
Extracting Library-Based Object-Oriented Applications

Peter F. Sweeney
IBM Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA

pfs@us.ibm.com

Frank Tip
IBM Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA

tip@watson.ibm.com

ABSTRACT
In an increasingly popular model of software distribution�
software is developed in one computing environment and de�
ployed in other environments by transfer over the internet�
Extraction tools perform a static whole�program analysis
to determine unused functionality in applications in order
to reduce the time required to download applications� We
have identi�ed a number of scenarios where extraction tools
require information beyond what can be inferred through
static analysis� software distributions other than complete
applications� the use of re�ection� and situations where an
application uses separately developed class libraries� This
paper explores these issues� and introduces a modular spec�
i�cation language for expressing the information required
for extraction� We implemented this language in the con�
text of Jax� an industrial�strength application extractor for
Java� and present a small case study in which di�erent ex�
traction scenarios are applied to a commercially available
library�based application�

1. INTRODUCTION
In an increasingly popular software distribution model�

software is developed in one computing environment� and
deployed in other environments by transfer over the inter�
net� Because the time required to transfer an application is
generally proportional to the transferred number of bytes�
it becomes important to make applications as small as pos�
sible� Application extractors are tools that reduce appli�
cation size by determining unused functionality that can be
removed from the application without a�ecting program be�
havior�
Previously� extractors have been designed primarily with

complete applications in mind� Such whole�application ex�
tractors require one to specify an application	s entry point
s��
and rely on a static whole�program analysis to determine
functionality that can be removed without a�ecting program
behavior� However� the extraction of software distributions
other than complete applications raises several issues�

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is grated without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FSE 2000 San Diego, California USA
Copyright 2000 ACM

� Modern object�oriented applications typically rely on
one or more independently developed class libraries�
With the advent of virtual machine technology� library
code is amenable to the same analyses as application
code� because the same representation is used in each
case� When an application is distributed separately
from the libraries it depends upon� an extraction tool
needs to be aware of the boundary between the two�

� Di�erent kinds of software distributions 
e�g�� complete
applications� web�based applications that execute in
the context of a browser� and extensible frameworks�
have di�erent sets of entry points� and require the
application extractor to make di�erent assumptions
about the deployment environment� In fact� the same
unit of software may even play di�erent roles� depend�
ing on the deployment scenario�

� The use of dynamic features such as re�ection� poses
additional problems for extraction tools� because a static
analysis alone is incapable of determining the program
constructs that are used� and hence the program con�
structs that can be removed�

� There are also some interesting interactions between
the above issues� For example� consider a situation
where an application A is to be distributed together
with an independently developed class library L in
which re�ection is used� In general� the use of re�
�ection in L may depend on the features in L that
are used by A� We will discuss how this observation
a�ects extraction�

Each of these issues requires information that cannot be ob�
tained using static analysis alone� and has to be provided
to the extraction tool by the user� This paper explores the
above issues in detail� and provides a uniform solution in
the form of a small� modular speci�cation language MEL

Modular Extraction Language� for providing the informa�
tion required to extract various kinds of programs� MEL	s
features are essentially language�independent� with the ex�
ception of some Java�speci�c syntax used to refer to program
constructs such as classes� methods and �elds� In order to
validate our approach� we implemented MEL in the context
of Jax� an industrial�strength application extractor for Java
developed at IBM Research �
��� We discuss how several of

�For convenience� we will henceforth use the term �re�ec�
tion� to refer to all mechanisms for loading and accessing
program constructs by specifying their name as a string
value� and for examining program structure�



the program transformations and optimizations performed
by Jax are adapted to take into account MEL scripts� and
present a small case study in which di�erent extraction sce�
narios are applied to a commercially available library�based
Java application�
The remainder of this paper is organized as follows� In

Section �� we present the requirements on extraction tools
in the presence of class library usage� Section � introduces
a speci�cation language for de�ning the extraction of vari�
ous kinds of library�based applications� Section � presents
a mechanism for translating speci�cations to a small set of
assertions� Section � discusses an implementation of MEL�
and reports on a small case study� Section � summarizes
related work� and Section � presents conclusions and direc�
tions for future work�

2. REQUIREMENTS
In this section� we analyze a number of frequently occur�

ring distribution scenarios� and determine what information
is required by extraction tools beyond what can be obtained
through static analysis�

2.1 Distribution scenarios
Figure 
 shows several distribution scenarios that may oc�

cur in the presence of� a library vendor l responsible for cre�
ating and distributing a class library L� an application ven�
dor a responsible for creating and distributing an L�based
application A� and two users� u and v� of application A�
It is reasonable to assume that library vendor l will want

to make library L as small as possible� in order to reduce
the download times experienced by customers� but also to
reduce the load of the server from which the library is down�
loaded� Hence� l creates an extracted version Lext of L� and
distributes Lext instead of L� Clearly� Lext should o�er the
same functionality as L� but size�reducing optimizations can
still be applied to parts of L that are not exposed to users�
Application vendor a presumably downloads Lext for use

during development of application A� When application A

is ready for distribution� there are two options� depending
on whether or not a user already has the prerequisite library
L installed� Figure 
 shows a user u who does not have 
the
correct version of� L� Assuming that u does not expect to
download or create other L�based applications� it is desir�
able for u to download a distribution ALext that comprises
the functionality of A and the parts of L used by A� but
that omits the parts of L that are not used by A� Because
applications typically use only a small part of the function�
ality of libraries they rely on�� the removal of the parts of L
not used by A is likely to signi�cantly reduce the size of the
distribution�
There are also scenarios where it is preferable to keep the

distributions of L and A separate� Figure 
 shows another
user v of application A� who has downloaded Lext directly
from l� because he is planning to deploy multiple applica�
tions that rely on the library� Because v already has Lext�
he only needs to download the application itself from vendor
a� To this end� a creates an extracted version Aext of A that
can be downloaded by v� It is important to realize that keep�
ing the distributions of A and L separate has repercussions

