
Finding Bugs Efficiently with a SAT Solver

Julian Dolby
IBM T.J. Watson Research

Center
P. O. Box 704

Yorktown Heights, NY 10598
dolby@us.ibm.com

Mandana Vaziri
IBM T.J. Watson Research

Center
P. O. Box 704

Yorktown Heights, NY 10598
mvaziri@us.ibm.com

Frank Tip
IBM T.J. Watson Research

Center
P. O. Box 704

Yorktown Heights, NY 10598
ftip@us.ibm.com

ABSTRACT
We present an approach for checking code against rich spec-
ifications, based on existing work that consists of encod-
ing the program in a relational logic and using a constraint
solver to find specification violations. We improve the effi-
ciency of this approach with a new encoding of the program
that effectively slices it at the logical level with respect to
the specification. We also present new encodings for inte-
ger values and arrays, enabling the verification of realistic
fragments of code that manipulate both. Our technique can
handle integers of much larger ranges than previously possi-
ble, and permits large sparse arrays to be handled efficiently.

We present a soundness proof for our slicing algorithm and
a general condition under which relational formulae may be
sliced. We implemented our technique and evaluated it by
checking data structure invariants of several classes taken
from the Java Collections Framework. We also checked for
violations of Java’s equality contract in a variety of open-
source programs, and found several bugs.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Check-
ing; F.3.1 [Logics And Meanings of Programs]: Speci-
fying and Verifying and Reasoning about Programs

General Terms
Theory, Verification

Keywords
Model Checking, SAT Solving, Specification, Slicing

1. INTRODUCTION
Researchers have developed a wide range of automated

techniques to find bugs in code, including testing and static
analysis. Testing approaches exercise a subset of all possible
program behaviors, and have the advantage of generating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

concrete witnesses for bugs. However, testing approaches
may miss problems due to incomplete coverage. Static anal-
ysis techniques over-approximate all program behaviors, and
is capable of proving the absence of an error. However, static
analyses may generate spurious error reports due to impre-
cision.

A compromise between testing and static analysis is sys-
tematic under-approximation, which analyzes a finite space
of program behaviors exhaustively with respect to a target
property. It uses a formal model of a methodically-chosen fi-
nite space of program behaviors. There are many approaches
to systematic under-approximation [8, 4, 23, 21, 35, 20, 31,
9]. These include software model checking, as well verifica-
tion techniques based on relational logic [18] and constraint
solving.

In this paper, we focus on checking expressive proper-
ties of heap-manipulating object-oriented code, using rela-
tional logic and constraint solving. We build on work ap-
plying the small scope hypothesis [18] to heap structures
as a basis for systematic under-approximation. The small
scope hypothesis holds that a small heap—just a few ob-
jects per type—provides effective coverage for testing heap-
manipulating code. For instance, for a procedure that sorts
a linked list, it likely suffices to test lists of small sizes and
further tests become redundant.

Existing relational approaches [20, 31, 26, 9] encode the
program in a first-order relational formula [18] representing
all executions restricted to small finite loop counts. This
is turned into propositional logic, imposing a bound on the
number of objects per type. A user further provides a spec-
ification in first-order logic. A satisfying assignment for the
free variables in the conjunction of the translated code and
the negation of the specification indicates a violation of the
specification. Modern SAT solvers can search for such coun-
terexamples effectively in large formulae.

These approaches benefit from modularity over traditional
software model checkers, i.e., they allow components to be
analyzed in isolation. Traditional model checkers must enu-
merate initial contexts from which code is exhaustively tested,
but relational techniques can search all possible contexts,
and thus can uncover subtle unexpected bugs.

Previous relational approaches have two shortcomings.
First, the code and specification are translated separately,
so the encoding cannot benefit if the specification concerns
only small portions of the code. Second, integers are treated
as objects, representing every integer explicitly. Thus, the
range of integers for analysis is severely limited and large
numbers—constants or array indices—are prohibitively ex-



pensive to analyze. Such numbers are needed for many prop-
erties of heap-manipulating code, such as e.g., those involv-
ing hashtable implementations that need large hash codes
and arrays of buckets.

We address these shortcomings as follows. First, our
translation from code to first-order relational logic performs
a type of slicing at the logical level, based on the variables
and instance fields present in the specification, and only rel-
evant portions of the program are encoded. Second, we en-
code integers implicitly but precisely, as sums of powers of
two. This allows us to represent integers in much larger
ranges than previously possible. Our tool can handle 16-24
bit integers, a considerable improvement over previous ap-
proaches which handled 4 bits. Third, we encode arrays so
that they can be sparsely indexed over a large size.

We built Miniatur, an implementation of our technique,
and used it on two sets of benchmarks. The first consists
of checking invariants of the Java collections classes, includ-
ing HashMap and TreeSet, which demonstrates our ability
to handle larger integers and arrays. Our tool handles the
library code with very little change. The second involves
checking the Java equality contracts for a variety of open-
source Java programs, confirming many violations, which we
had identified in previous work [32].

The contributions of this paper are the following:

• A translation of code into first-order relational logic
that performs slicing with respect to the specification
to be checked.

• A proof of soundness for our slicing algorithm, and
a general condition under which a relational formula
may be sliced.

• An encoding for integers based on sums of powers of
two, enabling checking realistic numerical fragments of
code; and an encoding of arrays with efficient support
for sparse arrays.

• An implementation based on the WALA open-source
framework [34] and the KodKod model finder [28],
and experiments on a variety of benchmarks, includ-
ing open-source programs, that demonstrate much im-
proved scalability and uncover several bugs.

2. MOTIVATION
In this section, we will discuss some concrete examples to

illustrate the capabilities of our technique. Miniatur takes
as input a procedure and parameters used to finitize code in-
cluding: number of loop unwindings, integer bit-width, and
number of objects in the initial heap. The user may indi-
cate specifications via Java assertions, or special assertions
containing relational formulae. If there exists an assertion
violation, Miniatur’s output is an initial heap and parame-
ters. An execution starting from these is a counterexample
for that assertion.

