 53% [180, 253] [51%, 31%]
commander 59 16% [59, 59] [16%, 16%]
memory-fs 100 17% [100, 117] [17%, 3%]
glob 84 4% [91, 91] [-6%, -6%]
redux 189 29% [209, 209] [22%, 22%]
css-loader 584 79% [584, 1372] [79%, 50%]
q 206 27% [206, 209] [27%, 26%]
send 89 8% [89, 93] [8%, 5%]
serve-favicon 19 3% [19,19 ] [3%, 3%]
morgan 49 13% [52, 52] [7%, 7%]
serve-static 98 7% [98, 102] [7%, 4%]
prop-types 16 85% [53, 53] [50%, 50%]
compression 46 29% [46, 46] [29%, 29%]

(c) Size of projects stubbified with dynamic CG

Table 1



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 17

– Transform the dependency. The symbolic link means the client needs no change to use
the stubbed version of the dependency.

– Rerun the client’s tests, now with the stubbed version of the dependency.

All our experiments were conducted on a Thinkpad P43s with an Intel Core i7 processor
and 32GB RAM, running Arch linux, using the same version of Node.js (14.3.0), to avoid
any updates to the runtime environment that could affect run times and thus skew the results.

Guarded execution mode. For RQ5, we repeated the experiments with guards enabled, and
measured the running time and size of expanded code for the client test suites to determine
the increase in overhead due to these extra checks.

In addition, we report on a case study involving depd (dep, 2021e), a subject application
with a known vulnerability, and on experiments with osenv and node-os-uptime, two npm
modules with confirmed vulnerabilities that were used as experimental subjects in Karim
et al. (2018)8.

Bundlers. For RQ6, each subject application was bundled use the Rollup bundler (Rollup,
2021). This involved the creation of a bundler configuration file (which we generated au-
tomatically given the application’s package.json file) to bundle the application based on
its listed entry points and to create a single bundle that also includes all of its production
dependencies9. We measure and report on the sizes of the resulting bundle, both with and
without having applied Stubbifier, to determine what additional size reduction is enabled by
Stubbifier.

4.2 Overview of Results

The results of running Stubbifier on the projects are displayed in Tables 1b and 1c. We show
the size of the original source code, the size of the application distribution, and then the
resulting size of the distribution after we run our transformation on it, with both the static
and dynamic call graphs.

Note that the size immediately after transformation is only representative of the stubbed
application size if no stubs are expanded. To gain a realistic estimate of the size reduction
in a standard use-case of the application, we identified five clients for each application and
tracked how many stubs were expanded during the execution of the test suites of these
clients. Then, we consider the size of the application to be its base stubbed size plus the total
size of the stubs that were expanded during the client tests. This is reported as a range of the
lower and upper bounds of application size over the five clients. The full data is included in
the supplementary material.

The first row of Table 1b reads: after running Stubbifier with the static call graph, the
size of the memfs source code is reduced to 19KB, which is a reduction of 87% of the orig-
inal application size. This expanded to a minimum of 19KB (i.e., nothing was expanded)
and a maximum of 138KB over the five clients tested; the expanded code is a reduction of
87% (with minimum expansion) and 5% (with maximum expansion) of the original appli-
cation size. The first row of Table 1c can be read the same way, but for results after running
Stubbifier with the dynamic call graph on memfs and testing with the same five clients.

8Of the subject applications reported on in Karim et al. (2018), these were the only two that had a
confirmed vulnerability and a test suite with passing tests.

9The default behavior of rollup is to ignore dependent modules in node_modules, but the bundle
should all code in which stubs may be introduced, to be able to determine Stubbifier’s effectiveness.



18 A. Turcotte and E. Arteca et al.

In the remainder of this section, we will address each research question in order.

RQ1: How much does Stubbifier reduce application size, and which type of call graphs
(static or dynamic) produces smaller applications?

We refer the reader to Tables 1b and 1c. In these tables, it can be seen that, using static call
graphs, size reductions ranging from 2% to 87% are achieved (56% on average). The case
where a size reduction of only 2% is achieved is commander, which has no dependencies
and appears to be a bit of an outlier. Using dynamic call graphs, size reductions ranging
from 3% to 89% achieved (31% on average).

Overall, the use of static call graphs results in larger size reductions in 11/15 cases, and
in larger size reductions on average (56% on average when static call graphs are used vs.
31% when dynamic call graphs are used). This is not surprising, as both static and dynamic
call graph constructions use the test suite as the entry point of the application, and the static
analysis suffers from unsoundness due to the dynamic nature of JavaScript. Since the static
analysis is constructing a call graph, unsoundness might cause some functions to be ex-
cluded from the call graph when they are actually executed in the test suite. As a result, the
initial code size reduction is therefore usually larger, but more stubs need to be expanded
at run time. The dynamic analysis finds every function that is called during the test suite
execution, since it is constructed with a coverage tool. If the static analysis was perfectly
precise then it would produce the exact same call graph as the dynamic analysis.

Many of these packages have millions of weekly downloads, and so the size savings
add up quickly: for example, css-loader is 2.764MB, and with 10 million weekly down-
loads we have nearly 28TB of data transferred to users every week. Stubbifier reduces
css-loader’s initial size by 80% with both call graphs, which would contribute to 22 fewer
TB being transferred weekly (for one project!).

On average, Stubbifier reduces initial application size by 56% when using static call graphs,
and by 31% when using dynamic call graphs.

RQ2: How much code is dynamically loaded due to stub expansion?

Again referring to Table 1b and 1c, this time to the Expanded KB range columns, we see
that the top end of the expanded ranges using the static call graph are smaller than (or equal
to) the expanded ranges using the dynamic call graph in 11/15 cases. This aligns with our
findings in RQ1. In all but one case, the minimal expanded size is close to the reduced
application size, and the maximum size increase is > 2x in only two cases.

The case where glob is processed using a dynamic call graph is an interesting outlier,
as its size is larger than the original code after all stubs have been expanded. This is because
not much of glob is stubbed (the initial size reduction is only 4%, or 2KB), and the code
required to support stub expansion is larger than the initial size reduction due to the extra
boilerplate that was introduced by Stubbifier (import statements, eval call, reassignments
to imports, etc.).

