
Dynamic Detection of Atomic-Set-Serializability Violations

Christian Hammer†
∗

Julian Dolby‡ Mandana Vaziri‡ Frank Tip‡

†Universität Karlsruhe (TH) ‡IBM T. J. Watson Research Center
76128 Karlsruhe, Germany P.O. Box 704, Yorktown Heights, NY 10598, USA

hammer@ipd.info.uni-karlsruhe.de {dolby,mvaziri,ftip}@us.ibm.com

ABSTRACT
Previously we presented atomic sets, memory locations that
share some consistency property, and units of work, code
fragments that preserve consistency of atomic sets on which
they are declared. We also proposed atomic-set serializabil-
ity as a correctness criterion for concurrent programs, stating
that units of work must be serializable for each atomic set.
We showed that a set of problematic data access patterns
characterize executions that are not atomic-set serializable.
Our criterion subsumes data races (single-location atomic
sets) and serializability (all locations in one set).

In this paper, we present a dynamic analysis for detecting
violations of atomic-set serializability. The analysis can be
implemented efficiently, and does not depend on any specific
synchronization mechanism. We implemented the analysis
and evaluated it on a suite of real programs and benchmarks.
We found a number of known errors as well as several prob-
lems not previously reported.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming ; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Tracing ; D.2.4 [Software
Engineering]: Software/Program Verification—Reliability ;
F.3.2 [Logics and Meaning of Programs]: Semantics of
Programming Languages—Program Analysis

General Terms
Algorithms, Experimentation, Measurement, Reliability

Keywords
Concurrent Object-Oriented Programming, Data Races, Atom-
icity, Serializability, Dynamic Analysis

∗This research was conducted while the first author was affil-
iated with IBM Research and with the University of Passau.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

1. INTRODUCTION
As multi-core systems are coming into general use, concur-

rency-related bugs are a more significant problem for main-
stream programmers. The traditional correctness criterion
for concurrent programs is the absence of data races, which
occur when two threads access the same shared variable,
one of the accesses is a write, and there is no synchroniza-
tion between them. In general, data-race freedom does not
guarantee the absence of concurrency-related bugs. There-
fore, different types of errors and correctness criteria have
been proposed, such as high-level data races [3], stale-value
errors [4,9], and several definitions of serializability (or atom-
icity) [16,17,35,14,34,2,15,30,22,37,36]. According to these
definitions of serializability, an execution of read and write
events performed by a collection of threads is serializable if
it is equivalent to a serial execution, in which each thread’s
transactions (or atomic sections) are executed in some serial
order. These correctness criteria ignore relationships that
may exist between shared memory locations, such as invari-
ants and consistency properties, and therefore may not ac-
curately reflect the intentions of the programmer for correct
behavior, resulting in missed errors and false positives.

In previous work [32] we presented a correctness criterion
for concurrent systems that takes such relationships into ac-
count, and developed an automated inference technique for
placing synchronization correctly. The criterion is based on
atomic sets of memory locations that must be updated atom-
ically, and units of work, fragments of code that, when ex-
ecuted sequentially, preserve the consistency of the atomic
sets that they are declared on. Atomic-set serializability,
our correctness criterion, states that units of work must be
serializable for each atomic set they operate on. Executions
that are not atomic-set serializable can be characterized by
a set of problematic data access patterns [32].

In this paper, we present a dynamic analysis for detecting
violations of atomic-set serializability in executions of exist-
ing Java applications, by checking for the presence of the
problematic data access patterns that we previously identi-
fied. Our approach provides the following benefits: First,
atomic-set serializability is more flexible than existing cor-
rectness criteria because it can be used to check for tradi-
tional data races [27] (single-location atomic sets), standard
notions of serializability (all locations in one atomic set), and
a range of options in between. In particular, concurrency
bugs such as stale-value errors [4,9] and inconsistent views [3]
can be viewed as violations of atomic-set serializability. A
second benefit of atomic-set serializability is that it per-
mits certain non-problematic interleaving scenarios that are

rejected by standard notions of serializability. Third, the
problematic data access patterns we check [32] do not de-
pend on specific synchronization constructs such as locks.
Our analysis can therefore be used in settings where many
existing approaches cannot, such as classes from the Java 5
java.util.concurrent library (e.g., ArrayBlockingQueue

and ConcurrentHashMap) and lock-free algorithms. Fourth,
since the analysis checks for problematic data access pat-
terns, it only needs to consider fragments of the execution
at a time. The entire execution is not needed to detect
atomic-set serializability violations.