Java gives each object a unique identity, but also al-
lows the programmer to customize identity by overriding
the equals() and hashCode() methods following a contract
[10] that requires, among other things, that the equality re-
lation be reflexive, transitive, and symmetric and that equal
objects have identical hash-codes. However, the contract is
unenforced and also error-prone [32]. The Java Collections
API require that the types of objects stored in collections

public class Tester {
public static void equalsTester(Object a, Object b) {

if (a.equals(b)) assert a.hashCode()==b.hashCode();
}

}
public class Point2D {
public Point2D(int x, int y){

this.x = x; this.y = y;
}
public boolean equals(Object o){

if (o instanceof Point2D){
Point2D other = (Point2D)o;
return (this.x == other.x && this.y == other.y);

}
return false;

}
public int hashCode(){

return 64*x + y;
}
private int x;
private int y;

}
class Point3D extends Point2D {
public Point3D(int x, int y, int z){

super(x, y); this.z = z;
}
public boolean equals(Object o){

if (o instanceof Point3D){
Point3D other = (Point3D)o;
return (this.z == other.z && super.equals(other));

}
return false;

}
public int hashCode(){

return 256*z + super.hashCode();
}
private int z;

}

(a) Contract Example Program

// takes a bag and makes it into a set
Point2D[] bagToSet(Point2D[] values) {
Collection result = new HashSet(16);
for (int i = 0; i < values.length; i++)

if (!result.contains(values[i]))
result.add(values[i]);

return (Point2D[]) result.toArray(new Point2D[result.size()]);
}
protected void testHarness(Point2D[] valuesBag) {
Point2D[] valuesSet = bagToSet(valuesBag);
for (int i = 0; i < valuesSet.length; i++)

for (int j = 0; j < valuesSet.length; j++)
if (i != j)

assert !valuesSet[i].equals(valuesSet[j]);
}

(b) Collection Example Program

Counterexample for (a)
Parameter a
[[Point2D_3]]
field x = 11264
field y = 12

Parameter b
[[Point3D_3]]
field x = 11264
field y = 12
field z = 16

Counterexample for (b)
Parameter values
[[ArrayOfPoint2D_3]]
index 0:
[[Point2D_2]]
field x = 2
field y = 6

index 1:
[[Point3D_1]]
field x = 2
field y = 6
field z = 61695

(c) Counterexamples

Figure 1: Examples



obey the equality contract and exhibit surprising behavior
otherwise.

Our techniques can be used to check contracts, including
Java’s equality contract, and produce concrete counterex-
amples. Figure 1(a) shows a small hierarchy of classes:
Point2D and its subclass Point3D. Though the equals()

and hashCode() methods look reasonable, they do not sat-
isfy the part of the contract which requires that equal objects
have the same hash-code. We use Miniatur on the harness
equalsTester() with 16 integer bits, and 4 objects, to ob-
tain the counterexample shown in the left of Figure 1(c),
in 23 seconds. The output shows the values of each pa-
rameter, where [[Point2D_3]] indicates an object of type
Point2D. One may verify that new Point2D(11264, 12) and
new Point3D(11264, 12, 16) produce two objects that are
equal but have different hash codes. Large integer values are
crucial for finding this violation which can only be exposed
by having at least 8 bits for integers. Generating large num-
bers is vital to any good hash function. Miniatur’s support
for large integers is a key contribution of our technique.

As another example, consider Figure 1(b), in which
BagToSetExample.bagToSet() takes an array values of
Point2D objects and returns an array that is a set contain-
ing distinct elements of values, that is no two elements are
equal (via equals()). The contains(), add() and toAr-

ray() methods of a HashSet are used to create an array
containing a set of elements with no duplicates. A method
testHarness() is used to check the desired output.

Analyzing this code with Miniatur produces the coun-
terexample shown on the right of Figure 1(c). ArrayOf-

Point2D_3 is an array object containing two Point2D objects
at indices 0 and 1. One may verify that invoking bagToSet()

on an array containing these elements will return an array
containing the exact same elements. It is unexpected that
this execution is a counterexample to the assertion, since at
first glance the output contains different elements. However,
the assertion is indeed violated since:
[[Point2D_2]].equals([[Point3D_1]]) is true. This ex-
ample touches on another problem in this code: the
equals() method in the Point2D class hierarchy is not sym-
metric, leading to subtle unexpected behavior.

This example illustrates that we can precisely analyze the
manipulation of heap data structures in the Java Collec-
tions Framework. In particular, it highlights our ability to
reason about arithmetic and bitwise operations performed in
java.util.HashSet to distribute its elements over an array
of hash buckets. Furthermore, the HashSet constructor call
specifies the initial size of the array to be 16; even though
only a few objects need be inserted into it, the analysis must
be able to represent the fact that the array is that large. Our
mechanism for encoding arrays enables this. This example
was performed with 16 bits for integers, 4 atoms for initial
heap objects, and took 2 minutes.

3. APPROACH
Our approach is similar to the previous approaches based

on relational logic and constraint solving [20, 31, 9] We en-
code the behavior of a procedure in a logical formula that
is satisfiable if there exists an execution that violates the
specification. We then use a model finder [28] (based on a
SAT solver) to find a solution.

Form ::= Expr {=,6=,⊂,6⊂} Expr |
Form {∧,∨,⇒} Form | ¬ Form |
{∀,∃} x : Expr . Form | {no,one} Expr |
Bitset {=,!=,<, >,≤,≥} Bitset

Expr ::= r | Expr {.,->,++,+,-} Expr | {x:Expr|Form}
| if Expr then Expr else Expr | Expr* | |Expr|

Bitset ::= v | Bitset {+,-,∗,/,∧b,∨b} Bitset | sum Expr

Figure 2: Relational logic

if (x.next == z)

x.next = null;

if (y.next != z)

y = y.next;

assert x.next != z;

1:
2:
3:
4:
5:
6:
7:

if (x0.next0 == z)

U(next1,next0,x0,null);

next2 = φ(next0,next1);
if (y0.next2 != z)

y1 = y0.next2;
y2 = φ(y0, y1);

assert x0.next2 != z;

(a) Original Code (b) SSA Converted

Figure 3: Translation Example

3.1 Background

3.1.1 Relational Logic
We use a subset of Alloy [18, 19], a relational first-order

logic. Its grammar is given in Figure 2. The basic concept in
this logic is a relation: a set of tuples of equal size, composed
of atoms from a given universe. The arity of a relation is the
number of elements in each of its tuples, and its bound is the
domain from which its tuples take value. For the purposes
of analysis we will consider limited bounds later on.

The relational logic allows operations on relations, such
as join ., product ->, update ++, set union +, set difference
-, and transitive reflexive closure *, which form expressions.
Union, difference, and closure have normal meanings. A
join of two tuples (a0, · · · , an).(an, · · · , am) is (a0, · · · , an−1,
an+1, · · · , am), and join of two relations is a pairwise join
of their elements. A product of two tuples (a0, · · · , an) ->

(am, · · · , al) is (a0, · · · , an, am, · · · , al), and the product of
two relations is the pairwise product of their elements. The
update operator allows changing a relation at a particular
value. The expression r ++ {(a, b1, · · · , bn)} results in a
relation where all tuples of the form (a, · · · ) have been re-
moved and replaced with (a, b1, · · · , bn). The formula e1 ⊂
e2 means that all tuples of expression e1 are included in e2.
The formulae no Expr and one Expr are true for empty and
singleton relations respectively.