To break down the results further, we consider the results for all clients of a few pack-
ages. Tables 2a and 2b display all the metrics tracked for all clients of redux, q, and
body-parser. These metrics are the test suite runtimes, the percentage slowdown due to



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 19

Client Stubbed code: effect of expansions
Proj Client Proj Time (s) Time (s) Slowdown (%) Files Fcts Exp (KB)

Choices 5.06 5.16 2% 1 0 20.06
found 30.61 31.83 4% 1 0 20.06

redux Griddle 8.93 8.91 0% 1 0 20.06
react-beautiful-dnd 61.70 63.49 3% 2 0 20.06

redux-ignore 0.57 0.58 2% 1 0 20.06
decompress-zip 0.70 0.74 6% 1 0 63.25

downshift 1.43 1.44 1% 1 0 63.25
q node-ping 3.80 4.20 10% 1 0 63.25

passport-saml 0.41 0.44 6% 0 0 0.00
requestify 2.92 2.99 2% 1 0 63.25

appium-base-driver 8.66 10.04 14% 39 0 146.10
body express 1.05 1.89 45% 48 0 231.69
- karma 2.08 2.12 2% 40 0 199.57
parser moleculer-web 5.80 6.46 10% 48 0 231.69

typescript-rest 13.17 14.89 12% 48 0 231.69

(a) Stubbed with static call graph
Client Stubbed code: effect of expansions

Proj Client Proj Time (s) Time (s) Slowdown (%) Files Fcts Exp (KB)
Choices 5.06 5.05 0% 1 0 20.06
found 30.61 31.34 2% 1 0 20.06

redux Griddle 8.93 9.03 1% 1 0 20.06
react-beautiful-dnd 61.70 62.12 1% 2 0 20.06

redux-ignore 0.57 0.59 3% 1 0 20.06
decompress-zip 0.70 0.78 10% 0 5 2.98

downshift 1.43 1.44 1% 0 1 0.88
q node-ping 3.80 4.08 7% 0 6 2.86

passport-saml 0.41 0.42 2% 0 0 0.00
requestify 2.92 3.05 4% 0 2 0.86

appium-base-driver 8.66 9.26 6% 8 0 6.69
body express 1.05 1.21 14% 14 0 79.70
- karma 2.08 2.09 1% 12 0 79.03
parser moleculer-web 5.80 6.38 9% 14 0 79.70

typescript-rest 13.17 14.48 9% 14 0 79.70

(b) Stubbed with dynamic call graph

Table 2: Results for Clients of Select Projects

running the stubbed code, and number and size of stubs dynamically expanded during the
tests. We chose these applications to display as we felt they are a representative sample
of our results; the full data for all clients of all projects is included in the supplementary
material.

The first row of Table 2a reads: for redux, its client application Choices has an average
test suite runtime of 5.06 seconds. When the Choices test suite is rerun with stubbed redux
(via the static call graph), it has an average runtime of 5.16 seconds, which is a slowdown
of 2%; 1 file stub and no function stubs were expanded, and the total size of stubs expanded
was 20.06KB. The first row of Table 2b shows the results of rerunning again with stubbed
redux via the dynamic call graph: now, Choices’ test suite has an average runtime of 5.05
seconds, which is a slowdown of 0%; 1 file stub and no function stubs were expanded, and
the total size of stubs expanded was 20.06KB.

Digging into the client-specific data reveals some interesting trends. There appears to be
a correlation between the number of stubs expanded for the static and dynamic call graphs.
For example, consider the clients of body-parser: even though there are more stub expan-
sions using the static call graph vs. using the dynamic call graph, it appears that there are
“sets” of functionality that are commonly expanded together (seen here as whenever 48 file



20 A. Turcotte and E. Arteca et al.

stubs are expanded in the static case, 14 file stubs are expanded in the dynamic case). The
range of expansions among clients suggest that some of the clients use more of an applica-
tion’s untested functionality than others.

We also noted consistency in which stubs are expanded. For example, in the “sets” of
expanded functionality described earlier, these are the same 48 and 14 files every time. As
an additional example, all the clients of redux expand one file stub (one client expands
two)—this is always the same stub that is expanded. In the other applications, there is al-
ways significant overlap in which stubs are expanded with different clients. This suggests
that some of these applications have commonly used functionalities that are untested, so
developers could use this information to shore up their test suites.

Finally, we observe that the dynamic call graph typically produces far fewer file stub
expansions than the static call graph. There are a few dimensions to this. On one hand, as
JavaScript is a dynamic language, the static call graph is likely to be incomplete—functions
in JavaScript are often called in highly dynamic ways, and these kinds of calls are more
easily detected using dynamic analyses. On the other hand, the dynamic call graph is more
susceptible to lower-quality tests: if the application is poorly tested, the dynamic call graph
will report many unreachable functions and files. It is not immediately clear which call graph
yields “better” results, as fewer stubs mean less size reduction, but also less overhead—we
ultimately leave the decision up to the developer.

Most package clients load very little code dynamically. Many applications have commonly
loaded “sets” of code, representing broadly used, untested functionality.

RQ3: How much overhead is incurred due to stub expansion?

To determine the performance overhead introduced by stub expansion, we measured the
running times of the test suites of clients of applications processed by Stubbifier.

We decided not to aggregate runtime information over all clients of a package as the
overhead depends on many factors outside of our control: the number of tests, the structure
of the tests, the raw running time of the test, etc. Instead, we conducted a case study on the
effect of the dynamic code loading for the individual clients of the three projects presented
in Tables 2a and 2b. The results for all test applications are included in the supplementary
material, but the trends are upheld across the full data.

Referring to the time columns of Tables 2a and 2b, the following conclusions can be
drawn. First, a correlation between the slowdown and the number of stub expansions can
be observed: as more code is dynamically loaded, the performance overhead increases. This
aligns with our expectations, as stub expansions involve additional I/O and compute time.
That said, the runtime overhead is never extreme, and the slowdowns still leave the running
times of the test suites well within the same order of magnitude. As a percentage, some
runtime overhead is high (e.g., body-parser’s express dependency), but the magnitude
of the change is not (only 0.84 seconds). We do not see high percentage slowdowns for long-
running tests, for instance redux’s found and react-beautiful-ignore clients have 4%
and 3% slowdowns respectively. We conjecture that the amount of overhead mostly has to
do with the I/O required to load the dynamic code.

By and large, the magnitude and percentage overhead introduced by dynamic loading is
small.



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 21

Static CG Dynamic CG
Project CG generation (s) Transf. (s) CG generation (s) Transf. (s)
memfs 740.18 2.46 15.97 2.72
fs-nextra 380.97 1.11 13.94 1.10
body-parser 295.38 3.43 10.53 3.79
commander 554.93 1.94 24.56 1.61
memory-fs 324.06 1.73 5.33 1.75
glob 300.80 2.09 18.66 1.46
redux 1349.09 3.18 182.02 4.02
css-loader 1137.77 14.85 48.61 15.52
q 336.31 4.41 10.98 4.85
send 279.16 1.75 7.57 1.67
serve-favicon 259.06 0.76 3.91 0.79
morgan 313.76 1.20 8.65 1.16
serve-static 276.89 1.67 7.51 1.60
prop-types 752.94 2.12 12.79 1.89
compression 279.18 1.28 6.78 1.37

Table 3: Callgraph generation and transformation timing

RQ4: How much time does Stubbifier need to transform applications?

Table 3 shows the time needed by Stubbifier to process each of the 15 projects. Here, we
distinguish between the time needed to construct call graphs, and the time needed to trans-
form the source code. Note that as the execution of the project test suite is a necessary step
for constructing the dynamic callgraph, the dynamic callgraph generation time includes the
time required to run the tests.