Key steps of our technique include:

• Using a simple static escape analysis [5] to detect fields
of objects that may be accessed by multiple threads,

• For each shared field, maintaining a set of state ma-
chines that determine to what extent each problematic
interleaving pattern has been matched during execu-
tion, and

• Instrumenting the code with yields to encourage prob-
lematic interleavings, a technique also known as noise
making [6] (this last step is optional).

We implemented the analysis using the Shrike bytecode
instrumentation component of the WALA program analysis
infrastructure [1]. Our tool instruments the bytecodes of an
application in order to: (i) intercept accesses to shared data,
(ii) update the state machines accordingly, and (iii) main-
tain a dynamic call graph to determine the units of work to
which these accesses belong. We show how the state ma-
chines can be represented efficiently, minimizing the pertur-
bation caused by executing instrumentation code. For our
prototype, we made the heuristic assumptions that method
boundaries delineate units of work, and that there is one
atomic set for (each instance of) each class, containing all
the instance fields of that class.

We evaluated the tool on a number of benchmarks, includ-
ing classes from the Java Collections Framework, and appli-
cations from the ConTest suite [12]. We found a significant
number of violations, including known problems [12, 16], as
well as problems not previously reported. Our tool may re-
port false positives for a number of reasons, in particular
when the determined units of work are too large, but we
found that a significant percentage of the serializability vio-
lations (89%) reported by the tool are indeed harmful. On
average over all benchmarks, the instrumentation inserted
by our tool slows down program execution by a factor of 14,
which is similar to, or better than the performance overhead
incurred by other dynamic serializability violation detection
tools [14,36,37,38,22]

In summary, the contributions of this paper are as follows:

• We present a dynamic analysis for detecting atomic-set
serializability violations.

• We implemented the technique using the WALA in-
frastructure, and demonstrated its effectiveness on a
number of Java benchmarks. We found both known
bugs and problems not previously reported.

• Our approach is independent of the synchronization
constructs employed, and can be applied in situations
where many previous techniques cannot (e.g., lock-free
algorithms and classes from java.util.concurrent).

2. BACKGROUND
In this section, we present our notion of atomic-set serial-

izability and compare it to several existing notions of serializ-
ability and atomicity. Figure 1(a) shows a class Account that
declares fields checking and savings, as well as a method
transfer() that models the transfer of money from one to
the other. Also shown is a class Global that declares a field
opCounter that counts the number of transactions that have
taken place. For the purposes of this example, we assume
that the programmer intends the following behavior:

(1) Intermediate states in which the deposit to checking

has taken place without the accompanying withdrawal
from savings cannot be observed.

(2) Concurrent executions of inc() are allowed provided
that variable opCounter is updated atomically.

To this end, transfer() and inc() are protected by sep-
arate locks, which is accomplished by making each of these
methods synchronized. Figure 1(a) also shows a class
Test that creates two threads T1 and T2 that execute Ac-

count.transfer() and Global.inc() concurrently.
Figure 1(b) depicts an execution in which two threads,

T1 and T2, concurrently execute the transfer() and inc()

methods, respectively. In particular, we show the vari-
ous read (R) and write (W) events performed on fields
checking (c), savings (s), and opCounter (o). For con-
venience, each method execution is labeled with a distinct
number (1 through 4) in Figure 1(b), and each read/write
event is labeled with a sequence of numbers corresponding
to the methods on the call stack during its execution. For
example, R1(c) indicates the read of field checking during
the execution of transfer(), and W1,2(o) denotes the write
to field opCounter during the first execution of inc() that
was invoked from transfer(). Observe that, in Figure 1(b),
the execution of inc() by T2 occurs interleaved between that
of the two calls to inc() by T1.

2.1 Atomicity/Serializability
We now discuss several notions of atomicity and serializ-

ability that have been defined previously.
Atomicity. Atomicity is a non-interference property in

which a method or code block is classified as being atomic if
its execution is not affected by and does not interfere with
that of other threads. In this setting, the idea is to show that
checking and savings are updated atomically by demon-
strating that the transfer() method is an atomic section
or a transaction.

Lipton’s theory of reduction [21] is defined in terms of
right-movers and left-movers. An action b is a right-mover
if, for any execution where the action b performed by one
thread is immediately followed by an action c performed by
a concurrent thread, the actions b and c can be swapped
without changing the resulting state [14]. Left-movers and
both-movers are defined analogously. In this theory, lock
acquires are right-movers, and lock releases are left-movers.
Accesses to shared variables that are consistently protected
by some lock are both-movers, and accesses to variables that
are not consistently protected by some lock are non-movers.
The pattern consisting of a sequence of right movers, fol-
lowed by at most one non-mover, followed by a sequence
of left movers, can be reduced to an equivalent serial ex-
ecution. However, method transfer() corresponds to the

class Account {
int checking, savings;
public Account(int i, int j){

checking = i; savings = j;
}
synchronized void transfer(int n){

checking += n;
Global.inc();
savings -= n;
Global.inc();

