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ABSTRACT
Testing and code editing are interleaved activities during program
development. When tests fail unexpectedly, the changes that caused
the failure(s) are not always easy to find. We explore how change
classification can focus programmer attention on failure-inducing
changes by automatically labeling changesRed, Yellow, or Green,
indicating the likelihood that they have contributed to a test failure.
We implemented our change classification toolJUnit/CIAas an ex-
tension to theJUnit component within Eclipse, and evaluated its
effectiveness in two case studies. Our results indicate that change
classification is an effective technique for finding failure-inducing
changes.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids, Testing tools;
D.2.7 [Distribution, Maintenance, and Enhancement]: Version
control

General Terms
Algorithms, Experimentation

Keywords
change impact analysis, debugging, testing, fault localization, ver-
sion control

1. INTRODUCTION
In modern software development, coding and testing are per-

formed in interleaved fashion to assure code quality. Current devel-
opment strategies rely heavily on the availability of a test suite to al-
low a programmer to quickly assess the impact of edits on program
functionality. Difficulties occur when testing reveals unexpected
behaviors, such as assertion failures or exceptions. Although the
programmer knows thereby that she has introduced a bug, she still
does not know which part of the edit is responsible for the failure.
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If the edits are trivially small, it may be easy to find the buggy
code. However, as a code base and its test suite grow in size, run-
ning the tests after each minor change may become infeasible1, and
the number of changes that occur between successive executions of
the test suite is likely to increase. Then, when test failures occur,
it may be difficult to isolate the failure-inducing change(s), and te-
dious manual debugging may be needed.

This paper presents an approach for identifying failure-inducing
changes in a system with an associated regression test suite. In
contrast to Extreme Programming (XP) [1] where the number of
changes between test runs tends to be small, we assume that the
size of an edit can become sufficiently large to make the identi-
fication of failure-inducing changes a difficult task, and to make
automated assistance with this task desirable. Our change classifi-
cation technique relies on the change impact analysis of [24] to find
the tests potentially affected by an edit (i.e., a set of changes), and
to associate with each such test, a set of affecting changes. It then
classifies these affecting changes asRed, Yellow, orGreen, depend-
ing on whether they affect (i) tests whose outcome hasimproved,
(ii) tests whose outcome hasdegraded, (iii) tests whose outcome
has remainedunchanged, or some combination of (i), (ii), and (iii).

To explore the usefulness of change classification we designed a
number of classifiers that assign the colorsRed, Yellow, andGreen
to changes in slightly different ways. Our goal has been to develop
classifiers for whichRedchanges are highly likely to be failure-
inducing,Greenchanges are highly unlikely to be failure-inducing,
andYellowchanges fall somewhere in between. With these classi-
fiers we set out to answer the following research questions:

1. Does it work? Can we distinguish failure-inducing changes
from other changes through change classification?

2. Which classifier is best? Is there a single change classifier
that is always superior to all others, or do different classifiers
work better for different applications?

3. If there is no “best” change classifier, is there a set of char-
acteristics of an application that can be used to predict the
classifier that will be most effective for it?

To answer these questions, we implemented five change classi-
fiers in a tool calledJUnit/CIA, an extension of the Eclipse com-
ponent that integrates the popularJUnit testing framework with the

1 For example, the Eclipse compiler had a test suite of 8803 tests
(4830 parser tests + 3973 regression tests) on January 1, 2005.
Executing this test suite takes more than 45 minutes on an AMD
Athlon64 3200Mhz PC with 2GB RAM.
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Eclipse IDE (seewww.junit.org andwww.eclipse.org ).
The name of the tool reflects the fact that the functionality ofJUnit
is extended with features for Change Impact Analysis. JUnit/CIA
relies onChianti [24] for: (i) dividing a program edit into its
constituentatomic changes, (ii) identifying testsaffectedby the
edit by correlating (dynamic) call graphs for the tests with the
atomic changes, and (iii) determiningaffecting changesfor each
of these tests.JUnit/CIA then classifies changes according to one
of the five classifiers and visualizes them using a small extension
of JUnit’s user-interface. We envisionJUnit/CIA to be used when
running conventional JUnit tests reveals an unexpected test failure.
JUnit/CIA can be used to compare a current faulty program ver-
sion to an earlier, successfully tested program version derived ei-
ther from Eclipse’s local history or extracted from a version control
repository.JUnit/CIA then classifies changes to help the program-
mer identify the failure-inducing ones. The programmer fixes the
problem, and a new successfully tested program version is created.

We conducted two case studies withJUnit/CIA to find failure-
inducing changes in student programs and inDaikon [8], respec-
tively. In each study, we first determined the actual failure-inducing
changes by manual examination of the code and then measured the
effectiveness of each of the classifiers in identifying those changes.
Here, effectiveness is measured by determining how much addi-
tional focus on failure-inducing changes is provided by the change
coloring, compared to the set of (uncolored) affecting changes re-
ported byChianti. Ideally, we would like to see the failure-inducing
changes for a test coloredRed, and all other affecting changes
Greenor Yellow.

In the student programs study, one classifier was superior by
correctly focusing programmer attention on the failure-inducing
changes in 47.5% of the 444 worsening tests with more than 2 af-
fecting changes while providing misleading information in only a
single case. In theDaikonstudy, we studied a pair of versions sep-
arated by a total of 6093 atomic changes in which two tests that
passed in the original version failed in the edited version. Here,
one of the tests was affected by 35 atomic changes, and the other
by 34 atomic changes. In this study, adifferentclassifier was very
effective by focusing the programmer’s attention on 4 of the 35
changes for the first test, and on 3 of the 34 changes for the second
one. For both of these Daikon tests, the failure-inducing changes
were among the few changes that were coloredRed.

While it seems contradictory that the case studies suggest that
different classifiers should be preferred, this is not unexpected in
an empirical study. Nevertheless, it is interesting to observe the
different characteristics of the code analyzed in the studies to help
explain the different outcomes. The student programs study is con-
cerned with the initial development of an application, and is char-
acterized by small differences between versions, and a mixture of
improving and worsening tests. In the Daikon study, on the other
hand, the application under consideration is more mature, the sets
of changes between successive versions is much larger, only a few
worsening tests occur, and no improving tests. Therefore, although
we make recommendations for when each of the two preferred
change classifiers should be used, it is clear that further investiga-
tion is needed, and we consider such investigations to be a fruitful
topic for future work.

The main contributions of this paper are:

1. We designed a method to identify failure-inducing changes
in which changes are classified asRed, Yellow, or Greenac-
cording to one of several change classifiers.

2. We implemented this method in a practical tool,JUnit/CIA,
based onJUnit, Eclipse, and Chianti [24].

3. We conducted two case studies in which we measured the
relative effectiveness of change classification on applications
for which we manually identified failure-inducing changes.
These case studies indicated that change classification can
focus programmer attention effectively on likely sources of
failure; however, they were inconclusive with respect to se-
lecting a “best” classifier.

In the remainder of this paper, Section2 explains our change
impact analysis [24] and change classifications intuitively through
an example. Section3 defines the five classifiers used in the case
studies presented and interpreted in Section4. Related work is dis-
cussed in Section5 and conclusions are given in Section6.