The first row of the table reads: for memfs, generating the static call graph takes 740.18
seconds and applying transformations based on this call graph takes 2.46 seconds. Further-
more, generating the dynamic call graph takes 15.97 seconds and applying transformations
based on this call graph takes 2.72 seconds.

From the table, it can be seen that the cost of the code transformation itself is negligible.
The longest runtime is 15 seconds on the css-loader project, which is unsurprising given
that css-loader is the largest subject application (2.76MB). There is no difference between
the transformation times using the static vs dynamic call graphs. This is also unsurprising,
as the same process is used to run the transformation in either case, and, generally, a similar
number of stubs is created. In cases such as q, where the dynamic call graph produces a
larger stubbed application and yet it takes longer to run, this is because there are more
function stubs being generated (compared to a single file stub being generated when using
static call graphs).

The cost of call graph construction is more noteworthy. Overall, we see that constructing
a static call graph takes one to two orders of magnitude more time than constructing the
dynamic call graph. We also observe a correlation between the times to construct the static
and dynamic call graphs. To construct the dynamic call graph, Stubbifier simply computes
a coverage report from running an application’s tests (including node_modules), which
amounts to the time to run the tests plus some small overhead. The slower runtime of static
call graph construction is due to our inclusion of the generation of the CodeQL database in
the overall runtime, which is directly proportional to the amount of code in the project (in
order to run any static analysis queries, CodeQL must build a database of the application’s
code—this is a one-time cost as long as the code does not change).



22 A. Turcotte and E. Arteca et al.

With guards
Client Proj Time (s) Slowdown (%) Exp. KB Exp. KB no guards
decompress-zip 1.22 43% 240.9 63.3
downshift 1.47 3% 240.9 63.3
node-ping 4.89 22% 240.9 63.3
passport-saml 0.48 13% 0.0 0.0
requestify 3.30 12% 240.9 63.3

(a) Stubbed with static call graph
With guards

Client Proj Time (s) Slowdown (%) Exp. KB Exp. KB no guards
decompress-zip 0.78 10% 16.6 3.0
downshift 1.63 13% 3.2 0.9
node-ping 4.69 19% 14.9 2.9
passport-saml 0.51 19% 0.0 0.0
requestify 3.43 15% 4.3 0.9

(b) Stubbed with dynamic call graph

Table 4: Results for Clients of q with guards enabled

We envision the use-case of Stubbifier to be a final stage in the creation of a production
release, and so we do not believe that a build-time of 5-15 minutes to be prohibitive. If a user
wanted to apply Stubbifier more frequently, they could opt for using dynamic call graphs.

The average runtime of Stubbifier with the static call graph is not prohibitive (at roughly 8.3
minutes), and is much lower (28 seconds) with the dynamic call graph.

RQ5: How much run-time overhead is incurred by guarded execution mode and can it
detect security vulnerabilities?

The use of “dangerous” functions such as eval and exec that interpret string values as code
is known to cause injection vulnerabilities in JavaScript applications Karim et al. (2018). It
is particularly concerning if such functions are invoked from untested code, because it means
that the developers may not have considered all situations where calls to such functions are
executed. Stubbifier’s guarded execution mode aims to mitigate this risk, by adding dynamic
checks for such functions in stubbed-out code so that a warning can be issued or execution
can be terminated when such calls are encountered. These dynamic checks may have a
noticeable impact on code size and execution times, and research question RQ5 aims to
establish the magnitude of that effect.

We first consider performance and code size by repeating the experiments in guarded
execution mode. The initial distribution sizes for the 15 applications is the same, but we
noted an increase in expanded code sizes, which in many cases now exceeds the size of
the original application. This is unsurprising, as the code size overhead of the guards is
significant. Consider Tables 4a and 4b10, which report experimental data for the q package’s
five clients. The first row of Table 4a reads: for the decrompress-zip client of q, the
test suite runs in 1.22s which is a slowdown of 43% over running the test suite with the
original q package. A performance hit is expected, as the expanded code is now running an

10The full data for all applications is included in the supplemental material.



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 23

additional conditional check around every function call to check if the function being called
is in the specified list of dangerous functions. Moreover, during these tests 240.9KB of code
is expanded, as compared to 63.25KB of code being expanded without guarded execution
mode (this last column is also included in Table 2a). Note that, when using static call graphs,
the expanded code size is almost 4x larger when guards are enabled. The performance of
the code also degrades, though the raw numbers are again fairly low—we again suspect the
increased slowdown to be (mostly) due to the fact that the program needs to load more code.
That said, we did observe some significant overhead in longer-running applications, for
instance slowdowns of 19% and 3% in the longer running test suites of redux’s found and
react-beautiful-dnd clients, respectively (when using static call graphs), as compared
with 4% and 3% respectively without guarded execution mode.

Detecting security vulnerabilities. When guarded execution mode was enabled, calls to
eval were intercepted in running the test suites of three subject applications: body-parser,
send, and serve-static. Upon investigation, we found that the dangerous calls were not
in the code of these packages themselves, but hidden in one their dependencies. Specifi-
cally, all these packages rely on an old version of depd (dep, 2021e): body-parser and
send have a direct dependency, and serve-static has a transitive dependency as it de-
pends on send. We confirmed that this is indeed a problem by examining the depd project
repository on Github and found that the problematic eval was removed on January 12, 2018
with commit (dep, 2021a), which fixed three issues, (dep, 2021b), (dep, 2021c), and (dep,
2021d). These issues were filed because eval is not only bad practice, but its use is dis-
allowed in Chrome apps and Electron apps. To fix this issue, we removed the lock on the
depd version (i.e., set it to *) to get the applications to use the current version of depd, and
confirmed that all client tests still pass.

To further test the effectiveness of guarded execution mode, we ran another experiment
involving two other applications with known vulnerabilities: osenv and node-os-uptime.
These projects were used as experimental subjects11 in the evaluation of a dynamic taint
analysis (Karim et al., 2018) that detected vulnerabilities in them. In both projects, a function
containing a call to a dangerous function (exec in the case of osenv and execSync in the
case of node-os-uptime) was stubbed out by Stubbifier. We created a new test containing
the same code fragment that was used in (Karim et al., 2018) to detect the vulnerability, and
confirmed that the guard introduced by Stubbifier was triggered when the test was executed.

Guarded execution mode allows developers to detect injection vulnerabilities in imported
modules of which developers may be unaware, and we found several examples of this in our
experiments.

RQ6: How much does Stubbifier reduce the size of applications that have been bundled
using Rollup?

To answer this research question, we conducted an experiment where we applied the the
Rollup bundler to each subject application, and applied Stubbifier to the resulting bundle.
Table 5 displays the results of this experiment. The first row of this table can be read as
follows: for the memfs project, the size of the rollup bundle is 128KB, which is a reduction

11Of all the subject applications considered in (Karim et al., 2018), these are the only two that still build,
install, and have a test suite with passing tests, as required by Stubbifier.



