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ABSTRACT

Testing and code editing are interleaved activities during program
development. When tests fail unexpectedly, the changes that cause
the failure(s) are not always easy to find. We explore how change
classification can focus programmer attention on failure-inducing
changes by automatically labeling chandred Yellow or Green
indicating the likelihood that they have contributed to a test failure.
We implemented our change classification tddhit/CIAas an ex-
tension to theJUnit component within Eclipse, and evaluated its

effectiveness in two case studies. Our results indicate that change

classification is an effective technique for finding failure-inducing
changes.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging: Debugging aids, Testing tools;
D.2.7 [Distribution, Maintenance, and Enhancemen}: Version
control

General Terms
Algorithms, Experimentation

Keywords

change impact analysis, debugging, testing, fault localization, ver-
sion control

1. INTRODUCTION

In modern software development, coding and testing are per-
formed in interleaved fashion to assure code quality. Current devel-
opment strategies rely heavily on the availability of a test suite to al-
low a programmer to quickly assess the impact of edits on program
functionality. Difficulties occur when testing reveals unexpected
behaviors, such as assertion failures or exceptions. Although the
programmer knows thereby that she has introduced a bug, she still
does not know which part of the edit is responsible for the failure.
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If the edits are trivially small, it may be easy to find the buggy

code. However, as a code base and its test suite grow in size, run-
ing the tests after each minor change may become infedsitrid

the number of changes that occur between successive executions of

the test suite is likely to increase. Then, when test failures occur,

it may be difficult to isolate the failure-inducing change(s), and te-

dious manual debugging may be needed.

This paper presents an approach for identifying failure-inducing
changes in a system with an associated regression test suite. In
contrast to Extreme Programming (X where the number of
changes between test runs tends to be small, we assume that the
size of an edit can become sufficiently large to make the identi-
fication of failure-inducing changes a difficult task, and to make
automated assistance with this task desirable. Our change classifi-
cation technique relies on the change impact analysa4pt find
the tests potentially affected by an edit (i.e., a set of changes), and
to associate with each such test, a set of affecting changes. It then
classifies these affecting change&as| Yellow or Green depend-
ing on whether they affect (i) tests whose outcome ingzoved
(ii) tests whose outcome hakegraded (iii) tests whose outcome
has remainednchangedor some combination of (i), (ii), and (iii).

To explore the usefulness of change classification we designed a
number of classifiers that assign the colBeq Yellow, andGreen
to changes in slightly different ways. Our goal has been to develop
classifiers for whichRedchanges are highly likely to be failure-
inducing,Greenchanges are highly unlikely to be failure-inducing,
andYellowchanges fall somewhere in between. With these classi-
fiers we set out to answer the following research questions:

1. Does it work? Can we distinguish failure-inducing changes
from other changes through change classification?

. Which classifier is best? Is there a single change classifier
that is always superior to all others, or do different classifiers
work better for different applications?

3. If there is no “best” change classifier, is there a set of char-
acteristics of an application that can be used to predict the

classifier that will be most effective for it?

To answer these questions, we implemented five change classi-
fiers in a tool called]Unit/CIA, an extension of the Eclipse com-
ponent that integrates the populdunit testing framework with the

1 For example, the Eclipse compiler had a test suite of 8803 tests
(4830 parser tests + 3973 regression tests) on January 1, 2005.
Executing this test suite takes more than 45 minutes on an AMD
Athlon64 3200Mhz PC with 2GB RAM.



Eclipse IDE (seevww.junit.org andwww.eclipse.org ). 3. We conducted two case studies in which we measured the

The name of the tool reflects the fact that the functionalityldhit relative effectiveness of change classification on applications
is extended with features forhange mpact_Analysis. JUnit/CIA for which we manually identified failure-inducing changes.
relies onChianti [24] for: (i) dividing a program edit into its These case studies indicated that change classification can
constituentatomic changes(ii) identifying testsaffectedby the focus programmer attention effectively on likely sources of
edit by correlating (dynamic) call graphs for the tests with the failure; however, they were inconclusive with respect to se-
atomic changes, and (iii) determiniragfecting change$or each lecting a “best” classifier.

of these testsJUnit/CIA then classifies changes according to one ) ) ) )

of the five classifiers and visualizes them using a small extension N the remainder of this paper, Secti@explains our change
of JUnits user-interface. We envisiolUnit/CIA to be used when ~ impact analysis24] and change classifications intuitively through
running conventional JUnit tests reveals an unexpected test failure.@n example. Sectic8 defines the five classifiers used in the case
sion to an earlier, successfully tested program version derived ei- cussed in SecticBand conclusions are given in Sectién

ther from Eclipse’s local history or extracted from a version control

repository.JUnit/CIA then classifies changes to help the program- 2. EXAMPLE OF OUR APPROACH
e e oy e i, Fiure 1) shans o versons of & smal exampe progam,
P ’ y prog Here, the original version of the program consists of all pro-

We conducted two case studies witbinit/CIA to find failure- gram fragmentexceptfor those shown in boxes: the edited ver-

e e s et o1 s oined by sding al he boved code fragments, Asoc:
Y- 4 9 ated with the program are fiv@Unit tests,testPassPass() ,

changes by manual examination of the code and then measured th?estPassFaiI() testFailPass() testFailFail()
effectiveness of each of the classifiers in identifying those Changes'andtestCrashFail() ' as shown in Figjure(b)

Here, effectiveness is measured by determining how much addi- We assume that the tests of Fig(ii@) will be used with both
tional focus on failure-inducing changes is provided by the change he oriainal and edited ; fth Th f h
coloring, compared to the set of (uncolored) affecting changes re-t € original and e fte Versions o the program. The hame of eac
PO . ) . . test indicates its outcome in each version of the program; for ex-
ported byChianti. Ideally, we would like to see the failure-inducing ample, testPassFail() passes in the original program, but

changes for a test coloreRled and all other affecting changes produces an assertion failure in the edited version. By examining

Grﬁ]e?ﬁé \;?lljlg\:m roarams studv. one classifier was superior b the edited program and tests, we can observe that the addition of
prog Y P Y methodC.zap() causes the failure destPassFail() and

correctly _focusmg programmer atten_non on th? failure-inducing that this is the only test failure due to the edit. Note, the reason
changes in 47.5% of the 444 worsening tests with more than 2 af- . S . ) .
for the failure oftestFailFail() is the same in both versions

fecting changes while providing misleading information in only a of the program, namely th@bar() does not have the expected
single case. In thBaikonstudy, we studied a pair of versions sep- side effect ' '

arated by a total of 6093 atomic changes in which two tests that Atomic Changes. Our change impact analysis (presented in

passed in the original version failed in the edited version. Here, full detail in [24]) relies on the computation of a set of atomic

one of the tests was affected by 35 atomic changes, and the Otherchan es, denoted by, that captures all source code modifications
by 34 atomic changes. In this studyddferentclassifier was very ges, ’ P

effective by focusing the programmer's attention on 4 of the 35 at a semantic level amenable to analysis. We use a fairly coarse-