The relational logic also manipulates bitsets. These may
be compared in a formula. The usual arithmetic and bit-
wise operations (∧b,∨b) are available on them. Atoms may
denote integer values, and sum Expr returns the sum of the
integers in Expr as a bitset. The expression |Expr| gives the
cardinality of an expression as a bitset, i.e. the number of
tuples in it.

3.1.2 SSA Form and the CDG
Our encoding exploits Static Single Assignment (SSA)

Form [7] and Control Dependence Graph (CDG) [7] to effi-
ciently encode data- and control-dependence information.



SSA form gives every value one definition and expresses
merges with φ-nodes. We apply SSA form to fields as well
as variables. The CDG has statements as nodes and edges
from conditional statements to the statements that are di-
rectly control-dependent [7] on them. Each edge is labeled
with the condition that causes the execution of its target
statement. The CDG also has a root node.

Consider the example of Figure 3. Note that the SSA form
has new names for every new definition of every variable and
every field. A field update e1.f = e2 is rewritten as U(f2,
f1, e1, e2) to capture the pre (f1) and post (f2) names of
f . The CDG for this example is shown in Figure 4, where
each box is a node containing the statement numbers from
Figure 3, and edges are labeled with the conditions that
cause the execution of their target nodes.

We define a function

Figure 4: CDG

guard(s) that takes a state-
ment s and returns an
expression, which is the
conjunction of all the control
conditions associated with
the edges of the reverse path
from s to the root of the
CDG. We also define a func-
tion guardφ(x, xi) that takes

two variable (or field) names and returns the condition
under which the φ statement x = φ(· · · , xi, · · · ) assigns xi

to x.

3.2 Translation
We consider a simple core Java-like language with no

method calls, to illustrate our translation scheme. It has
the syntax shown in Figure 5. The return statement indi-
cates termination. The statement assert Form introduces
a specification at a particular point in the code, where Form
is given in the relational logic presented in Section 3.1.1.

JStmt ::= JStmt;JStmt | if C then JStmt else JStmt |
v = JExpr | JExpr.f = JExpr |
a[JExpr] = JExpr | return | assert Form

JExpr ::= v | JExpr.f | a[JExpr] |
JExpr {+,−, ∗, / } JExpr

C ::= JExpr == JExpr | !C | C {&&,‖} C |
JExpr {<, >,≤,≥} JExpr

Figure 5: Syntax

3.2.1 Basic Encoding
Each type in Java is represented by a universe of atoms. A

field f of type B in class A is represented by a relation tak-
ing value in A -> B, similar to a points-to relationship. This
relation is a total function: each atom of A maps to exactly
one atom in B (modeling the fact that the field points to
a specific B-object), or the special Null atom (which repre-
sents the null value). A variable v of type A is represented
by a unary relation taking value in A. This relation is a
singleton set: it represents either an atom of A or the Null

atom.
The basic encoding works as follows. First, we translate

the code to SSA form and build a control dependence graph
(CDG). We rely on a translation function T (defined below)

that takes an expression and returns a relational expression
in terms of initial state. Thus for any variable or field at any
point in the code (in SSA form), T gives its value in terms
of the initial state.

To simplify the exposition, assume that there is a single
assert f statement in the code. We produce the logical for-
mula:

initial ∧ T (guard(assert f)) ∧ ¬ f

∧ x1 = T (x1)

· · · (1)

∧ xn = T (xn)
where x1, · · · , xn are the free variables in f , denoted by

Vars(f). Formula initial constrains the initial state of the
heap to be such that fields are functions of the appropriate
types. Informally, formula (1) is true if the execution of the
code reaches the assert statement, i.e. its guard is satisfied,
and the assertion is not true. The guard is computed from
the CDG as described in Section 3.1.2. Each of the xi =
T (xi) formulae constrains variable xi to be equal to its value
in terms of the initial state. Formula (1) considers only a
slice of the code in the sense that only the definitions of the
variables needed for (dis)proving the assertion are included.

Translation function T .
The translation function T is defined in Figure 6. The

partial function def takes a variable or field (in SSA form)
and returns the statement in the code that defines its value.
Function def is undefined for initial variables and fields.

For a variable or field x (in SSA form), T (x) results in a
relational expression giving the value of x in terms of initial
state. T (x) takes into account the nature of the statement
defining x. There may be none, in which case x is part
of the initial state and def(x) is undefined. Otherwise the
defining statement may be of the form of a variable assign-
ment x = e, a field update U(x,x0,e1,e2), or a φ statement
x = φ(x1, · · · , xn).

If def(x) is undefined then T (x) is just x. Otherwise, if
def(x) is a variable assignment x = e then, T (x) returns
T (e). If def(x) is a field update U(x,x0,e1,e2), then T (x) re-
turns T (x0) updated at T (e1) with T (e2). Finally, if def(x)
is a φ statement x = φ(x1, · · · , xn), then T (x) results in the
union of set comprehensions. The set comprehension { T (xi)
| T (guardφ(x,xi)) } is equivalent to T (xi) if T (guardφ(x,xi))
is true, i.e. the φ statement assigns xi to x, and to the empty
set otherwise.
T translates a field dereference using the relational join

operator. The rest of the cases are straightforward. Notice
that T ensures that a variable or field is translated to an
expression in terms of initial state.

3.2.2 Soundness Proof
In this section, we show that our basic encoding scheme

is sound, meaning that the sliced formula that we generate
is equivalent to one that represents the set of all executions
of the code conjoined with the negation of the specification.

We can rewrite formula (1), our slice, as initial conjoined
with the following formula, which we call f1:

T (guard(assert f)) ∧ ¬ f ∧
(T (guard(def (x1))) ⇒ x1 = T (x1)) ∧

· · ·
(T (guard(def (xn))) ⇒ xn = T (xn))



T : JExpr →Expr

e T (e)

x





if def(x) is:

x undefined

T (e) x=e

T (x0) ++ T (e1)->T (e2) U(x, x0, e1, e2)

{T (x1) | T (guardφ(x,x1))} x=φ(x1,· · · ,xn)
+ · · · +

{T (xn) | T (guardφ(x,xn))}

e.f T (e) . T (f)

e1 && e2 if (T (e1)=True ∧ T (e2)=True) then True
else False

e1 ‖ e2 if (T (e1)=True ∨ T (e2)=True) then True
else False

!e if (T (e)=False) then True else False

e1 == e2 if (T (e1)=T (e2)) then True else False

null Null

true True

false False

Figure 6: Translation function T

since T (guard(assert f))⇒T (guard(def(xi))), for 1 ≤ i ≤ n.
Let f2 be the following formula:

(T (guard(def (xn+1))) ⇒ xn+1 = T (xn+1))

∧ · · · ∧
(T (guard(def (xm))) ⇒ xm = T (xm))

where xn+1, · · · , xm are all the variables not appearing in
specification f .