2. EXAMPLE OF OUR APPROACH
Figure 1(a) shows two versions of a small example program.

Here, the original version of the program consists of all pro-
gram fragmentsexceptfor those shown in boxes; the edited ver-
sion is obtained by adding all the boxed code fragments. Associ-
ated with the program are fiveJUnit tests,testPassPass() ,
testPassFail() , testFailPass() , testFailFail()
andtestCrashFail() as shown in Figure1(b).

We assume that the tests of Figure1(b) will be used with both
the original and edited versions of the program. The name of each
test indicates its outcome in each version of the program; for ex-
ample, testPassFail() passes in the original program, but
produces an assertion failure in the edited version. By examining
the edited program and tests, we can observe that the addition of
methodC.zap() causes the failure oftestPassFail() and
that this is the only test failure due to the edit. Note, the reason
for the failure oftestFailFail() is the same in both versions
of the program, namely thatB.bar() does not have the expected
side effect.

Atomic Changes. Our change impact analysis (presented in
full detail in [24]) relies on the computation of a set of atomic
changes, denoted byA , that captures all source code modifications
at a semantic level amenable to analysis. We use a fairly coarse-
grained model of atomic changes, with change categories such as
added classes (AC), deleted classes (DC), added methods (AM ),
deleted methods (DM ), changed method bodies (CM ), added fields
(AF), deleted fields (DF), and lookup changes (LC ) (i.e., changes
to dynamic dispatch). Regarding changes to method bodies (CM
changes), note that we generateoneCM change regardless of the
number of statements within the respective method’s body that have
been changed, as we employ a method-level analysis.

Additionally, we compute syntactic dependences between
atomic changes. Intuitively, an atomic changeA1 is dependent on
another atomic changeA2, if applying A1 to the original version
of the program without also applyingA2 results in a syntactically
invalid program (i.e.,A2 is aprerequisitefor A1, A2 ¹ A1). These
dependences can be used to construct syntactically valid interme-
diate versions of the program that contain some, but not all of the
atomic changes, as described in detail in [3, 23].

It is important to understand that thesyntacticdependences do
not capture allsemanticdependences between changes (e.g., con-
sider changes related to a variable definition and a variable use in
two different methods). This means that if two atomic changes,A1
andA2, affect a given testT, then the absence of asyntacticdepen-
dence betweenA1 andA2 does not imply the absence of asemantic
dependence; that is, program behaviors resulting from applyingA1
alone,A2 alone, orA1 andA2 together,may all be different.

Figure2 shows the atomic changes that define the two versions
of the example program, numbered 1 through 12 for convenience.
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public class A {
public A(int i) { x = i; }
public void foo() { x = x + 0; 1 }
public void bar() { y = x; 3 }
public void zap() { }
public void zip() { y = x; 5 }
public int x;

public static int y; 4

public static int getY() { return y; } 6,7

}
public class B extends A {

public B(int j) { super(j); }
public void foo() { }
public void bar() { x++; 2 }

}
public class C extends A {

public C(int k) { super(k); }
public void zap() { x = 5; } 8,9,10,11

}
class D extends A {

public D(int l) { super(l); }
public void foo() { x--; 12 }

}

public class Tests extends TestCase {
public void testPassPass() {

A a = new A(5);
a.foo(); a.bar();
Assert.assertTrue(a.x == 5);

}
public void testPassFail() {

A a = new C(7);
a.foo(); a.zap(); a.zip();
Assert.assertTrue(a.x == 7);

}
public void testFailPass() {

A a = new B(8);
a.foo(); a.bar(); a.zip();
Assert.assertTrue(a.x == 9);

}
public void testFailFail() {

A a = new B(6);
a.foo(); a.bar();
Assert.assertTrue(a.x == 11);

}
public void testCrashFail() {

A a = new D(5); a.foo();
int i = a.x / (a.x - 5);
Assert.assertTrue(a.x == 5);

}
}

(a) (b)

Figure 1: (a) Original and edited version of example program. The original program consists of all program fragmentsexceptthose
shown in boxes. The edited program is obtained by adding all boxed code fragments. Each box is labeled with the numbers of the
corresponding atomic changes. (b) Tests associated with (both versions of) the example program.

Each atomic change is shown as a box, where the top half of the box
shows the category of the atomic change (e.g.,CM for changed
method), and the bottom half shows the method or field involved
(for LC changes, the declaring class and method are shown). An
arrow from an atomic changeA1 to an atomic changeA2 indicates
that A1 is dependent onA2. Consider, for example, the addition
of the assignmenty = x in methodA.zip() . This source code
change corresponds to atomic change 5 in Figure2. Adding this
assignment will lead to a syntactically invalid program unless field
A.y is also added. Therefore, atomic change 5 is dependent on
atomic change 4, anAF change for fieldA.y .

In some cases, a single source code change is decomposed into
several atomic changes. For example, the addition ofA.getY()
produces atomic changes 6 and 7, where the former models the ad-
dition of an empty methodA.getY() , and the latter the addition
of its method body. Observe that atomic change 7 is dependent on
atomic change 6, reflecting the fact that a method must exist before
its body can be added. Change 7 is also dependent on change 4 (an
AF change for fieldA.y ), because adding the body ofA.getY()
will result in a syntactically invalid program unless fieldA.y is
added as well.

TheLC atomic change category models changes to the dynamic
dispatch behavior of instance methods. In particular, anLC change
(Y,X.m()) models the fact that a call to methodX.m() on an object
of run-time typeY results in the selection of a different method.
Consider, for example, the addition of methodC.zap() to the
program of Figure 1. As a result of this change, a call toA.zap()
on an object of typeC will dispatch toC.zap() in the edited
program, whereas it dispatches toA.zap() in the original pro-
gram. This change in dispatch behavior is captured by atomic
change 10. Note,LC changes also may be generated as a result of a
source code change affecting the class hierarchy, such as changing
a method fromabstract to non-abstractor from private to pub-
lic [24].

Determining Affected Tests.In order to identify those tests that

are affected by a set of atomic changes, a call graph is constructed
for each test in theoriginal program.2 Our analysis can work with
call graphs that have been constructed either using static analysis,
or by observing the actual execution of the tests (we use dynamic
call graphs in this paper; for details see [24]).

Figure3 shows the call graphs for the tests of Figure1(b) in the
original program. Edges corresponding to dynamic dispatch are la-
beled with a pair< RT,M >, whereRT is the run-time type of the
receiver object, andM is the method referenced at the call site. A
test is determined to beaffectedif its call graph (in the original pro-
gram) contains either (i) a node that corresponds to aCM (changed
method) orDM (deleted method) change, or (ii) an edge that cor-
responds to aLC (lookup) change. In Figure3 clearly all five
tests are affected, because they each execute at least one method
corresponding to aCM change. For example, the call graphs for
testPassPass() and testPassFail() contain nodes cor-
responding to the changed methodA.foo() (change 1).