: rained model of atomic changes, with change categories such as
changes for the first test, and on 3 of the 34 changes for the seconog
one. For both of these Daikon tests, the failure-inducing changes added classesAC), deleted classe(), added methodsAM),

deleted method€GM), changed method bodieSI{), added fields
e ey o o o St suggest (). Q1 TEUSEE), and okup changea ) (e, changes
Jvnne i Ictory S€ stud 199 .—to dynamic dispatch). Regarding changes to method bodilt (
different classifiers should be preferred, this is not unexpected in changes), note that we generateeCM change regardless of the
an empirical study_. _Nevertheless, itis |ntere_st|ng to ob_serve the number of statements within the respective method’s body that have
different characteristics of the code analyzed in the studies to help

explain the different outcomes. The student programs study is con- been changed, as we employ a method-level analysis.
P : L : progre y Additionally, we compute syntactic dependences between
cerned with the initial development of an application, and is char-

acterized by small differences between versions, and a mixture of atomic changes. Intuitively, an atomic changeis dependent on

: ) : . another atomic changhy, if applying A1 to the original version
Rand, the appiication under consideration s more mature, e set<?| e ProgTaim without also applyins fesults i a syntacically
of chz,;m es Ft;Fe)t\Neen successive versions is much larger o,nl a fewmvalid program (i..A is aprerequisitefor Ay, Ay = Aq). These

g g : ger, only dependences can be used to construct syntactically valid interme-
worsening tests occur, and no improving tests. Therefore, although

we make recommendations for when each of the two preferred diate versions of the program that contain some, but not all of the

change classifiers should be used, it is clear that further investi a_atomic changes, as described in detaildridd.
-hang i v L 9 It is important to understand that tisgntacticdependences do
tion is needed, and we consider such investigations to be a fruitful

topic for future work not capture alsemanticdependences between changes (e.g., con-
pThe main contribljtions of this paper are: sider changes related to a variable definition and a variable use in
pap ) two different methods). This means that if two atomic changes,

1. We designed a method to identify failure-inducing changes andAg, affect a given test, then the absence ofsyntacticdepen-

in which changes are classified@ed Yellow or Greenac- dence betweeA; andAz does not imply the absence ofemantic
cording to one of several change classifiers. dependence; that is, program behaviors resulting from apphing
alone,A; alone, orA; andA; togethermay all be different
2. We implemented this method in a practical to@ilinit/CIA, Figure2 shows the atomic changes that define the two versions
based oUnit, Eclipse, and Chiant2d]. of the example program, numbered 1 through 12 for convenience.



public class A { public class Tests extends TestCase {
public A(int i) {x=1i } public void testP?s)sPass() {
ublic void foo Xx=x+0; [ A a = new A(5);
Eublic void barg i y = X } } a.foo(); a.bar();
) ) ! Assert.assertTrue(a.x == 5);
public void zap() {} }
public void zip() {y=x7F1} public void testPassFail() {
public int x; A a = new C(7);
public static int y; "‘ a.foo(); a.zap(); a.zip();
- — Assert.assertTrue(a.x == 7);
public static int getY() { return vy; }B7
public void testF?iI)Pass() {
public class B extends A { A a = new B(8);
public B(int j) { super(j); } a.foo(); a.bar(); a(.zip(); )
ublic void foo Assert.assertTrue(a.x == 9);
gubnc void barg } 2 1 }
public void testh(;liI)FaiI() {
; A a = new B(6);
public class C extends A ) o
public C(int k) { super(k); } afoo(); a.bar();
- - Assert.assertTrue(a.x == 11);
public void zap() {x =5 }‘8-9-10-11 }
public void testCrashFail() {
class D extends A { A a = new D(5); a.foo();
public D(int I) { super(l); } inti = ax/ (ax - 5);
public void foo() { 12 } Assert.assertTrue(a.x == 5);
¥
}
@ (b)

Figure 1: (a) Original and edited version of example program. The original program consists of all program fragmentgxcepthose
shown in boxes. The edited program is obtained by adding all boxed code fragments. Each box is labeled with the numbers of the
corresponding atomic changes. (b) Tests associated with (both versions of) the example program.

Each atomic change is shown as a box, where the top half of the boxare affected by a set of atomic changes, a call graph is constructed

shows the category of the atomic change (eGM for changed
method), and the bottom half shows the method or field involved

for each test in theriginal program Our analysis can work with
call graphs that have been constructed either using static analysis,

(for LC changes, the declaring class and method are shown). Anor by observing the actual execution of the tests (we use dynamic

arrow from an atomic chang® to an atomic chang8; indicates
that A; is dependent or,. Consider, for example, the addition
of the assignment = x in methodA.zip() . This source code
change corresponds to atomic change 5 in Fig@urddding this
assignment will lead to a syntactically invalid program unless field

call graphs in this paper; for details s2d]).

Figure3 shows the call graphs for the tests of Figd(b) in the
original program. Edges corresponding to dynamic dispatch are la-
beled with a paikc RT,M >, whereRT is the run-time type of the
receiver object, anil is the method referenced at the call site. A

Ay is also added. Therefore, atomic change 5 is dependent ontest is determined to kaffectedf its call graph (in the original pro-

atomic change 4, aAF change for fieldA.y .

gram) contains either (i) a node that corresponds@dk&a(changed

In some cases, a single source code change is decomposed intmethod) orDM (deleted method) change, or (ii) an edge that cor-

several atomic changes. For example, the additioA.gétY/()

responds to 4 C (lookup) change. In Figur8 clearly all five

produces atomic changes 6 and 7, where the former models the adtests are affected, because they each execute at least one method

dition of an empty method.getY() , and the latter the addition

of its method body. Observe that atomic change 7 is dependent ontestPassPass()
atomic change 6, reflecting the fact that a method must exist beforeresponding to the changed methdoo()

corresponding to &M change. For example, the call graphs for
andtestPassFail() contain nodes cor-
(change 1).

its body can be added. Change 7 is also dependent on change 4 (an Determining Affecting Changes. In order to compute the set

AF change for fieldA.y ), because adding the bodyAfgetY()
will result in a syntactically invalid program unless fieddy is
added as well.

of changes affecting a given test, we construct a call graph for that
test in theeditedprogram. These call graphs are shown in Figlire
The set of atomic changes thaffecta given test includes: (i) all

TheLC atomic change category models changes to the dynamic atomic changes for addedN ) and changed@M) methods that

dispatch behavior of instance methods. In particulat,@rchange
(Y,X.m()) models the fact that a call to meth&dm() on an object
of run-time typeY results in the selection of a different method.
Consider, for example, the addition of meth@dzap() to the
program of Figure 1. As a result of this change, a cal\imap()

on an object of typeC will dispatch toC.zap() in the edited
program, whereas it dispatchesAwap() in the original pro-

gram. This change in dispatch behavior is captured by atomic graph for testPassFail()
change 10. Notd,C changes also may be generated as a result of a <C,A.zap()>

correspond to a node in the call graph (in the edited program), (ii)
lookup changesL(C) that correspond to an edge in the call graph,
and (iii) their transitively prerequisite atomic changes.