}
}
class Global {

static int opCounter = 0;
static synchronized void inc(){

opCounter++;
}

}
class Test {

public static void main(String[] args){
final Account x = new Account(4,7);
Thread T1 = new Thread(){

public void run(){ x.transfer(2); }
};
Thread T2 = new Thread(){

public void run(){ Global.inc(); }
};
T1.start(); T2.start();

}

} (a)

(b) T1:

transfer()1

z }| {

R1(c)W1(c)

inc()2

z }| {

R1,2(o)W1,2(o) R1(s)W1(s)

inc()3

z }| {

R1,3(o)W1,3(o)

T2: .

inc()4

z }| {

R4(o)W4(o) .

- time

(c) T1:

transfer()1

z }| {

R1(c)W1(c)

inc()2

z }| {

R1,2(o)W1,2(o) R1(s)W1(s)

inc()3

z }| {

R1,3(o)W1,3(o)

T2: .

inc()4

z }| {

R4(o)W4(o)

- time

(d) T1:

transfer()1

z }| {

R1(c)W1(c)

inc()2

z }| {

R1,2(o)W1,2(o) R1(s)W1(s)

inc()3

z }| {

R1,3(o)W1,3(o)

T2:

inc()4

z }| {

R4(o)W4(o) .

- time

Figure 1: (a) Example program. (b)–(d) Three different thread executions.

sequence: a right-mover (lock acquire at the beginning of
transfer()1), 2 both-movers (read/write to field checking),
a right mover (lock acquire at the beginning of inc()2), 2
both-movers (read/write to opCounter), a left mover (lock
release at the end of inc()2), 2 both-movers (read/write to
savings), a right mover (lock acquire at the beginning of
inc()3), 2 both-movers (read/write to opCounter), a left
mover (lock release at the end of inc()3), and a left-mover
(lock release at the end of transfer()1). Hence, accord-
ing to Lipton’s theory, the method transfer() of Figure 1
is not atomic. In other words, the theory cannot show that
the transfer from checking to savings is performed without
exposing intermediate states to other threads.

Conflict-serializability. Two events that are executed
by different threads are a conflicting pair if they operate on
the same location and one of them is a write. Two executions
are conflict-equivalent [7, 36] if and only if they contain the
same events, and for each pair of conflicting events, the two
events appear in the same order. An execution is conflict-
serializable if and only if it is conflict-equivalent to a serial
execution. For the threads T1 and T2 in our example, two
serial executions exist, as shown in Figure 1(c) and (d). The
execution of Figure 1(b) is not conflict-equivalent to either
of these because:

• The pairs of conflicting events include: (R1,2(o),W4(o)),
(R1,3(o),W4(o)), (W1,2(o),R4(o)), and (W1,3(o),R4(o)).

• In order for execution (b) to be conflict-equivalent to
serial execution (c), both R1,2(o) and R1,3(o) must oc-
cur before W4(o), and both W1,2(o) and W1,3(o) must
occur before R4(o). This is not the case.

• In order for execution (b) to be conflict-equivalent to
serial execution (d), both R1,2(o) and R1,3(o) must
occur after W4(o), and both W1,2(o) and W1,3(o) must

occur after R4(o). This is not the case either.

Hence, execution (b) is not conflict-serializable.
View-serializability. Two executions are view-

equivalent [7, 36] if they contain the same events, if each
read operation reads the result of the same write opera-
tion in both executions, and both executions must have the
same final write for any location. An execution is view-
serializable if it is view-equivalent to a serial execution. It is
easy to see that execution (b) is not view-equivalent to se-
rial execution (c), because there, R4(o) reads from W1,3(o),
whereas in execution (b), it reads from W1,2(o). Likewise,
execution (b) is not view-equivalent to serial execution (d)
because there, R1,3(o) reads from W1,2(o), whereas in ex-
ecution (b), it reads from W4(o). Hence, execution (b) is
not view-serializable. View- and conflict-serializability dif-
fer only on how they treat blind writes, i.e., when a write
performed by one thread is interleaved between writes to
the same location by another thread. Conflict-serializability
implies view-serializability [7, 36].