Determining Affecting Changes. In order to compute the set
of changes affecting a given test, we construct a call graph for that
test in theeditedprogram. These call graphs are shown in Figure4.
The set of atomic changes thataffecta given test includes: (i) all
atomic changes for added (AM ) and changed (CM ) methods that
correspond to a node in the call graph (in the edited program), (ii)
lookup changes (LC ) that correspond to an edge in the call graph,
and (iii) their transitively prerequisite atomic changes.

For example, the call graph fortestPassFail() in Fig-
ure 4 contains nodes corresponding to methodsA.foo() ,
C.zap() , and A.zip() . These nodes correspond to atomic
changes 1, 9, and 5 in Figure2, respectively. The call
graph for testPassFail() also contains an edge labeled
<C,A.zap()> , corresponding to atomic change 10. From
the dependences in Figure2, it can be seen that change 9 re-

2 Call graphs contain one node for each method, and edges between
nodes to reflect calling relationships between methods.
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LC
C,A.zap()

10

AM
C.zap()

8

AM

A.getY()

6

AF
A.y

4

CM

B.bar()

2

CM

A.foo()

1

CM
D.foo()

12

CM
A.bar()

3

CM
A.zip()

5

CM
A.getY()

7

CM
C.zap()

9

LC
C,C.zap()

11

Figure 2: Atomic changes inferred from the two versions of the program.

<D,A.foo()>

assertTrue()D.D()

Tests.testCrashFail()

A.A() D.foo()

<A,A.foo()> <A,A.bar()>

Tests.testPassPass()

A.A() assertTrue()

A.foo() A.bar()

<B,A.bar()>

<B,A.foo()>

B.foo()

B.bar()A.A()

B.B() assertTrue()

Tests.testFailFail()

<B,A.foo()> <B,A.bar()><B,A.zip()>

assertTrue()

Tests.testFailPass()

B.B()

A.A()

B.foo() B.bar() A.zip()

<C,A.foo()> <C,A.zap()> <C,A.zip()>

A.zip()A.zap()A.foo()

A.A()

C.C() assertTrue()

Tests.testPassFail()

Figure 3: Call graphs for the original version of the program.

<C,A.foo()> <C,A.zap()> <C,A.zip()>

C.C()

A.A()

A.foo() C.zap() A.zip()

assertTrue()

Tests.testPassFail()

<B,A.foo()> <B,A.bar()> <B,A.zip()>

B.foo() B.bar() A.zip()

A.A()

B.B() assertTrue()

Tests.testFailPass()

<D,A.foo()>

D.foo()A.A()

D.D() assertTrue()

Tests.testCrashFail()

<A,A.foo()> <A,A.bar()>

A.foo() A.bar()

assertTrue()A.A()

Tests.testPassPass()

<B,A.bar()>

<B,A.foo()>

B.foo()

B.bar()

assertTrue()

Tests.testFailFail()

B.B()

A.A()

Figure 4: Call graphs for the edited version of the program. Dashed boxes indicate
changed/added methods, and dashed arrows indicate changed calling relationships between
methods (lookup changes).
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quires change 8, and change 5 requires change 4. There-
fore, the affecting changes fortestPassFail() are 1, 4,
5, 8, 9, and 10. Similarly, we determine that 1, 3, 4 are
the affecting changes fortestPassPass() , that 2, 4, 5 are
the affecting changes fortestFailPass() , that only change
2 affects testFailFail() and that only change 12 affects
testCrashFail() .

Change Classification.Thus far, we have seen that there are 12
atomic changes, and that the behavior of each of the five tests is
affected by one or more of these changes. The goal of change clas-
sification is to answer the following question:Which of those 12
changes are the likely reason(s) for the test failure(s)?We provide
an answer to this question by classifying the changes according to
the tests that they affect. Intuitively, our goal is the following:

• A change that affects onlyimproving tests, (i.e., tests such
astestFailPass() that fail in the original program, but
that succeed in the edited version) is classified asGreen. For
example, change 12 (CM for D.foo() ) only affectstest-
CrashFail() and thus should be coloredGreen. We con-
siderCRASH to be a worse result thanFAIL , because in con-
ducting the experiments described in Section4, we observed
several bugs that resulted in changing the result of a test from
FAIL to CRASH.

• A change that affects onlyworsening tests, (i.e., tests such as
testPassFail() that succeed in the original program,
but that fail in the edited version) is classified asRed. For
example, changes 8, 9, 10 (AM andCM for C.zap() and
LC for <C,A.zap()> ) only affecttestPassFail() so
they areRed.

• A change that affects both improving tests and worsen-
ing tests is classified asYellow. For example, change
4 (AF for A.y ) affects both testPassFail() and
testFailPass() and therefore isYellow.

Intuitively, Redchanges are most likely to be the reason for a
test failure, followed byYellowchanges, whileGreenchanges can
never be failure-inducing. How to associate colors with changes
becomes less obvious when changes also affect tests that have the
same outcome in both program versions. Section3 defines a num-
ber of classifiers that follow different strategies. For two of these
change classifiers (Rs/Gr , Rs/Gs), only changes 8, 9 and 10 are col-
oredRed, exactly the failure-inducing changes cited earlier for this
example.

3. DEFINITIONS
In this section, we define criteria for change classification and

present several change classifiers based on these criteria. We im-
plicitly make the usual assumptions [10] that program execution is
deterministic and that the library code and execution environment
(e.g., JVM) remain unchanged.

Our classification of tests is based on theJUnit test result model
in which a test canpass, fail (i.e., an assertion failure) orcrash(i.e.,
anunexpectedexception is caught by theJUnit runtime3). Defini-
tion 3.1below formalizes this test result model4 and introduces an

3 Note that this situation is distinct from the one where theexpected
outcome of a test is an exception, in which case the test itself should
catch the exception.
4 Our approach can easily be adapted to accommodate other test
result models with, for example, a single error state, multiple fine-
grained error states, or a model in whichFAIL is a worse result than
CRASH.

ordering in which passing tests are preferred over failing tests, and
failing tests are preferred over crashing tests.

DEFINITION 3.1 (TEST RESULT MODEL). Let R = { PASS,
FAIL , CRASH} be the set of all test results. Furthermore, we define
the following ordering on test results:

CRASH < FAIL < PASS

For a given testT, we will useRorig(T) andRedit(T) to represent
the result of testT in the original program and the edited program,
respectively, whereRorig(T),Redit(T) ∈ R . Definition 3.2 below
uses this notation to classify tests as worsening or improving.

DEFINITION 3.2 (TEST CLASSIFICATION). Let T be the set
of all tests. Then the sets WT and IT of worsening tests and improv-
ing tests, respectively, are defined as follows:

WT = {T ∈ T |Rorig(T) > Redit(T)}
IT = {T ∈ T |Redit(T) > Rorig(T)}

In the definitions below, we will use the notationAT(A) to rep-
resent the tests inT affected by atomic changeA∈ A (i.e., the set
of all atomic changes between two versions) andAC(T) to repre-
sent the atomic changes affecting a given testT ∈ T . Definition3.3
defines auxiliary change setsWorsening, Improving, SomeFailFail,
SomePassPass, andOnlyPassPass. Worseningand Improvingare
the sets of changes that affect at least one worsening test, or at least
one improving test, respectively.SomeFailFailandSomePassPass
are the sets of changes that affect at least one test that crashes/fails
or passes in both versions, respectively. Finally,OnlyPassPassis
the set of changes that only affect tests that pass in both versions.