For example, the call graph fdestPassFail() in Fig-
ure |4 contains nodes corresponding to methofidoo() ,
C.zap() , andA.zip() These nodes correspond to atomic
changes 1, 9, and 5 in Figur@, respectively. The call
also contains an edge labeled
, corresponding to atomic change 10. From

source code change affecting the class hierarchy, such as changinghe dependences in Figu it can be seen that change 9 re-

a method fromabstractto non-abstractor from private to pub-
lic [24].
Determining Affected Tests.In order to identify those tests that

2 Call graphs contain one node for each method, and edges between
nodes to reflect calling relationships between methods.



CM CM AF AM @ LC -
A. foo() B. bar () Ay A get Y() C.zap()| |c A zap()
VT\ ¢ T\
2 3 9
oV T CI\/I/()/CM © CM o CM © LC o
D. foo() A. bar () A zip() A. get Y() C. zap() C, C. zap()

Figure 2: Atomic changes inferred from the two versions of the program.

[Tests.test Fai | Fai | ()

[ Tests. test PassPass()] Tests test CrashFai | ()
[ B. B() ] [assertTrue()
[ A A() ] [assertTrue()] + <B, A bar () > assertTrue()
<A Affoo()> <A\A bar()> [A.A() ] [B bar()] <D\A. f oo() >
[Afoo()] [A.bar()] y<B. A foo()> AA() Dfoo()
B. foo()
[Test s.test PassFail () ] [ Tests. testFail Pass()]

assert True()

<C A fogl)> <C A Zap()> <C,

assert True()

<B, A\bar () ><B, A\ zi p() >

zip()>

(2 1000) [Azapo] [/—\zip()] [B.foo()] [B.bar()] [A.zip()]

Figure 3: Call graphs for the original version of the program.

<B, A. fop() >

[Tests.test Fai | Fai | ()]

[assertTr ue()]

<B A bar()> . assert True()

[ Tests. t est PassPass() ]

[Test s.test CrashFail ()]

Figure 4: Call graphs for the edited version of the program. Dashed boxes indicate
changed/added methods, and dashed arrows indicate changed calling relationships between
methods (lookup changes).



quires change 8, and change 5 requires change 4.
fore, the affecting changes faestPassFail() are 1, 4,
5, 8, 9, and 10. Similarly, we determine that 1, 3, 4 are
the affecting changes faestPassPass() , that 2, 4, 5 are
the affecting changes fdestFailPass() , that only change
2 affectstestFailFail() and that only change 12 affects
testCrashFail()

Change Classification.Thus far, we have seen that there are 12

There-ordering in which passing tests are preferred over failing tests, and

failing tests are preferred over crashing tests.

DEFINITION 3.1 (TEST RESULT MODEL). Let R= { Pass,
FaIL, CRASH} be the set of all test results. Furthermore, we define
the following ordering on test results:

CRASH < FAIL < PAss

atomic changes, and that the behavior of each of the five tests is g, agiven tesT, we will useRorig (T) andRegit(T) to represent
affected by one or more of these changes. The goal of change clasyhe result of tesT in the original program and the edited program,

sification is to answer the following questiokVhich of those 12
changes are the likely reason(s) for the test failure(8)¢ provide

an answer to this question by classifying the changes according to

the tests that they affect. Intuitively, our goal is the following:

e A change that affects onlymproving tests(i.e., tests such
astestFailPass() that fail in the original program, but
that succeed in the edited version) is classifieGe=n For
example, change 1ZM for D.foo() ) only affectstest-
CrashFail() and thus should be color&sreen We con-
siderCRASH to be a worse result thaiL, because in con-
ducting the experiments described in Sectdpwe observed
several bugs that resulted in changing the result of a test from
FAIL to CRASH.

A change that affects onlyorsening testq(i.e., tests such as
testPassFail() that succeed in the original program,
but that fail in the edited version) is classified Red For
example, changes 8, 9, 18§l andCM for C.zap() and
LC for<C,A.zap()> ) only affecttestPassFail() SO
they areRed

A change that affects both improving tests and worsen-
ing tests is classified a¥ellow For example, change
4 (AF for A.y) affects bothtestPassFail() and
testFailPass() and therefore i¥ellow

Intuitively, Redchanges are most likely to be the reason for a
test failure, followed byrellowchanges, whilé&sreenchanges can
never be failure-inducing. How to associate colors with changes

becomes less obvious when changes also affect tests that have the

same outcome in both program versions. Sec3defines a num-
ber of classifiers that follow different strategies. For two of these
change classifiers/G;, Rs/Gs), only changes 8, 9 and 10 are col-
oredRed exactly the failure-inducing changes cited earlier for this
example.

3. DEFINITIONS

respectively, wher&yrig(T), Reqit(T) € R. Definition|3.2 below
uses this notation to classify tests as worsening or improving.

DEFINITION 3.2 (TEST CLASSIFICATION). Let7 be the set
of all tests. Then the sets WT and IT of worsening tests and improv-
ing tests, respectively, are defined as follows:

WT {T € T|Rorig(T) > Reqit(T) }
IT {T € T|Redit(T) > Rorig(T) }

In the definitions below, we will use the notatié&T(A) to rep-
resent the tests ifi” affected by atomic changke 4 (i.e., the set
of all atomic changes between two versions) &@{T) to repre-
sent the atomic changes affecting a givenTest7 . Definition3.3
defines auxiliary change saf¢orseningimproving SomeFailFail
SomePassPasand OnlyPassPassWorseningand Improving are
the sets of changes that affect at least one worsening test, or at least
one improving test, respectivelffomeFailFailand SomePassPass
are the sets of changes that affect at least one test that crashes/fails
or passes in both versions, respectively. FinallplyPassPasss
the set of changes that only affect tests that pass in both versions.

DEFINITION 3.3 (CHANGE INFLUENCE).

Worsening ={A|Ac 4, WTNAT(A) #0}
Improving ={A|A€ 4, ITNAT(A) #0}
SomeFailFail = {A|3JT € AT(A),

Rorig(T) = Reqit(T) € { FAIL,CRASH} }
SomePassPass= { A|3T € AT(A),

Rorig(T) = Reqit(T) = PASS}
OnlyPassPass = { A|VT € AT(A),

Rorig (T) = Reqit(T) = Pass}

We can now classify changes Bed Yellow or Green Intu-
itively, our goal is to classify changes such tfRedchanges are
highly likely to be the reason for test failuregellowchanges are
possibly problematic, an@reenchanges are correlated with suc-
cessful tests. There are several ways in which one could design

In this section, we define criteria for change classification and such a classifier, and it was not clear toaysriori which approach
present several change classifiers based on these criteria. We imwould work best in practice. As we wanted to explore the potential
plicitly make the usual assumptionE]] that program executionis  of change classification, our approach was to define five different
deterministic and that the library code and execution environment classifiers that each partition the set of changes Red Yellow

(e.g., JVM) remain unchanged.