The set of all executions of the code conjoined with the
negation of the specification is initial ∧ f1 ∧ f2. We want
to show that initial ∧ f1 (our slice) is satisfiable if and only
if initial ∧ f1 ∧ f2 is satisfiable.

The intuition behind the proof is that f1 and f2 have no
variables in common besides initial variables. Moreover, f2

represents fragments of code that consist of: (i) statements
involving irrelevant data, and (ii) any conditionals that can-
not control whether or not the assertion is violated. So for
a sufficiently large number of atoms, and an assignment to
initial variables satisfying initial, the assignment can be ex-
tended to satisfy f2. We capture this property with the
definition below where we say that f2 is valid with respect
to initial. If we find a model for our slice, initial ∧ f1, we
can extend this model to satisfy f2, the key being once again
that f1 and f2 have no other variables in common besides
those in initial.

Recall that in the relational logic, a variable denotes a
set of tuples of atoms drawn from some universe. Given a
set of variables V , let MV denote an assignment of tuples
of atoms to the variables in V , where the atoms are drawn
from bounded domains. We call MV a partial instance or
model. For two disjoint sets of variables V and V ′, the
partial model MV ∪MV ′ assigns tuples to variables in V
according to MV , and to variables in V ′ according to MV ′ .

We callMV ∪MV ′ an extension ofMV . We writeMV |= f ,
where Vars(f) ⊆ V , to denote that MV satisfies formula f .

Definition. Let f and f ′ be two formulae and V a set
of variables such that V = Vars(f). We say that f ′ is valid
with respect to f if and only if

∀MV ∃MV ars(f ′)−V | MV |= f ⇒MV ∪MV ars(f ′)−V |= f ′

Informally, formula f ′ is valid with respect to f if and only
if all models that assign to the variables of f and satisfy f
can be extended to satisfy f ′ as well.

Lemma. Let f and f ′ be two formulae such that f ′ is
valid with respect to f . Then f ∧f ′ is satisfiable if and only
if f is satisfiable.

Proof.
⇒ Trivial.
⇐ Assume that f is satisfiable. Then there exists a partial
model MV ars(f) such that MV ars(f) |= f . Since f ′ is valid
with respect to f , there exists a model MV ars(f ′)−V ars(f)

such that MV ars(f) ∪ MV ars(f ′)−V ars(f) |= f ′. Therefore
MV ars(f) ∪MV ars(f ′)−V ars(f) |= f ∧ f ′, and f ∧ f ′ is satis-
fiable.

Theorem. Let I, f1, and f2 be formulae such that f2 is
valid with respect to I, and Vars(f1) ∩ Vars(f2) ⊆ Vars(I).
Then f2 is also valid with respect to I ∧ f1.

Proof. Assume that f2 is valid with respect to I, and
Vars(f1) ∩ Vars(f2) ⊆ Vars(I). Consider an arbitrary par-
tial model MV ars(I∧f1) such that MV ars(I∧f1) |= I ∧ f1.
Let MV ars(I) and MV ars(f1)−V ars(I) be two partial models
such that MV ars(I) ∪ MV ars(f1)−V ars(I) = MV ars(I∧f1).

Since f2 is valid with respect to I, there exists a model
MV ars(f2)−V ars(I) such that MV ars(I) ∪
MV ars(f2)−V ars(I) |= f2. Since Vars(f1) ∩ Vars(f2) ⊆
Vars(I), we can form a partial model MV ars(I) ∪
MV ars(f2)−V ars(I) ∪MV ars(f1)−V ars(I) which satisfies f2.
Therefore, MV ars(I∧f1) ∪MV ars(f2)−V ars(I) |= f2.

We have that Vars(f2)−Vars(I) = Vars(f2)−Vars(I∧f1).
So let MV ars(f2)−V ars(I∧f1) be equal to MV ars(f2)−V ars(I).
ThereforeMV ars(I∧f1)∪MV ars(f2)−V ars(I∧f1) |= f2, and f2

is valid with respect to I ∧ f1.

Recall that the set of all executions of the code conjoined
with the negation of the specification is initial ∧ f1 ∧ f2.
We want to show that initial ∧ f1 (our slice) is satisfiable if
and only if initial ∧ f1 ∧ f2 is satisfiable. We know that the
variables in common for f1 and f2 are in initial, and that
f2 is valid with respect to initial. So f2 is also valid with
respect to initial ∧ f1 by the Theorem. Therefore by the
Lemma, initial ∧ f1 (our slice) is satisfiable if and only if
initial ∧ f1 ∧ f2 is satisfiable.

3.2.3 Encoding Integers
Two encodings of integers co-exist in our approach. First,

we take advantage of bitsets in the relational logic, which al-
low a representation with efficient operations. This encoding
is good for manipulating integers in isolation but cannot be
used for placing them in relations (because relations are be-
tween atoms). So we also provide a representation as sums
of powers of two. Instead of having an atom to represent
each integer, we have one atom for each power of two within
some user-given range. We represent an integer as a set of
such atoms, where its value is their sum. We define two func-
tions toAtoms() and toBits() to go back and forth between



toAtoms : (BitSet + Integer) → Integer
toBits : (BitSet + Integer) → BitSet

toAtoms(e) =

{
{B: Integer | (e ∧b (sum B)) != 0} if e is a BitSet

e otherwise

toBits(e) =

{
e if e is a BitSet

sum e otherwise

e T (e)

x





if def(x) =
· · ·

T (f1)++T (e1)->toAtoms(T (e2)) U(f1,f2,e1,e2)

e1 op e2 toBits(T (e1)) op toBits(T (e2))
op ∈ {+,−, ∗, /, >, <,≤,≥}

Figure 7: Additional translation rules for Integers

the two encodings as needed. Figure 7 shows the additional
rules for T in the presence of integers.

We use the set Integer for the universe of atoms represent-
ing powers of two. The expression sum e, where e is a set
of Integers, returns a bitset representing the sum of all the
atoms in that set. When e is a bitset, toAtoms(e) returns
the set of all atoms B such that the result of the bitwise-and
of e with the sum of B is different from 0. This operation
effectively gathers the corresponding atom for each non-zero
bit in e in the resulting set.

3.2.4 Encoding Arrays
Our encoding of arrays is designed to support large sparse

arrays, but accommodating large (integer-valued) indices.
We represent each array object with an atom from the set
ArrayObj. We use integers encoded as sets of powers of two
to index into arrays. Since each integer is represented as
a set, it cannot be used directly for this purpose. Instead
we do indexing indirectly through special atoms from a set
IndexAtom that indicate what indices in an array have a
non-default value.