DEFINITION 3.3 (CHANGE INFLUENCE).

Worsening = {A|A∈ A , WT∩AT(A) 6= /0}
Improving = {A|A∈ A , IT∩AT(A) 6= /0}
SomeFailFail = {A| ∃T ∈ AT(A),

Rorig(T) = Redit(T) ∈ {FAIL ,CRASH}}
SomePassPass= {A| ∃T ∈ AT(A),

Rorig(T) = Redit(T) = PASS}
OnlyPassPass = {A| ∀T ∈ AT(A),

Rorig(T) = Redit(T) = PASS}
We can now classify changes asRed, Yellow, or Green. Intu-

itively, our goal is to classify changes such thatRedchanges are
highly likely to be the reason for test failures,Yellowchanges are
possibly problematic, andGreenchanges are correlated with suc-
cessful tests. There are several ways in which one could design
such a classifier, and it was not clear to usa priori which approach
would work best in practice. As we wanted to explore the potential
of change classification, our approach was to define five different
classifiers that each partition the set of changes intoRed, Yellow,
andGreensubsets in slightly different ways. In Section4 we will
present a comparative evaluation of these different classifiers in two
case studies.

The first classifier is calledsimpleand reliesonly on test results
in the edited program. A change is classifiedRedif it only affects
failing or crashing tests,Greenif it only affects passing tests, and
Yellowotherwise. To define the remaining four classifiers, we use
a relaxedand astrict criterion based on thedevelopment of test re-
sultsfor the two versions for each color, as shown in Table1. We
will refer to these criteria asRr , Rs, Gr andGs, where the capital
letter represents the color, and the subscript represents the criterion
used, wherer indicatesrelaxedands strict. Tests that are new or
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Criteria
Coloring relaxed strict

Red Rr : (A 6∈ Improving∧A∈Worsening) Rs:
(A 6∈ Improving∧A∈Worsening

∧A 6∈ SomePassPass)

Green Gr :
A∈OnlyPassPass∨

(A∈ Improving∧A 6∈Worsening) Gs:
A∈OnlyPassPass∨

(A∈ Improving∧A 6∈Worsening
∧A 6∈ SomeFailFail)

Yellow A 6∈ Red,A 6∈Green,AT(A) 6= /0

Table 1: Definitions of four methods for classifying atomic changes intoRed, Yellow, and Greenchanges.

that have been deleted in the edited program have no effect on the
classifiers built from these criteria, as they do not correlate with im-
proved or degraded test results. The classifiers have been defined in
such a way that the set of changes coloredRedby theRs classifiers
is a subset of those coloredRedby theRr classifiers. Similarly,
the set of changes coloredGreenby theGs classifiers is a subset of
those coloredGreenby theGr classifiers.

Intuitively, theGr criterion marks asGreenany change that af-
fects improving tests but not worsening tests, as well as any change
that only contributes to tests that succeed in both versions of the
program. While this is a reasonable criterion, it may have the
somewhat counterintuitive effect that aGreenchange may affect
a test that fails in the edited version of the program. In the ex-
ample in Figure1, change 2 affects bothtestFailPass() , an
improving test, andtestFailFail() ; it will be coloredGreen
by theGr criterion. TheGs criterion eliminates such potentially
confusing effects by requiring that allGreenchanges must only af-
fect tests that succeed in the edited program, causing change 2 to
be coloredYellow. Note that both theGr and theGs criteria have
the desirable property that changes classified asGreenare never
failure-inducing, since they never affect any worsening test.

The difference betweenRr andRs is similar. TheRr criterion
marks asRedany change that affects worsening tests but not im-
proving tests. This is reasonable, but it may have the counterin-
tuitive effect that a change that affects a test succeeding in both
versions of the program may still beRed (e.g., change 1 in our
example). TheRs criterion further restrictsRedchanges to affect
only tests thatFAIL or CRASH in the edited program. Any changes
that are colored neitherRednor Greenare classified asYellow if
they affect some tests. As we can apply these two criteria forRed
andGreenindependently, we obtain four classifiers by combining
them. We will refer to these classifiers asRr /Gr , Rs/Gr , Rr /Gs, and
Rs/Gs.

Note that there is an asymmetry in the four non-simplechange
classifiers. A change that affects only tests that pass in both ver-
sions is always classified asGreen, whereas a change that affects
only tests thatFAIL in both versions (orCRASH in both versions)
is always classified asYellow. To motivate this decision, recall that
the purpose of our change classification is to reveal failure-inducing
changes. A change that only affects passing tests by definition is
not failure-inducing (for the current test suite) and is therefore clas-
sified asGreen. In contrast, if a changeA affects a test that fails in
both versions, the failure in the edited version may reflect the same
problem as before, or it may now be due toA; therefore,Yellow
seems a more appropriate choice thanRed.

Some changes do not affect any tests. We classify a changeA
asGray, if it affects no tests (i.e.,AT(A) = /0). This is a coverage
issue rather than a debugging issue, as it indicates that the test suite
should be expanded to coverGray changes as well. Table2 shows
how the changes of the example of Figure2 are classified according
to our five classifiers.

Change simple Rr /Gr Rs/Gr Rr /Gs Rs/Gs

1 Yellow Red Yellow Red Yellow
2 Yellow Green Green Yellow Yellow
3 Green Green Green Green Green
4 Yellow Yellow Yellow Yellow Yellow
5 Yellow Yellow Yellow Yellow Yellow
6 Gray Gray Gray Gray Gray
7 Gray Gray Gray Gray Gray
8 Red Red Red Red Red
9 Red Red Red Red Red

10 Red Red Red Red Red
11 Gray Gray Gray Gray Gray
12 Red Green Green Green Green

Table 2: Classification of the atomic changes of Figure2 ac-
cording to the simpleclassifier and the 4 composite classifiers
based on the criteria defined in Table1.

4. IMPLEMENTATION AND EVALUATION
To evaluate our change classifiers we created the toolJUnit/CIA,

implemented as an Eclipse plug-in that builds on the analysis com-
ponent of theChianti tool we previously developed [24]. JUnit/CIA
uses the version of the program that is currently in the Eclipse
workspace as theedited version, and either uses another existing
project as theoriginal versionor retrieves a previous version from
the local history that corresponds to the last time the test suite was
executed. (The local history is a local RCS repository maintained
by Eclipse that records all textual changes.) Dynamic call graphs
for the tests are obtained by monitoring their execution using the
JVMPI profiling interface.

Figure 5: JUnit/CIA hierarchy view

The user-interface ofJUnit/CIAextends that of theJUnit Eclipse
component as follows: (i) in theCIA hierarchy view, affecting

6



changes are shown in a tree-view underneath each test, where ex-
panding the tree reveals prerequisite changes (see Figure5), and
(ii) an additional view shows all the changes organized by category
(i.e., AM , CM , etc.). In each of these views, colored icons are as-
sociated with changes to indicate if they areRed, Yellow, Green, or
Gray, and double-clicking on a change causes a standard Eclipse
compare view of the associated original and edited code to appear.