Our classification of tests is based on fténit test result model
in which a test capassfail (i.e., an assertion failure) arash(i.e.,
anunexpecte@xception is caught by th#Unit runtime3). Defini-
tion[3.1 below formalizes this test result moéeind introduces an

3 Note that this situation is distinct from the one whereekpected
outcome of a test is an exception, in which case the test itself should
catch the exception.

4 Our approach can easily be adapted to accommodate other tes

result models with, for example, a single error state, multiple fine-
grained error states, or a model in whiehiL is a worse result than
CRASH.

andGreensubsets in slightly different ways. In Sectidrwe will
present a comparative evaluation of these different classifiers in two
case studies.

The first classifier is calledimpleand reliesonly on test results
in the edited program. A change is classifiRedif it only affects
failing or crashing testsGreenif it only affects passing tests, and
Yellowotherwise. To define the remaining four classifiers, we use
arelaxedand astrict criterion based on théevelopment of test re-
§u|tsf0r the two versions for each color, as shown in TehléVe
will refer to these criteria aR;, Rs, G andGs, where the capital
letter represents the color, and the subscript represents the criterion
used, where indicatesrelaxedands strict Tests that are new or



Criteria
Coloring relaxed strict
] ) . . (A ¢ ImprovingA\ A € Worsening
Red | R (A¢ImprovingA A € Worsening Rs: AA ¢ SomePassPass
A € OnlyPassPass

A € OnlyPassPass

Green| Gr: (A € Improving/A A ¢ Worsening Gs (A€ ITXr;vg;%\éAan\'l:\l;]rsenlng
Yellow A ¢ RedA ¢ GreenAT(A) # 0

Table 1: Definitions of four methods for classifying atomic changes intd&Red Yellow, and Greenchanges.

ange | simple r r s s
Yellow| Red | Yellow| Red | Yellow
Yellow | Green| Green | Yellow | Yellow

that have been deleted in the edited program have no effect on the
classifiers built from these criteria, as they do not correlate with im- 1
proved or degraded test results. The classifiers have been defined in ;2:, Green [ Green [ Green | Green | Green
_such away thfaththe set ?f changes ﬁOIdMI{iby t_?_eRS cla_ss_llflelrs Z T Vellow | Yellow | Yellow | Yellow | Yellow
is a subset of those colord®iedby the R, classifiers. Similarly, 5T Vellow | Yellow | Yellow | Yellow | Yellow

6

7

8

9

the set of changes color&teenby theGs classifiers is a subset of Gray | Gray | Gray | Gray | Gray
those coloredsreenby theG; classifiers. Gray | Gray | Gray | Gray | Gray

Intuitively, the G, criterion marks assreenany change that af- Red Red Red Red Red
fects improving tests but not worsening tests, as well as any change Red Red Red Red Red
that only contributes to tests that succeed in both versions of the 10| Red [ Red [ Red | Red | Red
program. While this is a reasonable criterion, it may have the 11] Gray | Gray | Gray | Gray | Gray
somewhat counterintuitive effect thatGreenchange may affect 12] Red | Green[ Green[ Green]| Green
a test that fails in the edited version of the program. In the ex-

ample in Figurel, change 2 affects botiestFailPass() »an Table 2: Classification of the atomic changes of Figur& ac-

improving test, andestFailFail) ~ it will be coloredGreen cording to the simpleclassifier and the 4 composite classifiers
by the G, criterion. TheGs criterion eliminates such potentially  posed on the criteria defined in Tabledl

confusing effects by requiring that &ireenchanges must only af-
fect tests that succeed in the edited program, causing change 2 to

be coloredYellow Note that both thés, and theGs criteria have 4., |IMPLEMENTATION AND EVALUATION

the desirable property that changes classifie@geenare never To evaluate our change classifiers we created theltdoit/CIA,
failure-inducing, since they never affect any worsening test. implemented as an Eclipse plug-in that builds on the analysis com-
The difference betweeR: andRs is similar. TheR criterion ponent of theChiantitool we previously develope@4]. JUnit/CIA

marks asRedany change that affects worsening tests but not im- yses the version of the program that is currently in the Eclipse
proving tests. This is reasonable, but it may have the counterin- yorkspace as thedited versionand either uses another existing
tuitive effect that a change that affects a test succeeding in both prgject as theriginal versionor retrieves a previous version from
versions of the program may still ieed (e.g., change 1 in our  the |ocal history that corresponds to the last time the test suite was
example). TheRs criterion further restrict®edchanges to affect  executed. (The local history is a local RCS repository maintained
only tests thaFAIL or CRASH in the edited program. Any changes  py Eclipse that records all textual changes.) Dynamic call graphs

that are colored neithdRednor Greenare classified a¥ellowif for the tests are obtained by monitoring their execution using the
they affect some tests. As we can apply these two criteri&éut JVMPI profiling interface.

andGreenindependently, we obtain four classifiers by combining

them. We will refer to these classifiersRgG;, RJ/G;, Ri/Gs, and
Rs/Gs. Runs: 5/3/5 B Errors: 0 B Failures: 3

Note that there is an asymmetry in the four r@mplechange .
classifiers. A change that affects only tests that pass in both ver-
sions is always classified &reen whereas a change that affects @” Failures 43 CIA Hierarchy £ Changes

only tests thafAIL in both versions (0CRASH in both versions) - i demo.Tests

is always classified agellow To motivate this decision, recall that -l il

the purpose of our change classification is to reveal failure-inducing %1 Lookup Change (ID1) <demo.C , demo.A.zap()>
changes. A change that only affects passing tests by definition is i) Add Method (1D4) zap() in [demo.C]

ki Change Method (ID6) foo() in [demna.A] {changed)
- ki Change Methad (ID10) zip() in [demo.A] (changed)
L Add Field (ID7) int y in [demo.A]
G Add Field {ID7) inty in [demo.A]
—-fi) Change Method (IDS) zap{) in [demo.C] (added & changed)
&) Add Methed (ID4) zap() in [demo.C]
+ E’_'i—_l testFailPass

not failure-inducing (for the current test suite) and is therefore clas-
sified asGreen In contrast, if a changa affects a test that fails in
both versions, the failure in the edited version may reflect the same
problem as before, or it may now be dueAptherefore,Yellow
seems a more appropriate choice tRad

