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ABSTRACT
A program is reentrant if distinct executions of that pro-
gram on distinct inputs cannot affect each other. Reen-
trant programs have the desirable property that they can
be deployed on parallel machines without additional concur-
rency control. Many existing Java programs are not reen-
trant because they rely on mutable global state. We present
a mostly-automated refactoring that makes such programs
reentrant by replacing global state with thread-local state
and performing each execution in a fresh thread. The ap-
proach has the key advantage of yielding a program that is
obviously safe for parallel execution; the program can then
be optimized selectively for better performance. We imple-
mented this refactoring in Reentrancer, a practical Eclipse-
based tool. Reentrancer successfully eliminated observed re-
entrancy problems in five single-threaded Java benchmarks.
For three of the benchmarks, Reentrancer enabled speedups
on a multicore machine without any further code modifica-
tion.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.6 [Software Engineering]: Programming En-
vironments

General Terms
Performance, Reliability

1. INTRODUCTION
This paper presents a refactoring tool that makes single-

threaded programs reentrant. A program is reentrant1 if
distinct executions of the program on distinct inputs cannot
affect each other, whether run sequentially or concurrently.
(Definition 1 in Section 2 provides a more precise definition

1 Other definitions of the term “reentrant” can be found in
the literature and will be discussed in Section 5.
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of the term.) As multicore machines become more pervasive,
reentrancy is an increasingly desirable property—reentrant
programs can be run in parallel on multicores without ad-
ditional concurrency control or a separate virtual machine
for each program instance. Furthermore, even in single-
threaded settings, reentrancy is a desirable property because
it ensures that successive executions of an application will
behave consistently.

A key obstacle to obtaining increased performance on mul-
ticores is the effort required to make legacy single-threaded
programs reentrant. Many such programs were written with-
out concurrency in mind and use global state in a non-
reentrant manner. Manually introducing reentrancy can be
labor-intensive since any use of mutable global state may
break reentrancy, and hence such state must either be elim-
inated or enclosed in carefully-placed synchronization con-
structs.

We are aware of several approaches for making programs
reentrant. First, global state can be encapsulated in one
or more “environment objects”, and additional method pa-
rameters can be introduced to make such objects accessible
throughout the application. In our experience, this approach
requires a prohibitive amount of intrusive code change. A
second approach is to use isolation mechanisms such as sepa-
rate OS processes or class loaders to ensure non-interference
of parallel program executions. However, an important dis-
advantage of this approach is that it does not allow for se-
lectively removing some isolation for performance (e.g., by
sharing some state), and it may introduce high overhead.

This paper employs a third approach based on replac-
ing global mutable state with thread-local state. In this ap-
proach, each execution thread gets a separate copy of each
global variable, and any access to a global variable is implic-
itly indexed by the current thread. After the introduction of
thread-local state, the programmer can ensure reentrancy by
(manually) modifying code to use a fresh thread for each ex-
ecution of the program; the threads can be run sequentially
or concurrently.

The use of thread-local state for reentrancy has two key
desirable properties. First, the approach is widely applica-
ble, as many platforms provide built-in support for thread-
local state, including Java, pthreads, and .NET. Second, if
desired (e.g., for performance), a developer can undo the in-
troduction of thread-local state for select global variables
(e.g., by introducing carefully synchronized shared state)
while leaving the rest as thread-local; this is not possible
in isolation-based approaches. This leads to an approach
of correctness before performance when moving software to



multicores (also espoused elsewhere [6]): the refactoring
produces an obviously reentrant program (i.e., one with no
global mutable state in the application) which can then be
optimized as needed. We believe this approach of correct-
ness before performance when parallelizing code will lead to
more robust code and greater programmer productivity.

The refactoring tool in which we implemented these ideas,
Reentrancer, targets the Java programming language and
deals with several additional issues that arise when han-
dling real-world programs. One such issue is initialization
semantics—Java’s static initializers can have fairly intricate
behavior that must be preserved when introducing thread-
local state.2 While our transformation does not preserve
static initializer semantics in all cases, we have formulated
preconditions that ensure that the initializers in an input
program are safe for our refactoring; our tool emits warnings
when it is able to detect violations of these preconditions.
Another challenge is handling library code, which cannot be
refactored and allows for accessing possibly-mutable data in
the environment (user input, files, etc.); our tool also warns
about common library usage that may break reentrancy.

Reentrancer was implemented as an extension to the
Eclipse Java development tools (JDT)3 and evaluated by
using it to make five Java applications reentrant. Our eval-
uation showed that Reentrancer can successfully refactor re-
alistic programs. For three of the refactored benchmarks,
we measured small speedups when the tests associated with
the application were executed in parallel on a multicore ma-
chine, with no additional performance tuning.

In summary, the contributions of this paper are as follows:

1. a characterization of the causes of non-reentrancy in
Java programs,

2. a mostly-automated refactoring for making Java pro-
grams reentrant by replacing global state with thread-
local state, with associated precondition checking that
warns of possible behavioral changes due to fragile
static initializer behavior and non-reentrant library us-
age,

3. an implementation of a refactoring tool, Reentrancer,
as an extension to the Eclipse JDT, and

4. an evaluation of Reentrancer on a set of Java applica-
tions, demonstrating its practicability.

2. MOTIVATING EXAMPLE
This section presents a motivating example that illustrates

our refactoring for making programs reentrant. The refac-
toring is comprised of the following 5 steps:

1. Removal of non-reentrant accesses to library global
state.

2. Encapsulation of static fields in the application in get-
ter/setter methods.

3. Replacing static initializers with explicit lazy initial-
ization.

4. Replacing global state with thread-local state.

2Similar issues arise in other languages, e.g., C# [3].
3http://www.eclipse.org/jdt

5. Transforming the application to use a fresh thread for
each execution.

Steps 2-4 are automatic, while steps 1 and 5 must be per-
formed by the developer. In the remainder of this section,
we will explain each of these steps in detail using an example
program.

Definitions. Before discussing our example, we define the
key concepts of reentrancy and immutability as used in this
paper.