�In previous work on whole�application extraction �
��� we
reported that up to ��� of the methods in several library�
based benchmark applications is unreached�

for the extraction of A itself� If we want to accommodate
scenarios where v obtains a di�erent version� of L� then the
extractor should derived Aext from A without making as�
sumptions about the speci�c version of L that happens to
be available in a	s development environment� The standard
Java libraries are an obvious example of this situation�
We will now investigate the issues related to the use of

re�ection� In essence� re�ection allows one to access a pro�
gram construct by specifying a run�time string value that
represents the construct	s name� and to examine the struc�
ture of the classes used in a program� Such features are
problematic for extraction tools because� in general� a static
analysis cannot determine which program constructs are ac�
cessed using re�ection� and should therefore not be removed
or transformed� Thus� extractors require additional informa�
tion from the user that speci�es which program constructs
are accessed using re�ection� In our experience� determining
the program constructs that may be accessed using re�ec�
tion is a fairly easy task for a programmer familiar with the
code� However� it can be quite di�cult to determine how
re�ection is used in third�party libraries� especially if the
source code for these libraries is unavailable� In the exam�
ple of Figure 
� the extraction of ALext from A and L by
application vendor a requires additional information about
the use of re�ection in L� This can be di�cult to determine
from distribution Lext alone� because it does not contain the
source code for the library� To complicate matters further�
the set of program constructs in L accessed using re�ection
may depend on the features in L that are used by A� In
general� di�erent L�based applications may cause di�erent
usage of re�ection within L� Our solution to these problems

discussed in detail below� will be to have library vendor
l distribute a script along with Lext that contains the in�
formation required to extract any L�based application� Our
scripts allow l to specify that a program construct is only ac�
cessed using re�ection under certain conditions 
e�g�� when
a certain method is reachable��
We have only discussed a few example distribution sce�

narios� Other likely scenarios include�

� Extracting a library together with multiple applica�
tions that use it�

� Extracting a library in the context of another library
that uses it� We believe that such situations� where
multiple layers of libraries exist and where only the
topmost layer is exposed to an application� is likely to
become increasingly common�

2.2 Roles of software units
We will adopt the non�descriptive term software unit in

the sequel to denote any collection of classes that constitutes
a logical entity� Recall that there is no di�erence between
code in a class library and code in an executable applica�
tion� and it is only the way in which software units are used
and composed that determines how extraction should be per�
formed� In the remainder of this paper� the term role will be
used to refer to the way in which a software unit is used� We
will consider four roles that frequently occur in the context
of Java�

�This could either be an earlier version of L that was ob�
tained from library vendor l� or a completely di�erent im�
plementation of the library from a di�erent vendor�



code

code
code

code

application vendor

code

from another

v:

L
L L

A B

ext ext

extext

VM VM VM VM

std. libraries std. libraries std. libraries std. libraries

AL
ext

A

l: library
vendor

a: application
vendor

application
user #1

application
user #2

u:

Figure �� Illustration of di�erent distribution scenarios�

� An application is an executable software unit with an
external interface consisting of a single main��method�
It is assumed that classes in applications are not fur�
ther extended by derivation after extraction�

� An applet is an executable software unit that is exe�
cuted in the context of a browser� An applet extends
class java�applet�Applet and its external interface
consist of a set of methods in java�applet�Applet

that it overrides� It is assumed that classes in applets
are not further extended by derivation after extraction�

� A library is not assumed to be executable by itself� but
is used as a building block by other units� Classes in
libraries may be extended by derivation� The external
interface of a library consists of any method that has
public or protected access rights�

� A component is similar to a library in the sense that it
is an incomplete program used as a building block by
other units� But� unlike a library� it is assumed that
classes in a component cannot be extended by deriva�
tion� The external interface of a component contains
every method with public access rights�

Other roles such as JavaBeans �
�� and servlets ��� can be
modeled similarly� For example� in the case of JavaBeans�
all of the JavaBean	s methods that may be invoked by client
applications are contained in its external interface�

2.3 Specifying the extraction domain
There is no distinction between classes in di�erent soft�

ware units at the language level� Consequently� it is nec�
essary to specify the �boundaries� between software units
when performing extraction� In our approach� the user se�
lects the set of classes that should be extracted� and worst�
case assumptions are made about the behavior of classes
that are not selected�

In practice� there are very few situations where all classes
should be extracted� One can think of the structure of an
application as �layered�� with the bottom layer consisting
of the standard libraries� the middle layer consisting of class
libraries built on top of the standard libraries 
perhaps con�
sisting of sublayers�� and the topmost layer consisting of the
application itself� It is usually the case that classes below
a certain layer do not need to be extracted and shipped
because they are already available in the deployment en�
vironment� In particular� the standard class libraries are
generally available and are usually excluded from the ex�
traction process�� It is important to realize that this is not
merely an issue of avoiding redundant work and shipping
redundant code� but potentially also one of correctness� If
an application class contains a call to a method in the stan�
dard libraries� inlining that call on one platform may result
in code that does not work on another platform�

2.4 Dealing with dynamic features
Java	s re�ection mechanism allows programs to do var�

ious forms of self�inspection� Figure � shows an exam�
ple program that uses structural re�ection 
sometimes also
referred to as introspection�� In this program� the class
that represents the type T of object t is retrieved us�
ing a call to method java�lang�Object�getClass��� and
stored in variable c� The program then calls method
java�lang�Class�getDeclaredMethods�� to obtain a vec�
tor of objects representing the methods in T� For each
method in this vector� the name is retrieved 
by way of a call
to java�lang�reflect�Method�getName���� and printed to
standard output� Hence� the program generates the follow�
ing output�

�In the case of embedded systems and network PC	s that
run a �xed set of applications it may be desirable to include
the standard class libraries in the extraction domain�



import java�io���
import java�lang�Class�
import java�lang�reflect�Method�

public class Example� f
public static void main�String args�	�f
T t 
 new T���
Class c 
 T�getClass���
Method�	 methods 
 c�getDeclaredMethods���
for �int i
�� i � methods�length� i

�f
Method m 
 methods�i	�
String methodName 
 m�getName���
System�out�println�methodName��

g
g

g�

class T f
void foo��f � � � g�
void bar��f � � � g�

g�

Figure �� A Java program that uses re�ection�

foo
bar

Clearly� program behavior depends on the presence and
the name of the methods in class T� even though these meth�
ods are not invoked anywhere� It is obvious that the use
of re�ection in Figure � precludes program transformations
such as the removal or renaming of methods in class T be�
cause such actions would a�ect program behavior�
Dynamic loading� another form of re�ection� is a heavily�

used� mechanism for instructing a Java Virtual Machine to
load a class X with a speci�ed name s� and return an ob�
ject c representing that class� Re�ection can be applied to
c to create X�objects on which methods can be invoked�
The crucial issue is that s is computed at run�time� This
implies that� in general� static analyses cannot determine
which classes are dynamically loaded� �
Figure � shows a program fragment that exhibits a fairly

typical use of dynamic loading� Class Example� contains a
method baz which takes a single argument of type String�
and dynamically loads a class with that name by calling
method java�lang�Class�forName��� A reference to the
dynamically loaded class is stored in variable c� The pro�
gram then calls method java�lang�Class�newInstance��

to create a new object of the dynamically loaded type� casts
it down to an interface type I� and calls method zap on
the object� Observe that class instantiation 
of the dynam�
ically loaded class� and method invocation 
of the default
constructor of that class� occur implicitly� This poses prob�
lems for optimizations such as dead method removal because
the analyses upon which these optimizations are based typi�
cally need to know which classes are instantiated� and which
methods are invoked�

�Nine of the thirteen benchmarks studied in �
�� use dy�
namic loading�
�In some cases� the type of a dynamically loaded class can
be inferred by constant propagation of the string literals
that represent the class name� However� we have observed
that these names are often read from �les or manipulated in
non�trivial ways�

import java�io���
import java�lang�Class�

public class Example� f
public static void baz�String name�f
try f
Class c 
 Class�forName�name��
Object o 
 c�newInstance���
I i 
 �I�o�
i�zap���

g
catch �ClassNotFoundException e�f
System�out�println��Error� � 

�Could not find � 
 name�� g

catch �IllegalAccessException e�f
System�out�println��Error� � 

�Illegal access to � 
 name�� g

catch �InstantiationException e�f
System�out�println��Error� � 

�Abstract � 
 name�� g

g
g�

interface I f
public void zap���

g�

Figure �� A Java program that uses dynamic loading�

Java provides a mechanism for implementing methods in a
platform�dependent way� typically using C� The mechanism
works roughly as follows� The native keyword is used to
designate a method as being implemented in a di�erent lan�
guage� and the corresponding method de�nition is provided
in an object �le 
e�g�� a dynamically linked library� asso�
ciated with the Java application� The native code in the
object �le may instantiate classes� invoke methods� and ac�
cess �elds in the application� This obviously poses problems
for any program transformation that relies on accurate in�
formation about class instantiation and method invocation�
because object code is notoriously hard to analyze�
It should be evident from the above examples that� with�

out additional information� the use of re�ection� dynamic
loading� and native methods requires that extremely con�
servative assumptions be made during extraction� It would
essentially be impossible to remove� rename� or transform
any program construct� The approach taken in this paper
relies on the user to specify a list of program constructs

i�e�� classes� methods� and �elds� that are accessed using
these mechanisms� and to make the appropriate worst�case
assumptions about these constructs�

2.5 Modeling different usage contexts
Section ��
 already alluded to issues related to the use of

third�party libraries in which re�ection is used� In order to
create MEL scripts that are reusable in di�erent contexts� it
is often desirable to specify that a given program construct
is only accessed using re�ection under certain conditions�
To illustrate this issue� Figure � shows a small class library
consisting of three classes L� M and N� Class L has two meth�
ods� f and g� A call to method f results in the dynamic
loading of class M� and a call to method g results in the dy�
namic loading of class N� Note that a client that calls f but
not g will only access M� and a client that calls g but not f
will only access N� A speci�cation of the library	s behavior



import java�lang�Class�

public class L f
public static void f��f

� � �
Class c 
 Class�forName��M���
� � �

g

public static void g��f
� � �
Class c 
 Class�forName��N���
� � �

g
g�

class M f � � � g�

class N f � � � g�

Figure �� Example class library that uses dynamic

loading�

that states that any client of L accesses both M and N would
clearly be overly conservative�
Section � introduces a mechanism that allows conditional

speci�cations of the form �program construct X should be
preserved when method m is executed�� This allows one
to express how dynamic loading or re�ection is dependent
on the part of a software unit	s functionality that is used �
Consequently� it enables the creation of a single� reusable
con�guration �le for a software unit that can be used to ex�
tract that unit accurately in the context of di�erent clients�
We conclude this section with an observation� In the

above discussion� we have sketched two very di�erent sce�
narios involving library L� In one example 
the distribution
of Lext by l�� all externally accessible L�methods should be
treated as entry points in determining which methods are
reachable� In the other scenario� 
the distribution of ALext
by a�� only L�methods invoked from A and methods tran�
sitively reachable from those methods should be preserved�
Hence� the decision on which methods to preserve requires
information not present in the code of L� This precludes
an approach based on annotating the code of L with addi�
tional information� unless di�erent annotations are used to
support di�erent scenarios�

3. A SPECIFICATION LANGUAGE
Figure � presents a BNF grammar for a simple speci�ca�

tion language� MEL 
Modular Extraction Language�� that
allows users to specify at a high level how to extract a
library�based application� The semantics of the various fea�
tures in MEL are closely related to the discussions in Sec�
tion �� A MEL script comprises�


� A domain speci�cation� consisting of a class pathwhere
classes can be found� and a set of include statements
that specify the extraction domain� Any class not
listed in an include statement is considered external
to our analyses in the sense that it will not be ex�
tracted� and that worst�case assumptions will be made
about its behavior�

�� A set of statements� There are two kinds of state�
ments� Role statements serve to designate the role of

MELScript ��� Item�
Item ��� DomainSpeci�er j

Statement j Import
DomainSpeci�er ��� ClassPath j Include
ClassPath ��� path �Directory� j

path �ZipFile�
Include ��� include �Class� j

include �PackageName�
Statement ��� Role j Preserve
Role ��� application �Class� j

applet �Class� j
library �Class� j
component �Class�

Preserve ��� SimplePreserve j
CondPreserve

SimplePreserve ��� preserve �Class� j
preserve �Method� j
preserve �Field�

CondPreserve ��� SimplePreserve
when reached �Method�

Import ��� import �FileName�

Figure �� BNFGrammar for the user�level information

in MEL

�

import L�

public class A f
public static void main�String args�	�f

� � �
L l 
 new L���
l�g���
� � �

g
g�

Figure �� Example application that uses the library of

Figure ��

some or all of the classes included in the extraction do�
main as application� applet� component� or library�
The semantics of these roles were discussed earlier in
Section ���� Preserve statements are used to specify
that program constructs 
i�e�� classes� methods� and
�elds� should be preserved because they are accessed
either outside of the extraction domain or through re�
�ection� and that worst�case assumptions should be
made about these constructs� Following the discussion
of Section ���� program constructs can be conditionally
preserved depending on the reachability of a speci�ed
method using a conditional preserve statement�

�� A list of imported con�guration �les� The semantics
of the import feature consist of textual expansion of
the imported �le into the importing �le�

Figure � shows an example application A that uses the li�
brary of Figure �� Observe that A	s main�� routine creates
an L�object and invokes L	s method g��� Figures � and �
present MEL scripts L�mel and A�mel for the library of Fig�
ure � and the application of Figure �� respectively� The
conditional preserve statements in L�mel ensure that class
M is preserved if method L�g�� is reached� and that class N
is preserved if method L�f�� is reached� Since A only calls
method L�g��� class N will not be extracted�



path � � �
include L
library L
preserve M when reached L�g��
preserve N when reached L�f��

Figure 	� Speci�cation L�mel for the class library of

Figure ��

path � � �
include A
application A
import L�mel

Figure 
� Speci�cation A�mel for the application of

Figure ��

Statement ��� Assertion j ConditionalAssertion
Assertion ��� SimpleAssertion
Assertion ��� extendible �Class�
Assertion ��� overridable�Method�
SimpleAssertion ��� instantiated �Class�
SimpleAssertion ��� reached �Method�
SimpleAssertion ��� accessed �Field�
SimpleAssertion ��� preserveIdentity �Class�
SimpleAssertion ��� preserveIdentity �Method�
SimpleAssertion ��� preserveIdentity �Field�
CondAssertion ��� SimpleAssertion

when reached �Method�

Figure �� BNF grammar for the extractor�level infor�

mation in MEL�

4. IMPLEMENTATION STRATEGY
The speci�cation language presented in Figure � was de�

signed to make it easy for programmers to specify how a
collection of software units should be extracted� However�
the algorithms used by extraction tools typically require low�
level information such as methods that are potentially ex�
ecuted� and classes that are potentially instantiated� To
bridge the gap between user�level and extractor�level infor�
mation� we add a number of assertion constructs to MEL�
and provide a translation from user�level statements to these
assertions� An important bene�t of this approach is that all
roles and usage scenarios can be treated uniformly by the
extractor�
Figure � shows a BNF grammar for MEL assertions�

The instantiated� reached� and accessed assertions are
provided for expressing that a class is instantiated� a
method is reached� or a �eld is accessed� respectively� The
preserveIdentity assertions express that a program con�
struct may be accessed from outside the extraction domain
or accessed through re�ection� which implies that the con�
struct	s name or signature should not be changed� The
extendible and overridable assertions serve to express
that a class may be extended� and that a method may be
overridden after extraction� respectively� In Section �� we
discuss the impact of the latter two types of assertions on
the closed�world assumptions made by optimizations such
as call devirtualization�
The instantiated� reached� accessed� and

preserveIdentity assertions also have a conditional
form� Conditional assertions are used to model the con�
ditional preserve statements that specify situations where

re�ection is used in a speci�c method�
Table 
 shows how statements are translated to assertions�

The table contains a row for each type of MEL statement in
which the rightmost column shows the assertions generated
for that statement� The translation process for roles can be
summarized as follows�

� Worst�case assumptions are made to determine a set
of methods that can be invoked from outside the ex�
traction domain� Each such method is assumed to be
reached� and its identity is preserved to indicate that
external references may rely on its name and signa�
ture� Di�erent roles require di�erent treatment� For
example� for applications� only the main�� method
is referenced externally and needs to be added to the
set� However� for classes that play a library role all
public and protectedmethods are added�

� For each role of a class� the appropriate assumptions
are made to determine the �elds that may be accessed
from outside the extraction domain� and all such �elds
are asserted to be accessed� For example� all public
�elds of components are assumed to be accessed�

� Any class that plays an applet role is instantiated
by the JVM when the applet is loaded by a browser�
We model this by asserting that each applet class is
instantiated�

� For classes that play a library role� we have to assume
that further subclassing and method overriding may
take place after extraction� To allow this behavior� we
assert that the class should be extendible and all of
its methods should remain overridable�

The translation of preserve statements into assertions
assumes that the identity of any program construct ac�
cessed outside the extraction domain or through re�ec�
tion should be preserved� Hence� any program construct
that is referenced in a preserve statement receives the
preserveIdentity assertion� For preserved classes� we
make the conservative assumption that they are instanti�
ated if they are not abstract or an interface� Each pre�
served method is assumed to be invoked� and is therefore
asserted to be reached� Similarly� each preserved �eld is
assumed to be accessed� The translation of conditional
preserve statements involves carrying over the condition
from the statement to the assertion� but is otherwise com�
pletely analogous�
It is hard to make any completeness arguments about

MEL� In our design of the high�level MEL statements� we
have attempted to make it easy for the user to specify com�
monly occurring extraction scenarios� In addition� the low�
level MEL assertions are su�cient to ensure that a program
construct will not be a�ected by an extractor� In our im�
plementation� we have given the user direct access to the
lower�level MEL assertions as a fall�back option for extrac�
tion scenarios that are not supported by high�level MEL
statements�

5. IMPLEMENTATION
In order to validate our approach� we implemented MEL



statement derived assertions
application C preserveIdentity C

reached C�main�java�lang�String�	�
preserveIdentity C�main�java�lang�String�	�

applet C instantiated C
preserveIdentity C
preserveIdentity C�m for every C�m that overrides java�applet�Applet�m
reached C�m for every C�m that overrides java�applet�Applet�m

component C preserveIdentity C
preserveIdentity C�m for every public method C�m
reached C�m for every public method C�m
preserveIdentity C�f for every public �eld C�f
accessed C�f for every public �eld C�f

library C preserveIdentity C
extendible C
reached C�m for every public or protectedmethod C�m
preserveIdentity C�m for every public or protectedmethod C�m
overridable C�m for every public or protected instance method C�m
accessed C�f for every public or protected �eld C�f
preserveIdentity C�f for every public or protected �eld C�f

preserve C instantiated C when C is not an interface or an abstract class
preserveIdentity C

preserve C�m reached C�m
preserveIdentity C�m

preserve C�f accessed C�f
preserveIdentity C�f

preserve C when reached D�n instantiated C when reached D�n
preserveIdentity C when reached D�n

preserve C�m when reached D�n reached C�m when reached D�n
preserveIdentity C�m when reached D�n

preserve C�f when reached D�n accessed C�f when reached D�n
preserveIdentity C�f when reached D�n

Table �� Translation of statements into assertions�

in the context of Jax �
���� The implementation also per�
mits users to specify MEL assertions directly� and has mech�
anisms for specifying the name of the generated zip �le�
and for selectively disabling optimizations� Jax provides
two mechanisms to support MEL� In �batch mode�� a MEL
script is read from a �le� and the application is processed
accordingly� A Graphical User Interface 
GUI� that allows
users to create MEL scripts interactively is also provided�
We will discuss how a number of program transforma�

tions and optimizations performed by Jax can be adapted
to operate on various kinds of library�based applications by
taking into account MEL assertions� These optimizations
were originally presented as whole�programs optimizations�
by making the �closed world� assumption that the entire
program is available at analysis time�

5.1 Call graph construction
Since all of the optimizations under consideration rely di�

rectly or indirectly on the construction of a call graph� we
will �rst discuss how call graph construction algorithms can
be adapted to take into account MEL assertions� We will
use Rapid Type Analysis 
RTA� ��� ��� an e�cient call graph
construction algorithm� as a speci�c example� Other call�
graph construction algorithms 
see e�g�� ��� 

� 
��� can be
adapted similarly�
RTA is a popular algorithm for constructing call graphs

and devirtualizing call sites that only requires class hierar�
chy information and global information about instantiated

� Version ��� of Jax 
released in August 
���� supports MEL
in its full generality� although the syntax of the MEL key�
words in the system di�ers slightly from the syntax used in
this paper�

classes� and that has been demonstrated to scale well in
practice �
��� RTA is most easily implemented as an it�
erative algorithm that uses three worklists containing 
i�
reached methods� 
ii� reached call sites�� and 
iii� instanti�
ated classes� The worklist of reached methods is initialized
to contain the set of methods called from outside the ap�
plication 
e�g�� an application	s main�� method�� and the
other two worklists are initialized to the empty set� Then�
following steps are performed repeatedly�

� The body of a reached method is scanned� Any call
sites and class instantiations that were not previously
encountered are added to the appropriate worklist�

� Each call to a method C�f is resolved with respect to
each instantiated class D� where D is a subclass of
C� This involves performing a method lookup for f in
class D� If the lookup resolves to a method that was
not previously reached� it is added to the worklist of
reached methods� and the call graph is updated with
edges that re�ect the �ow of control between caller and
callee�

This iterative process continues as long as additional meth�
ods� call sites� and instantiated classes are found� In cases
where a class C in the extraction domain overrides a method
f in a class outside the extraction domain� we make the
worst�case assumption that there is a call to this method on
any object of any instantiated class�
In order to adapt RTA to take into account MEL asser�

tions� we �rst need to adapt the initialization of the work�

�Since all calls to any given method f are resolved similarly�
any reasonable implementation combines them�



lists� The worklist of reached methods is initialized to con�
tain any method m for which an assertion reached m was
generated� The worklist of reached call sites is initialized
to contain the empty set� Finally� the worklist of instanti�
ated classes is initialized to contain any class C for which
an assertion instantiated C was generated�
Then� in the iterative part of the algorithm� we add the fol�

lowing additional steps� which are executed when a method
m is added to the worklist of reached methods�

� Whenever a method m is added to the worklist of
reached methods for which an assertion instantiated
C when reached m exists� class C is added to the
worklist of instantiated classes if it does not already
occur in that list�

� Whenever a method m is added to the worklist of
reached methods for which an assertion reached m�

when reached m exists� method m� is added to the
worklist of reached methods if it does not already oc�
cur in that list�

5.2 Dead method removal
Dead Method Removal �
�� is an optimization that re�

moves redundant method de�nitions� This optimization re�
lies on the information gathered during call graph construc�
tion to determine situations where a method can be removed
completely� as well as situations where a method	s body can
be removed but where its signature needs to be retained�
The latter situation arises in the following cases�

� There is a reached call site that refers statically to an
instance method C�m� but C�m is not the target of any
dynamic dispatch or direct call�

� There is a class C that 
i� contains an unreached method
C�m� and 
ii� implements an interface I containing a
declaration I�m of the same method that is called else�
where in the application�

Note that� in the latter case� method C�m cannot be removed
because the resulting class �le would be syntactically invalid�
In both cases� no additional information is necessary beyond
the information determined during call graph construction�

5.3 Call devirtualization
Call devirtualization ��� �� transforms run�time dispatch

calls into direct calls� This transformation can be applied
at a call site x that calls method C�m if 
i� there is only
one method that can be reached from x� and 
ii� method
C�m cannot be overridden after extraction of the applica�
tion� The �rst condition can be veri�ed by inspection of the
call graph� and the second condition is met if there is no as�
sertions overridable C�m or extendible C� where C�m is
the method invoked at call site x� Other optimizations that
rely on closed�world assumptions 
e�g�� inlining �
�� and call
devirtualization� can be adapted similarly�

5.4 Dead field removal
Dead �eld removal �
�� removes �elds that are not ac�

cessed� as well as �elds that are write�accessed but not read�
accessed� This optimization requires that the bodies of all
reached methods are scanned for read and write operations
to �elds	� Fields that are neither read nor written can
	This is most easily done during call graph construction
when method bodies have to be traversed anyway�

simply be removed� Fields that are only written are also
removed along with the write�operations that access these
�elds� Dead �eld removal can be adapted to handle MEL
assertions by considering a �eld C�f to be read�accessed if
there exists a accessed C�f assertion� Conditional accessed
assertions can be treated in the same way as conditional
reached assertions�

5.5 Name compression
Name compression reduces application size by replacing

the names of classes� methods� and �elds with shorter names�
The names of a class or �eld x can be changed if x is not
instantiated or accessed outside the extraction domain� re�
spectively� The conditions under which methods can be re�
named are a bit more complicated� Certain methods such as
constructors� class initializers� and class �nalizers cannot be
renamed� A method that overrides a method outside the ex�
traction domain cannot be renamed� Finally� if one method
overrides another� both must be renamed correspondingly�
 �
In the presence of MEL assertions� a number of additional
constraints have to be imposed on the renaming of program
constructs� Any program construct x for which there exists
an assertion preserveIdentity x cannot be renamed� any
method m for which there exists an assertion overridable

m cannot be renamed� and any class c for which there exists
an assertion extendible c cannot be renamed�

5.6 Class hierarchy transformations
Removal of unused classes� and merging of a derived class

C with its base class B reduce application size� The lat�
ter transformation involves moving the methods�� and �elds
from C to B� and updating the references to these methods
accordingly� The main bene�t of class merging has to do
with the fact that in Java class �les� each class is a self�
contained unit with its own set of literals� referred to as its
constant pool� Classes that are adjacent in the hierarchy
typically have many literals in common� and merging such
classes reduces the duplication of literals across the di�erent
class �les� Class merging may also enable the transformation
of polymorphic calls into direct method calls� Space limita�
tions do not permit a complete discussion of class merging
here� and we refer the reader to �
�� ��� for details� In order
to take into account MEL assertions� any class C for which
there exists an assertion preserveIdentity C should not
be removed� or merged into its base class�

5.7 A Case Study
We now present a small case study in which di�erent ex�

traction scenarios are applied to Cinderella��� an interactive
geometry tool used for education and self�study in schools
and universities� Cinderella consists of an application� which
can be used for constructing interactive geometry exercises�
and an applet in which students can attempt to solve these

�
Actually� the situation is slightly more complex� Consider
a situation where a class C extends a class B and imple�
ments an interface I� and where a method f is declared in
I� de�ned in B� but not de�ned in C itself� Then� the occur�
rences of f in I and B are related and should be renamed
correspondingly�
��Aminor practical issue that comes up here is that construc�
tor methods need to be made unique� At the Java class �le
level� this can be accomplished by adding additional dummy
arguments�
��See www�cinderella�de�



distribution zip �le classes methods �elds

Original ������� ��� ���� ���

Antlr 
orig�� ������� 
�� 
��� ���
Antlr 
�
���� 
�� 
��� ���
Applet 
������ 
�� 
��
 ���
Application ������� ��� ���� 
���
Both ������� ��� ���� 
���
Applet�Antlr 
������ 
�� 
��� ���
Application ��
��
� ��� ���� 
���
�Antlr
Both � Antlr ������� ��� ���
 