In order to improve performance, we implemented a filtering
mechanism that allows users to avoid tracing of methods in the
standard libraries. Although, by assumption, such methods do not
contain any changes, they may execute virtual method calls that
dispatch to methods in user code (i.e., call-backs), and such dis-
patch operations may exhibit changed behavior when overridden
library methods are added, deleted, or changed. We conservatively
approximate the behavior of call-backs using an approach similar
to that of [34].

Definition of failure-inducing changes.To assess the quality of
our results we need those changes that are actually failure-inducing.
Given a worsening test5, we can selectively undo a subset of its af-
fecting changes, and observe whether or not the test outcome on
the resulting intermediate program is worsening, with respect to
the original version outcome. If the test is not worsening (on the
intermediate version), then that subset containsfailure-inducing
changes. For our case studies, we manually derived the failure-
inducing change sets for each application, making a best effort to
obtain as small a subset as possible. Ideally, our classifiers should
color exactly these changesRed.

4.1 Case Study 1: Student Projects
During our first case study with student projects, we encountered

several situations where tests did not terminate. To handle such
cases, we implemented a time-out mechanism where the execution
of a test is aborted after a specified number of seconds. (In our
experiments, we used a time-out of 10 seconds.) In such cases,
we used the dynamic call graph obtained by executing the program
up to that point, and consider the test result to beCRASH. We
extended the standardJUnit launch configuration to allow users to
specify this time-out option.

Overall, we analyzed source code from 40 small student projects
of an undergraduate programming course at the University of Pas-
sau. In this course, students implemented Dinic’s Maximum Flow
algorithm using a predefined set of mandatory interfaces. The stu-
dents were provided with a set of publicblack boxtests that had
to be successfully executed in order for students to pass the course.
We also defined an additionalsecrettest suite, whose existence was
known to the students, although no details of these tests were avail-
able. Although the students had to agree that their code could be
used for research purposes, they did not know that their data would
be used to evaluate change classifiers. Course management was
provided using the web-basedPraktomatsystem [39]. Students
frequently submitted their solutions to Praktomat, which then auto-
matically compiled them and ran the tests. Praktomat automatically
saves all submitted versions in a database, so that these versions
were available to us for this case study.

Analyzed code base.Some minor postprocessing of the stu-
dent code was needed to make it suitable for our experiments. As
Praktomat uses black box testing, the public tests were coarse-
grained regression tests forDejaGNU, an open-source black box
regression-testing framework6. Our postprocessing consisted of
writing equivalentJUnit tests with assertions based on the manda-

5 PASS to FAIL , PASS to CRASH, or FAIL to CRASH
6 Seewww.gnu.org/software/dejagnu /.

number of version pairs
written by students 1175
that contain meaningful changes 556
with associated worsening tests 110
with identifiable failure-inducing changes 98
where versions pairs differ by>1 change 61

Table 3: Selection of version pairs from the student data.

tory interfaces, and adding fine-grained unit tests. In a few cases,
several interpretations of the mandatory interfaces existed (e.g.,
node numbering in the graph could start at 0, or at 1), and we
rewrote the tests for specific student solutions to uniformly use the
same approach. We also commented out debugging output in a few
cases for performance reasons. None of these changes affected the
semantics of the submitted code in fundamental ways.

On average, each of the final, graded solutions consisted of 950
lines of commented Java source code. We analyzed a total of 1175
version pairs written by 40 students. Of these 1175 version pairs,
556 contained meaningful changes7, and 110 of these 556 version
pairs had associated worsening tests. For 98 of these 110 version
pairs, we could manually identify thefailure-inducing changes. In
the remaining 12 cases we were unable to determine the failure-
inducing changes due to the size of the edit or non-deterministic test
behavior. Since we are interested in techniques for automatically
determining failure-inducing changes, we need version pairs that
differ by more than one change (otherwise, the reason for the failure
is obvious). Eliminating the version pairs that differ by one change
resulted in a final set of 61 version pairs (out of the 98) that we
used as the basis for evaluating the 5 change classifiers presented
in Section3. The process of selecting version pairs is illustrated by
Table3.

Per-Version-Pair Evaluation. The 61 version pairs contained
a total of 1295 atomic changes of which 894 wereGray, leaving
401 non-Gray changes. Table4 shows how the different classifiers
associate colors with these changes. From left to right, the columns
of the table indicate the total number of changes classified asRed,
Yellow, Green, andGray respectively. For example, theRr /Gr clas-
sifier finds 138Red, 126Yellow, 137Green, and 894Graychanges.

To determine classifier quality, we manually identified the
failure-inducing changes for each of the 61 version pairs. Then,
we calculatedrecall andprecisionfor each classifier, both forRed
changes and forGreenchanges. These are core metrics from in-
formation retrieval theory stating the percentage of desired results
retrieved, and the percentage of correctly retrieved items among all
retrieved items, respectively. Due to the way in which the classifiers
are defined, the choice of the criterion to classifyGreenchanges
has no effect on recall and precision forRed. Thus, we will dis-
cuss classifier results forRedchanges independently of theGreen
criterion, andvice versa.

For Red changes,recall is the fraction of failure-inducing
changes coloredRed, andprecision is the ratio of actual failure-
inducing Red changes to all theRed changes. It is desirable
to minimize the number offalse positivesor spurious failure-
inducing changes reported. The percentage of false positives equals
1−precision(of Redchanges). Similarly, we seek to minimize the
number of failure-inducing changes not coloredRed, that isfalse
negatives. The percentage of false negatives equals1− recall (of

7Our analysis considers two versions the same if they differ only
in layout or comments. The relatively high number of versions
without changes is due to coding style requirements for the course,
which were addressed by the students late in their implementations.
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Classifier #Red #Yellow #Green #Gray
Rr /Gr 138 126 137 894
Rs/Gr 77 187 137 894
Rr /Gs 138 200 63 894
Rs/Gs 77 261 63 894
simple 119 238 44 894

Table 4: Coloring of changes according to the 5 classifiers (cu-
mulative statistics over 61 version pairs).
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Rr /* 39 0.91 0.09 0.63 0.37 0.68
Rs/* 22 0.78 0.22 0.66 0.34 0.64

simple 26 0.66 0.34 0.44 0.56 0.49

Table 5: Recall, false negative rate, precision, false positive
rate, and F1 measure for Rr /*, Rs/*, and simpleclassifiers av-
eraged over their type (ii) and (iii) colorings of the 61 version
pairs.

Redchanges).
When examining the effectiveness ofRedchanges to identify

the failure-inducing changes, we distinguish the following three
scenarios: (i) colorings in which none of the affecting changes of
a test are coloredRed, (ii) colorings in which no failure-inducing
changes are coloredRed, but where some other affecting changes
are coloredRed, thus providing information that is misleading, and
(iii) colorings in which theRedchanges included at least some
of the failure-inducing changes (i.e., colorings whereRedchanges
might help a programmer focus on those changes that are failure-
inducing).