Some changes do not affect any tests. We classify a change

asGray, if it affects no tests (i.e AT(A) = 0). This is a coverage 4 & testFailFail
issue rather than a debugging issue, as it indicates that the test suit¢ ., 47 tactcrashrail
should be expanded to cov@ray changes as well. TabR:shows + 5 testPassPass

how the changes of the example of Fig@rare classified according

1o our five classifiers. Figure 5: JUnit/CIA hierarchy view

The user-interface afUnit/CIA extends that of th@Unit Eclipse
component as follows: (i) in th€lA hierarchy view, affecting



changes are shown in a tree-view underneath each test, where ex- number of version pairs \ |

panding the tree reveals prerequisite changes (see Fhyuemnd written by students 1175
(i) an additional view shows all the changes organized by category that contain meaningful changes 556
(i.e.,AM, CM, etc.). In each of these views, colored icons are as- with assoclated worsening tests 110
i . L ; with identifiable failure-inducing changes 98
sociated with changes to indicate if they &ed Yellow Green or where versions pairs differ byl change 61
Gray, and double-clicking on a change causes a standard Eclipse
compare view of the associated original and edited code to appear.
In order to improve performance, we implemented a filtering Table 3: Selection of version pairs from the student data.
mechanism that allows users to avoid tracing of methods in the
standard libraries. Although, by assumption, such methods do not
contain any changes, they may execute virtual method calls thattory interfaces, and adding fine-grained unit tests. In a few cases,
dispatch to methods in user code (i.e., call-backs), and such dis-several interpretations of the mandatory interfaces existed (e.g.,
patch operations may exhibit changed behavior when overridden node numbering in the graph could start at 0, or at 1), and we
library methods are added, deleted, or changed. We conservativelyrewrote the tests for specific student solutions to uniformly use the
approximate the behavior of call-backs using an approach similar same approach. We also commented out debugging output in a few
to that of B4]. cases for performance reasons. None of these changes affected the
Definition of failure-inducing changes. To assess the quality of ~ semantics of the submitted code in fundamental ways.
our results we need those changes that are actually failure-inducing. On average, each of the final, graded solutions consisted of 950
Given a worsening te3twe can selectively undo a subset of its af-  lines of commented Java source code. We analyzed a total of 1175
fecting changes, and observe whether or not the test outcome orversion pairs written by 40 students. Of these 1175 version pairs,
the resulting intermediate program is worsening, with respect to 556 contained meaningful changeand 110 of these 556 version
the original version outcome. If the test is not worsening (on the pairs had associated worsening tests. For 98 of these 110 version
intermediate version), then that subset contdaikire-inducing pairs, we could manually identify tHfailure-inducing changesin
changes. For our case studies, we manually derived the failure-the remaining 12 cases we were unable to determine the failure-
inducing change sets for each application, making a best effort to inducing changes due to the size of the edit or non-deterministic test
obtain as small a subset as possible. Ideally, our classifiers shouldoehavior. Since we are interested in techniques for automatically

color exactly these chang&ed determining failure-inducing changes, we need version pairs that
. differ by more than one change (otherwise, the reason for the failure
4.1 Case Study 1: Student Projects is obvious). Eliminating the version pairs that differ by one change

During our first case study with student projects, we encountered resulted in a final set of 61 version pairs (out of the 98) that we
several situations where tests did not terminate. To handle suchused as the basis for evaluating the 5 change classifiers presented
cases, we implemented a time-out mechanism where the executiori? Sectior3. The process of selecting version pairs is illustrated by
of a test is aborted after a specified number of seconds. (In our Table3.
experiments, we used a time-out of 10 seconds.) In such cases, Per-Version-Pair Evaluation. The 61 version pairs contained
we used the dynamic call graph obtained by executing the program @ total of 1295 atomic changes of which 894 wey, leaving

up to that point, and consider the test result toQmasH. We 401 nonGray changes. Tabld shows how the different classifiers
extended the standadinit launch configuration to allow users to ~ @ssociate colors with these changes. From left to right, the columns
specify this time-out option. of the table indicate the total number of changes classifidgieals

Overall, we analyzed source code from 40 small student projects Yellow Green andGray respectively. For example, tHi/Gr clas-
of an undergraduate programming course at the University of Pas-Sifier finds 13&Red 126Yellow, 137Green and 894Gray changes.
sau. In this course, students implemented Dinic’'s Maximum Flow 10 determine classifier quality, we manually identified the
algorithm using a predefined set of mandatory interfaces. The stu-failure-inducing changes for each of the 61 version pairs. Then,
dents were provided with a set of publitack boxtests that had we calculatedecall andprecisionfor each classifier, both fdRed
to be successfully executed in order for students to pass the coursechanges and foGreenchanges. These are core metrics from in-
We also defined an additionsecrettest suite, whose existence was ~formation retrieval theory stating the percentage of desired results
known to the students, although no details of these tests were avail-"étrieved, and the percentage of correctly retrieved items among all
able. Although the students had to agree that their code could beretrieved items, respectively. Due to the way in which the classifiers
used for research purposes, they did not know that their data wouldare defined, the choice of the criterion to classifyeenchanges
be used to evaluate change classifiers. Course management waas no effect on recall and precision feed Thus, we will dis-
provided using the web-basdtaktomatsystem 89. Students cuss _classmer_ results fékedchanges independently of ti@reen
frequently submitted their solutions to Praktomat, which then auto- criterion, andvice versa . o ‘
matically compiled them and ran the tests. Praktomat automatically ~For Red changes,recall is the fraction of failure-inducing
saves all submitted versions in a database, so that these version§hanges coloretked and precisionis the ratio of actual failure-
were available to us for this case study. inducing Red changes to all theRed changes. It is desirable

Analyzed code base.Some minor postprocessing of the stu- to minimize the number ofalse pOSitivesor Spurious failure-
dent code was needed to make it suitable for our experiments. Asinducing changes reported. The percentage of false positives equals
Praktomat uses black box testing, the public tests were coarse-1— precision(of Redchanges). Similarly, we seek to minimize the
grained regression tests fBiejaGNU, an open-source black box ~ number of failure-inducing changes not colorieed that isfalse
regression-testing framew&k Our postprocessing consisted of Negatives The percentage of false negatives equaisrecall (of
writing equivalentJUnit tests with assertions based on the manda-

"Our analysis considers two versions the same if they differ only

5 in layout or comments. The relatively high number of versions
PAssto FAIL, PASSto CRASH, or FAIL to CRASH without changes is due to coding style requirements for the course,

6 Seewww.gnu.org/software/dejagnu /. which were addressed by the students late in their implementations.
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Table 5: Recall, false negative rate, precision, false positive
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When examining the effectiveness Bedchanges to identify recall
the failure-inducing changes, we distinguish the following three simple classifier
scenarios: (i) colorings in which none of the affecting changes of Total of 26 points
a test are colore®ed (ii) colorings in which no failure-inducing 12
changes are colordded but where some other affecting changes
are coloredRed thus providing information that is misleading, and ) ®: 3
(i) colorings in which theRedchanges included at least some 0.8 2
of the failure-inducing changes (i.e., colorings whBedchanges ©) 5 0.6 N
might help a programmer focus on those changes that are failure- § ®: 5
inducing). H o4 . 1 1
Table 5 shows how effectively théred changes can identify 0. @1 1 S
failure-inducing changes. The table shows, for each ofRh¥, ‘ s ‘ 1
Rs/*, and simpleclassifiers, the average rates of recall, precision, -0.2 A 0.2 0.4 0.6 0.8 1 12

false positives and false negatie#lso shown in the table is the

averagd~; measure36|, which corresponds to the harmonic mean

of recall and precision, and which can be used as a combined met-Figure 6: Scatter plots for recall and precision values obtained

ric to compare classifier qualifyWe chose the harmonic mean of ~ Per version pair for (a) R:/*, (b) Rs/*, and (c) simpleclassifiers.

recall and precision in order to minimize the number of false posi-

tives and false negatives, giving equal emphasis to them both. If a

classifier results only in type (i) colorings for a given version pair, they also produce distinguishing colorings (i.e., types (ii) and (iii))

then we do not include that version pair in our averages. Thus, the over significantly more version pairs in the data (i.e., 39 vs 22).

second column in Tabl8 reports the number of version pairs used Therefore, we choose th&/* classifiers over th&s/* as best for

to calculate the values in the table for each classifier. Note that ide- this data.

ally we would like a classifier with a value of 1.0 for both recall Figurel6 shows, for each of th&/*, Rs/*, and simpleclassi-

and precision, thus eliminating these false reports completely. fiers, a scatter plot of the pairs of recall and precision values ob-
It is easy to see that th@impleclassifier can be dismissed, be- tained for each version pair presented in Taildn these charts,

cause it has the loweBi value. This means that it is not as good at  the size of each bubble reflects the number of same-valued pairs it

avoiding both false negatives and false positives as eitheRte represents, which appears explicitly as a number next to the bubble.

or Ry/* classifiers. On average, th/* classifiers yield marginally ~ Bubbles close to the upper right corner of the graph represent the

higherF; values than th&/* classifiers (0.68 vs 0.64). However, —most desirable values (i.e., approximately 1.0 for both recall and

. _ precision). Bubbles centered at the origin represent the type (ii)

8 For an overview of the non-aggregated data, the reader is referredcolorings, with 0 for both recall and precision, because no failure-

to [32]. inducing changes are colord®ed although there are sonfRed

® Values for version pairs with zero for both recall and precision, changes. Thus, these bubbles represgisteadingcolorings, be-

(i.e., type (i) colorings for a particular classifier) were included in it . —
the average by using dR value of zero. We included these cases cause some non-failure-inducing changesRee and all failure

to be conservative; such cases demonstrate bad performance for thiducing changes areellow Clearly, a good classifier should pro-
corresponding classifier and the worst possible valu€fds zero. duce as few as possible misleading colorings. Over our 61 version
There was 1 such version pair fgg/*, 2 for Rg/*, and 6 forsimple pairs, recall that th&, /* classifiers produce one such colorirfy/*

recall




two andsimplesix; thus, considering this quality measure also, the This test was affected by 34 changes, and we manually identi-
R /* classifiers are the best. fied the failure-inducing change to beGM change to method

For Greenchanges, recall is the fraction of all non-failure in- daikon.diff.Diff.shouldAdd() . Again, theR,/* classi-
ducing changes colore@reen and precision is the ratio of ac-  fiers were not useful because they classified all 34 changeeds
tual non-failure inducing changes to @reenchanges. In select-  The Ry/* classifiers were very effective by classifying the failure-
ing the preferredsreencriterion, we only consider recall for the  inducing change aRed only two other changes d@&ed and the

Greenchanges, because their precision will be 1.0 siGeeen 31 remaining changes &gllow Thus, the programmer’s attention
changes never affect worsening tests (by definition). Over the was focused on only 3 of 34 changes, including the appropriate one.
61 version pairs, the &, classifiers produce a recall of 0.19 for The tests for these two Daikon versions were either worsening

Greenchanges, versus 0.15 for the3y classifiers, meaning that  (i.e., PASs to FAIL) or successful in both versions (i.€Ass to
the former are more successful at classifying non-failure-inducing PAass). Because of this restricted set of test outcomesstimple
changes a&sreen Consequently, the @, classifiers are clearly classifier and th&s/* classifiers produce the same coloring of the
preferable to the s ones. In summary, for this case study, itis changes. If there had been tests that failed in both versions (i.e.,
clear that theR, /G, classifier produces the best results. FaIL to FAaIL), then thesimpleclassifier would have been less suc-
Per-Test Evaluation. As a final step in this case study, we cessful at focusing the programmer’s attention on failure-inducing
measured how often change classification may help the program-changes than thes/* classifier. These limited test outcomes seem
mer find the failure-inducing changes for a given test failure. For coincidental, and may be the result of our constructed tests; there-
this “per test” view, we examine 444 worsening tests in the 61 fore, we prefer th&y/* classifiers for the Daikon data.
version pairs under consideration that have 2 or more affecting Of the 6093 changes separating the two Daikon versions, 5715
changes. The baseline for comparison is the uncolored set of affect-were classified aGray due to the low coverage of the Daikon unit
ing changes as calculated Gyianti. For 211 of the 444 worsening  test suite. Of the remaining 378 changes, 338 wereen 33
tests, we calculated that tif/* classifiers colored all the failure- Yellow, and only 7Redusing theRs/G; classifier. In this case study,
inducing changefed and some of the other affecting changes our approach reduced the number of changes to be examined from
Yellow This means that thB, /* classifiers were successful at fo- 6093 to 35 (or 34) affecting changes for each worsening test, and
cusing programmer attention in 47.5% (211/444) of the tests. This then further reduced the number to 4 (or 3) usingRleeichanges
property was evidenced in only 25.5% (113/444) of the worsening obtained from théRs/* classifiers. Note that programmers do not
tests using th&y/* classifiers and 15.1% (67/444) for tlsemple know up front if a change is covered by a test suite, (i.e., classifying

classifier. a change a6ray is also necessary).

Conclusions.The accuracy of th&/* classifiers in identifying Conclusions. The Ry/* classifiers outperformed thig /* classi-
the failure-inducing changes confirms that they performed the bestfiers on the Daikon version pair, by focusing programmer attention
in our student projects case study. Thus, this study seleci tGe on the failure-inducing change(s) by coloring th&ad Thus, this
classifier as best. study selects thBs/G; classifier as best.