24 A. Turcotte and E. Arteca et al.

Stubbed Bundle
Bundle Dynamic CG Static CG

Package Size (KB) Red % Size (KB) Red % Size (KB) Red %
memfs 128 53% 10 92% 10 92%
fs-nextra 52 0% 21 60% 21 60%
body-parser 626 36% 534 15% 534 15%
commander 72 17% 47 35% 47 35%
memory-fs 100 17% 62 38% 62 38%
glob 84 2% 42 50% 42 50%
redux 22 92% 7 67% 7 67%
css-loader 962 59% 393 59% 393 59%
q 66 77% 53 19% 53 19%
send 130 43% 89 31% 89 31%
serve-favicon 18 21% 12 31% 12 31%
morgan 54 3% 30 44% 30 45%
serve-static 107 22% 95 11% 95 11%
prop-types NA NA NA NA NA NA
compression 23 66% 21 7% 21 7%

Table 5: Effect of stubbifying bundled projects

of 53% from the original size of the project. When we stubbify that bundle using the dynamic
callgraph as input, the result is a bundle of 10KB, which is a further reduction of 92% from
the original bundle. When we stubbify the bundle instead with the static callgraph as input,
the result is also a bundle of 10KB, with the same reduction of 92% from the original bundle.

Not all of the applications lend themselves well to bundling. commander and q are con-
figured such that when the bundler is applied, the entire package is wrapped in a single
function that is called to generate the module exports. Since this function does not exist in
the original module, it is not detected as reachable from the application’s tests (since these
exercise the original, un-bundled application). To address this, we configured Stubbifier to
prevent it from replacing 4 functions with stubs (one in commander, and three in q) (recall
from Section 3.2 that programmers can specify in a comment that Stubbifier should not stub
a function or file). Beyond these, prop-types could not be bundled as it depends on some
BabelJS libraries that throw errors when the code format is changed by the bundler, and
fs-nextra has no dependencies so bundling it does not reduce its size at all.

That said, in every case, we see that Stubbifier achieves additional size reductions on
applications after they are bundled, with an average of 37% further size reduction. Indeed,
the purpose of bundlers is not to reduce application size, and that is merely a secondary
benefit: the main goal of a bundler is to produce a single file that can be distributed for
ease-of-use, and Stubbifier reduces the size of all of these bundles.

To confirm that the debloated bundles behave as expected, we conducted an experiment
in which we reconfigured the test suites of commander, body-parser, and node-glob to
use the debloated bundle12, and found that the project tests executed as expected.

Stubbifier achieves significant code size reductions when applied to bundled applications,
by reporting a further size reduction of 37% on top of the reduction already afforded by
bundlers.

12In general, adapting application test suites to work with a bundled version of the application instead of
the original version can be a complex and error-prone process, as test suites may import specific functions
(that may be renamed by the bundler) from specific files (that may be combined by the bundler). For the
applications mentioned here, this conversion was straightforward.



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 25

4.3 Comparison with Mininode

Like Stubbifier, Mininode (Koishybayev and Kapravelos, 2020) is a tool for reducing the
size of Node.js applications, but there are fundamental differences between the two tools,
which we explore and evaluate in this section.

Mininode relies on a static analysis to determine code that is unused and that should
be removed. Code can be removed at one of two levels of granularity: “coarse”, where
entire modules are removed, or “fine”, where individual functions are removed. For the
“fine” mode, Mininode makes use of an unsound static analysis to build a call graph of the
application, using as the entry point the main file specified in the package.json of the
project. Mininode also removes non-code artifacts such as license and configuration files.

There is a significant difference in the types of distributions used to evaluate Mininode
and Stubbifier. In the JavaScript npm package ecosystem, a distinction is made between an
application’s dependencies and development dependencies: A dependency is another pack-
age that the application needs to function (e.g., a utility library such as lodash), whereas
a development dependency is only needed during development (e.g., a test runner such as
mocha that is needed to run the application’s tests) and is not normally part of a produc-
tion distribution. Mininode assumes an application’s development distribution as the starting
point and considers development dependencies and package tests as targets for removal. By
contrast, in our work, we assume the production distribution of a package to be the start-
ing point (which already excludes development dependencies and tests). Therefore, we do
not consider development dependencies and test code when reporting results obtained with
Stubbifier. Mininode also only supports the ECMAScript 5 version of JavaScript (which
dates back to 2009), whereas Stubbifier can debloat JavaScript ES2019 applications that use
modern JS features such as modules, classes, async/await, etc.

We tried running Mininode on all 15 subject applications that we used to evaluate
Stubbifier. Of these, 4 used features specific to JavaScript ES6+13 causing Mininode to fail
on parsing the source code; 2 of them crashed Mininode with a runtime exception14 because
Mininode dispatches a malformed call to fs.stat, and in 1 of them15 Mininode removed
one a production file factory.js file, rendering the debloated application non-functional.
In the remaining 8 projects where Mininode ran successfully, we noted that the only files
that it removed were development dependency module files, test files, and non-code files
such as .eslintignore and LICENSE.

Fundamentally, Mininode and Stubbifier have different objectives and apply different
techniques. Mininode completely removes code and other files such as license files. On
the other hand, Stubbifier replaces code that is likely to be unused with stubs. Note that it
is not possible to apply Stubbifier after applying Mininode because Mininode removes the
application’s tests, which Stubbifier needs for call graph construction. Conversely, Stubbifier
creates production distributions that already exclude development dependences, so applying
Mininode after applying Stubbifier does not make sense.

5 Threats to Validity

Our approach relies on an application’s test suite as the entry point for call graph construc-
tion. This entwines the performance of our tool with the quality of the tests. An application

13memfs,fs-nextra,commander.js,redux
14memory-fs,serve-favicon
15prop-types



26 A. Turcotte and E. Arteca et al.

with a low-quality test suite may generate a call graph that does not represent a compre-
hensive usage of the application functions, thus leading to more stubs and likely more stub
expansion. To mitigate against bias, we did not consider the quality of an application’s tests
when selecting projects for our evaluation, only that the application had tests at all (and that
these tests passed). Concretely, Table 1a shows that applications have differing numbers of
tests, as many as 1706 and as few as 30, with every application having over 10K LOC. We
also see a large variation in the coverage achieved by these test suites over the code available
to be stubbed (i.e., the source code and production dependencies of an application): we see
coverage as high as 99.04% and as low as 0.52%. This suggests that the quality of the test
suites of the projects in our evaluation varies considerably.

Also, we are cognizant that we are drawing generalized conclusions based on a limited
set of JavaScript projects. To mitigate potential bias in project selection, we selected 15
projects in a systematic manner from the most popular projects published by npm: from a
list of projects sorted in descending order by number of weekly downloads, we attempted
to install, build, and run project test suites. If a project satisfied all these criteria, we then
randomly selected from its clients and attempted to install, build, and run their tests; if the
project had five such clients, it was selected. We also note that the subject applications vary
considerably in size, in number of dependencies, as well as application domains: e.g., memfs
is an in-memory file system, body-parser is a parser for request bodies, and css-loader
is a custom loader for css files. In a similar vein, we are cognizant of the fact that the five
chosen client applications might not be representative clients of the projects. To mitigate
potential bias here, we chose the clients randomly, and we chose five of them to try and get a
variety of use cases. We note that there is a range in the amount of code loaded dynamically
across the clients, so we see that not all the clients use the same features of a package.
We do also note that there is often overlap in the stubs expanded across clients: this is
unsurprising, as we expect some overlap in the ways clients use a project, and it indicates
untested functionality in the project.