Table 5 shows how effectively theRed changes can identify
failure-inducing changes. The table shows, for each of theRr /*,
Rs/*, and simpleclassifiers, the average rates of recall, precision,
false positives and false negatives.8 Also shown in the table is the
averageF1 measure [36], which corresponds to the harmonic mean
of recall and precision, and which can be used as a combined met-
ric to compare classifier quality.9 We chose the harmonic mean of
recall and precision in order to minimize the number of false posi-
tives and false negatives, giving equal emphasis to them both. If a
classifier results only in type (i) colorings for a given version pair,
then we do not include that version pair in our averages. Thus, the
second column in Table5 reports the number of version pairs used
to calculate the values in the table for each classifier. Note that ide-
ally we would like a classifier with a value of 1.0 for both recall
and precision, thus eliminating these false reports completely.

It is easy to see that thesimpleclassifier can be dismissed, be-
cause it has the lowestF1 value. This means that it is not as good at
avoiding both false negatives and false positives as either theRr /*
or Rs/* classifiers. On average, theRr /* classifiers yield marginally
higherF1 values than theRs/* classifiers (0.68 vs 0.64). However,

8 For an overview of the non-aggregated data, the reader is referred
to [32].
9 Values for version pairs with zero for both recall and precision,
(i.e., type (ii) colorings for a particular classifier) were included in
the average by using anF1 value of zero. We included these cases
to be conservative; such cases demonstrate bad performance for the
corresponding classifier and the worst possible value forF1 is zero.
There was 1 such version pair forRr /*, 2 for Rs/*, and 6 forsimple.
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Figure 6: Scatter plots for recall and precision values obtained
per version pair for (a) Rr /*, (b) Rs/*, and (c) simpleclassifiers.

they also produce distinguishing colorings (i.e., types (ii) and (iii))
over significantly more version pairs in the data (i.e., 39 vs 22).
Therefore, we choose theRr /* classifiers over theRs/* as best for
this data.

Figure 6 shows, for each of theRr /*, Rs/*, and simpleclassi-
fiers, a scatter plot of the pairs of recall and precision values ob-
tained for each version pair presented in Table5. In these charts,
the size of each bubble reflects the number of same-valued pairs it
represents, which appears explicitly as a number next to the bubble.
Bubbles close to the upper right corner of the graph represent the
most desirable values (i.e., approximately 1.0 for both recall and
precision). Bubbles centered at the origin represent the type (ii)
colorings, with 0 for both recall and precision, because no failure-
inducing changes are coloredRed, although there are someRed
changes. Thus, these bubbles representmisleadingcolorings, be-
cause some non-failure-inducing changes areRed, and all failure-
inducing changes areYellow. Clearly, a good classifier should pro-
duce as few as possible misleading colorings. Over our 61 version
pairs, recall that theRr /* classifiers produce one such coloring,Rs/*
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two andsimplesix; thus, considering this quality measure also, the
Rr /* classifiers are the best.

For Greenchanges, recall is the fraction of all non-failure in-
ducing changes coloredGreen and precision is the ratio of ac-
tual non-failure inducing changes to allGreenchanges. In select-
ing the preferredGreencriterion, we only consider recall for the
Greenchanges, because their precision will be 1.0 sinceGreen
changes never affect worsening tests (by definition). Over the
61 version pairs, the */Gr classifiers produce a recall of 0.19 for
Greenchanges, versus 0.15 for the */Gs classifiers, meaning that
the former are more successful at classifying non-failure-inducing
changes asGreen. Consequently, the */Gr classifiers are clearly
preferable to the */Gs ones. In summary, for this case study, it is
clear that theRr /Gr classifier produces the best results.

Per-Test Evaluation. As a final step in this case study, we
measured how often change classification may help the program-
mer find the failure-inducing changes for a given test failure. For
this “per test” view, we examine 444 worsening tests in the 61
version pairs under consideration that have 2 or more affecting
changes. The baseline for comparison is the uncolored set of affect-
ing changes as calculated byChianti. For 211 of the 444 worsening
tests, we calculated that theRr /* classifiers colored all the failure-
inducing changesRed, and some of the other affecting changes
Yellow. This means that theRr /* classifiers were successful at fo-
cusing programmer attention in 47.5% (211/444) of the tests. This
property was evidenced in only 25.5% (113/444) of the worsening
tests using theRs/* classifiers and 15.1% (67/444) for thesimple
classifier.

Conclusions.The accuracy of theRr /* classifiers in identifying
the failure-inducing changes confirms that they performed the best
in our student projects case study. Thus, this study selects theRr /Gr
classifier as best.

4.2 Case Study 2: Daikon
Daikon [8] is a system for discovering likely invariants in soft-

ware systems using dynamic analysis. We extracted several ver-
sions of Daikon from the CVS repository, but (unfortunately for our
purpose) could not find any worsening unit tests. This illustrates
a common problem in obtaining evaluation data for our method.
In general changes are only committed if all tests succeed, (i.e.,
there are no worsening tests in repositories). However, we no-
ticed that several unit tests changed between the Daikon versions
Daikon/2002-11-11and Daikon/2002-11-19, and reusing the old
tests with the edited version produced 2 test failures. In the exper-
iments discussed below, we treat these test failures as worsening
tests. For the Daikon version pair under consideration, a total of
61 tests were defined, of which 40 were affected by the edit (there
were also 7 new tests and 3 deleted tests). The two versions dif-
fered significantly, as a total of 6093 atomic changes were reported
by our tool.

The first test,testXor , was affected by 35 atomic changes.
Manual inspection of the code revealed that twoCM changes to
methodsdaikon.diff.XorVisitor.shouldAddInv1()
anddaikon.diff.XorVisitor.shouldAddInv2() were
responsible for the test’s failure. TheRr /* classifiers failed to fo-
cus on these changes since they classified all 35 affecting changes
asRed, because there were no improving tests in this experiment.
Both Rs/* classifiers correctly identified the 2 failure-inducing
changes asRed, as well as 2 of 33 remaining changes, with the rest
classified asYellow. In other words, theRs/* classifiers were very
successful at correctly focusing the programmer’s attention on only
4 out of 35 affecting changes in this case, including the appropriate
ones.

The second test,testMinus , produced a similar result.

This test was affected by 34 changes, and we manually identi-
fied the failure-inducing change to be aCM change to method
daikon.diff.Diff.shouldAdd() . Again, theRr /* classi-
fiers were not useful because they classified all 34 changes asRed.
The Rs/* classifiers were very effective by classifying the failure-
inducing change asRed, only two other changes asRed, and the
31 remaining changes asYellow. Thus, the programmer’s attention
was focused on only 3 of 34 changes, including the appropriate one.

The tests for these two Daikon versions were either worsening
(i.e., PASS to FAIL ) or successful in both versions (i.e.,PASS to
PASS). Because of this restricted set of test outcomes, thesimple
classifier and theRs/* classifiers produce the same coloring of the
changes. If there had been tests that failed in both versions (i.e.,
FAIL to FAIL ), then thesimpleclassifier would have been less suc-
cessful at focusing the programmer’s attention on failure-inducing
changes than theRs/* classifier. These limited test outcomes seem
coincidental, and may be the result of our constructed tests; there-
fore, we prefer theRs/* classifiers for the Daikon data.

Of the 6093 changes separating the two Daikon versions, 5715
were classified asGray due to the low coverage of the Daikon unit
test suite. Of the remaining 378 changes, 338 wereGreen, 33
Yellow, and only 7Redusing theRs/Gr classifier. In this case study,
our approach reduced the number of changes to be examined from
6093 to 35 (or 34) affecting changes for each worsening test, and
then further reduced the number to 4 (or 3) using theRedchanges
obtained from theRs/* classifiers. Note that programmers do not
know up front if a change is covered by a test suite, (i.e., classifying
a change asGray is also necessary).

Conclusions.TheRs/* classifiers outperformed theRr /* classi-
fiers on the Daikon version pair, by focusing programmer attention
on the failure-inducing change(s) by coloring themRed. Thus, this
study selects theRs/Gr classifier as best.

4.3 Assessment
With our current untuned research implementation ofJUnit/CIA,

constructing dynamic call graphs slows down the execution of tests
by more than a factor of 10. For the student project case study
this was insignificant, but for the Daikon case study, the timings
were unacceptable for interactive use. In our experiments with
Daikon, constructing the dynamic call graphs for all unit tests for
a given version takes about 4 minutes on average, and computing
and classifying the atomic changes takes less than 2 minutes. The
performance problem is primarily due to the annotation of static
receiver types on the constructed dynamic call graphs, collected
using a JVMPI agent. Unfortunately, type information is not avail-
able through JVMPI; we will explore other approaches for dealing
with this problem. Currently, to address this performance issue,
we suggest a scenario where programmers run their tests normally,
until they encounter a worsening test. Only then do they rerun the
tests usingJUnit/CIA to perform change classification.

The main outcome of our two case studies is a positive demon-
stration that change classification may focus programmer attention
on parts of an edit that may be the root cause of unexpected worsen-
ing test behavior. While more extensive empirical investigation of
larger programs is necessary to fully validate this claim, the success
of change classification in these studies is undeniable. Currently,
we plan to further validate our approach using larger programs such
as the Eclipsejdt core.

As is common, the case studies also raise unexpected questions.
For example, the two case studies select contradictory choices for
the “best” classifier, but this can be explained by considering the
behavior of the associated test suites. In defining our classifiers, we
have assumed that the parts of the program executed by different
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tests will overlap, and therefore, some changes will affect more
than one test. If this assumption is violated, then all the changes
affecting a worsening test will be coloredRed, offering no focus
on the failure-inducing changes. Thus, the success of classification
depends on some properties of the tests used.

In both case studies, the number ofGray changes is consider-
able. In the student programs case study, this is due to the fact
that, initially, the students did not use the mandatory interfaces
but instead implemented a solution based on their own interfaces
and only adapted their solution to use the mandatory interfaces
later. Consequently, our tests failed to execute relevant portions
of their code until the mandatory interfaces were adopted, resulting
in manyGraychanges in the earlier stages of the implementations.
The students also tended to provide considerably more elaborate
command-line interfaces than we expected, and this untested code
resulted in moreGraychanges. In the case of Daikon, the coverage
of the unit test suite is fairly low.10 Any changes to parts of Daikon
not covered by the unit test suite will be coloredGray. Daikon also
has a suite of regression tests with presumably much better cover-
age, but unfortunately those regression tests are not based on JUnit,
and thus applying our technique would be difficult. Consequently,
while our findings are promising, they would be more compelling
with a test suite offering better coverage of the system.

The student projects exhibit a mixture of improving and wors-
ening tests, and theRr /* classifiers work best here. On the other
hand, in the Daikon study, there are only a few worsening tests and
no improving tests. TheRr /* classifiers are hindered by the lack of
improving tests, which prevents any affecting changes of a worsen-
ing test from being coloredYellow. Since theRs/* classifiers do not
color changesRedthat affect tests with the same outcome in both
the original and edited program, they are able to focus programmer
attention on asubsetof the changes affecting the worsening tests.
Thus theRs/* classifiers perform better on the Daikon case study.

Given these empirical results, we suggest that programmers use
theRr /Gr classifier during development when both improving and
worsening tests exist. If only worsening and same-outcome tests
occur, then theRs/Gr classifier seems to be the better choice. It is
possible that through experience, development organizations will
be able to select the appropriate classifier for their projects.

Additional questions raised by our investigations include the fol-
lowing: Does the choice of classifier depend on other factors we
have not yet considered, including programmer experience level,
software maturity (i.e., in active development versus maintenance),
etc.? Are there other interesting classifiers to investigate (e.g., us-
ing the frequency that a change affects a worsening test to obtain
a statistically-based change coloring, reminiscent of the statement
coloring in [13])? Are there properties of the test suite which can
suggest the appropriate classifier to use? We will explore these is-
sues as future research.

5. RELATED WORK
Delta Debugging. In the work ondelta debugging, the reason

for a program failure is identified as a set of differences between
versions [38], inputs [41], thread schedules [4], or program states
[40, 5] that distinguish a succeeding program execution from a fail-
ing one. A set of failure-inducing differences is determined by re-

10 For the Daikon versions under consideration in [24], we reported
that the unit test suite covered 21% of the methods on average for
these versions. However, this number is skewed by the fact that
certain Daikon components have reasonable coverage (e.g., for
the util.MDE component we find an average coverage ratio of
47%), whereas other components (e.g., thejtb component) have
virtually no coverage.

peatedly applying different subsets of the changes to the original
program, and observing the outcome of executing the resulting in-
termediate programs. By examining the outcome of each execution
(pass, fail, or inconsistent), the set of failure-inducing changes is
narrowed down using efficient binary-search techniques.

Our work and delta debugging are different approaches for iden-
tifying failure-inducing changes, each with its strengths and weak-
nesses. Delta debugging determines whether or not a change is
failure-inducing by observing the effect of its presence or absence
in two program executions. Executing intermediate program ver-
sions helps narrow down the reason for a program failure but, in
the worst case, a number of executions proportional to the number
of changes is required. In contrast, our approach identifies reasons
for failures using the results of distinct tests that execute different
subsets of the changes, and requires a suite of tests with this prop-
erty. The two approaches may complement each other. In principle,
the use of a rich model of changes with interdependences could im-
prove the efficiency of delta debugging by reducing the number of
intermediate programs that are constructed/executed. Conversely,
our method could be made more precise by executing tests on in-
termediate program versions, and taking their results into account.