Daikon 8] is a system for discovering likely invariants in soft- With our current untuned research implementatiod@iiit/CIA,

ware systems using dynamic analysis. We extracted several ver-cqngirycting dynamic call graphs slows down the execution of tests
sions of Daikon from _the CVs repository, bu_t (unfortune_lte_lyforour by more than a factor of 10. For the student project case study
purpose) could not find any worsening unit tests. This illustrates yis was insignificant, but for the Daikon case study, the timings
a common problem in obtaining evaluation data for our method. \yere ynacceptable for interactive use. In our experiments with
In general changes are only committed if all tests succeed, (i-€., pajkon, constructing the dynamic call graphs for all unit tests for
there are no worsening tests in repositories). However, we no- 4 given version takes about 4 minutes on average, and computing
ticed that several unit tests changed between the Daikon versions, g classifying the atomic changes takes less than 2 minutes. The
Daikon/2002-11-11and Daikon/2002-11-19and reusing the old  performance problem is primarily due to the annotation of static
tests with the edited version produced 2 test failures. In the exper- .oceiver types on the constructed dynamic call graphs, collected
iments discussed below, we treat these test failures as WorseningJSing a JVMPI agent. Unfortunately, type information is not avail-
tests. For the Da_ikon versio_n pair under consideration, a_total of aple through JVMPI; we will explore other approaches for dealing
61 tests were defined, of which 40 were affected by the edit (there ;i this problem. Currently, to address this performance issue,

were also 7 new tests and 3 deleted tests). The two versions dif-ye gyggest a scenario where programmers run their tests normally,
fered significantly, as a total of 6093 atomic changes were reported i they encounter a worsening test. Only then do they rerun the
by our tool. , tests usinglUnit/CIAto perform change classification.

The first testtestXor , was affected by 35 atomic changes.  The main outcome of our two case studies is a positive demon-
Manual inspection of the code revealed that @b changes 10 gyration that change classification may focus programmer attention
methodsdaikon.diff.XorVisitor.shouldAddInv1() on parts of an edit that may be the root cause of unexpected worsen-
anddaikon.diff. XorVisitor.shouldAddInv2() . were ing test behavior. While more extensive empirical investigation of
responsible for the test's failure. The/* classifiers failed to fo- larger programs is necessary to fully validate this claim, the success
cus on these changes since they classified all 35 affecting changegy change classification in these studies is undeniable. Currently,

asRed because there were no improving tests in this experiment. \ye plan to further validate our approach using larger programs such
Both Ry/* classifiers correctly identified the 2 failure-inducing 54 the Eclipsédt core

changes aRed as well as 2 of 33 remaining changes, with the rest  ag js common, the case studies also raise unexpected questions.

classified asrellow In other words, théRs/* classif’iers Were very ror example, the two case studies select contradictory choices for
successful at correctly focusing the programmer’s attention on only e “pest” classifier, but this can be explained by considering the

4 out of 35 affecting changes in this case, including the appropriate pehayior of the associated test suites. In defining our classifiers, we

ones. ) . have assumed that the parts of the program executed by different
The second testtestMinus , produced a similar result.



tests will overlap, and therefore, some changes will affect more peatedly applying different subsets of the changes to the original
than one test. If this assumption is violated, then all the changes program, and observing the outcome of executing the resulting in-
affecting a worsening test will be colord®ied offering no focus termediate programs. By examining the outcome of each execution
on the failure-inducing changes. Thus, the success of classification(pass, fail or inconsisten}, the set of failure-inducing changes is
depends on some properties of the tests used. narrowed down using efficient binary-search techniques.

In both case studies, the number®fay changes is consider- Our work and delta debugging are different approaches for iden-
able. In the student programs case study, this is due to the facttifying failure-inducing changes, each with its strengths and weak-
that, initially, the students did not use the mandatory interfaces nesses. Delta debugging determines whether or not a change is
but instead implemented a solution based on their own interfacesfailure-inducing by observing the effect of its presence or absence
and only adapted their solution to use the mandatory interfacesin two program executions. Executing intermediate program ver-
later. Consequently, our tests failed to execute relevant portions sions helps narrow down the reason for a program failure but, in
of their code until the mandatory interfaces were adopted, resulting the worst case, a number of executions proportional to the number
in manyGray changes in the earlier stages of the implementations. of changes is required. In contrast, our approach identifies reasons
The students also tended to provide considerably more elaboratefor failures using the results of distinct tests that execute different
command-line interfaces than we expected, and this untested codesubsets of the changes, and requires a suite of tests with this prop-
resulted in mor&ray changes. In the case of Daikon, the coverage erty. The two approaches may complement each other. In principle,
of the unit test suite is fairly lo¥ Any changes to parts of Daikon  the use of a rich model of changes with interdependences could im-
not covered by the unit test suite will be coloi®day. Daikon also prove the efficiency of delta debugging by reducing the number of
has a suite of regression tests with presumably much better cover-intermediate programs that are constructed/executed. Conversely,
age, but unfortunately those regression tests are not based on JUnitpur method could be made more precise by executing tests on in-
and thus applying our technique would be difficult. Consequently, termediate program versions, and taking their results into account.
while our findings are promising, they would be more compelling Comparing Dynamic Data From Different Executions. Sev-
with a test suite offering better coverage of the system. eral debugging approaches rely on comparing dynamic informa-

The student projects exhibit a mixture of improving and wors- tion associated with succeeding and failing runs. Reps el4]. [
ening tests, and thi,/* classifiers work best here. On the other compare path profiles from different executions in order to expose
hand, in the Daikon study, there are only a few worsening tests andincorrect Year 2000 date-related computations that give rise to the
no improving tests. Th&/* classifiers are hindered by the lack of  execution of different paths. Harrold et alll] evaluate the ef-
improving tests, which prevents any affecting changes of a worsen- fectiveness of comparing path profiles (and other run-time metrics)
ing test from being coloredellow Since theRs/* classifiers do not for distinguishing successful executions from failing ones. They
color changefedthat affect tests with the same outcome in both found a strong correlation between differences in path profiles and
the original and edited program, they are able to focus programmer different execution behavior; similar findings held for their other
attention on asubsetof the changes affecting the worsening tests. metrics. Jones et all18,/12] use the colors red, yellow, and green
Thus theRs/* classifiers perform better on the Daikon case study. to visualize the statements executed by failing tests only, by both

Given these empirical results, we suggest that programmers usesucceeding and failing tests, and by passing tests only, respectively.
the R//G; classifier during development when both improving and They found thisdiscretevisualization to be “not very informative,
worsening tests exist. If only worsening and same-outcome testsas most of the program is yellow” and also propose&antinuous
occur, then thdRs/G; classifier seems to be the better choice. Itis visualization where a gradual scale of color and brightness reflects
possible that through experience, development organizations will both the absolute number of tests, and the relative percentages of
be able to select the appropriate classifier for their projects. passing and failing tests that execute a given statement. Our work

Additional questions raised by our investigations include the fol- differs from their discrete approach because we visualize the cor-
lowing: Does the choice of classifier depend on other factors we relation betweerchangesand their affected tests, whereas Jones et
have not yet considered, including programmer experience level, al. visualize the correlation aftatementswith test results. Our
software maturity (i.e., in active development versus maintenance), approach is likely to be more useful for locating failure-inducing
etc.? Are there other interesting classifiers to investigate (e.g., us-changes because the number of executed changes is likely to be far
ing the frequency that a change affects a worsening test to obtainsmaller than the number of executed statements, and because the
a statistically-based change coloring, reminiscent of the statementexecution of different statements by a failing test may be due to a
coloring in [13])? Are there properties of the test suite which can change in a completely different part of the program. Ruthruff et al.
suggest the appropriate classifier to use? We will explore these is-[27] also use a continuous color scale to indicate the contribution

sues as future research. of cells in a spreadsheet to incorrect values. In this work, the user
indicates whether or not computed values are correct, and depen-
5. RELATED WORK dences between cells are used to compute the likelihood that (the

formula in) a given cell contributes to an incorrect value.