It is also possible that the reported runtimes are subject to measurement bias. We mit-
igate this by running all performance experiments on a machine with no other processes
running. We also report the average run time over 10 runs, after discarding two initial runs,
which minimizes risk of long experiment startup time.

In our experiments with the Rollup bundler, we had to manually configure Stubbifier
to avoid stubbing four functions in the bundles for commander and q that were introduced
by the bundler. Since these functions did not occur in the call graphs created by Stubbifier,
they would otherwise have been replaced with stubs, resulting in size reductions in excess of
95%. However, such a size reduction would have been counterproductive—these functions
are always executed when the bundles are used, and thus the introduced stubs would always
have to be expanded. There is a potential for human error here, but identifying these four
functions was not difficult: for commander, the bundler wrapped the entire module in an
immediately invoked function expression (IIFE), and in the case of q the bundler included
large swaths of code in the exported object of the bundle. Longer term, an automated solution
to this problem could be devised.

6 Related Work

Our work was inspired by DOLOTO (Livshits and Kiciman, 2008), a tool that applies code-
splitting to an application based on “access profiles” obtained from users interacting with
an instrumented version of the application. These access profiles define clusters of functions



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 27

that should be loaded together, and functionality that should be part of the distribution of an
application. Applications processed by DOLOTO ship with enough functionality for initial-
ization, and inessential functions are replaced with small stubs that are either replaced once
their original code is loaded lazily, or on-demand when a stubbed function is invoked.

There are several factors that make Stubbifier more practical than Doloto. Most impor-
tantly, Stubbifier is fully automatic, debloating an application based on call graphs that were
constructed from its tests. Stubbifier handles modern JavaScript ECMA International (2019),
which includes many features (e.g., classes, promises, async/await, generators, modules etc.)
that were not present when Doloto was developed in 2008. Moreover, Stubbifier supports
not only the function-level stubs that were used by Doloto, but also file-level stubs to han-
dle the common case where all functions in a file are found to be unreachable. Stubbifier
also provides a guarded execution mode, which prevents injection vulnerabilities resulting
from calls to functions such as eval and exec when they are invoked from within untested
code that resulted from expanding stubs. Lastly, Stubbifier has been developed to be used in
conjunction with bundlers.

In Section 4.3, we compared Stubbifier with Mininode (Koishybayev and Kapravelos,
2020), another tool for debloating Node.js applications and noted several significant differ-
ences between the two debloating techniques: (1) Mininode targets development distribu-
tions, which include application tests as well as dependencies only needed during develop-
ment (e.g., test suite runners like jest), whereas Stubbifier targets production distributions,
which already exclude tests and development dependencies; (2) Mininode completely re-
moves code, and can introduce application crashes if the removed code is called, whereas
Stubbifier replaces code with stubs that can fetch the original code as needed; (3) Mininode
targets the ECMAScript 5 version of JavaScript, which lacks many widely used features
such as classes, async/await, and modules, and these are all supported by Stubbifier which
supports the ECMAScript 2019 version of JavaScript. We ran Mininode on the 15 subject
applications in the evaluation, and found that Mininode successfully debloated only 8 of
them, and in those it only removed development dependencies, test files, and non-code files.
There is also recent work on debloating other languages: JShrink (Bruce et al., 2020) is a
tool for debloating the bytecode of Java applications. Their technique makes use of a combi-
nation of both static and dynamic analyses, to use both the strong type guarantees of the Java
language, and to also deal with dynamic language features that are becoming more prevalent
in modern Java use.

Building minimal application bundles is both well-studied and prevalent in industry.
Several implementations of Smalltalk developed in the 1990s (e.g., (Vis, 1995, 1997)) in-
clude features for “packaging” or “delivering” applications, and IBM’s 1997 Handbook for
VisualAge for Smalltalk (Vis, 1997) describes a reference-following strategy to determine
minimal code for a package. Compacting code is a related area, for example (De Sutter
et al., 2002) present Squeeze++, a link-time code compactor for low-level C/C++ code.
Another facet of this area is specializing distributions: (Sharif et al., 2018) present TRIM-
MER, which specializes LLVM bytecode applications to their deployment context using
input specialization. The performance impact of using application bundles has also been
studied in the context of Java, where (Hovemeyer and Pugh, 2001) study performance is-
sues that arise when bundles of JVM class files for Java applications are downloaded from
a server. Broadly, these approaches rely on some form of “application profile” obtained via
program analysis—Stubbifier builds this profile via static or dynamic analysis of application
tests.

In a similar vein, trimming optional functionality from applications has been studied by
(Bhattacharya et al., 2013), who propose an approach relying on a combination of human



28 A. Turcotte and E. Arteca et al.

input, dynamic analysis, and static analysis to identify optional functionality. (Koo et al.,
2019) present a technique relying on manual analysis of configuration files and profiling to
obtain coverage information for executions in different configurations, minimizing based on
that coverage.

Much existing work is concerned with entirely removing unused code. (Agesen and
Ungar, 1994) present an type-inference based application extractor for Self (Agesen et al.,
1993) which extracts a bloat-free source file for distribution. The Jax application extractor
for Java (Tip et al., 1999) relies on efficient type-based call graph construction algorithms
such as RTA (Bacon and Sweeney, 1996) and XTA (Tip and Palsberg, 2000) to detect un-
reachable methods, and further relies on a specification language (Sweeney and Tip, 2000)
in which users specify classes and methods that are accessed reflectively, going above-and-
beyond dead code elimination with, e.g., class hierarchy compaction (Tip et al., 2002). Ray-
side and Kontogiannis (Rayside and Kontogiannis, 2002) present a tool for extracting sub-
sets of Java libraries using Class Hierarchy Analysis (Dean et al., 1995) to identify the subset
of a library that is required by a specific application, though their work does not consider
unsoundness.

On the other hand, the use of code splitting techniques has been explored previously
in different contexts. Besides DOLOTO (Livshits and Kiciman, 2008), (Krintz et al., 1999)
proposed a code-splitting technique for Java that partitions classes into separate “hot” and
“cold” classes to avoid transferring code that is rarely used. (Wagner et al., 2011) present
an optimistic compaction technique for Java applications, where minimized distributions
are outfitted with a custom class loader that performs partial loading and on-demand code
addition.

6.1 Control Flow Integrity

The guarded execution mode resembles works on Control Flow Integrity (CFI) verification
by, e.g., (Abadi et al., 2009). A CFI policy dictates that program execution must follow a
predetermined path of a control flow graph, enforced via program rewriting and runtime
monitoring. Conceptually, our guarded execution mode enforces a policy where program
execution cannot invoke a predefined list of functions. (Zhang et al., 2013) present a CFI
approach that enforces a policy preventing jumps to any but a white-list of locations, whereas
our guarded mode enforces a black-list of functions. (Niu and Tan, 2015) develop a “per-
input” CFI technique to avoid the overhead of constructing a control flow graph, and our
mode avoids this altogether by pre-transforming code to intercept calls.