���

Table �� Results of multiple distribution scenarios for

	Cinderella
�

exercises� Two interesting observations can be made about
Cinderella� First� the application and the applet are derived
from the same code base� which is contained in a single
zip �le� Second� Cinderella relies on a class library called
�Antlr� for parsing�
Table � shows di�erent distribution scenarios for Cin�

derella� The �rst two rows� labeled Original and Antlr

�orig�� are concerned with the original distributions of
Cinderella and Antlr� respectively� The columns of the ta�
ble show the size of the zip �le� and the numbers of classes�
methods and �elds� respectively� The next row� labeled
Antlr shows the result of extracting Antlr as a stand�alone
library� The reduction in size was obtained by removing sev�
eral methods and �elds that are only accessible inside the
library� The next three rows� labeled Applet� Application�
and Both shows the size of extracting the application� the ap�
plet� and their combination without Antlr� Finally� the last
three rows� labeled Applet 
 Antlr� Application 
 Antlr�
and Both 
 Antlr show the results of extracting the appli�
cation� the applet� and their combination together with the
parts of Antlr that they use�
The following observations can be made�

� The applet	s functionality is 
roughly� a subset of the
application	s functionality� because adding the applet
to the distribution does not increase size by much�

� On the other hand� the size of the applet is signi�cantly
smaller than the combined distribution� Hence� users
that only require the applet will prefer the distribution
containing only the applet�

� From the fact that the distributions that include
Antlr are not much bigger than the distributions
without Antlr� we can infer that Cinderella uses only
a small subset of Antlr	s functionality�

� Extracting Antlr by itself results in a nontrivial 
about
���� reduction of distribution size� This con�rms that
extracting stand�alone class libraries is worthwhile�

6. RELATED WORK
We will begin this section with a brief historical perspec�

tive on this work� The approach taken in this paper was
motivated by our experiences with Jax� an application ex�
tractor for Java �
��� Jax was developed as tool for extract�
ing applications� and initially relied on ad�hoc solutions for
several of the problems we study in this paper� For exam�
ple� there was a �xed �boundary� between applications and

the standard libraries and based on the names of classes�
and a simple� low�level mechanism was provided to spec�
ify that certain program constructs accessed using re�ection
should be preserved� As a result� Jax was only suitable for
distribution scenarios in which an application is shipped by
itself� or where an application and a library are extracted
and shipped together� The benchmarks studied in �
�� are
all instances of one of these scenarios� The work in this
paper was motivated by our goal to accommodate other dis�
tribution scenarios such as independently shipped libraries�
and to unburden the developer of a library�based applica�
tions from having to specify information 
e�g�� the use of
re�ection� about the library�
The extraction of applications was pioneered in the

Smalltalk community� where it is usually referred to as
�packaging� �
�� 
�� 
��� Smalltalk packaging tools typically
have mechanisms for excluding certain standard classes and
objects from consideration� and for forcing the inclusion of
objects and methods� While the latter mechanism is suf�
�cient to handle programs that use re�ection� we are not
aware of any Smalltalk extractor that models di�erent types
of applications� or that provides a feature to preserve certain
program constructs conditionally�
Agesen and Ungar ��� 
� describe an application extractor

for the Self language that eliminates unused slots from ob�
jects 
a slot corresponds to a method or �eld�� In his PhD
thesis �
� page 
���� Agesen writes that there is no easy solu�
tion to dealing with re�ection other than �rewriting existing
code on a case by case basis as is deemed necessary� and sug�
gests �encouraging programmers writing new code to keep
the limitations of extraction technology in mind�� In con�
trast� we allow the user to specify where re�ection occurs�
so that applications that use re�ection can be extracted�
Chen et� al ��� describe Acacia� an extraction tool for

C�C�� based on a repository that records several relation�
ships between program entities� Several types of reachability
analyses can be performed� including a forward reachability
analysis for determining entities that are unused� Chen et
al� identify several issues that make extraction di�cult such
as the use of libraries for which code is unavailable� and
situations where functionality should be preserved because
source modules are shared with other applications� Unlike
our work� Acacia is an analysis tool aimed at providing in�
formation to the user� and does not actually perform any
program transformations such as dead code elimination� A
number of issues that we study such as the use of re�ection
are not discussed� and no mechanism appears to be available
for supplying additional information to the extractor�
In the context of Java� we are aware of a number of several

commercially available extraction tools� DashO�Pro�� and
Condensity�� are tools with similar goals as Jax� We are
not aware of any published work on the algorithms used by
these tools� or on the internal architecture of these tools�
There is a large body of work on reverse engineering that

attempts to extract designs or object models from applica�
tions 
see e�g�� �
���� This work could bene�t from appli�
cation extraction technology because� by eliminating dead
code� more precise designs could be extracted� and spurious
relationships between classes or program constructs would

��DashO�Pro is a trademark of preEmptive Solutions� Inc�
See www�preemptive�com�
��Condensity is a trademark of Plumb Design� Inc� See
www�condensity�com�



not appear in the extracted designs� Similar to application
extractors� design extraction tools require additional infor�
mation from the user in the presence of dynamic language
features such as re�ection�

7. CONCLUSIONS AND FUTURE WORK
We have identi�ed a number of situations where the ex�

traction of software requires information that cannot be ob�
tained by static analysis techniques alone� This includes
software distributions other than complete applications� the
use of re�ection in applications� and situations where library�
based applications are extracted and distributed separately�
To address these issues� we have proposed a small� modu�

lar speci�cation language� MEL� that allows one to specify
the information required for extraction in a uniform manner�
We have argued that the modular nature of MEL scripts al�
lows for a useful separation of responsibilities� each module
of a MEL script can be written by a programmer who is fa�
miliar with the code� and extraction of an application that
relies on third�party libraries only requires a MEL script for
that library� We have discussed how several whole�program
transformations performed by extractors can be adapted to
various other kinds of software units by taking into account
the information contained in MEL speci�cations� Our ap�
proach was implemented in the context of Jax� an applica�
tion extractor for Java �
��� and we presented a small case
study that involves several realistic extraction scenarios�
We intend to support the extraction of other widely used

library types such as JavaBeans �
��� Other topics for ongo�
ing research include adding more sophisticated conditional
features to MEL such as conditions based on paths in call
graphs� and boolean conjunction and disjunction of condi�
tions� Furthermore� we are considering �safety� features
such as the insertion of run�time checks to ensure that the
information in a MEL script is correct and complete�

Acknowledgements
We are grateful to John Field� Harold Ossher� Gregor Snelt�
ing� and the anonymous FSE referees for comments on drafts
of this paper�

8. REFERENCES
�
� Agesen� O� Concrete Type Inference� Delivering

Object�Oriented Applications� PhD thesis� Stanford U��
December 
���� Appeared as Sun Microsystems
Laboratories Technical Report SMLI TR�������

��� Agesen� O�� and Ungar� D� Sifting out the gold�
Delivering compact applications from an exploratory
object�oriented programming environment� In Proc� of
the Ninth Annual Conf� on Object�Oriented
Programming Systems� Languages� and Applications
�OOPSLA	
�� 
Portland� OR� 
����� pp� ��������
ACM SIGPLAN Notices ��

���

��� Aigner� G�� and H�olzle� U� Eliminating virtual
function calls in C�� programs� In Proc� of the Tenth
European Conf� on Object�Oriented Program
�ECOOP	

� 

Linz� Austria�� July 
�����
pp� 
���
���

��� Bacon� D� F� Fast and E�ective Optimization of
Statically Typed Object�Oriented Languages� PhD
thesis� Computer Science Division� U� of California�
Berkeley� Dec� 
���� Report No� UCB�CSD����
�
��

��� Bacon� D� F�� and Sweeney� P� F� Fast static
analysis of C�� virtual function calls� In Proc� of the

Eleventh Annual Conf� on Object�Oriented
Programming Systems� Languages� and Applications
�OOPSLA	

� 
San Jose� CA� 
����� pp� ������
�
SIGPLAN Notices �


���

��� Calder� B�� and Grunwald� D� Reducing indirect
function call overhead in C�� programs� In Proc� of
the ��st Annual ACM Symposium on Principles of
Programming Languages 

����� pp� ��������

��� Callaway� D� R� Inside Servlets� Server�Side
Programming for the Java Platform� Addison�Wesley�

����

��� Chen� Y��F�� Gansner� E� R�� and Koutsofios� E�
A C�� data model supporting reachability analysis
and dead code detection� IEEE Transactions on
Software Engineering ��� � 
Sept� 
����� ��������

��� Dean� J�� Grove� D�� and Chambers� C�
Optimization of object�oriented programs using static
class hierarchy analysis� In Proc� of the Ninth
European Conf� on Object�Oriented Programming
�ECOOP	
�� 
Aarhus� Denmark� Aug� 
�����
W� Oltho�� Ed�� Springer�Verlag� pp� ���
�
�

�
�� Digitalk Inc� Smalltalk�V for win�� Programming�

���� Chapter 
�� �Object Libraries and Library
Builder�

�

� Diwan� A�� Moss� J� E� B�� and McKinley� K� S�
Simple and e�ective analysis of statically�typed
object�oriented programs� In Proc� of the Eleventh
Annual Conf� on Object�Oriented Programming
Systems� Languages� and Applications �OOPSLA	

�

San Jose� CA� 
����� pp� �������� SIGPLAN Notices
�


���

�
�� IBM Corporation� IBM Smalltalk User	s Guide�
version �� release � ed�� 
���� Chapter ���
Introduction to Packaging� Chapter ��� �Simple
Packaging� Chapter ��� �Advanced Packaging�

�
�� Jackson� D�� and Waingold� A� Lightweight
extraction of object models from bytecode� In Proc� of
the International Conf� on Software Engineering
�ICSE 	

� 
Los Angeles� CA�� 
�����

�
�� ParcPlace Systems� ParcPlace Smalltalk�
objectworks release ��
 ed�� 
���� Section 
��
Deploying an Application� Section ��� Binary Object
Streaming Service�

�
�� Scheifler� R� W� An analysis of inline substitution
for a structured programming language� Commun�
ACM ��� � 
Sept� 
����� ��������

�
�� Sun Microsystems� JavaBeans� version 
��
 ed� ����
Garcia Avenue� Mountain View� CA ������ July 
����

�
�� Sweeney� P� F�� and Tip� F� A study of dead data
members in C�� applications� In Proc� of the ACM
SIGPLAN	
� Conf� on Programming Language
Desigen and Implementation �PLDI 	
�� 
Montreal�
Canada� June 
����� pp� �������� ACM SIGPLAN
Notices ��
���

�
�� Tip� F�� Laffra� C�� Sweeney� P� F�� and
Streeter� D� Practical experience with an
application extractor for Java� In Proc� of the
Fourteenth Annual Conf� on Object�Oriented
Programming Systems� Languages� and Applications
�OOPSLA	

� 
Denver� CO�� 
����� pp� ��������
SIGPLAN Notices ��

���

�
�� Tip� F�� and Palsberg� J� Scalable
propagation�based call graph construction algorithms�
In Proc� of the Fifteenth Annual Conf� on
Object�Oriented Programming Systems� Languages�
and Applications �OOPSLA	��� 
Minneapolis� MN��
������ To appear�

���� Tip� F�� and Sweeney� P� F� Class hierarchy
specialization� In Proc� of the Eleventh Annual Conf�
on Object�Oriented Programming Systems� Languages�
and Applications �OOPSLA	
�� 
Atlanta� GA� 
�����
pp� ��
����� ACM SIGPLAN Notices ��

���


