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ABSTRACT
In an increasingly popular model of software distribution�
software is developed in one computing environment and de�
ployed in other environments by transfer over the internet�
Extraction tools perform a static whole�program analysis
to determine unused functionality in applications in order
to reduce the time required to download applications� We
have identi�ed a number of scenarios where extraction tools
require information beyond what can be inferred through
static analysis� software distributions other than complete
applications� the use of re�ection� and situations where an
application uses separately developed class libraries� This
paper explores these issues� and introduces a modular spec�
i�cation language for expressing the information required
for extraction� We implemented this language in the con�
text of Jax� an industrial�strength application extractor for
Java� and present a small case study in which di�erent ex�
traction scenarios are applied to a commercially available
library�based application�

1. INTRODUCTION
In an increasingly popular software distribution model�

software is developed in one computing environment� and
deployed in other environments by transfer over the inter�
net� Because the time required to transfer an application is
generally proportional to the transferred number of bytes�
it becomes important to make applications as small as pos�
sible� Application extractors are tools that reduce appli�
cation size by determining unused functionality that can be
removed from the application without a�ecting program be�
havior�
Previously� extractors have been designed primarily with

complete applications in mind� Such whole�application ex�
tractors require one to specify an application	s entry point
s��
and rely on a static whole�program analysis to determine
functionality that can be removed without a�ecting program
behavior� However� the extraction of software distributions
other than complete applications raises several issues�
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� Modern object�oriented applications typically rely on
one or more independently developed class libraries�
With the advent of virtual machine technology� library
code is amenable to the same analyses as application
code� because the same representation is used in each
case� When an application is distributed separately
from the libraries it depends upon� an extraction tool
needs to be aware of the boundary between the two�

� Di�erent kinds of software distributions 
e�g�� complete
applications� web�based applications that execute in
the context of a browser� and extensible frameworks�
have di�erent sets of entry points� and require the
application extractor to make di�erent assumptions
about the deployment environment� In fact� the same
unit of software may even play di�erent roles� depend�
ing on the deployment scenario�

� The use of dynamic features such as re�ection� poses
additional problems for extraction tools� because a static
analysis alone is incapable of determining the program
constructs that are used� and hence the program con�
structs that can be removed�

� There are also some interesting interactions between
the above issues� For example� consider a situation
where an application A is to be distributed together
with an independently developed class library L in
which re�ection is used� In general� the use of re�
�ection in L may depend on the features in L that
are used by A� We will discuss how this observation
a�ects extraction�

Each of these issues requires information that cannot be ob�
tained using static analysis alone� and has to be provided
to the extraction tool by the user� This paper explores the
above issues in detail� and provides a uniform solution in
the form of a small� modular speci�cation language MEL

Modular Extraction Language� for providing the informa�
tion required to extract various kinds of programs� MEL	s
features are essentially language�independent� with the ex�
ception of some Java�speci�c syntax used to refer to program
constructs such as classes� methods and �elds� In order to
validate our approach� we implemented MEL in the context
of Jax� an industrial�strength application extractor for Java
developed at IBM Research �
��� We discuss how several of

�For convenience� we will henceforth use the term �re�ec�
tion� to refer to all mechanisms for loading and accessing
program constructs by specifying their name as a string
value� and for examining program structure�



the program transformations and optimizations performed
by Jax are adapted to take into account MEL scripts� and
present a small case study in which di�erent extraction sce�
narios are applied to a commercially available library�based
Java application�
The remainder of this paper is organized as follows� In

Section �� we present the requirements on extraction tools
in the presence of class library usage� Section � introduces
a speci�cation language for de�ning the extraction of vari�
ous kinds of library�based applications� Section � presents
a mechanism for translating speci�cations to a small set of
assertions� Section � discusses an implementation of MEL�
and reports on a small case study� Section � summarizes
related work� and Section � presents conclusions and direc�
tions for future work�

2. REQUIREMENTS
In this section� we analyze a number of frequently occur�

ring distribution scenarios� and determine what information
is required by extraction tools beyond what can be obtained
through static analysis�

2.1 Distribution scenarios
Figure 
 shows several distribution scenarios that may oc�

cur in the presence of� a library vendor l responsible for cre�
ating and distributing a class library L� an application ven�
dor a responsible for creating and distributing an L�based
application A� and two users� u and v� of application A�
It is reasonable to assume that library vendor l will want

to make library L as small as possible� in order to reduce
the download times experienced by customers� but also to
reduce the load of the server from which the library is down�
loaded� Hence� l creates an extracted version Lext of L� and
distributes Lext instead of L� Clearly� Lext should o�er the
same functionality as L� but size�reducing optimizations can
still be applied to parts of L that are not exposed to users�
Application vendor a presumably downloads Lext for use

during development of application A� When application A

is ready for distribution� there are two options� depending
on whether or not a user already has the prerequisite library
L installed� Figure 
 shows a user u who does not have 
the
correct version of� L� Assuming that u does not expect to
download or create other L�based applications� it is desir�
able for u to download a distribution ALext that comprises
the functionality of A and the parts of L used by A� but
that omits the parts of L that are not used by A� Because
applications typically use only a small part of the function�
ality of libraries they rely on�� the removal of the parts of L
not used by A is likely to signi�cantly reduce the size of the
distribution�
There are also scenarios where it is preferable to keep the

distributions of L and A separate� Figure 
 shows another
user v of application A� who has downloaded Lext directly
from l� because he is planning to deploy multiple applica�
tions that rely on the library� Because v already has Lext�
he only needs to download the application itself from vendor
a� To this end� a creates an extracted version Aext of A that
can be downloaded by v� It is important to realize that keep�
ing the distributions of A and L separate has repercussions

�In previous work on whole�application extraction �
��� we
reported that up to ��� of the methods in several library�
based benchmark applications is unreached�

for the extraction of A itself� If we want to accommodate
scenarios where v obtains a di�erent version� of L� then the
extractor should derived Aext from A without making as�
sumptions about the speci�c version of L that happens to
be available in a	s development environment� The standard
Java libraries are an obvious example of this situation�
We will now investigate the issues related to the use of

re�ection� In essence� re�ection allows one to access a pro�
gram construct by specifying a run�time string value that
represents the construct	s name� and to examine the struc�
ture of the classes used in a program� Such features are
problematic for extraction tools because� in general� a static
analysis cannot determine which program constructs are ac�
cessed using re�ection� and should therefore not be removed
or transformed� Thus� extractors require additional informa�
tion from the user that speci�es which program constructs
are accessed using re�ection� In our experience� determining
the program constructs that may be accessed using re�ec�
tion is a fairly easy task for a programmer familiar with the
code� However� it can be quite di�cult to determine how
re�ection is used in third�party libraries� especially if the
source code for these libraries is unavailable� In the exam�
ple of Figure 
� the extraction of ALext from A and L by
application vendor a requires additional information about
the use of re�ection in L� This can be di�cult to determine
from distribution Lext alone� because it does not contain the
source code for the library� To complicate matters further�
the set of program constructs in L accessed using re�ection
may depend on the features in L that are used by A� In
general� di�erent L�based applications may cause di�erent
usage of re�ection within L� Our solution to these problems

discussed in detail below� will be to have library vendor
l distribute a script along with Lext that contains the in�
formation required to extract any L�based application� Our
scripts allow l to specify that a program construct is only ac�
cessed using re�ection under certain conditions 
e�g�� when
a certain method is reachable��
We have only discussed a few example distribution sce�

narios� Other likely scenarios include�

� Extracting a library together with multiple applica�
tions that use it�

� Extracting a library in the context of another library
that uses it� We believe that such situations� where
multiple layers of libraries exist and where only the
topmost layer is exposed to an application� is likely to
become increasingly common�

2.2 Roles of software units
We will adopt the non�descriptive term software unit in

the sequel to denote any collection of classes that constitutes
a logical entity� Recall that there is no di�erence between
code in a class library and code in an executable applica�
tion� and it is only the way in which software units are used
and composed that determines how extraction should be per�
formed� In the remainder of this paper� the term role will be
used to refer to the way in which a software unit is used� We
will consider four roles that frequently occur in the context
of Java�

�This could either be an earlier version of L that was ob�
tained from library vendor l� or a completely di�erent im�
plementation of the library from a di�erent vendor�
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Figure �� Illustration of di�erent distribution scenarios�

� An application is an executable software unit with an
external interface consisting of a single main��method�
It is assumed that classes in applications are not fur�
ther extended by derivation after extraction�

� An applet is an executable software unit that is exe�
cuted in the context of a browser� An applet extends
class java�applet�Applet and its external interface
consist of a set of methods in java�applet�Applet

that it overrides� It is assumed that classes in applets
are not further extended by derivation after extraction�

� A library is not assumed to be executable by itself� but
is used as a building block by other units� Classes in
libraries may be extended by derivation� The external
interface of a library consists of any method that has
public or protected access rights�

� A component is similar to a library in the sense that it
is an incomplete program used as a building block by
other units� But� unlike a library� it is assumed that
classes in a component cannot be extended by deriva�
tion� The external interface of a component contains
every method with public access rights�

Other roles such as JavaBeans �
�� and servlets ��� can be
modeled similarly� For example� in the case of JavaBeans�
all of the JavaBean	s methods that may be invoked by client
applications are contained in its external interface�

2.3 Specifying the extraction domain
There is no distinction between classes in di�erent soft�

ware units at the language level� Consequently� it is nec�
essary to specify the �boundaries� between software units
when performing extraction� In our approach� the user se�
lects the set of classes that should be extracted� and worst�
case assumptions are made about the behavior of classes
that are not selected�

In practice� there are very few situations where all classes
should be extracted� One can think of the structure of an
application as �layered�� with the bottom layer consisting
of the standard libraries� the middle layer consisting of class
libraries built on top of the standard libraries 
perhaps con�
sisting of sublayers�� and the topmost layer consisting of the
application itself� It is usually the case that classes below
a certain layer do not need to be extracted and shipped
because they are already available in the deployment en�
vironment� In particular� the standard class libraries are
generally available and are usually excluded from the ex�
traction process�� It is important to realize that this is not
merely an issue of avoiding redundant work and shipping
redundant code� but potentially also one of correctness� If
an application class contains a call to a method in the stan�
dard libraries� inlining that call on one platform may result
in code that does not work on another platform�

2.4 Dealing with dynamic features
Java	s re�ection mechanism allows programs to do var�

ious forms of self�inspection� Figure � shows an exam�
ple program that uses structural re�ection 
sometimes also
referred to as introspection�� In this program� the class
that represents the type T of object t is retrieved us�
ing a call to method java�lang�Object�getClass��� and
stored in variable c� The program then calls method
java�lang�Class�getDeclaredMethods�� to obtain a vec�
tor of objects representing the methods in T� For each
method in this vector� the name is retrieved 
by way of a call
to java�lang�reflect�Method�getName���� and printed to
standard output� Hence� the program generates the follow�
ing output�

�In the case of embedded systems and network PC	s that
run a �xed set of applications it may be desirable to include
the standard class libraries in the extraction domain�



import java�io���
import java�lang�Class�
import java�lang�reflect�Method�

public class Example� f
public static void main�String args�	�f
T t 
 new T���
Class c 
 T�getClass���
Method�	 methods 
 c�getDeclaredMethods���
for �int i
�� i � methods�length� i

�f
Method m 
 methods�i	�
String methodName 
 m�getName���
System�out�println�methodName��

g
g

g�

class T f
void foo��f � � � g�
void bar��f � � � g�

g�

Figure �� A Java program that uses re�ection�

foo
bar

Clearly� program behavior depends on the presence and
the name of the methods in class T� even though these meth�
ods are not invoked anywhere� It is obvious that the use
of re�ection in Figure � precludes program transformations
such as the removal or renaming of methods in class T be�
cause such actions would a�ect program behavior�
Dynamic loading� another form of re�ection� is a heavily�

used� mechanism for instructing a Java Virtual Machine to
load a class X with a speci�ed name s� and return an ob�
ject c representing that class� Re�ection can be applied to
c to create X�objects on which methods can be invoked�
The crucial issue is that s is computed at run�time� This
implies that� in general� static analyses cannot determine
which classes are dynamically loaded� �
Figure � shows a program fragment that exhibits a fairly

typical use of dynamic loading� Class Example� contains a
method baz which takes a single argument of type String�
and dynamically loads a class with that name by calling
method java�lang�Class�forName��� A reference to the
dynamically loaded class is stored in variable c� The pro�
gram then calls method java�lang�Class�newInstance��

to create a new object of the dynamically loaded type� casts
it down to an interface type I� and calls method zap on
the object� Observe that class instantiation 
of the dynam�
ically loaded class� and method invocation 
of the default
constructor of that class� occur implicitly� This poses prob�
lems for optimizations such as dead method removal because
the analyses upon which these optimizations are based typi�
cally need to know which classes are instantiated� and which
methods are invoked�

�Nine of the thirteen benchmarks studied in �
�� use dy�
namic loading�
�In some cases� the type of a dynamically loaded class can
be inferred by constant propagation of the string literals
that represent the class name� However� we have observed
that these names are often read from �les or manipulated in
non�trivial ways�

import java�io���
import java�lang�Class�

public class Example� f
public static void baz�String name�f
try f
Class c 
 Class�forName�name��
Object o 
 c�newInstance���
I i 
 �I�o�
i�zap���

g
catch �ClassNotFoundException e�f
System�out�println��Error� � 

�Could not find � 
 name�� g

catch �IllegalAccessException e�f
System�out�println��Error� � 

�Illegal access to � 
 name�� g

catch �InstantiationException e�f
System�out�println��Error� � 

�Abstract � 
 name�� g

g
g�

interface I f
public void zap���

g�

Figure �� A Java program that uses dynamic loading�

Java provides a mechanism for implementing methods in a
platform�dependent way� typically using C� The mechanism
works roughly as follows� The native keyword is used to
designate a method as being implemented in a di�erent lan�
guage� and the corresponding method de�nition is provided
in an object �le 
e�g�� a dynamically linked library� asso�
ciated with the Java application� The native code in the
object �le may instantiate classes� invoke methods� and ac�
cess �elds in the application� This obviously poses problems
for any program transformation that relies on accurate in�
formation about class instantiation and method invocation�
because object code is notoriously hard to analyze�
It should be evident from the above examples that� with�

out additional information� the use of re�ection� dynamic
loading� and native methods requires that extremely con�
servative assumptions be made during extraction� It would
essentially be impossible to remove� rename� or transform
any program construct� The approach taken in this paper
relies on the user to specify a list of program constructs

i�e�� classes� methods� and �elds� that are accessed using
these mechanisms� and to make the appropriate worst�case
assumptions about these constructs�

2.5 Modeling different usage contexts
Section ��
 already alluded to issues related to the use of

third�party libraries in which re�ection is used� In order to
create MEL scripts that are reusable in di�erent contexts� it
is often desirable to specify that a given program construct
is only accessed using re�ection under certain conditions�
To illustrate this issue� Figure � shows a small class library
consisting of three classes L� M and N� Class L has two meth�
ods� f and g� A call to method f results in the dynamic
loading of class M� and a call to method g results in the dy�
namic loading of class N� Note that a client that calls f but
not g will only access M� and a client that calls g but not f
will only access N� A speci�cation of the library	s behavior



import java�lang�Class�

public class L f
public static void f��f

� � �
Class c 
 Class�forName��M���
� � �

g

public static void g��f
� � �
Class c 
 Class�forName��N���
� � �

g
g�

class M f � � � g�

class N f � � � g�

Figure �� Example class library that uses dynamic

loading�

that states that any client of L accesses both M and N would
clearly be overly conservative�
Section � introduces a mechanism that allows conditional

speci�cations of the form �program construct X should be
preserved when method m is executed�� This allows one
to express how dynamic loading or re�ection is dependent
on the part of a software unit	s functionality that is used �
Consequently� it enables the creation of a single� reusable
con�guration �le for a software unit that can be used to ex�
tract that unit accurately in the context of di�erent clients�
We conclude this section with an observation� In the

above discussion� we have sketched two very di�erent sce�
narios involving library L� In one example 
the distribution
of Lext by l�� all externally accessible L�methods should be
treated as entry points in determining which methods are
reachable� In the other scenario� 
the distribution of ALext
by a�� only L�methods invoked from A and methods tran�
sitively reachable from those methods should be preserved�
Hence� the decision on which methods to preserve requires
information not present in the code of L� This precludes
an approach based on annotating the code of L with addi�
tional information� unless di�erent annotations are used to
support di�erent scenarios�

3. A SPECIFICATION LANGUAGE
Figure � presents a BNF grammar for a simple speci�ca�

tion language� MEL 
Modular Extraction Language�� that
allows users to specify at a high level how to extract a
library�based application� The semantics of the various fea�
tures in MEL are closely related to the discussions in Sec�
tion �� A MEL script comprises�


� A domain speci�cation� consisting of a class pathwhere
classes can be found� and a set of include statements
that specify the extraction domain� Any class not
listed in an include statement is considered external
to our analyses in the sense that it will not be ex�
tracted� and that worst�case assumptions will be made
about its behavior�

�� A set of statements� There are two kinds of state�
ments� Role statements serve to designate the role of

MELScript ��� Item�
Item ��� DomainSpeci�er j

Statement j Import
DomainSpeci�er ��� ClassPath j Include
ClassPath ��� path �Directory� j

path �ZipFile�
Include ��� include �Class� j

include �PackageName�
Statement ��� Role j Preserve
Role ��� application �Class� j

applet �Class� j
library �Class� j
component �Class�

Preserve ��� SimplePreserve j
CondPreserve

SimplePreserve ��� preserve �Class� j
preserve �Method� j
preserve �Field�

CondPreserve ��� SimplePreserve
when reached �Method�

Import ��� import �FileName�

Figure �� BNFGrammar for the user�level information

in MEL

�

import L�

public class A f
public static void main�String args�	�f

� � �
L l 
 new L���
l�g���
� � �

g
g�

Figure �� Example application that uses the library of

Figure ��

some or all of the classes included in the extraction do�
main as application� applet� component� or library�
The semantics of these roles were discussed earlier in
Section ���� Preserve statements are used to specify
that program constructs 
i�e�� classes� methods� and
�elds� should be preserved because they are accessed
either outside of the extraction domain or through re�
�ection� and that worst�case assumptions should be
made about these constructs� Following the discussion
of Section ���� program constructs can be conditionally
preserved depending on the reachability of a speci�ed
method using a conditional preserve statement�

�� A list of imported con�guration �les� The semantics
of the import feature consist of textual expansion of
the imported �le into the importing �le�

Figure � shows an example application A that uses the li�
brary of Figure �� Observe that A	s main�� routine creates
an L�object and invokes L	s method g��� Figures � and �
present MEL scripts L�mel and A�mel for the library of Fig�
ure � and the application of Figure �� respectively� The
conditional preserve statements in L�mel ensure that class
M is preserved if method L�g�� is reached� and that class N
is preserved if method L�f�� is reached� Since A only calls
method L�g��� class N will not be extracted�



path � � �
include L
library L
preserve M when reached L�g��
preserve N when reached L�f��

Figure 	� Speci�cation L�mel for the class library of

Figure ��

path � � �
include A
application A
import L�mel

Figure 
� Speci�cation A�mel for the application of

Figure ��

Statement ��� Assertion j ConditionalAssertion
Assertion ��� SimpleAssertion
Assertion ��� extendible �Class�
Assertion ��� overridable�Method�
SimpleAssertion ��� instantiated �Class�
SimpleAssertion ��� reached �Method�
SimpleAssertion ��� accessed �Field�
SimpleAssertion ��� preserveIdentity �Class�
SimpleAssertion ��� preserveIdentity �Method�
SimpleAssertion ��� preserveIdentity �Field�
CondAssertion ��� SimpleAssertion

when reached �Method�

Figure �� BNF grammar for the extractor�level infor�

mation in MEL�

4. IMPLEMENTATION STRATEGY
The speci�cation language presented in Figure � was de�

signed to make it easy for programmers to specify how a
collection of software units should be extracted� However�
the algorithms used by extraction tools typically require low�
level information such as methods that are potentially ex�
ecuted� and classes that are potentially instantiated� To
bridge the gap between user�level and extractor�level infor�
mation� we add a number of assertion constructs to MEL�
and provide a translation from user�level statements to these
assertions� An important bene�t of this approach is that all
roles and usage scenarios can be treated uniformly by the
extractor�
Figure � shows a BNF grammar for MEL assertions�

The instantiated� reached� and accessed assertions are
provided for expressing that a class is instantiated� a
method is reached� or a �eld is accessed� respectively� The
preserveIdentity assertions express that a program con�
struct may be accessed from outside the extraction domain
or accessed through re�ection� which implies that the con�
struct	s name or signature should not be changed� The
extendible and overridable assertions serve to express
that a class may be extended� and that a method may be
overridden after extraction� respectively� In Section �� we
discuss the impact of the latter two types of assertions on
the closed�world assumptions made by optimizations such
as call devirtualization�
The instantiated� reached� accessed� and

preserveIdentity assertions also have a conditional
form� Conditional assertions are used to model the con�
ditional preserve statements that specify situations where

re�ection is used in a speci�c method�
Table 
 shows how statements are translated to assertions�

The table contains a row for each type of MEL statement in
which the rightmost column shows the assertions generated
for that statement� The translation process for roles can be
summarized as follows�

� Worst�case assumptions are made to determine a set
of methods that can be invoked from outside the ex�
traction domain� Each such method is assumed to be
reached� and its identity is preserved to indicate that
external references may rely on its name and signa�
ture� Di�erent roles require di�erent treatment� For
example� for applications� only the main�� method
is referenced externally and needs to be added to the
set� However� for classes that play a library role all
public and protectedmethods are added�

� For each role of a class� the appropriate assumptions
are made to determine the �elds that may be accessed
from outside the extraction domain� and all such �elds
are asserted to be accessed� For example� all public
�elds of components are assumed to be accessed�

� Any class that plays an applet role is instantiated
by the JVM when the applet is loaded by a browser�
We model this by asserting that each applet class is
instantiated�

� For classes that play a library role� we have to assume
that further subclassing and method overriding may
take place after extraction� To allow this behavior� we
assert that the class should be extendible and all of
its methods should remain overridable�

The translation of preserve statements into assertions
assumes that the identity of any program construct ac�
cessed outside the extraction domain or through re�ec�
tion should be preserved� Hence� any program construct
that is referenced in a preserve statement receives the
preserveIdentity assertion� For preserved classes� we
make the conservative assumption that they are instanti�
ated if they are not abstract or an interface� Each pre�
served method is assumed to be invoked� and is therefore
asserted to be reached� Similarly� each preserved �eld is
assumed to be accessed� The translation of conditional
preserve statements involves carrying over the condition
from the statement to the assertion� but is otherwise com�
pletely analogous�
It is hard to make any completeness arguments about

MEL� In our design of the high�level MEL statements� we
have attempted to make it easy for the user to specify com�
monly occurring extraction scenarios� In addition� the low�
level MEL assertions are su�cient to ensure that a program
construct will not be a�ected by an extractor� In our im�
plementation� we have given the user direct access to the
lower�level MEL assertions as a fall�back option for extrac�
tion scenarios that are not supported by high�level MEL
statements�

5. IMPLEMENTATION
In order to validate our approach� we implemented MEL



statement derived assertions
application C preserveIdentity C

reached C�main�java�lang�String�	�
preserveIdentity C�main�java�lang�String�	�

applet C instantiated C
preserveIdentity C
preserveIdentity C�m for every C�m that overrides java�applet�Applet�m
reached C�m for every C�m that overrides java�applet�Applet�m

component C preserveIdentity C
preserveIdentity C�m for every public method C�m
reached C�m for every public method C�m
preserveIdentity C�f for every public �eld C�f
accessed C�f for every public �eld C�f

library C preserveIdentity C
extendible C
reached C�m for every public or protectedmethod C�m
preserveIdentity C�m for every public or protectedmethod C�m
overridable C�m for every public or protected instance method C�m
accessed C�f for every public or protected �eld C�f
preserveIdentity C�f for every public or protected �eld C�f

preserve C instantiated C when C is not an interface or an abstract class
preserveIdentity C

preserve C�m reached C�m
preserveIdentity C�m

preserve C�f accessed C�f
preserveIdentity C�f

preserve C when reached D�n instantiated C when reached D�n
preserveIdentity C when reached D�n

preserve C�m when reached D�n reached C�m when reached D�n
preserveIdentity C�m when reached D�n

preserve C�f when reached D�n accessed C�f when reached D�n
preserveIdentity C�f when reached D�n

Table �� Translation of statements into assertions�

in the context of Jax �
���� The implementation also per�
mits users to specify MEL assertions directly� and has mech�
anisms for specifying the name of the generated zip �le�
and for selectively disabling optimizations� Jax provides
two mechanisms to support MEL� In �batch mode�� a MEL
script is read from a �le� and the application is processed
accordingly� A Graphical User Interface 
GUI� that allows
users to create MEL scripts interactively is also provided�
We will discuss how a number of program transforma�

tions and optimizations performed by Jax can be adapted
to operate on various kinds of library�based applications by
taking into account MEL assertions� These optimizations
were originally presented as whole�programs optimizations�
by making the �closed world� assumption that the entire
program is available at analysis time�

5.1 Call graph construction
Since all of the optimizations under consideration rely di�

rectly or indirectly on the construction of a call graph� we
will �rst discuss how call graph construction algorithms can
be adapted to take into account MEL assertions� We will
use Rapid Type Analysis 
RTA� ��� ��� an e�cient call graph
construction algorithm� as a speci�c example� Other call�
graph construction algorithms 
see e�g�� ��� 

� 
��� can be
adapted similarly�
RTA is a popular algorithm for constructing call graphs

and devirtualizing call sites that only requires class hierar�
chy information and global information about instantiated

� Version ��� of Jax 
released in August 
���� supports MEL
in its full generality� although the syntax of the MEL key�
words in the system di�ers slightly from the syntax used in
this paper�

classes� and that has been demonstrated to scale well in
practice �
��� RTA is most easily implemented as an it�
erative algorithm that uses three worklists containing 
i�
reached methods� 
ii� reached call sites�� and 
iii� instanti�
ated classes� The worklist of reached methods is initialized
to contain the set of methods called from outside the ap�
plication 
e�g�� an application	s main�� method�� and the
other two worklists are initialized to the empty set� Then�
following steps are performed repeatedly�

� The body of a reached method is scanned� Any call
sites and class instantiations that were not previously
encountered are added to the appropriate worklist�

� Each call to a method C�f is resolved with respect to
each instantiated class D� where D is a subclass of
C� This involves performing a method lookup for f in
class D� If the lookup resolves to a method that was
not previously reached� it is added to the worklist of
reached methods� and the call graph is updated with
edges that re�ect the �ow of control between caller and
callee�

This iterative process continues as long as additional meth�
ods� call sites� and instantiated classes are found� In cases
where a class C in the extraction domain overrides a method
f in a class outside the extraction domain� we make the
worst�case assumption that there is a call to this method on
any object of any instantiated class�
In order to adapt RTA to take into account MEL asser�

tions� we �rst need to adapt the initialization of the work�

�Since all calls to any given method f are resolved similarly�
any reasonable implementation combines them�



lists� The worklist of reached methods is initialized to con�
tain any method m for which an assertion reached m was
generated� The worklist of reached call sites is initialized
to contain the empty set� Finally� the worklist of instanti�
ated classes is initialized to contain any class C for which
an assertion instantiated C was generated�
Then� in the iterative part of the algorithm� we add the fol�

lowing additional steps� which are executed when a method
m is added to the worklist of reached methods�

� Whenever a method m is added to the worklist of
reached methods for which an assertion instantiated
C when reached m exists� class C is added to the
worklist of instantiated classes if it does not already
occur in that list�

� Whenever a method m is added to the worklist of
reached methods for which an assertion reached m�

when reached m exists� method m� is added to the
worklist of reached methods if it does not already oc�
cur in that list�

5.2 Dead method removal
Dead Method Removal �
�� is an optimization that re�

moves redundant method de�nitions� This optimization re�
lies on the information gathered during call graph construc�
tion to determine situations where a method can be removed
completely� as well as situations where a method	s body can
be removed but where its signature needs to be retained�
The latter situation arises in the following cases�

� There is a reached call site that refers statically to an
instance method C�m� but C�m is not the target of any
dynamic dispatch or direct call�

� There is a class C that 
i� contains an unreached method
C�m� and 
ii� implements an interface I containing a
declaration I�m of the same method that is called else�
where in the application�

Note that� in the latter case� method C�m cannot be removed
because the resulting class �le would be syntactically invalid�
In both cases� no additional information is necessary beyond
the information determined during call graph construction�

5.3 Call devirtualization
Call devirtualization ��� �� transforms run�time dispatch

calls into direct calls� This transformation can be applied
at a call site x that calls method C�m if 
i� there is only
one method that can be reached from x� and 
ii� method
C�m cannot be overridden after extraction of the applica�
tion� The �rst condition can be veri�ed by inspection of the
call graph� and the second condition is met if there is no as�
sertions overridable C�m or extendible C� where C�m is
the method invoked at call site x� Other optimizations that
rely on closed�world assumptions 
e�g�� inlining �
�� and call
devirtualization� can be adapted similarly�

5.4 Dead field removal
Dead �eld removal �
�� removes �elds that are not ac�

cessed� as well as �elds that are write�accessed but not read�
accessed� This optimization requires that the bodies of all
reached methods are scanned for read and write operations
to �elds	� Fields that are neither read nor written can
	This is most easily done during call graph construction
when method bodies have to be traversed anyway�

simply be removed� Fields that are only written are also
removed along with the write�operations that access these
�elds� Dead �eld removal can be adapted to handle MEL
assertions by considering a �eld C�f to be read�accessed if
there exists a accessed C�f assertion� Conditional accessed
assertions can be treated in the same way as conditional
reached assertions�

5.5 Name compression
Name compression reduces application size by replacing

the names of classes� methods� and �elds with shorter names�
The names of a class or �eld x can be changed if x is not
instantiated or accessed outside the extraction domain� re�
spectively� The conditions under which methods can be re�
named are a bit more complicated� Certain methods such as
constructors� class initializers� and class �nalizers cannot be
renamed� A method that overrides a method outside the ex�
traction domain cannot be renamed� Finally� if one method
overrides another� both must be renamed correspondingly�
 �
In the presence of MEL assertions� a number of additional
constraints have to be imposed on the renaming of program
constructs� Any program construct x for which there exists
an assertion preserveIdentity x cannot be renamed� any
method m for which there exists an assertion overridable

m cannot be renamed� and any class c for which there exists
an assertion extendible c cannot be renamed�

5.6 Class hierarchy transformations
Removal of unused classes� and merging of a derived class

C with its base class B reduce application size� The lat�
ter transformation involves moving the methods�� and �elds
from C to B� and updating the references to these methods
accordingly� The main bene�t of class merging has to do
with the fact that in Java class �les� each class is a self�
contained unit with its own set of literals� referred to as its
constant pool� Classes that are adjacent in the hierarchy
typically have many literals in common� and merging such
classes reduces the duplication of literals across the di�erent
class �les� Class merging may also enable the transformation
of polymorphic calls into direct method calls� Space limita�
tions do not permit a complete discussion of class merging
here� and we refer the reader to �
�� ��� for details� In order
to take into account MEL assertions� any class C for which
there exists an assertion preserveIdentity C should not
be removed� or merged into its base class�

5.7 A Case Study
We now present a small case study in which di�erent ex�

traction scenarios are applied to Cinderella��� an interactive
geometry tool used for education and self�study in schools
and universities� Cinderella consists of an application� which
can be used for constructing interactive geometry exercises�
and an applet in which students can attempt to solve these

�
Actually� the situation is slightly more complex� Consider
a situation where a class C extends a class B and imple�
ments an interface I� and where a method f is declared in
I� de�ned in B� but not de�ned in C itself� Then� the occur�
rences of f in I and B are related and should be renamed
correspondingly�
��Aminor practical issue that comes up here is that construc�
tor methods need to be made unique� At the Java class �le
level� this can be accomplished by adding additional dummy
arguments�
��See www�cinderella�de�
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��
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���
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���
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��
� ��� ���� 
���
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Both � Antlr ������� ��� ���
 
���

Table �� Results of multiple distribution scenarios for

	Cinderella
�

exercises� Two interesting observations can be made about
Cinderella� First� the application and the applet are derived
from the same code base� which is contained in a single
zip �le� Second� Cinderella relies on a class library called
�Antlr� for parsing�
Table � shows di�erent distribution scenarios for Cin�

derella� The �rst two rows� labeled Original and Antlr

�orig�� are concerned with the original distributions of
Cinderella and Antlr� respectively� The columns of the ta�
ble show the size of the zip �le� and the numbers of classes�
methods and �elds� respectively� The next row� labeled
Antlr shows the result of extracting Antlr as a stand�alone
library� The reduction in size was obtained by removing sev�
eral methods and �elds that are only accessible inside the
library� The next three rows� labeled Applet� Application�
and Both shows the size of extracting the application� the ap�
plet� and their combination without Antlr� Finally� the last
three rows� labeled Applet 
 Antlr� Application 
 Antlr�
and Both 
 Antlr show the results of extracting the appli�
cation� the applet� and their combination together with the
parts of Antlr that they use�
The following observations can be made�

� The applet	s functionality is 
roughly� a subset of the
application	s functionality� because adding the applet
to the distribution does not increase size by much�

� On the other hand� the size of the applet is signi�cantly
smaller than the combined distribution� Hence� users
that only require the applet will prefer the distribution
containing only the applet�

� From the fact that the distributions that include
Antlr are not much bigger than the distributions
without Antlr� we can infer that Cinderella uses only
a small subset of Antlr	s functionality�

� Extracting Antlr by itself results in a nontrivial 
about
���� reduction of distribution size� This con�rms that
extracting stand�alone class libraries is worthwhile�

6. RELATED WORK
We will begin this section with a brief historical perspec�

tive on this work� The approach taken in this paper was
motivated by our experiences with Jax� an application ex�
tractor for Java �
��� Jax was developed as tool for extract�
ing applications� and initially relied on ad�hoc solutions for
several of the problems we study in this paper� For exam�
ple� there was a �xed �boundary� between applications and

the standard libraries and based on the names of classes�
and a simple� low�level mechanism was provided to spec�
ify that certain program constructs accessed using re�ection
should be preserved� As a result� Jax was only suitable for
distribution scenarios in which an application is shipped by
itself� or where an application and a library are extracted
and shipped together� The benchmarks studied in �
�� are
all instances of one of these scenarios� The work in this
paper was motivated by our goal to accommodate other dis�
tribution scenarios such as independently shipped libraries�
and to unburden the developer of a library�based applica�
tions from having to specify information 
e�g�� the use of
re�ection� about the library�
The extraction of applications was pioneered in the

Smalltalk community� where it is usually referred to as
�packaging� �
�� 
�� 
��� Smalltalk packaging tools typically
have mechanisms for excluding certain standard classes and
objects from consideration� and for forcing the inclusion of
objects and methods� While the latter mechanism is suf�
�cient to handle programs that use re�ection� we are not
aware of any Smalltalk extractor that models di�erent types
of applications� or that provides a feature to preserve certain
program constructs conditionally�
Agesen and Ungar ��� 
� describe an application extractor

for the Self language that eliminates unused slots from ob�
jects 
a slot corresponds to a method or �eld�� In his PhD
thesis �
� page 
���� Agesen writes that there is no easy solu�
tion to dealing with re�ection other than �rewriting existing
code on a case by case basis as is deemed necessary� and sug�
gests �encouraging programmers writing new code to keep
the limitations of extraction technology in mind�� In con�
trast� we allow the user to specify where re�ection occurs�
so that applications that use re�ection can be extracted�
Chen et� al ��� describe Acacia� an extraction tool for

C�C�� based on a repository that records several relation�
ships between program entities� Several types of reachability
analyses can be performed� including a forward reachability
analysis for determining entities that are unused� Chen et
al� identify several issues that make extraction di�cult such
as the use of libraries for which code is unavailable� and
situations where functionality should be preserved because
source modules are shared with other applications� Unlike
our work� Acacia is an analysis tool aimed at providing in�
formation to the user� and does not actually perform any
program transformations such as dead code elimination� A
number of issues that we study such as the use of re�ection
are not discussed� and no mechanism appears to be available
for supplying additional information to the extractor�
In the context of Java� we are aware of a number of several

commercially available extraction tools� DashO�Pro�� and
Condensity�� are tools with similar goals as Jax� We are
not aware of any published work on the algorithms used by
these tools� or on the internal architecture of these tools�
There is a large body of work on reverse engineering that

attempts to extract designs or object models from applica�
tions 
see e�g�� �
���� This work could bene�t from appli�
cation extraction technology because� by eliminating dead
code� more precise designs could be extracted� and spurious
relationships between classes or program constructs would

��DashO�Pro is a trademark of preEmptive Solutions� Inc�
See www�preemptive�com�
��Condensity is a trademark of Plumb Design� Inc� See
www�condensity�com�



not appear in the extracted designs� Similar to application
extractors� design extraction tools require additional infor�
mation from the user in the presence of dynamic language
features such as re�ection�

7. CONCLUSIONS AND FUTURE WORK
We have identi�ed a number of situations where the ex�

traction of software requires information that cannot be ob�
tained by static analysis techniques alone� This includes
software distributions other than complete applications� the
use of re�ection in applications� and situations where library�
based applications are extracted and distributed separately�
To address these issues� we have proposed a small� modu�

lar speci�cation language� MEL� that allows one to specify
the information required for extraction in a uniform manner�
We have argued that the modular nature of MEL scripts al�
lows for a useful separation of responsibilities� each module
of a MEL script can be written by a programmer who is fa�
miliar with the code� and extraction of an application that
relies on third�party libraries only requires a MEL script for
that library� We have discussed how several whole�program
transformations performed by extractors can be adapted to
various other kinds of software units by taking into account
the information contained in MEL speci�cations� Our ap�
proach was implemented in the context of Jax� an applica�
tion extractor for Java �
��� and we presented a small case
study that involves several realistic extraction scenarios�
We intend to support the extraction of other widely used

library types such as JavaBeans �
��� Other topics for ongo�
ing research include adding more sophisticated conditional
features to MEL such as conditions based on paths in call
graphs� and boolean conjunction and disjunction of condi�
tions� Furthermore� we are considering �safety� features
such as the insertion of run�time checks to ensure that the
information in a MEL script is correct and complete�
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