6.2 Vulnerability Detection and Reduction

Guarded execution mode’s ability to intercept dangerous function execution in dynamically
loaded code is intended to reduce the attack surface of applications, and ultimately make
them less vulnerable to attacks.

There is a wealth of existing work in this area. On the topic of traditional injection
vulnerabilities, Gauthier et al. (2018) describe an approach for detecting injection vulner-
abilities through a mix of white-box analysis (of application code), and black-box anal-
ysis (of third party modules), and Nielsen et al. (2019) present a static dataflow analysis
tool which overcomes scalability issues by analyzing a limited amount of third-party mod-
ules. Taint analysis is a popular method for detecting these types of vulnerabilities, and



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 29

Staicu et al. (2020) describe an approach to automatically extracting taint specifications for
JavaScript libraries, which is important as taint analysis require taint specifications to re-
port taint flows, and manually coming up with taint specifications is tedious at best, and
error-prone at worst. Injection vulnerabilities are not alone in plaguing JavaScript code,
and Li et al. (2022) present a novel data structure constructed from various static analysis,
model a variety of vulnerabilities (e.g., beyond injection), and use abstract interpretation
to detect them. Node.js allows JavaScript programs to execute arbitrary shell commands,
and Vasilakis et al. (2021) detail an approach specifying read-write-execute permissions for
third-party libraries, noting that much third-party code executes with more elevated permis-
sion than is required. Further, Staicu et al. (2018) report on a study of over 200k Node.js
applications, arguing that command-line injection vulnerabilities are common, and present
a system that synthesizes grammar-based policies from template values (that are generated
as abstractions of values likely to result in vulnerabilities). Another interesting vulnerability
specific to languages with prototype-based inheritance (like JavaScript) is reported on by Li
et al. (2021); known as prototype pollution, base object prototypes are modified to introduce
new attack vectors.

The npm ecosystem does provide a “security audit” of packages it installs, and typically
reports that dozens of vulnerabilities exist in installed dependencies. Zimmermann et al.
(2019) conduct a study of security threats in the npm ecosystem, and determine that a lack
of maintenance contribute to many present vulnerabilities. Updating packages is important
to keep up with security patches, and semantic versioning helps developers determine the
work involved in downloading a new version of a package; Møller and Torp (2019) argue
that semantic versioning is poorly used in JavaScript, and propose a technique to detect
breaking changes in security patches using fuzz testing of API models.

7 Conclusions and Future Work

JavaScript is an increasingly popular language for server-side development, thanks in part
to the Node.js runtime environment and the vast ecosystem of modules available on npm.
Unfortunately, npm installs modules with all of their functionality, even if only a fraction is
needed, which causes an undue increase in code size. In this paper, we presented a fully auto-
matic technique that identifies dead code by constructing static or dynamic call graphs from
the application’s tests, and replaces code deemed unreachable with either file- or function-
level stubs that can fetch and execute the original code dynamically. The technique also gives
users the option to guard their applications against injection vulnerabilities in untested code
that result from stub expansion. This technique is implemented in a tool called Stubbifier,
which supports the ECMAScript 2019 standard.

In an empirical evaluation on 15 Node.js applications and 75 clients of these applica-
tions, Stubbifier reduced application size by 56% on average while incurring only minor per-
formance overhead. The evaluation also showed that Stubbifier’s guarded execution mode is
capable of preventing several known injection vulnerabilities that are manifested in stubbed-
out code. Finally, Stubbifier works alongside bundlers, and for the subject applications under
consideration, we measured an average size reduction of 37% in distributions produced by
bundlers.

Future work includes the application of similar debloating techniques to other program-
ming languages. A key enabling factor for our technique is the availability of a mechanism
for executing arbitrary code at run time, similar to JavaScript’s eval feature. While such
mechanisms tend to create significant challenges for sound static analysis, they enable the



30 A. Turcotte and E. Arteca et al.

implementation of stubs that load missing code at run time. The use of a fast program analy-
sis techniques that generate an unsound call graph is generally also well suited for dynamic
languages.

One concrete avenue for exploration would be adaptation of our technique to Python Lutz
(2013), where stubbing can be implemented using the exec function 16. Similar functional-
ity also exists in the R programming language, using its eval construct (rlang, 2022).

Declarations

Funding and/or Conflicts of Interests/Competing Interests

The authors declared that they have no conflict of interest.

References

(1995) VisualWorks User’s Guide. ParcPlace-DigiTalk, software release 2.5 edn, chap-
ter 13: Application Delivery Tools. Available from http://esug.org/data/Old/
vw-tutorials/vw25/vw25ug.pdf

(1997) VisualAge for Smalltalk Handbook Volume 1: Fundamentals. IBM Corpora-
tion, first edition edn, available from http://www.redbooks.ibm.com/redbooks/
4instantiations/sg244828.pdf.

(2021) bdistin/fs-nextra. https://github.com/bdistin/fs-nextra, accessed: 2021-
10-25

(2021a) Commit: remove eval. https://github.com/dougwilson/nodejs-depd/
commit/887283b4, accessed: 2021-04-16

(2021b) depd issue 20. https://github.com/dougwilson/nodejs-depd/issues/20,
accessed: 2021-04-16

(2021c) depd issue 22. https://github.com/dougwilson/nodejs-depd/issues/22,
accessed: 2021-04-16

(2021d) depd issue 24. https://github.com/dougwilson/nodejs-depd/issues/24,
accessed: 2021-04-16

(2021e) dougwilson/nodejs-depd. https://github.com/dougwilson/nodejs-depd,
accessed: 2021-04-16

(2021) expressjs/body-parser. https://github.com/expressjs/body-parser, ac-
cessed: 2021-10-25

(2021a) expressjs/compression. https://github.com/expressjs/compression, ac-
cessed: 2021-10-25

(2021) expressjs/morgan. https://github.com/expressjs/morgan, accessed: 2021-
10-25

(2021a) expressjs/serve-favicon. https://github.com/expressjs/serve-favicon,
accessed: 2021-10-25

(2021b) expressjs/serve-static. https://github.com/expressjs/serve-static, ac-
cessed: 2021-10-25

(2021) facebook/prop-types. https://github.com/facebook/prop-types, accessed:
2021-10-25

16See https://docs.python.org/3/library/functions.html#exec



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 31

(2021) isaacs/node-glob. https://github.com/isaacs/node-glob, accessed: 2021-10-
25

(2021) kriskowal/q. https://github.com/kriskowal/q, accessed: 2021-10-25
(2021) mapbox/node-blend. https://github.com/mapbox/node-blend, accessed:

2021-04-16
(2021) pillarjs/send. https://github.com/pillarjs/send, accessed: 2021-10-25
(2021) reduxjs/redux. https://github.com/reduxjs/redux, accessed: 2021-10-25
(2021a) streamich/memfs. https://github.com/streamich/memfs, accessed: 2021-

10-25
(2021b) tj/commander.js. https://github.com/tj/commander.js, accessed: 2021-10-

25
(2021) webpack-contrib/css-loader. https://github.com/webpack-contrib/
css-loader, accessed: 2021-10-25

(2021b) webpack/memory-fs. https://github.com/webpack/memory-fs, accessed:
2021-10-25

Abadi M, Budiu M, Erlingsson U, Ligatti J (2009) Control-flow integrity principles, imple-
mentations, and applications. ACM Trans Inf Syst Secur 13(1), DOI 10.1145/1609956.
1609960, URL https://doi.org/10.1145/1609956.1609960

Agesen O, Ungar D (1994) Sifting out the gold: Delivering compact applications from an
exploratory object-oriented programming environment. In: Proceedings of the Ninth An-
nual Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’94), Portland, OR, pp 355–370, ACM SIGPLAN Notices 29(10).

Agesen O, Palsberg J, Schwartzbach MI (1993) Type inference of SELF. In: ECOOP’93 -
Object-Oriented Programming, 7th European Conference, Kaiserslautern, Germany, July
26-30, 1993, Proceedings, pp 247–267, DOI 10.1007/3-540-47910-4\ 14

Andreasen E, Møller A (2014) Determinacy in static analysis for jQuery. In: Proc. 29th
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages, and Applications (OOPSLA)

Avgustinov P, de Moor O, Jones MP, Schäfer M (2016) QL: Object-oriented queries on
relational data. In: 30th European Conference on Object-Oriented Programming, ECOOP
2016, July 18-22, 2016, Rome, Italy, pp 2:1–2:25, DOI 10.4230/LIPIcs.ECOOP.2016.2

Bacon DF, Sweeney PF (1996) Fast static analysis of C++ virtual function calls. In: Proceed-
ings of the 1996 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA ’96), San Jose, California, USA, October 6-10,
1996., pp 324–341, DOI 10.1145/236337.236371

Bhattacharya S, Gopinath K, Nanda MG (2013) Combining concern input with program
analysis for bloat detection. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications,
ACM, New York, NY, USA, OOPSLA ’13, pp 745–764, DOI 10.1145/2509136.2509522

Bruce BR, Zhang T, Arora J, Xu GH, Kim M (2020) JShrink: In-depth investigation into
debloating modern Java applications. In: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp 135–146

De Sutter B, De Bus B, De Bosschere K (2002) Sifting out the mud: Low level C++ code
reuse. SIGPLAN Notices 37(11):275–291, DOI 10.1145/583854.582445

Dean J, Grove D, Chambers C (1995) Optimization of object-oriented programs using static
class hierarchy analysis. In: ECOOP’95 - Object-Oriented Programming, 9th European
Conference, Århus, Denmark, August 7-11, 1995, Proceedings, pp 77–101, DOI 10.1007/
3-540-49538-X\ 5



32 A. Turcotte and E. Arteca et al.

ECMA International (2019) ECMAScript 2019 language specification. https://262.
ecma-international.org/10.0/, accessed: 2021-04-16

ECMA International (2021) ECMAScript module system. https://www.
ecma-international.org/ecma-262/#sec-modules, accessed: 2021-04-16

Gauthier F, Hassanshahi B, Jordan A (2018) A¡span class=”smallcaps smallercapi-
tal”¿ffogato¡/span¿: Runtime detection of injection attacks for node.js. In: Companion
Proceedings for the ISSTA/ECOOP 2018 Workshops, Association for Computing Ma-
chinery, New York, NY, USA, ISSTA ’18, p 94–99, DOI 10.1145/3236454.3236502, URL
https://doi.org/10.1145/3236454.3236502

GitHub (2020) Language trends on GitHub. https://octoverse.github.com/
#top-languages

GitHub (2021) CodeQL. https://github.com/github/codeql, accessed: 2021-04-16
Hovemeyer D, Pugh W (2001) More efficient network class loading through bundling. In:

Proceedings of the 1st Java Virtual Machine Research and Technology Symposium, April
23-24, 2001, Monterey, CA, USA, pp 127–140

Istanbul (2021) nyc. https://www.npmjs.com/package/nyc, accessed: 2021-10-12
Jensen SH, Madsen M, Møller A (2011) Modeling the HTML DOM and browser API in

static analysis of JavaScript web applications. In: SIGSOFT/FSE’11 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11:
13th European Software Engineering Conference (ESEC-13), Szeged, Hungary, Septem-
ber 5-9, 2011, pp 59–69

Jensen SH, Jonsson PA, Møller A (2012) Remedying the eval that men do. In: Heimdahl
MPE, Su Z (eds) International Symposium on Software Testing and Analysis, ISSTA
2012, Minneapolis, MN, USA, July 15-20, 2012, ACM, pp 34–44, DOI 10.1145/2338965.
2336758, URL https://doi.org/10.1145/2338965.2336758

Karim R, Tip F, Sochŭrková A, Sen K (2018) Platform-independent dynamic taint analysis
for JavaScript. IEEE Transactions on Software Engineering 46(12):1364–1379

Koishybayev I, Kapravelos A (2020) Mininode: Reducing the Attack Surface of Node.js
Applications. In: Proceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID)

Koo H, Ghavamnia S, Polychronakis M (2019) Configuration-driven software debloating.
In: Proceedings of 12th European Workshop on Systems Security (EuroSec ’19)

Krintz C, Calder B, Hölzle U (1999) Reducing transfer delay using Java class file splitting
and prefetching. In: Proceedings of the 1999 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications (OOPSLA ’99), Denver,
Colorado, USA, November 1-5, 1999., pp 276–291, DOI 10.1145/320384.320412

Li S, Kang M, Hou J, Cao Y (2021) Detecting Node.Js Prototype Pollution Vulnerabili-
ties via Object Lookup Analysis, Association for Computing Machinery, New York, NY,
USA, p 268–279. URL https://doi.org/10.1145/3468264.3468542

Li S, Kang M, Hou J, Cao Y (2022) Mining node.js vulnerabilities via object depen-
dence graph and query. In: 31st USENIX Security Symposium (USENIX Security 22),
USENIX Association, Boston, MA, URL https://www.usenix.org/conference/
usenixsecurity22/presentation/li-song

Li Y, Tan T, Møller A, Smaragdakis Y (2018a) Precision-guided context sensitivity for
pointer analysis. PACMPL 2(OOPSLA):141:1–141:29

Li Y, Tan T, Møller A, Smaragdakis Y (2018b) Scalability-first pointer analysis with self-
tuning context-sensitivity. In: Proceedings of the 2018 26th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp 129–140



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 33

Livshits VB, Kiciman E (2008) Doloto: code splitting for network-bound Web 2.0 applica-
tions. In: Proceedings of the 16th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 2008, Atlanta, Georgia, USA, November 9-14, 2008, pp
350–360, DOI 10.1145/1453101.1453151

Lutz M (2013) Learning Python 5th Edition
Madsen M, Tip F, Lhoták O (2015) Static analysis of event-driven Node.js JavaScript ap-

plications. In: Aldrich J, Eugster P (eds) Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30,
2015, ACM, pp 505–519, DOI 10.1145/2814270.2814272, URL https://doi.org/
10.1145/2814270.2814272

MDN (2021) Tree shaking. https://developer.mozilla.org/en-US/docs/
Glossary/Tree_shaking, accessed: 2021-10-11

Møller A, Torp MT (2019) Model-based testing of breaking changes in node.js libraries.
In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Association
for Computing Machinery, New York, NY, USA, ESEC/FSE 2019, p 409–419, DOI
10.1145/3338906.3338940, URL https://doi.org/10.1145/3338906.3338940

Mozilla (2021) Rest parameters. https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Functions/rest_parameters, accessed 2021-04-16

Nielsen BB, Hassanshahi B, Gauthier F (2019) Nodest: Feedback-driven static analysis of
node.js applications. In: Proceedings of the 2019 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Association for Computing Machinery, New York, NY, USA, ESEC/FSE
2019, p 455–465, DOI 10.1145/3338906.3338933, URL https://doi.org/10.1145/
3338906.3338933

Niu B, Tan G (2015) Per-input control-flow integrity. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Association for Com-
puting Machinery, New York, NY, USA, CCS ’15, p 914–926, DOI 10.1145/2810103.
2813644, URL https://doi.org/10.1145/2810103.2813644

npm (2021a) npm. https://www.npmjs.com/, accessed 2021-04-16
npm (2021b) semver. https://www.npmjs.com/package/semver, accessed 2021-04-16
OpenJS Foundation (2021) Node.js. https://nodejs.org/en/, accessed 2021-04-16
Rayside D, Kontogiannis K (2002) Extracting Java library subsets for deployment on em-

bedded systems. Sci Comput Program 45(2):245–270, DOI 10.1016/S0167-6423(02)
00059-X

Richards G, Hammer C, Burg B, Vitek J (2011) The eval that men do—A large-scale
study of the use of eval in JavaScript applications. In: Mezini M (ed) ECOOP 2011
- Object-Oriented Programming - 25th European Conference, Lancaster, UK, July
25-29, 2011 Proceedings, Springer, Lecture Notes in Computer Science, vol 6813,
pp 52–78, DOI 10.1007/978-3-642-22655-7\ 4, URL https://doi.org/10.1007/
978-3-642-22655-7_4

rlang (2022) Execute a function. See https://rlang.r-lib.org/reference/exec.
html.

Rollup (2021) Rollup. https://www.npmjs.com/package/rollup, accessed: 2021-10-
11

Sharif H, Abubakar M, Gehani A, Zaffar F (2018) TRIMMER: application specialization
for code debloating. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018,



34 A. Turcotte and E. Arteca et al.

pp 329–339, DOI 10.1145/3238147.3238160
Sridharan M, Dolby J, Chandra S, Schäfer M, Tip F (2012) Correlation tracking for

points-to analysis of JavaScript. In: Noble J (ed) ECOOP 2012 - Object-Oriented Pro-
gramming - 26th European Conference, Beijing, China, June 11-16, 2012. Proceedings,
Springer, Lecture Notes in Computer Science, vol 7313, pp 435–458, DOI 10.1007/
978-3-642-31057-7\ 20, URL https://doi.org/10.1007/978-3-642-31057-7_
20

Stack Overflow (2020) Developer survey. https://insights.stackoverflow.com/
survey/2020#most-popular-technologies

Staicu CA, Pradel M, Livshits B (2018) Synode: Understanding and automatically prevent-
ing injection attacks on node.js. In: NDSS

Staicu CA, Torp MT, Schäfer M, Møller A, Pradel M (2020) Extracting taint specifications
for javascript libraries. In: Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, Association for Computing Machinery, New York, NY, USA,
ICSE ’20, p 198–209, DOI 10.1145/3377811.3380390, URL https://doi.org/10.
1145/3377811.3380390

Stein B, Nielsen BB, Chang BE, Møller A (2019) Static analysis with demand-driven
value refinement. Proc ACM Program Lang 3(OOPSLA):140:1–140:29, DOI 10.1145/
3360566, URL https://doi.org/10.1145/3360566

Sweeney PF, Tip F (2000) Extracting library-based object-oriented applications. In: ACM
SIGSOFT Symposium on Foundations of Software Engineering, an Diego, California,
USA, November 6-10, 2000, Proceedings, pp 98–107

Tip F, Palsberg J (2000) Scalable propagation-based call graph construction algorithms. In:
Proceedings of the 2000 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications (OOPSLA 2000), Minneapolis, Minnesota, USA,
October 15-19, 2000., pp 281–293, DOI 10.1145/353171.353190

Tip F, Laffra C, Sweeney PF, Streeter D (1999) Practical experience with an application
extractor for Java. In: Proceedings of the 1999 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications (OOPSLA ’99), Denver,
Colorado, USA, November 1-5, 1999., pp 292–305, DOI 10.1145/320384.320414

Tip F, Sweeney PF, Laffra C, Eisma A, Streeter D (2002) Practical extraction techniques for
Java. ACM Trans Program Lang Syst 24(6):625–666, DOI 10.1145/586088.586090

Turcotte A, Arteca E, Mishra A, Alimadadi S, Tip F (2021) Stubbifer: Debloating dynamic
server-side JavaScript applications (artifact). https://doi.org/10.5281/zenodo.
5599914

Vasilakis N, Staicu CA, Ntousakis G, Kallas K, Karel B, DeHon A, Pradel M (2021)
Preventing dynamic library compromise on node.js via rwx-based privilege reduction.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security, Association for Computing Machinery, New York, NY, USA, CCS
’21, p 1821–1838, DOI 10.1145/3460120.3484535, URL https://doi.org/10.1145/
3460120.3484535

Wagner G, Gal A, Franz M (2011) “Slimming” a Java virtual machine by way of cold code
removal and optimistic partial program loading. Sci Comput Program 76(11):1037–1053,
DOI 10.1016/j.scico.2010.04.008

webpack (2021) webpack. https://www.npmjs.com/package/webpack, accessed:
2021-10-11

webpack-contrib (2021) css-loader. https://www.npmjs.com/package/css-loader,
accessed 2021-04-16



Stubbifier: Debloating Dynamic Server-Side JavaScript Applications 35

Zhang C, Wei T, Chen Z, Duan L, Szekeres L, McCamant S, Song D, Zou W (2013) Practical
control flow integrity and randomization for binary executables. In: 2013 IEEE Sympo-
sium on Security and Privacy, pp 559–573

Zimmermann M, Staicu CA, Tenny C, Pradel M (2019) Smallworld with high risks: A study
of security threats in the npm ecosystem. In: Proceedings of the 28th USENIX Conference
on Security Symposium, USENIX Association, USA, SEC’19, p 995–1010