Renieris and Reis2p| use tracing data from one faulty and sev-
eral successful runs to detect failures in C programs. They build a
model from the traces, calculate a difference between the models
of the faulty and the successful runs and map this difference back
to source code artifacts, which finally forms the report. Dallmeier

10 For the Daikon versions under consideratiordd][ we reported €t @l- 6] present a technique for localizing errors by comparing se-
that the unit test suite covered 21% of the methods on average forguences of method calls in passing and failing runs of a program.
these versions. However, this number is skewed by the fact that Their experiments indicate that comparing method call sequences
certain Daikon components have reasonable coverage (e.g., forlis a better defect indicator than a simple coverage-based metric,
the uti. MDE  component we find an average coverage ratio of gych as the one by Jones et B[ and that comparing sequences

47%), whereas other components (e.g.,jthe component) have ¢ nethod callpn the same objeds an even better predictor.
virtually no coverage.

Delta Debugging. In the work ondelta debuggingthe reason
for a program failure is identified as a set of differences between
versions 88|, inputs 41], thread schedule®], or program states
[40,5] that distinguish a succeeding program execution from a fail-
ing one. A set of failure-inducing differences is determined by re-

10



Statistical Techniques. Some researchers use statistics to cal-  Continuous Testing and Test Factoring.Saff and Ernst present
culate the likelihood that a specific predicate is related to a fault. two techniques for identifying test failures early, when reasons for
Liblit et al. [17, /18] present statistical analyses in which informa- these failures are easy to identify. d¢ontinuous testing29, 31],
tion is gathered about the number of times that certain predicatestests are run whenever the CPU is idlEest factoring[30] auto-
are executed by deployed applications, in order to detect predicatesmatically derives fast unit tests from slow system-wide tests using
whose outcome correlates with a crash. A low sampling frequency dynamic analysis. Change classification complements these tech-
is used to ensure low run-time overhead, so a large number of sam-niques by reducing the amount of time needed to fix bugs.
ples is needed to obtain meaningful data. A number of strategies
is presented that allow one to quickly rule out certain predicates as
being related to failures. Liu et al1§] propose a statistical model- 6. CONCLUSIONS AND FUTURE WORK
based approach to localize bugs and define the “evaluation bias” There are three main contributions of this paper. First, we pre-
of a predicate, which measures the probability of a predicate being sented an approach for change classification that helps program-
“true” in one execution. Then, the evaluation patterns in correct mers identify the changes responsible for test failures. As part of
and incorrect runs are compared to identify those predicates thatthis approach, we proposed several change classifiers that associate
are likely to be bug-relevant. A comparison of their model with  the colorsRed Yellow or Greenwith changes, according to the
Liblits method [18] and Cleve and Zeller's methoS|[shows that |ikelihood that they were responsible for test failures. Second, we
they can localize more bugs (68/130 in the Siemens suite) in cer-implemented these change classification techniquatiit/CIA,
tain contexts. While we do not use statistical methods to classify an extension of thdUnit component of Eclipse. Third, we con-
changes yet, investigating new classifiers based on such methodgjycted two case studies in which we investigated whether or not

might be a fruitful area for future work. _ change classification can be a useful tool for focusing the program-
Fault Localization Techniques. A program slice/87, 33] w.r.t. mer’s attention on failure-inducing changes.

anincorrect value contains all statements that may have contributed  Fyrthermore, in response to the 3 research questions posed in
to that value, and will generally include the statement(s) that con- sectiorill we conclude that:
tain the error. Slices may become very large, and techniques such '
asdicing[20Q] have been proposed, where a slice w.r.t. an erroneous
value is intersected with a slice w.r.t. a correct value. DeMillo et.
al. [7] define acritical slice w.r.t. a failing testt to contain all
“critical” statements that, when omitted, cause program execution
to reach a designated failure statement with different values for ref-
erenced variables. Gupta et @] propose an approach that inte-
grates delta debugging with program slicing to narrow down the
search for faulty code. First, delta debugging is used to identify
a minimal failure-inducing input, and a forward dynamic slice is
computed from this input. Then, they obtain a backward dynamic
slice with respect to the erroneous output, and the intersection of
these two slices may potentially contain the faulty code.

Our approach and program slicing can both be used for finding
faults, but there are two significant differences. Slicing is a fine-
grained analysis at the statement level that can be used to inspect a

e In the two case studies, change classification could suc-
cessfully distinguish failure-inducing changes from other
changes.  Specifically, in the student programs case
study, programmer attention was focused on failure-inducing
changes in 47.5% of the worsening tests. In the Daikon case
study, programmer attention was focused very effectively on
a small superset of the failure-inducing changes.

e There is no single change classifier that always works best.
In the student programs case stuBy/G; is the classifier of
choice. However, in th®aikon case studyR;/G; failed to
provide any focus on the failure-inducing changes, and the
Rs/G; classifier was highly effective.

failing program to help locate the cause of the failure. Our work fo- e Based on these results, and on the characteristics of the sys-

cuses on failures that are due to the application of a set of changes,
and our analysis is at the method level.

Change Impact Analysis. We previously presented a concep-
tual framework (8] for change impact analysis, and its expan-
sion to the full Java language with empirical validati@]] We
also have developed a tool for building intermediate program ver-

tems being analyzed we suggest that programmers use the
R/ /G, classifier during initial development, when small dif-
ferences between versions exist along with a mixture of im-
proving and worsening tests. If versions differ more signifi-
cantly, and if only worsening tests occur, then RgG; clas-

sifier seems to be the better choice.

sions by applying a subset of affecting changes to the original pro-
gram [3,123]; this tool was used to identify failure-inducing changes ~ While these results are promising, it is clear that more experi-
in the second case study. In this paper, we use change classificamentation and/or a user study are needed for a conclusive validation
tion to identify aa subset of the changésat are responsible for  of the approach. Other topics for future work include an in-depth
a given test's failure. Other research on impact analysis aims at analysis of factors we have not considered so far such as program-
finding program constructpotentially affected by changes. These mer experience level and properties of test suites. We also plan
analyses are based on static analy2jd§,14,/35], dynamic anal-  to develop other classifiers that, for example, take into account the
ysis [15] or, like our analysis, on a combination of the twa1]. frequency that a change affects a worsening test.

Recent work on change impact analysis includesRathimpact
algorithm by Law and Rothermel§], where dynamic call infor-
mation is used to determine the procedures potentially impacted
by a change to a procedupe and theCoveragelmpactechnique

by Orso et al.'21], which combines the use of a forward static
slice 33] w.r.t. a changed program entity (i.e., a basic block or
method) with execution data obtained from instrumented applica-
tions to find affected program entities. An empirical comparison of
these algorithms appears 22].
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