Comparing Dynamic Data From Different Executions. Sev-
eral debugging approaches rely on comparing dynamic informa-
tion associated with succeeding and failing runs. Reps et al. [26]
compare path profiles from different executions in order to expose
incorrect Year 2000 date-related computations that give rise to the
execution of different paths. Harrold et al. [11] evaluate the ef-
fectiveness of comparing path profiles (and other run-time metrics)
for distinguishing successful executions from failing ones. They
found a strong correlation between differences in path profiles and
different execution behavior; similar findings held for their other
metrics. Jones et al. [13, 12] use the colors red, yellow, and green
to visualize the statements executed by failing tests only, by both
succeeding and failing tests, and by passing tests only, respectively.
They found thisdiscretevisualization to be “not very informative,
as most of the program is yellow” and also propose ancontinuous
visualization where a gradual scale of color and brightness reflects
both the absolute number of tests, and the relative percentages of
passing and failing tests that execute a given statement. Our work
differs from their discrete approach because we visualize the cor-
relation betweenchangesand their affected tests, whereas Jones et
al. visualize the correlation ofstatementswith test results. Our
approach is likely to be more useful for locating failure-inducing
changes because the number of executed changes is likely to be far
smaller than the number of executed statements, and because the
execution of different statements by a failing test may be due to a
change in a completely different part of the program. Ruthruff et al.
[27] also use a continuous color scale to indicate the contribution
of cells in a spreadsheet to incorrect values. In this work, the user
indicates whether or not computed values are correct, and depen-
dences between cells are used to compute the likelihood that (the
formula in) a given cell contributes to an incorrect value.

Renieris and Reiss [25] use tracing data from one faulty and sev-
eral successful runs to detect failures in C programs. They build a
model from the traces, calculate a difference between the models
of the faulty and the successful runs and map this difference back
to source code artifacts, which finally forms the report. Dallmeier
et al. [6] present a technique for localizing errors by comparing se-
quences of method calls in passing and failing runs of a program.
Their experiments indicate that comparing method call sequences
is a better defect indicator than a simple coverage-based metric,
such as the one by Jones et al. [13], and that comparing sequences
of method callson the same objectis an even better predictor.
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Statistical Techniques. Some researchers use statistics to cal-
culate the likelihood that a specific predicate is related to a fault.
Liblit et al. [17, 18] present statistical analyses in which informa-
tion is gathered about the number of times that certain predicates
are executed by deployed applications, in order to detect predicates
whose outcome correlates with a crash. A low sampling frequency
is used to ensure low run-time overhead, so a large number of sam-
ples is needed to obtain meaningful data. A number of strategies
is presented that allow one to quickly rule out certain predicates as
being related to failures. Liu et al. [19] propose a statistical model-
based approach to localize bugs and define the “evaluation bias”
of a predicate, which measures the probability of a predicate being
“true” in one execution. Then, the evaluation patterns in correct
and incorrect runs are compared to identify those predicates that
are likely to be bug-relevant. A comparison of their model with
Liblit’s method [18] and Cleve and Zeller’s method [5] shows that
they can localize more bugs (68/130 in the Siemens suite) in cer-
tain contexts. While we do not use statistical methods to classify
changes yet, investigating new classifiers based on such methods
might be a fruitful area for future work.

Fault Localization Techniques.A program slice [37, 33] w.r.t.
an incorrect value contains all statements that may have contributed
to that value, and will generally include the statement(s) that con-
tain the error. Slices may become very large, and techniques such
asdicing [20] have been proposed, where a slice w.r.t. an erroneous
value is intersected with a slice w.r.t. a correct value. DeMillo et.
al. [7] define acritical slice w.r.t. a failing testt to contain all
“critical” statements that, when omitted, cause program execution
to reach a designated failure statement with different values for ref-
erenced variables. Gupta et al. [9] propose an approach that inte-
grates delta debugging with program slicing to narrow down the
search for faulty code. First, delta debugging is used to identify
a minimal failure-inducing input, and a forward dynamic slice is
computed from this input. Then, they obtain a backward dynamic
slice with respect to the erroneous output, and the intersection of
these two slices may potentially contain the faulty code.

Our approach and program slicing can both be used for finding
faults, but there are two significant differences. Slicing is a fine-
grained analysis at the statement level that can be used to inspect a
failing program to help locate the cause of the failure. Our work fo-
cuses on failures that are due to the application of a set of changes,
and our analysis is at the method level.

Change Impact Analysis. We previously presented a concep-
tual framework [28] for change impact analysis, and its expan-
sion to the full Java language with empirical validation [24]. We
also have developed a tool for building intermediate program ver-
sions by applying a subset of affecting changes to the original pro-
gram [3, 23]; this tool was used to identify failure-inducing changes
in the second case study. In this paper, we use change classifica-
tion to identify aa subset of the changesthat are responsible for
a given test’s failure. Other research on impact analysis aims at
finding program constructspotentially affected by changes. These
analyses are based on static analysis [2, 16, 14, 35], dynamic anal-
ysis [15] or, like our analysis, on a combination of the two [21].
Recent work on change impact analysis includes thePathImpact
algorithm by Law and Rothermel [15], where dynamic call infor-
mation is used to determine the procedures potentially impacted
by a change to a procedurep, and theCoverageImpacttechnique
by Orso et al. [21], which combines the use of a forward static
slice [33] w.r.t. a changed program entity (i.e., a basic block or
method) with execution data obtained from instrumented applica-
tions to find affected program entities. An empirical comparison of
these algorithms appears in [22].

Continuous Testing and Test Factoring.Saff and Ernst present
two techniques for identifying test failures early, when reasons for
these failures are easy to identify. Incontinuous testing[29, 31],
tests are run whenever the CPU is idle.Test factoring[30] auto-
matically derives fast unit tests from slow system-wide tests using
dynamic analysis. Change classification complements these tech-
niques by reducing the amount of time needed to fix bugs.

6. CONCLUSIONS AND FUTURE WORK
There are three main contributions of this paper. First, we pre-

sented an approach for change classification that helps program-
mers identify the changes responsible for test failures. As part of
this approach, we proposed several change classifiers that associate
the colorsRed, Yellow, or Greenwith changes, according to the
likelihood that they were responsible for test failures. Second, we
implemented these change classification techniques inJUnit/CIA,
an extension of theJUnit component of Eclipse. Third, we con-
ducted two case studies in which we investigated whether or not
change classification can be a useful tool for focusing the program-
mer’s attention on failure-inducing changes.

Furthermore, in response to the 3 research questions posed in
Section1, we conclude that:

• In the two case studies, change classification could suc-
cessfully distinguish failure-inducing changes from other
changes. Specifically, in the student programs case
study, programmer attention was focused on failure-inducing
changes in 47.5% of the worsening tests. In the Daikon case
study, programmer attention was focused very effectively on
a small superset of the failure-inducing changes.

• There is no single change classifier that always works best.
In the student programs case study,Rr /Gr is the classifier of
choice. However, in theDaikon case study,Rr /Gr failed to
provide any focus on the failure-inducing changes, and the
Rs/Gr classifier was highly effective.

• Based on these results, and on the characteristics of the sys-
tems being analyzed we suggest that programmers use the
Rr /Gr classifier during initial development, when small dif-
ferences between versions exist along with a mixture of im-
proving and worsening tests. If versions differ more signifi-
cantly, and if only worsening tests occur, then theRs/Gr clas-
sifier seems to be the better choice.

While these results are promising, it is clear that more experi-
mentation and/or a user study are needed for a conclusive validation
of the approach. Other topics for future work include an in-depth
analysis of factors we have not considered so far such as program-
mer experience level and properties of test suites. We also plan
to develop other classifiers that, for example, take into account the
frequency that a change affects a worsening test.
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