Definition 1 (Reentrancy). Let an execution of a
program P be any external invocation of P, e.g., running
P’s main method or invoking a public API method from P.
A program P is reentrant iff for any two executions ei and ej

of P such that ei and ej have no mutable shared inputs (see
Definition 2), the results of ei and ej are unaffected by how
the executions are ordered, including parallel interleavings.

The goal of our refactoring is to make sequential programs
reentrant when each execution is run in a fresh thread (se-
quentially or concurrently). Note that the refactoring may
not preserve program semantics if certain preconditions do
not hold (see Section 3.2).

Definition 2 (Immutability). We consider an object
o to be immutable iff all of o’s transitively reachable abstract
state (reached by following instance field pointers) cannot be
mutated (i.e., it is deeply immutable [20]). A static field is
immutable iff (1) it is declared final and (2) it only points
to an immutable object o.

This notion of immutability is often a requirement for safely
sharing state between threads (further discussion in [23]).

2.1 Example Program
Figure 1 shows a small (contrived) Java program that we

shall use as our example. In this program, class Configura-
tion represents a configuration as a set of key-value pairs,
which are stored in a HashMap. A static initializer is used to
initialize the configuration with a pair <"version","2.0">
(see lines 5–7). Additional entries can be added using the
setOption() method and retrieved using the getOption()

method (see lines 8–10 and 11–13). Class CheckUserFiles

defines a method checkDir() that performs checks on some
directory homedir by setting a Configuration option and
calling runAllChecks(). The checkDir() method throws
an exception if the homedir option has already been set (see
line 18). Class Tests defines two JUnit tests, testFoo()

and testBar() that invoke the checkDir() method with ar-
guments "foo" and "bar", respectively.

The program in Figure 1 is not reentrant: when testFoo()

and testBar() are executed consecutively, testBar() fails
with an exception (thrown at line 18), but when testBar()

is executed in isolation, it passes. This lack of reentrancy
is due to the use of a global (static) map conInfo (declared
on line 2) to store configuration items. (Note that though
conInfo is declared final, it points to a mutable HashMap,
allowing for the problematic usage.) If the tests were run in
parallel, data races on conInfo could cause other undesirable
behaviors.

The use of a static initializer in the Configuration class
is another barrier to reentrancy. A static initializer s is in-
voked at most once in an execution, typically when the en-
closing class C is loaded (a more detailed discussion of static



[1] class Configuration {
[2] private static final Map<String, String> conInfo =
[3] new HashMap<String, String>();
[4] private static final String versionStr = "2.0";
[5] static {
[6] conInfo.put("version", versionStr);
[7] }
[8] static void setOption(String name, String value) {
[9] conInfo.put(name, value);
[10] }
[11] static String getOption(String name) {
[12] return conInfo.get(name);
[13] }
[14] }
[15] class CheckUserFiles {
[16] public static boolean checkDir(String homedir) {
[17] if (Configuration.getOption("homedir") != null) {
[18] throw new RuntimeException("homedir already set!");
[19] }
[20] Configuration.setOption("homedir", homedir);
[21] return runAllChecks();
[22] }
[23] private static boolean runAllChecks() {
[24] System.out.println("running checks..");
[25] // details omitted..
[26] return true;
[27] }
[28] }
[29] public class Tests {
[30] @Test
[31] public void testFoo() {
[32] Assert.assertTrue(CheckUserFiles.checkDir("foo"));
[33] }
[34] @Test
[35] public void testBar() {
[36] Assert.assertTrue(CheckUserFiles.checkDir("bar"));
[37] }
[38] }

Figure 1: Example program.

initialization in Java will follow in Section 3.2.1). Static ini-
tializers impede reentrancy since after s is executed, later
uses of C will not run s again and hence may behave dif-
ferently. Besides transforming global state into thread-local
state, our refactoring must also produce code that initializes
each thread-local copy in a manner consistent with existing
static initializers.

2.2 Removing Accesses to Library Globals
The first step of the refactoring is a manual transforma-

tion to remove non-reentrant accesses to global state in li-
braries. The example program of Figure 1 refers to global
library state on line 24, where it calls method println() on
the static field System.out. This gives rise to non-reentrant
behavior because if multiple instances of the application are
executed concurrently, their output may be intertwined in
unpredictable ways. Furthermore, our refactoring cannot re-
move this issue via thread-local state since (1) library code
cannot be transformed and (2) many non-reentrant behav-
iors occur in native code (console output, file accesses, etc.)
that our system cannot analyze.

There are many possible ways to remove accesses to li-
brary globals. In this case, one plausible option is to asso-
ciate a dedicated Java Logger object with each execution in-
stance instead of using System.out, as shown in Figure 2(a);
changed code fragments are underlined. Alternately, the
programmer may decide that the original output was un-
necessary and delete the call to println(), or she may de-
cide that the occurrence of interleaved output from different
executions can safely be ignored and leave the code unmod-

ified. Our tool simply reports possibly problematic accesses
to global library state and leaves it to the programmer to
handle them (see Section 3.2.2).

2.3 Encapsulating Static Fields
The next step in our refactoring is the encapsulation of

static fields in the application by introducing getter/setter
methods and replacing any direct access to such fields with
calls to these methods. While this step is not strictly neces-
sary to produce reentrant code, we include it since it enables
encapsulation of the lazy initialization code that is intro-
duced in the next step (see Section 2.4). Immutable fields
(see Definition 2) that are initialized to constants need not
be encapsulated, since they will not be made thread-local.
Furthermore, for final fields, it suffices to introduce a get-
ter method only. This introduction of getter/setter meth-
ods is performed automatically by our Reentrancer tool by
invoking the standard Encapsulate Field refactoring [9]
provided by Eclipse.

Our example program declares two static fields: conInfo

and versionStr. Of these fields, only conInfo needs to be
encapsulated because versionStr is immutable and points
to a constant String. Furthermore, only a getter method is
needed for conInfo because it is final. The resulting code
is shown in Figure 2(b).

2.4 Introducing Lazy Initialization
Next, our refactoring replaces static initializers with ex-

plicit lazy initialization. As previously mentioned, static ini-
tializer methods are an impediment to reentrancy because
they are only executed once, upon the first use of the declar-
ing class. Our approach is to move the static initialization
code4 for each class C into a method C.lazyInit() that is
executed when any static field of C is first accessed. This
transformation also introduces a boolean field initRun that
indicates if lazy initialization has already occurred. Once
thread-local state is introduced (Section 2.5), the lazy ini-
tialization will occur once per thread. The transformation
is performed automatically by Reentrancer.

Figure 2(c) shows the example program after the introduc-
tion of lazy initialization. Class Configuration now declares
a field initRun (line 92) and a method lazyInit() (lines 93–
99). Method lazyInit() checks if initRun is false, and if
so, sets it to true and executes all static initialization code,
i.e., the field initializer for conInfo and the static block
(lines 3 and 5–7 in Figure 1). Furthermore, method get-

ConInfo() is transformed to invoke lazyInit(), ensuring
that the initialization is performed before conInfo is first
accessed. Class CheckUserFiles is transformed similarly
for the logger field that was manually introduced by the
programmer in Figure 2(a).

Since lazy initialization may alter the point at which ini-
tialization code executes, this refactoring step may alter pro-
gram behavior (e.g., if the initialization code reads a muta-
ble static field in some other class). Reentrancer performs
a static analysis to reveal such cases and issues warnings
to the programmer if needed. This issue will be discussed
further in Section 3.2.1.

4 The static initialization code for class C includes all static
initializers declared in class C, as well as the initializers as-
sociated with static fields in class C, in textual order.



[39] class Configuration { ... } // same as before
[40] class CheckUserFiles {
[41] private static Logger logger = null;

[42] public static Logger getLogger(){ return logger; }

[43] public static void setLogger(Logger l){ logger = l; }

[44] public static boolean checkDir(String homedir) {
[45] if (Configuration.getOption("homedir") != null) {
[46] throw new RuntimeException("homedir already set!");
[47] }
[48] Configuration.setOption("homedir", homedir);
[49] return runAllChecks();
[50] }
[51] private static boolean runAllChecks() {
[52] getLogger().info("running checks..");

[53] // details omitted..
[54] return true;
[55] }
[56] }
[57] public class Tests {
[58] @Test public void testFoo() {
[59] CheckUserFiles.setLogger(Logger.getLogger("foo"));

[60] Assert.assertTrue(CheckUserFiles.checkDir("foo"));
[61] }
[62] @Test public void testBar() {
[63] CheckUserFiles.setLogger(Logger.getLogger("bar"));

[64] Assert.assertTrue(CheckUserFiles.checkDir("bar"));
[65] }
[66] } (a)

[67] class Configuration {
[68] private static final Map<String,String> conInfo =
[69] new HashMap<String,String>();
[70] private static Map<String,String> getConInfo() {

[71] return conInfo;

[72] }
[73] private static final String versionStr = "2.0";
[74] static {
[75] getConInfo().put("version", versionStr);

[76] }
[77] static void setOption(String name, String value) {
[78] getConInfo().put(name, value);

[79] }
[80] static String getOption(String name) {
[81] return getConInfo().get(name);

[82] }
[83] }
[84] class CheckUserFiles { ... } // same as before
[85] public class Tests { ... } // same as before

(b)

[86] class Configuration {
[87] private static Map<String,String> conInfo;

[88] private static Map<String,String> getConInfo() {
[89] lazyInit(); return conInfo;

[90] }
[91] private static final String versionStr = "2.0";
[92] private static boolean initRun = false;

[93] private static void lazyInit() {

[94] if (!initRun) {
[95] initRun = true;

[96] conInfo = new HashMap<String,String>();

[97] getConInfo().put("version", versionStr);

[98] }
[99] }
[100] // methods setOption(), getOption() same as before
[101] }
[102] public class CheckUserFiles {
[103] private static Logger logger;
[104] private static boolean initRun = false;

[105] private static void lazyInit() {

[106] if (!initRun) {
[107] initRun = true; logger = null;

[108] }
[109] }
[110] ...

[111] ...
[112] public static Logger getLogger(){
[113] lazyInit(); return logger;

[114] }
[115] public static void setLogger(Logger l){
[116] lazyInit(); logger = l;

[117] }
[118] // methods checkDir(), runAllChecks() same as before
[119] }
[120] public class Tests { ... } // same as before

(c)

[121] class Configuration {
[122] private static ThreadLocal<Map<String,String>> conInfo =

[123] new ThreadLocal<Map<String,String>>();

[124] private static Map<String,String> getConInfo() {
[125] lazyInit(); return conInfo.get();

[126] }
[127] private static final String versionStr = "2.0";
[128] private static ThreadLocal<Boolean> initRun =

[129] new ThreadLocal<Boolean>() {
[130] protected Boolean initialValue() { return false; }

[131] };

[132] private static void lazyInit() {
[133] if (!(initRun.get())) {

[134] initRun.set(true);
[135] conInfo.set(new HashMap<String,String>());

[136] getConInfo().put("version", versionStr);
[137] }
[138] }
[139] // methods setOption(), getOption() same as before
[140] }
[141] public class CheckUserFiles {
[142] private static ThreadLocal<Logger> logger =

[143] new ThreadLocal<Logger>();

[144] private static ThreadLocal<Boolean> initRun =

[145] new ThreadLocal<Boolean>() {
[146] protected Boolean initialValue() { return false; }

[147] };

[148] private static void lazyInit() {
[149] if (!initRun.get()) {

[150] initRun.set(true); logger.set(null);

[151] }
[152] }
[153] public static Logger getLogger(){
[154] lazyInit(); return logger.get();

[155] }
[156] public static void setLogger(Logger l){
[157] lazyInit(); logger.set(l);

[158] }
[159] // methods checkDir(), runAllChecks() same as before
[160] }
[161] public class Tests { ... } // same as before

(d)

[162] public class Configuration { ... } // same as before
[163] public class CheckUserFiles { ... } // same as before
[164] public class Tests {
[165] @Test public void testFoo() {
[166] TestRunner.runInChildThread(new TestRunner() {
[167] protected void runTest() {

[168] CheckUserFiles.setLogger(Logger.getLogger("foo"));
[169] Assert.assertTrue(CheckUserFiles.checkDir("foo"));
[170] }
[171] });

[172] }
[173] @Test public void testBar() {
[174] TestRunner.runInChildThread(new TestRunner() {
[175] protected void runTest() {

[176] CheckUserFiles.setLogger(Logger.getLogger("bar"));
[177] Assert.assertTrue(CheckUserFiles.checkDir("bar"));
[178] }
[179] });

[180] }
[181] } (e)

Figure 2: Successive refactoring steps applied to make the program of Figure 1 reentrant: (a) the program after replacing an
access to System.out with the use of decidated Loggers; (b) the program after encapsulating field accesses; (c) the program
after eliminating of static initializers; (d) the program after replacing global state with thread-local state; (e) the example
program after introducing fresh threads. In each step, changes since the previous version of the program are shown underlined.



2.5 Introducing Thread-Local State
In the next step, global state is replaced with thread-local

state. This is accomplished by wrapping each appropriate
static field in a java.lang.ThreadLocal object and using
the methods ThreadLocal.get() and ThreadLocal.set()

to read/write the value of the wrapped object. As a result
of this transformation, each thread will have its own “copy”
of each wrapped static field.

For our example, the resulting code is shown in Fig-
ure 2(d). In class Configuration, the type of field conInfo

has been changed from Map<String,String> to ThreadLo-

cal<Map<String,String>> (see line 122), and the read and
write of the field have been replaced with calls to Thread-

Local.get() and ThreadLocal.set() on lines 125 and 135,
respectively. Similarly, the type of field initRun is wrapped
in a ThreadLocal object.5 Moreover, the initial value of
the field initRun must now be defined by overriding the
method ThreadLocal.initialValue(). These changes are
shown on lines 128–131. Furthermore, the accesses to ini-

tRun on lines 133 and 134 are transformed appropriately.
Class CheckUserFiles is transformed similarly, and class
Tests is not affected by this transformation.

2.6 Introducing Threads
The final step of the transformation involves the use of

a fresh thread for each execution of the application. This
will ensure that each execution observes a different “copy”
of the static fields that have been made thread-local and
that the code in the lazyInit() methods is re-executed for
each copy. There are many possible ways to create these
fresh threads, and different situations may require different
solutions. For example, a stand-alone application may cre-
ate the threads in its main() method, but for a set of tests, it
may be desirable to create a special test-runner object that
automatically creates a new thread for each test. Therefore,
this is a step that must be performed manually.

Figure 2(e) shows how our example program has been
modified to create a new thread for each test. This is ac-
complished by creating a special TestRunner that creates a
new thread for each test and editing each test to utilize the
TestRunner. The code for class TestRunner is straightfor-
ward and the class is provided with our tool; we omit the
code here due to space limitations.

The reader may verify that, after this final step of the
transformation, the program is reentrant. In particular, the
behavior of testFoo() and testBar() no longer depends on
whether they are executed in isolation or not, i.e., testBar()
passes even if executed after testFoo() or if the tests are
executed in parallel.

3. REFACTORING FOR REENTRANCY
We will now present our refactoring algorithm, including

the preconditions checked before the code is transformed.
Section 3.1 presents the algorithm for the automatic steps
of our refactoring, previously illustrated in Sections 2.3–2.5.
Then, Section 3.2 describes static analyses to check precon-
ditions that ensure the refactoring is safe; the user is warned
about detected violations before the refactoring is run.

5Note that the type boolean must be boxed into a type
Boolean; this is due to the limitations of Java generics, which
do not permit parameterized types to be instantiated with
primitive types.

3.1 The Refactoring
Figure 3 gives pseudocode for the refactoring algorithm.

The AddAccessorMethods, IntroduceLazyInit, and
IntroduceThreadLocals routines correspond to the
steps of the refactoring illustrated in Sections 2.3, 2.4,
and 2.5 respectively. The routines are designed to be run
in sequence, as shown by the MakeProjectReentrant
routine that calls them. Note that the algorithm may not
be semantics-preserving if the preconditions to be described
in Section 3.2 do not hold for the input program P.

The AddAccessorMethods routine transforms accesses
to eligible static fields into calls to generated getter/setter
methods (see Figure 2(b) for example output). The pro-
cedure returns a mapping M from types to the generated
methods, used when introducing lazy initialization. The
MustTransform procedure indicates that a field f must
be transformed unless it is both immutable (see Definition 2)
and initialized to a constant value, e.g., the versionStr field
at line 4 of Figure 1. The check for a constant value is re-
quired to handle cases where f is immutable but its value is
obtained via other mutable state, e.g., a hash-consing lookup
table T .6

The IntroduceLazyInit method causes the initializa-
tion code for each type t to be run lazily, i.e., the first
time any transformed static field in t is accessed (once per
thread after thread-local state is introduced). It creates a
new method lazyInit() for t7 that includes all of t’s static
initialization code and a check to ensure it is only run once
(e.g., see lines 93–99 in Figure 2(c)). Note that to employ
lazy initialization, we must remove the final modifier from
the corresponding fields (line 7); if we desired, we could eas-
ily generate code to enforce a write-once property at run-
time. Since getters and setters have already been intro-
duced, it suffices to only add calls to lazyInit() in those
methods (lines 16–17).

Finally, IntroduceThreadLocals transforms eligi-
ble static fields to become thread-local using Java’s
java.lang.ThreadLocal type. The routine changes the type
T of any such field f to ThreadLocal<T> and initializes it ap-
propriately.8 Line 3 checks if f has a field initializer and if
so preserves it by overriding ThreadLocal.initValue(). As-
suming IntroduceLazyInit has run, the only fields with
initializers should be the initRun flags for guarding lazy
initialization (line 2 of IntroduceLazyInit). Finally, all
reads and writes of f are transformed to calls to ThreadLo-

cal.get() and ThreadLocal.set().

3.2 Preconditions
As mentioned, a number of preconditions must hold to

ensure the safety our refactoring. Section 3.2.1 discusses
restrictions on static initializers, and Section 3.2.2 presents
conditions on the usage of libraries. Finally, Section 3.2.3
discusses other potential semantic changes (mostly common
to all refactorings) that we currently do not check for.

6In this case, f must be transformed since the hash-consing
table will be made thread-local, and hence f must be initial-
ized separately for each copy of the table, thereby preserving
the behavior of reference-equality checks involving f .
7We ignore name conflict issues here; they are handled by
the implementation.
8Note that we use the static initializer for this initializa-
tion, but its run-once behavior causes no problems since
only ThreadLocal fields are initialized.



AddAccessorMethods(P)

1 M← [] // map from types to field access methods
2 for t ∈ Types(P)
3 do for each f ∈ StaticFields(t) ∧MustTransform(f)
4 do g ← CreateGetterMethod(f, t)
5 M[t]←M[t] ∪ {g}
6 cr ← CreateMethodCall(g)
7 for r ∈ FindReads(f,P)
8 do Replace(r, cr)
9 if final /∈Modifiers(f)

10 then s← CreateSetterMethod(f, t)
11 M[t]←M[t] ∪ {s}
12 cw ← CreateMethodCall(s)
13 for w ← FindWrites(f,P)
14 do Replace(w, cw)
15 returnM

IntroduceLazyInit(P,M)

1 for t ∈ Types(P) ∧M[t] 6= ∅
2 do i← CreateStaticField(“boolean”, “initRun”, “false”, t)
3 l← CreateStaticMethod(“void”, “lazyInit”, t)

// Return if ’lazyInit’ has run already.
4 AddIfCondition(l, i)
5 for m ∈ Members(t)
6 do if m ∈ StaticFields(t) ∧MustTransform(m)
7 then RemoveModifier(final, m)
8 FI ← GetFieldInitialization(m)
9 AddStatements(FI, l)

10 RemoveInitialization(m)
11 elseif m ∈ StaticBlocks(t)
12 then SB ← GetStatements(m)
13 AddStatements(SB, l)
14 Remove(m)
15 c← CreateMethodCall(l)
16 for m ∈M[t]
17 do InsertStatementToFront(c, m)

IntroduceThreadLocals(P)

1 for each f ∈ StaticFields(P) ∧MustTransform(f)
2 do wrap type of f with type ThreadLocal
3 if f has a field initializer
4 then init f to new ThreadLocal

with overridden initValue()
5 else init f to new ThreadLocal
6 g ← CreateMethodCall(f, “get()′′)
7 s← CreateMethodCall(f, “set()′′)
8 for a ∈ Reads(f,P)
9 do Replace(a, g)

10 for a ∈Writes(f,P)
11 do Replace(a, s)

MustTransform(f)

1 return IsMutable(f) ∨ ¬ InitToConstant(f)

MakeProjectReentrant(P)

1 M← AddAccessorMethods(P)
2 IntroduceLazyInit(P,M)
3 IntroduceThreadLocals(P)

Figure 3: Refactoring pseudocode.

3.2.1 Static Initializers
Static initialization semantics can make our transforma-

tion to lazy initialization unsafe, since the refactoring may
change when static initialization code executes. In Java,
several events can cause the static initializer for a type T to

[182] public class Main {
[183] public static void main(String[] args){
[184] B b = new B();
[185] C.y = 5;
[186] System.out.println(B.x);
[187] }
[188] }
[189] class B {
[190] static int x = C.y;
[191] }
[192] class C {
[193] static int y = 0;
[194] }

Figure 4: Illustration of fragile static initializers.

be run, including allocation of a T object, invocation of a
static method in T , access of a non-constant static field of T
(a field is constant if it is final and initialized to a compile-
time constant [15, 4.12.4]), or an initialization event for a
subclass of T [15, 12.4.1]. After applying our refactoring,
type T is initialized lazily, i.e., when some static field of T
is accessed. Therefore, the refactoring may change the ini-
tialization point of T (e.g., if some allocation of a T object
previously caused its initialization). Since static initializers
may execute arbitrary code, this altered timing may change
program behavior in unexpected ways.

For example, consider the program of Figure 4. As writ-
ten, the allocation of a B object at line 184 causes B’s static
initializer (line 190) to run. The initializer accesses C.y,
which in turn causes C’s initializer (line 193) to run. Hence,
the B.x field gets the value 0, which is printed on line 186.
With the lazy initialization introduced by our refactoring,
B’s initializer would not run until line 186 (due to the read
of B.x), and hence because of the write to C.y at line 185,
B.x will get the value 5, a change in behavior.

Cyclic dependences between static initializers may also
make our refactoring unsafe. Consider this example:

class D { static final int x = E.y + 1; }

class E { static final int y = D.x + 1; }

The static initializers of D and E are mutually dependent. If
E is initialized first, it will cause D’s initializer to run. Since
E’s initialization is not complete, D’s initializer reads 0 from
E.y, yielding D.x = 1 and E.y = 2 when initialization com-
pletes. In contrast, if D were initialized first, at completion
D.x would be 2 and E.y would be 1. Lazy initialization does
not preserve this fragile behavior.

We use a static analysis to detect if static initializers in a
program may cause our refactoring to change its behavior,
and our tool issues a warning if this is the case. Assume
for the moment that the input program P for the refactor-
ing uses no library code, i.e., there is no code that cannot
be transformed (we will discuss libraries in Section 3.2.2).
Then, the change to lazy initialization is safe if the follow-
ing two conditions hold:

1. There are no cyclic dependences between initializers
in P, where initializer s1 is dependent on initializer s2

if execution of s1 may cause s2 to run. Such depen-
dences can lead to fragile behavior not preserved by
the transformation, as discussed above.

2. For any static initializer s for some class C, the only
mutable static fields (see Definition 2) accessed by s



and its explicit transitive callees must be in C. Explicit
callees do not include other static initializers invoked
due to classloading during execution of s. This condi-
tion flags programs such as that of Figure 4 where B’s
static initializer reads the mutable static field C.y.

The exclusion of static initializers invoked due to class-
loading in condition (2) is important for avoiding false pos-
itive warnings. Without the exclusion, the analysis would
emit a warning every time a static initializer for some class C
referred to another class D with an initializer, even if D’s ini-
tializer only initialized immutable fields in D. Other static
initializers are safe to exclude since if conditions (1) and (2)
hold, all static initializers can only read immutable static
fields from other classes, and hence their relative execution
ordering can no longer affect behavior. (Note that condition
(1) is important, since with cyclic initializer dependences a
final static field can be read before its initialization com-
pletes, as illustrated earlier.)

A possible alternative to our lazy initialization transfor-
mation would be to preserve the timing of initialization in
the refactored code via insertion of explicit calls at each
point the initializer could have run. We rejected this ap-
proach for two reasons. First, preserving initializer timings
at the source level can require ugly code transformations
in some cases.9 Second, we believe that true violations of
our precondition checks (e.g., the code of Figure 4) reflect
highly fragile code that should be avoided independent of
our refactoring.

3.2.2 Library Usage
Certain usage of library code can make our refactoring

unsafe because (i) static fields and initializers in the libraries
cannot be transformed, and (ii) libraries enable access to the
environment (user input, the file system, etc.), which can
be viewed as another form of mutable global state. We will
now discuss the checks we perform to warn about potentially
unsafe uses of library code.

Ideally, our analysis would check for the following condi-
tions regarding library usage, which would ensure that li-
braries do not affect the safety of our refactoring:

• Static initializers for all library classes used by the ap-
plication must pass the check of Section 3.2.1. This
would ensure that the lazy initialization transforma-
tion does not change the behavior of initializers in the
library.

• The program, including used library code, must not
access any mutable static fields in the library or muta-
ble environment state through library calls (e.g., files).
We must prohibit accesses to such state since it cannot
be made thread-local.

Unfortunately, it is not practical to check the above con-
ditions precisely in a realistic tool. First, the notion of mu-
tability becomes murky when dealing with environmental
inputs like files. Consider a file containing configuration set-
tings with unchanged contents during execution. The file
is “immutable” as far as the program is concerned, but it

9For example, consider a constructor that explicitly invokes
its superclass constructor via super. To preserve initializer
timings, the transformed code must run the subclass static
initializer before the superclass constructor. However, an
explicit super call must appear first in a constructor.

would be very difficult for a tool to discover this fact with-
out annotations. Second, even reasoning about what library
code is executed by an application is difficult in a refactor-
ing tool—precise call graph construction algorithms (which
require precise pointer analysis) are not sufficiently scalable.

Our tool warns the user about potentially unsafe uses of
library methods via a blacklisting approach. Our blacklist
includes potentially problematic library methods that access
files, read system properties, paint GUI objects, manipulate
threads, etc. We flag any call to a blacklisted method from
the application as dangerous and warn the user. We also
flag all accesses of library mutable static fields from the ap-
plication as potentially dangerous. While these checks are
not complete in that they do not flag all unsafe uses of the
library, in our experience they have been sufficient and they
can be implemented scalably.

3.2.3 Other Issues
Our transformation may not preserve the exceptional be-

havior of a program. For example, if a static initializer s
throws an exception, making s run lazily may change the
stack trace of the exception, or the exception may not be
thrown at all (e.g., if the corresponding static fields are never
accessed.) Many other refactorings (e.g., extracting an ex-
pression to a local variable) do not preserve exceptional be-
havior, and typically this does not pose problems.

Also note that our transformation may change the seman-
tics of combining results from different executions of P. Say,
e.g., that P is already reentrant and that it hash-conses ob-
jects of type T via a global lookup table. After our refac-
toring, P ′ will perform thread-local hash-consing of T ob-
jects, and hence equality checks on T objects obtained from
distinct threads may not operate as before. If results of
different reentrant executions must be combined program-
matically, the developer must ensure that our refactoring
does not transform state such as hash-consing tables.

There are other corner cases in which our refactoring may
not preserve program semantics, e.g., if the program uses
reflection or native code. Such issues are common to all
refactorings, and it is therefore standard practice to rely
on a test suite to ensure that important behavior has not
changed [9]. All benchmarks used in our evaluation (see
Section 4.2) had a test suite which we used to check the
safety of our refactoring.

4. IMPLEMENTATION AND EVALUATION
We implemented our refactoring in a tool called Re-

entrancer as an extension to the Eclipse Java develop-
ment tools (JDT). Section 4.1 discusses some details of
the implementation and Section 4.2 presents our evalua-
tion of Reentrancer on several single-threaded, non-reentrant
benchmarks.

4.1 Implementation
Reentrancer’s functionality shows up as a Make Project

Reentrant refactoring in the Refactor menu. Similar to
Infer Generic Type Arguments [11], Reentrancer tar-
gets a whole Java project rather than one program element.

Reentrancer’s analyses for checking the refactoring pre-
conditions are implemented using the WALA frame-
work [21]. We use WALA primarily to compute call graphs
from static initializers to discover their transitive callees (see
Section 3.2). The implementation reflects the discussion in



Section 3.2, and Reentrancer issues a warning for each vio-
lation. The user is allowed to proceed with the refactoring
in spite of the warnings, since some may be false positives.

The Make Project Reentrant refactoring is composed
of several smaller refactoring steps, reflecting the transfor-
mation of the motivating example in Section 2.

Encapsulating fields. We use the Encapsulate Field
refactoring (see [9, p.206]) from Eclipse to encapsu-
late accesses to mutable10 or non-constant static fields
(see Section 3.1). Such fields may be declared in Java
interface types, which cannot have methods with bod-
ies; in this case, we first move the fields to a fresh ab-
stract class. Several pragmatic issues may arise in the
process of encapsulating fields, including name clashes
for getter/setter methods (handled by renaming) and
the transformation of field accesses in postfix expres-
sions, e.g., var++ (handled by introducing temporary
variables).

Introducing lazy initialization. This step is a straight-
forward implementation of the IntroduceLazyInit
algorithm of Section 3.1. One notable issue is that cer-
tain forms of array initializers can only be used in vari-
able declarations, e.g., int[][] foo = {{1,2},{3,4}};
we introduce new array creation expressions before
moving them into lazyInit() (e.g., int[][] foo =

new int[]{new int[]{1,2},new int[]{3,4}}).

Introducing thread-locals. This step closely reflects al-
gorithm IntroduceThreadLocals of Section 3.1.
As discussed in Section 2.5, we must “box”
any field of primitive type into the correspond-
ing reference type before wrapping the type with
java.lang.ThreadLocal. Similarly, primitive literals
have to be replaced with their boxed equivalents.

4.2 Evaluation
We evaluated our refactoring by observing its behavior

on several single-threaded, non-reentrant benchmarks. For
each benchmark, we first confirmed that reentrancy prob-
lems existed, either by observing failures when running ex-
isting tests in parallel or by writing new tests that exposed
problems. We then ran our refactoring, ensured that the
preconditions were met for each of the benchmarks, and
confirmed that the original tests still passed. Finally, we
confirmed that the observed reentrancy problems were fixed
in the refactored version of the benchmark and checked if
running tests in parallel on a dual-core processor yielded a
performance benefit.

Table 1 describes our benchmarks,11 including a short de-
scription, the version used, and the size in thousands of lines
of code. The table also shows a number of size measures
for each benchmark, including the number of types, meth-
ods, and fields, the number of static initializer blocks, the
number of fields with static initializer expressions, and the

10 We determine if a static field f is immutable (see Defini-
tion 2) in a type-based manner: f must be final, and either
the declared type of f must be an immutable class [23] (e.g.,
java.lang.String) or f must be initialized to an object of
immutable class type.

11Note that we had fairly stringent criteria for benchmarks;
they had to be single-threaded, had to have reentrancy is-
sues, and had to have a test suite to enable checking for
regressions.

total number of tests (and where relevant, the number of
tests we added to expose reentrancy problems is shown in
parentheses). For bcel, we chose a recent unreleased ver-
sion since it included a test suite. We manually unwrapped
two existing thread-local fields in bcel; they were presum-
ably made thread-local in an aborted attempt to add thread
safety, as the bcel documentation explicitly states that it
is not thread safe [1]. For coco/r, we chose an old version
explicitly labeled as non-reentrant [2]. We used a version
of xml-security from the Software-Artifact Infrastructure
Repository [7]. We made small modifications to the bench-
marks to work around bugs in the Eclipse refactorings we
rely on (see Section 4.1).

Table 2 presents our results. We first discuss the Warn-
ings column, which states the number of warnings issued
by Reentrancer as a(b)/c: a denotes the number of warnings
for accessing external mutable state from a static initializer
(Section 3.2.1), b is the number of warnings from a where
the accessed state is truly mutable, and c is the number of
dangerous library usage warnings (Section 3.2.2). We did
not find any instances of circular initializer dependences in
the benchmarks. For bcel and wala, we currently report
many false warnings (the difference between a and b) due to
an insufficiently strong check for immutable static fields (de-
scribed in Section 4.1). Arrays are particularly problematic,
as the immutability of array contents cannot be expressed
with the Java type system. More sophisticated mutability
inference techniques [18, 23] may reduce the false positive
rate.

For these benchmarks, we determined that all the b warn-
ings were safe due to the structure of the code. These ac-
cesses were often similar to the following:

class A {
static Map cache = new HashMap();
public static A findOrCreateA(String s) {
A result = cache.get(s);
if (result == null) { result = new A(s);

cache.put(s, result); }
return result; } }

class B {
static final A a = A.findOrCreateA("test"); }

Here, the static initializer of B accesses the mutable static
field A.cache by calling findOrCreateA(). While making
B’s initializer lazy could affect whether B.a gets a cached or
fresh A object, it should not otherwise affect behavior.

We also inspected all the dangerous library usage warn-
ings c and found that none required a code change in order
to make the tests for the benchmarks pass. The output of
some print statements could be interleaved in unexpected
ways in parallel executions; such behavior could be fixed by
using loggers, as in Section 2.2. Some library usage required
careful invocation of the benchmarks in parallel executions;
e.g., javacc writes several output files, and different execu-
tions must specify different output directories for the files.

The next three columns of Table 2 measure the amount of
code changed by the refactoring. The LOC changed column
gives the number of lines of code changed. The #methods

added/changed column states the number of methods in-
troduced by Reentrancer (e.g., lazyInit() methods) and
the number of existing methods changed due to insertion
of getter/setter calls. Finally, the fields added/wrapped

column counts the number of initRun fields added and the
number of fields changed to be ThreadLocal. From these re-
sults, it is clear that the transformation involves significant



Benchmark Description Version kLOC #types/ #static #static #tests
#methods/ init field

#fields blocks inits

coco/r Parser generator [2] Non-reentrant 3.3 23/210/191 0 71 15
xml-security XML security checks [22] 1.0.71 31 199/1555/574 3 454 86 (2)
bcel Bytecode transformation [1] SVN 694866 33 454/3562/804 3 612 81 (6)
javacc Parser generator [13] 4.2 39 156/2106/697 20 268 29
wala Program analysis [21] SVN 3243 83 1118/8413/2538 16 1356 166

Table 1: Benchmark characteristics.

Benchmark Warnings LOC #methods #fields processing running time
changed added/changed added/wrapped time (i)/(ii)/(iii)

coco/r 1(1)/10 1680 168/168 16/77 111 0.61/0.34/0.24
xml-security 26(26)/28 2321 380/420 90/145 328 14.5/14.6/14.1
bcel 14(1)/29 2723 472/435 34/219 447 0.50/0.73/0.66
javacc 0(0)/20 7583 654/537 26/316 492 1.40/2.41/2.13
wala 82(10)/41 5795 988/838 165/423 888 380/416/338

Table 2: Results for the benchmarks of Table 1. All times are in seconds.

amounts of code change—making all these changes manually
would be a tedious and error-prone undertaking. Note that
as previously mentioned, our tool’s immutability checking
is sometimes weak, and hence it may transform immutable
fields unnecessarily; with better immutability inference, the
amount of change may decrease for some benchmarks.

The processing time column in Table 2 states how long
it took Reentrancer to refactor each benchmark. Reentrancer
currently requires nearly 15 minutes to process the largest of
the benchmarks; however, the implementation is currently
completely untuned, and we expect to be able to improve
the running time of our tool significantly.

In all cases, our refactoring fixed the observed reentrancy
problems with the benchmarks. For bcel and xml-security,
the additional tests we added to expose reentrancy issues
passed after the refactoring when run in fresh threads. For
wala and javacc, some tests originally failed in a parallel
run of the test suite, but all passed after the refactoring.
coco/r differed from our other benchmarks in that the

program could not be invoked multiple times in the same
JVM at all, since many static fields were never reset. Be-
fore applying our refactoring, we ran coco/r’s test suite in
a single JVM instance by using a fresh class loader per ex-
ecution. After the refactoring, running each execution in a
fresh thread was sufficient. Note that removing the fresh
class loaders led to a performance improvement after our
refactoring, discussed further below.

The final running time column in Table 2 states the
time required for running the test suite associated with each
benchmark for the following 3 scenarios:12 (i) execution time
for the test suite for the unrefactored benchmark on a single
core, (ii) execution time for the test suite for the refactored
benchmark on a single core, and (iii) execution time for the
test suite for the refactoring benchmark on two cores. Hence,
comparing (ii) and (i) indicates the slowdown caused by the
refactoring (introduction of thread-locals, getters and set-

12In each case, we ran the test suite 5 times, discarded the
fastest and the slowest run, and computed the average of
the remaining 3 runs

ters, etc.), and comparing (iii) to min((i),(ii)) indicates the
speedup that is enabled by our refactoring by switching from
one core to two cores.13

As can be seen from the results for (i) and (ii), the perfor-
mance overhead of introducing thread-locals varies widely
and is often not large, though it can be significant (e.g.,
javacc tests run 1.72X slower). For frequently accessed
static fields, the transformation to thread-locals could be
undone manually, yielding improved performance while re-
taining the advantages of thread-locals elsewhere. The refac-
toring yielded a 44% speed improvement for coco/r, as we
were able to replace the fresh classloader per execution re-
quired for that benchmark (discussed above) with a fresh
thread, which had lower overhead.

For three of the benchmarks, the (iii) numbers show we
were able to speed up the test suite through a parallel
run without any modifications to the refactored code. The
speedups were 29% for coco/r, 11% for wala, and 3% for
xml-security14. For bcel and javacc, the overheads from
the refactoring outweighed the benefits of a parallel run on
two processors. (With more processors, the parallelism ben-
efits may be greater.) We strongly suspect that further
improvements in parallel running times are possible by re-
placing some thread-local state with properly synchronized
shared state.

5. RELATED WORK
The term ‘reentrant’ is used with various slightly differ-

ent meanings in the literature, each alluding to the fact that
a process attempting to “re-enter” a function concurrently
can do so safely. Our use of the term is most consistent
with the notion of reentrant procedures in systems program-
ming [19, p.49]. We are only concerned with reentrancy of
external calls to API methods of a program, not recursive

13All tests are run on a MacBook Pro with a 2.6GHz Intel
Core 2 Duo processor and 4GB RAM.

14All percentages compare the fastest single-threaded run (ei-
ther (i) or (ii)) with a parallel run.



method calls internal to the program (work by Fähndrich
et al. focuses on the latter issue for object invariants [8]).
Also, since we focus on user-level programs running on a
JVM, we are not concerned with low-level issues such as
self-modifying code and interrupts that systems program-
mers must address. Our work does not concern reentrant
locks, which are locks that can be acquired multiple times
by the same thread without blocking (like Java’s implicit
monitor locks [15]).

A related concept to reentrancy is that of a thread-safe
function, commonly used to mean a function that protects
shared resources from concurrent access via locks to avoid
data races and other concurrency errors. Reentrancy implies
thread-safety, but thread-safety may not imply reentrancy
because even the behavior of sequential executions may in-
terfere with each other through global state.

Separate class loaders are often used to introduce isolation
and reentrancy in Java programs, e.g., for J2EE servlets.
Much work has been done on reducing the overhead of run-
ning multiple isolated programs on a single JVM [14]. As
discussed in Section 1, a major disadvantage of this approach
is the difficulty of selectively introducing shared state to im-
prove performance. Also, on standard JVMs, a fresh class
loader per execution may introduce more overhead than a
fresh thread, as indicated by the results for coco/r bench-
mark in our evaluation (Section 4.2).

In recent years, significant advances have been made in
the area of automated tool support for refactoring [4, 12, 16,
17]. However, to our knowledge, we are the first to present
semi-automatic refactoring support for making existing Java
programs reentrant.

Dig et al. [5] present work on refactoring sequential Java
programs for concurrency using the java.util.concurrent

utilities. Two of their refactorings (converting int to Atom-

icInteger and converting HashMap to ConcurrentHashMap)
make shared data accesses thread-safe, but they do not nec-
essarily make the program reentrant. Their work comple-
ments ours: our technique for introducing thread-local state
could be used for state that need not be shared among exe-
cutions, while their technique could be used to share other
state safely.

Recently, Frigo et al. have introduced hyperobjects as a
language construct to aid in parallelization of code that uses
global variables [10]. Their holder hyperobjects are a gener-
alization of thread-local variables. Our refactoring could be
applied to a language with hyperobjects by replacing global
variables with holders and then allowing the programmer to
employ other hyperobjects like reducers as needed.

6. CONCLUSIONS AND FUTURE WORK
We presented a refactoring that makes single-threaded

programs reentrant by replacing global state with thread-
local state and static initialization with explicit lazy ini-
tialization. The refactoring enables a “correctness before
performance” approach to deploying such programs on mul-
ticore machines: the refactored program is obviously safe
for multicores, and it can be optimized by selectively in-
troducing shared state. The refactoring is implemented in
a tool called Reentrancer in the context of Eclipse JDT.
The refactoring is mostly automatic, and warnings are given
for issues that may require manual intervention. We used
Reentrancer to refactor several single-threaded Java applica-
tions with observed reentrancy problems and demonstrated

that these problems are eliminated by the refactoring and
that the refactoring alone can enable parallel speedups.

Future work includes the use of more sophisticated im-
mutability checking [18] in order to reduce the number of
fields that need to be wrapped into thread-local objects.
Also, we aim to develop an incremental workflow for our
refactoring in which only small amounts of code are trans-
formed at a time, making the transformations easier for de-
velopers to understand.
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