Three special relations are used to encode arrays:
t: ArrayObj → IndexAtom
i: ArrayObj → IndexAtom → Integer
v: ArrayObj → IndexAtom → ArrayValue

Relation t indicates what indices have non-default values
for each array object; i what integer corresponds to each
pair of array object and index atom; and v what value is
stored at each pair of array object and index atom. The set
ArrayValue represents the set of all possible types that may
be contained in an array in our code.

We impose some initial conditions on these relations
(which we include in the initial formula described above).
These state that: (i) No two index atoms map to the same
integer; (ii) An index atom appears in a tuple of t if and
only if it appears in a tuple of v; (iii) If an index atom ap-
pears in i, it must appear in t; (iv) All index atoms must
be mapped to integers between 0 and the length of the cor-
responding array. Notice that it may be the case that an
index atom appears in t and v but not in i. In this case,
that index atom is interpreted to represent index 0.

At each array store, the post-values of these relations are
such that these conditions are preserved. First, we check
if an index atom exists at the desired integer-valued index.
If so, we update v at that index atom. If not, we create
such an atom, and update all three relations accordingly. If
we are storing a default value (null for references and 0 for

integer-valued arrays), then we remove the tuples containing
the index atom corresponding to the desired integer-valued
index from all three relations. Points at which an array
contains default values are therefore represented implicitly.

At each array load, we first check if there exists a corre-
sponding index atom at the desired integer-valued index. If
so, the array load translates to the appropriate value from
v and if not to the default value.

4. EVALUATION

4.1 Implementation
Our prototype implementation of Miniatur can analyze

most of the Java language. Its inputs consist of a procedure
containing assertions, as well finitization parameters such
as: number of loop unwindings, integer bit-width, number
of objects in the initial heap, and number of atoms used
to index arrays. The assertions may be either traditional
Java assertions, or special assertions containing a first-order
logic formula1. The output of our tool is an initial heap and
parameters, from which the execution of the code results in
an assertion violation, if one exists.

Miniatur starts by building a call-graph, inlining all
method calls, and unwinding loops up to the user-provided
number. For example, the code while(n!=null) n=n.next;

becomes:

if (n!=null) {

n=n.next;

if (n!=null) n=n.next; else return;

}

for 2 unwindings. This causes a loop requiring more than 2
unwindings to immediately terminate the code.

Miniatur determines the types needed in the analysis and
bounds on these types as follows. To minimize the types
required, we generate only those that may be needed by
the program. These fall into four categories: (i) types
named explicitly in type checking operations (i.e., casts and
instanceof operations), (ii) types used in dynamic dispatch
operations, that is, potential receivers of virtual calls, (iii)
types used in field reads and writes, and (iv) types of ar-
guments and transitively reachable fields from those argu-
ments, obtained using pointer analysis information.

To bound each type, we combine the user-provided num-
ber of objects on the initial heap with additional atoms to
represent the objects allocated in the program being trans-
lated. This has the advantage that we cannot get into sit-
uations where the program itself is unsatisfiable simply be-
cause there are too few objects. For the additional atoms,
we count all new operations for each type encountered during
encoding. For each such new operation we allocate a fresh
atom to represent that object.

We implemented the encodings of Sections 3 using the
WALA program analysis framework [34], the relational en-
coding API of KodKod [28], and the MiniSAT solver.

4.2 Experiments
To evaluate our approach, we used two sets of bench-

marks: checking equality contract properties on a vari-
ety of open-source programs, and structural properties of

1We use the KodKod API to specify the special assertions
in our experiments.



classes taken from the Java Collections Framework such as
java.util.HashMap. In the experiments discussed below,
we allow up to 4 objects of every concrete type in the initial
heap. For other parameters, we use 16 bits2 to represent
Java integers, 10 array index atoms and unrolled loops 3
times. We report measurements of time spent creating the
initial call graph and related structures (denoted CFA), time
spent encoding in our model (denoted Encode), and time
spent in the SAT solver (denoted Solve). All reported times
were obtained on machines with 2 dual-core 3.8GHz Intel
Xeon processors and 5GB of RAM running the standard
1.5.0 06 JDK for IA32 and the Linux operating system. We
also report a sum of source lines of the program with inlined
methods, but ignoring the effect of loop unrolling (denoted
Size in all tables).

4.2.1 Checking Method Contracts
We used Miniatur to check most aspects of the Java

identity contracts given in the JavaDoc for equals()

and hashCode() methods of java.lang.Object and the
compareTo method of java.lang.Comparable [10]. In par-
ticular, we check that: (i) equals() methods are re-
flexive, (ii) symmetric, and (iii) transitive, and that (iv)
x.equals(null) is false for non-null x. We also check that:
(v) any two equal objects (via equals()) have the same
hashCode(). We check all four aspects of the compareTo con-
tract: (vi) it is anti-symmetric, and (vii) transitive. More-
over, (viii) if x.compareTo(y)==0 then
signum(x.compareTo(z)) == signum(y.compareTo(z)) for
all z, and (ix) it is consistent with equals().

For our experiments, we encoded these contract require-
ments directly with a Java assert statement, and we
checked each property for each applicable type in the pro-
gram being verified. For instance, we used a test function
for property (v) defined as follows:

public static void equalsTester(Object a, Object b) {
if (a.equals(b)) assert a.hashCode()==b.hashCode();

}

We chose open-source programs with interesting
equals(), hashCode() and/or compareTo() methods:
Antlr (the popular parser generator), Bcel (Apache Byte-
code Engineering Library), Hsqldb (database server), and
JavaCup (an LALR(1) parser generator). We did not
check any code that required floating point numbers, and
commented it out as needed, and left the code otherwise
unmodified.

Figure 8 presents the contract violations found (left) and
Miniatur’s performance (right). We list classes exhibiting vi-
olations of the contracts. In general, while such violations in-
dicate fragile code and potential bugs, they may not manifest
themselves when the application is executed. JavaCup had a
single violation: the terminal_set class overrides equals()
but not hashCode(). This bug would be trivial to find with
cheaper techniques [17]; however, it is notable because it re-
quired the solver to find instances of a java.util.BitSet

field of terminal_set, which stresses the model of integers
and of arrays. The two classes in Hsqldb with violations are
related by inheritance and have equals() methods that use
instanceof tests for their respective classes, and hence they
violate the symmetry requirement (ii).

2Notice this is a considerable improvement over previous
approaches which could handle at most 4-bit integers.

The violations of the compareTo contract (proper-
ties (vi) and (vii) in Antlr are subtler: compareTo()

in Label subtracts an integer field: return

this.label-((Label)o).label;, which looks fine at
first glance. However, exhaustive analysis reveals this code
has symmetry and transitivity violations involving the
smallest possible integer value. Due to modulo arithmetic
MIN VALUE − 0 is negative, but so is 0 − MIN VALUE,
violating (vi). This can be used to construct violations of
(vii) as well. The violations of (v) are mixed: for some
types the error is not obvious at all at first glance, while
others are trivially wrong.

The symmetry and transitivity violations (properties (ii)
and (iii)) in BCel indicate fragile code. The equals() meth-
ods depend upon an implicit relationship between concrete
classes and the value of an integer field defined in a base
class used as a tag (the type field for the classes ending
in Type and opcode for IF_CMPEQ). These tag fields are
intricately related to a multi-level class hierarchy in each
case. Applications that extend BCel classes must be aware
of these relationships because subtle contract-related bugs
might arise otherwise. The instruction classes are especially
vulnerable since their equals() method delegates to a user-
specifiable comparator object, obscuring the vital role of the
opcode field. The violations of (v) in BCel occur in these
same classes, and involve classes with asymmetric equals()

methods that also define hashCode().
The performance results in Figure 8 report the time taken

to analyze each contract for each benchmark. The ques-
tion marks in this figure indicate tests where our analysis
took too long or did not terminate. Overall, most times are
reasonable, the average being within roughly two minutes.
The major exceptions are checking equals() /hashCode()
consistency (property v) for BCel and Hsqldb, and checking
symmetry (property (ii) for Hsqldb. This is due to more
complex data structures and non-trivial arithmetic. The
number of lines of code analyzed range from a few lines to a
few thousand and illustrate the improved scalability of our
technique over previous work [20, 31, 26, 9].

4.2.2 Checking Class Invariants in java.util

We also evaluated our technique by checking class invari-
ants in the java.util package (JDK 1.4). The classes were
unmodified, except for portions of HashMap and HashSet that
use floating point numbers.

We present two sets of experiments. In the first, we
checked a class invariant: that the number of objects in
a collection is equal to its size integer field, with a client
that performs a series of insertions in the collection, from an
array of objects given as argument. For each collection, the
specification that we checked is given in Figure 9. We use
transitive closure and set cardinality to obtain the number
of elements in each data structure. Figure 9 also shows time
to check those properties. More complex collections take
longer to check than the simpler ones, but in little more
than a minute at most. The large size of the TreeMap and
TreeSet is due to the inlining of many method calls that
are required for keeping the red-black tree structure well-
formed. Notice that our tool handles over 12000 lines of
such code in about a minute.

The second set of experiments involves a synthetic client
that tests both the client and the library code to find con-
crete examples of misuse of the collections API (see Fig-



Violations Performance
Time (seconds) size

Prop. Type Encode Solve (lines)

BCel (all types in org.apache.bcel)
(ii) generic.ArrayType 1.7 113.7 1748

anonymous ReferenceType 1.1 89.2 1656
(iii) generic.IF_CMPEQ 1.2 102.8 1844

anonymous Type 2.5 75.8 1662
generic.ArrayType 1.2 82.7 1846

(v) generic.ArrayType 0.9 2493.1 580
generic.LocalVariableGen 0.9 1589.5 512
anonymous Type 0.9 1318.5 443
generic.MONITOREXIT .9 1757.4 531

Antlr (all types in org.antlr)
(v) analysis.Label 3.8 272.5 212

analysis.Transition 4.8 386.3 249
analysis.
SemanticContext.NOT 3.8 251.5 272
misc.Interval 3.5 295.5 171
stringtemplate.
language.FormalArgument 3.6 350.7 179

(vi) analysis.Label 6.9 0 26
analysis.Transition 3.5 0 30

(vii) analysis.Label 3.9 0 21
analysis.Transition 3.3 0 29

Hsqldb (all types in org.hsqldb)
(ii) CachedRow 1.5 580.1 1097

Row 1.5 593.1 1097

JavaCup
(v) java_cup.terminal_set 0.5 6.3 286

Ranges (smallest/average/biggest)
Part Size (lines) Encode (secs) Solve (secs)

Antlr (18 equals, 2 ÄcompareTo)
(i) 3/39/173 3.1/3.5/6.7 0/1.2/4.7
(ii) 657/693/827 5.2/5.5/6.6 0/94.7/451.3
(iii) 656/728/996 5.1/5.8/10.1 0/56.5/337.9
(iv) 3/39/173 3.1/3.4/4.3 0/0.8/4.9
(v) 164/208/350 3.5/3.8/4.8 0/108/386.3
(vi) 26/28/30 3.49/5.2/6.9 0/0/0
(vii) 21/25/29 3.3/3.6/4 0/0/0
(viii) 31/35/39 3.3/3.7/4.1 0/0.1/0.1
(ix) 26/45/64 4.2/6.9/9.5 20.5/20.7/21

BCel (19 equals)
(i) 3/89/438 0.7/1.1/2.3 0/2/31
(ii) 1649/1735/2084 1.1/1.7/3.1 0/56.3/169
(iii) 1648/1820/2518 1.14/1.52/2.5 0/49.9/102.8
(iv) 3/86/438 0.7/1/3.2 0/1.9/33.9
(v) 433/541/871 0.86/1/1.8 0/896.4/5705.3

Hsqldb (8 equals)
(i) 3/137/983 1/1.4/3.5 0/1.5/7.1
(ii) 1085/1219/2065 1.4/1.7/2.9 48.2/335.6/756.6
(iii) 1084/1353/3044 1.3/1.4/1.8 54.4/124/524
(iv) 3/137/983 1/1.6/3.4 0/1.5/7.7
(v) 996/??/?? 3.6/??/?? ??/??/??

JavaCup (14 equals)
(i) 5/56/123 0.2/0.2/0.3 1.9/2.4/2.8
(ii) 378/404/437 0.3/0.4/0.5 3/3.5/4.3
(iii) 377/429/495 0.3/0.4/0.6 2.9/3.4/4.5
(iv) 7/32/66 0.2/0.3/0.9 2.3/2.7/4.2
(v) 247/290/362 0.3/0.3/0.5 3.2/4.5/25.2

Figure 8: Equals Contract Checking Results. Missing rows indicate no applicable violations or methods.

ure 1(b) for a client using a HashSet). The client re-
moves duplicates from an array of values given as its ar-
gument, to produce a set (bag to set transformation).
We used this client with four collection types—ArrayList,
LinkedList, HashSet, TreeSet—and with element types
that were correct and ones that contained violations of
equals(), hashCode() and/or compareTo() contracts.

The results are shown in Figure 10. Cases with a client
misuse of the collections API are analyzed more quickly than
those without one. HashSet and TreeSet are much slower
than the simpler collections, due to their complex structures
and having much more complex toArray methods involving
multiple levels of derived collections and iterators. The case
of no misuse of HashSet is an outlier, taking more than half
and hour to solve. This is probably because the complex
computations performed by hashCode() made SAT solver
heuristics less effective. Notice that the TreeSet bench-
marks consist of over 13000 lines of code and run in a few
minutes.

5. RELATED WORK
We build on work checking heap-manipulating code with

Alloy [18, 19] and SAT solving. Jalloy [20, 31] represents
control edges and intermediate data values explicitly with
variables. It optimizes the functional relations that repre-
sent fields. Taghdiri [26] uses a similar approach that dis-
covers method specifications at the logical level and pro-
vides better scalability. Dennis et al. [9] improve on the ex-
plicit representation of Jalloy, and evaluate their technique
by checking linked list benchmarks against JML specifica-
tions. They use KodKod [28], a relational model finder with
powerful optimizations, which we also use. We improve on

class formula
LinkedList this.size = |this.header.next∗ − null|
HashMap this.size = |this.table[].next∗ − null|
HashSet this.map.size =

|(this.map.table[].next∗ − null|
TreeMap this.size =

|count(this.root.(left + right)∗ − null|
TreeSet this.m.size =

|this.m.root.(left + right)∗ − null|

Time (seconds) size
class CFA Encode Solve (lines)
LinkedList 7.2 0.2 0.8 111
TreeMap 6.7 4.4 56.3 12592
TreeSet 7.8 3.6 68.6 12667
HashMap 10 0.6 19.4 1107
HashSet 11.4 0.8 22.6 1129

Figure 9: Structural properties of java.util and ver-
ification results

Time (seconds) found size
Class CFA Encode Solve bug? (lines)
ArrayList 9.1 .3 3.2 yes 445
ArrayList 11.0 .3 62.0 N/A 262
HashSet 9.1 0.4 136.1 yes 1180
HashSet 9.1 0.4 1946.0 N/A 874
LinkedList 11.3 0.4 2.1 yes 438
LinkedList 10.5 0.4 83.9 N/A 258
TreeSet 8.2 4.0 117.1 yes 13114
TreeSet 7.0 4.6 172.7 N/A 13024

Figure 10: Bag-To-Set Analysis Results



these approaches with much better scalability due to a slic-
ing algorithm at the logical level, and can handle realistic
fragments of code that manipulate both heap-allocated ob-
jects and integers.

Model checkers such as SLAM [2], BLAST [16], SMV [24],
NuSMV [5], BMC [3] are very successful at checking event
sequences and temporal logic formulae, whereas we focus on
structural properties of heap-manipulating code. We also
support modular checking of specifications and contracts,
meaning that components can be checked in an open-world
against all contexts. SATURN [35] is also based on SAT
solving and performs slicing at the constraint level. Our
slicing algorithm is similar at a high level, but we exploit
the machinery of SSA form and the CDG to capture data-
and control-dependencies more precisely in our initial formu-
lation, so we do not need later optimizations such as their
use of BDDs to simplify control flow guards. SATURN does
not support the rich specification language that we consider
in our technique.

Approaches such as TestEra [23], Korat [4], Java
PathFinder [21] generate all non-isomorphic inputs to a pro-
gram within some bounds using datatype invariants, and
check every path exercised by each input by executing the
code. Glass-box model checking [8] improves on these tech-
niques by further pruning the search space, and soundly re-
moving redundant inputs and operations. These techniques
are successful at checking certain data structure properties,
but not suitable for checking contract violations such as
the equals() /hashCode(), especially if the classes being
checked have integer-valued fields.

ESC/Java [11] uses a theorem prover to check for array
bounds errors and null pointer dereferences. It does not sup-
port the specification language we consider in our technique.
TVLA [22] is a shape analysis tool that provides an over-
approximation of code’s behavior and may therefore issue
false error reports. It also does not support modular veri-
fication. It has been used successfully to check linked data
structures such as linked lists and doubly linked lists, but
not hashmaps and treesets, and properties involving both
structure and integers considered in this paper.

A program slice [27] was originally defined as the set of
statements that may affect the values computed for a set of
variables at a designated point of interest. We are aware
of several model-checking projects where variations on pro-
gram slicing are applied to a source-level or intermediate-
level representation of a program before deriving formulae
from the program that are analyzed by a model-checker to
verify correctness.

Heitmeyer et al. [15] present an approach where the Spin
model checker is used to compare a property-based specifi-
cation against a state machine that describes a system op-
erationally. Heitmeyer et al. use a form of slicing in which
the set of variable names that occur in the logical formula
that encodes the property being checked are used to remove
unnecessary variables and their definitions from the analysis.

Hatcliff et al. [14] present a system for model checking of
various temporal properties of concurrent programs. In this
work, a variation on Weiser’s slicing algorithm is used to
remove program parts that are irrelevant for the properties
under consideration. The Bandera model checker [6] fea-
tures a program slicer that eliminates the parts of a program
that are irrelevant for the verification of temporal properties
such as deadlock freedom in concurrent Java programs. This

slicer employs a specialized algorithm that accommodates
Java’s concurrency model [13] and operates on the inter-
mediate representation of Soot [30]. The Bandera program
slicer was also used in the context of Java PathFinder [33].

Millett and Teitelbaum [25] present an approach for slic-
ing programs written in Promela, the input language for
the Spin model checker [1], and demonstrate that slicing
away computations unrelated to assertions of interest can
yield significant speedups. In contrast to our work, where
slicing is performed at the level of the generated formulae,
Millett and Teitelbaum extend System Dependence Graphs
(SDGs) to account for the communication constructs in Pro-
mela and use a variation on the SDG-based slicing algorithm
in CodeSurfer [12] to slice programs at the source level.

The main difference between the use of slicing-like tech-
niques in our work and in the model checking approaches
discussed above [14, 25, 33] is the fact that we perform slic-
ing at the level of the generated relational formulae, and
is similar in this respect to the technique used in [35]. If
we were to use slicing at the source level the slices would
have to be executable programs, otherwise it would not be
clear how to guarantee counter-examples that correspond to
actual executions. Slicing at the logical level includes only
statements involved in computations that the specification
depends on.

Uzuncaova and Khurshid [29] present a slicing technique
for Alloy [18] based on a partition of core vs. derived rela-
tions. Their approach is heuristical, however, and they do
not give a precise condition for slicing relational formulae as
we do.

6. CONCLUSIONS
We presented a method for finding bugs in code based on

relational logic and SAT solving, which provides much better
scalability than prior work. It can check a mixture of struc-
tural and numerical properties written in a rich specification
language on realistic fragments of programs. To the best of
our knowledge, ours is the first fully automated tool that
checks equality contract violations of real programs. In the
future, we plan to extend this technique to leverage different
program analyses (such as points-to analyses) to reduce the
search space of the SAT solver, and attempt to improve the
performance of arithmetic operations.

Acknowledgments. We are grateful to Mark Wegman
for many useful discussions, and Emina Torlak for her help
with the KodKod tool. We also thank Stephen Fink, Chris-
tian Hammer, Daniel Jackson, Adam Kieżun, Alexey Logi-
nov, and Emina Torlak for their feedback.

7. REFERENCES
[1] Spin model checker.

http://spinroot.com/spin/whatispin.html.

[2] Ball, T., and Rajamani, S. K. The SLAM project:
Debugging system software via static analysis. In
POPL’02: Proceeding of the Symposium on the
Principles of Programming Languages (2002).

[3] Biere, A., Cimatti, A., and Clarke, E. Symbolic
model checking without BDDs. In International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (1999).

[4] Boyapati, C., Khurshid, S., and Marinov, D.
Korat: Automated testing based on Java predicates.



In ISSTA’02: Proceedings of the International
Symposium on Software Testing and Analysis (2002).

[5] Cimatti, A., Clarke, E., Groce, A., Jha, S., and
Veith, H. NuSMV: A new symbolic model verifier. In
CAV’99: Proceeding of the International Conference
on Computer-Aided Verification (1999).

[6] Corbett, J. C., Dwyer, M. B., Hatcliff, J.,
Laubach, S., Pasareanu, C. S., Robby, and
Zheng, H. Bandera: extracting finite-state models
from Java source code. In International Conference on
Software Engineering (2000).

[7] Cytron, R., Ferrante, J., Rosen, B. K.,
Wegman, M. N., and Zadeck, F. K. Efficiently
computing static single assignment form and the
control dependence graph. ACM TOPLAS 13, 4
(1991), 451–490.

[8] Darga, P., and Boyapati, C. Efficient software
model checking of data structure properties. In
OOPSLA’06: Proceedings of the International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (2006).

[9] Dennis, G., Chang, F. S.-H., and Jackson, D.
Modular verification of code with sat. In ISSTA’06:
Proceedings of the International Symposium on
Software Testing and Analysis (2006).

[10] Java equals() and compareto() contracts.
http://java.sun.com/j2se/1.5.0/docs/api/java/

lang/package-summary.html.

[11] Flanagan, C., Leino, K. R. M., Lillibridge, M.,
Nelson, G., Saxe, J. B., and Stata, R. Extended
static checking for Java. In PLDI’02: Proceedings of
the International Conference on Programming
Language Design and Implementation (2002).

[12] Grammatech, I. Codesurfer. http://www.
grammatech.com/products/codesurfer/index.html.

[13] Hatcliff, J., Corbett, J. C., Dwyer, M. B.,
Sokolowski, S., and Zheng, H. A formal study of
slicing for multi-threaded programs with JVM
concurrency primitives. In SAS ’99: Proceedings of the
International Symposium on Static Analysis (1999).

[14] Hatcliff, J., Dwyer, M. B., and Zheng, H.
Slicing software for model construction. Higher Order
Symbol. Comput. 13, 4 (2000), 315–353.

[15] Heitmeyer, C., James Kirby, J., Labaw, B.,
Archer, M., and Bharadwaj, R. Using abstraction
and model checking to detect safety violations in
requirements specifications. IEEE Trans. Softw. Eng.
24, 11 (1998), 927–948.

[16] Henzinger, T. A., Jhala, R., Majumdar, R., and
Sutre, G. Lazy abstraction. In Symposium on the
Principles of Programming Languages (2002).

[17] Hovemeyer, D., and Pugh, W. Finding bugs is
easy. SIGPLAN Notices 39, 12 (2004), 92–106.

[18] Jackson, D. Automating first-order relational logic.
In FSE’00: Proceedings of the International
Symposium on Foundations of Software Engineering
(2000).

[19] Jackson, D., Shlyakhter, I., and Sridharan, M.
A micromodularity mechanism. In FSE / ESEC’01:
Proceedings of the International Symposium on
Foundations of Software Engineering / European
Software Engineering Conference (2001).

[20] Jackson, D., and Vaziri, M. Finding bugs with a
constraint solver. In ISSTA’00: Proceedings of the
International Symposium on Software Testing and
Analysis (2000).

[21] Khurshid, S., Pasareanu, C., and Visser, W.
Generalized symbolic execution for model checking
and testing. In TACAS’03: Proceedings of the
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (2003).

[22] Lev-Ami, T., and Sagiv, M. TVLA: A system for
implementing static analyses. In Proceedings of the
International Symposium on Static Analysis (2000).

[23] Marinov, D., and Khurshid, S. TestEra: A novel
framework for automated testing of Java programs. In
ASE’01: Proceedings of the International Conference
on Automated Software Engineering (2001).

[24] McMillan, K. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[25] Millett, L. I., and Teitelbaum, T. Slicing Promela
and its applications to model checking. In Proceedings
of the 4th International SPIN Workshop (1998).

[26] Taghdiri, M. Inferring specifications to detect errors
in code. In Proceedings of the International Conference
on Automated Software Engineering (2004).

[27] Tip, F. A survey of program slicing techniques.
Journal of Programming Languages 3, 3 (1995),
121–189.

[28] Torlak, E., and Jackson, D. Kodkod: A relational
model finder. In TACAS’07: Proceedings of the
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (2007).

[29] Uzuncaova, E., and Khurshid, S. Kato: A program
slicing tool for declarative specifications. In
International Conference on Software Engineering
(2007).

[30] Vallée-Rai, R., Co, P., Gagnon, E., Hendren,
L., Lam, P., and Sundaresan, V. Soot - a Java
bytecode optimization framework. In CASCON ’99:
Proceedings of the Conference of the Centre for
Advanced Studies on Collaborative research (1999).

[31] Vaziri, M., and Jackson, D. Checking properties of
heap-manipulating procedures with a constraint
solver. In TACAS’03: Proceedings of the International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (2003).

[32] Vaziri, M., Tip, F., Fink, S., and Dolby, J.
Declarative object identity using relation types. In
ECOOP’07: Proceedings of the European Conference
on Object-Oriented Programming (2007), pp. 54–78.

[33] Visser, W., Havelund, K., Brat, G. P., Park, S.,
and Lerda, F. Model checking programs. Autom.
Softw. Eng. 10, 2 (2003), 203–232.

[34] Watson Libraries for Analysis (WALA).
http://wala.sourceforge.net/.

[35] Xie, Y., and Aiken, A. Saturn: A scalable
framework for error detection using boolean
satisfiability. Transactions on Programming Languages
and Systems. to appear.