2.2 Atomic-set serializability
The existing notions of atomicity, conflict-serializability

and view-serializability reject the non-problematic execu-
tion of Figure 1(b) because these notions do not take into
account the relationships that exist between memory loca-
tions. Atomic-set serializability assumes the existence of
programmer-specified atomic sets of locations that must be
updated atomically, and units of work on an atomic set, code
fragments that, when executed sequentially, preserve consis-
tency of the atomic set. Given assumption (1) stated above,
we assume that checking and savings form an atomic set
S1, and that transfer()1 is a unit of work on S1. Moreover,
from assumption (2) stated above, we infer that opCounter is
another atomic set S2 and Global.inc()2, Global.inc()3,

and Global.inc()4 are units of work on S2. Atomic-set se-
rializability is equivalent to conflict serializability after pro-
jecting the original execution onto each atomic set, i.e., only
events from one atomic set are included when determining
conflicts.

The projection of execution (b) onto atomic set S1 con-
tains the following sequence of events:

R1(c) W1(c) R1(s) W1(s)

This is trivially serial, because the events from only one
thread are included. Furthermore, the projection of execu-
tion (b) onto atomic set S2 is:

R1,2(o) W1,2(o) R4(o) W4(o) R1,3(o) W1,3(o)

which is also serial because the events of units of work
Global.inc()2, Global.inc()3, and Global.inc()4 are not
interleaved. Therefore, execution (b) is atomic-set serializ-
able.

In conclusion, by taking the relationships between shared
memory locations (atomic sets) into account, atomic-set se-
rializability provides a more fine-grained correctness crite-
rion for concurrent systems than the traditional notions of
Lipton-style atomicity, conflict-serializability, and view-seri-
alizability. In practice, conflict- or view-serializability and
atomicity would classify execution (b) as having a bug, but
atomic-set serializability correctly reveals that there is none.
On the other hand, if a coarser granularity of data is desired
or available, all three locations can be placed in a single
atomic set, in which case our method would revert to the
traditional notion of conflict-serializability.

3. ALGORITHM
Let L be the set of all memory locations. A subset L ⊆ L

is an atomic set, indicating that there exists a consistency
property between those locations. For two locations l and
l′, we write sameSet(l, l′) to indicate that l and l′ are in
the same atomic set. An event is a read R(l) or a write
W (l) to a memory location l ∈ L, for some atomic set L.
We assume that each access to a single memory location is
uninterrupted. Given an event e, the notation loc(e) denotes
the location accessed by e.

A unit of work u is a sequence of events, and is declared
on a set of atomic sets. Let U be the set of all units of work.
We write sets(u) for the set of atomic sets corresponding to
u. We say that

S

L∈sets(u) L is the dynamic atomic set of

u. Units of work may be nested, and we write u ← u′ to
indicate that u′ is nested in u. Units of work form a forest
via the ← relation.

An access to a location l ∈ L appearing in unit of work u

belongs to the top-most (with respect to the ← forest) unit of
work u′ within u such that L ∈ sets(u′). The notation Ru(l)
denotes a read belonging to u, and similarly for writes. So
if a method foo calls another method bar, where both are
declared units of work for the atomic set L1 and bar reads
a location l ∈ L1 in bar, then this read belongs to foo, as
foo ← bar. Given an event e, the notation unit(e) denotes
the unit of work of e.

A thread is a sequence of units of work. The notation
thread(u) denotes the thread corresponding to u. An execu-
tion is a sequence of events from one or more threads. Given
an execution E and an atomic set L, the projection of E on
L is an execution that has all events on L in E in the same
order, and only those events.

Data Access Pattern Description

1. Ru(l) W
u
′ (l) Wu(l)

Value read is stale by
the time an update is
made in u.

2. Ru(l) W
u
′ (l) Ru(l)

Two reads of the same
location yield different
values in u.

3. Wu(l) R
u
′ (l) Wu(l)

An intermediate state is
observed by u′.

4. Wu(l) W
u
′ (l) Ru(l)

Value read is not the
same as the one written
last in u.

5. Wu(l) W
u
′ (l) Wu(l)

Value written by u′ is
lost.

6. Wu(l1) W
u
′ (l1) W

u
′ (l2) Wu(l2)

Memory is left in an in-
consistent state.

7. Wu(l1) W
u
′ (l2) W

u
′ (l1) Wu(l2) same as above.

8. Wu(l1) W
u
′ (l2) Wu(l2) W

u
′ (l1) same as above.

9. Wu(l1) R
u
′ (l1) R

u
′ (l2) Wu(l2)

State observed is incon-
sistent.

10. Wu(l1) R
u
′ (l2) R

u
′ (l1) Wu(l2) same as above.

11. Ru(l1) W
u
′ (l1) W

u
′ (l2) Ru(l2) same as above.

12. Ru(l1) W
u
′ (l2) W

u
′ (l1) Ru(l2) same as above.

13. Ru(l1) W
u
′ (l2) Ru(l2) W

u
′ (l1) same as above.

14. Wu(l1) R
u
′ (l2) Wu(l2) R

u
′ (l1) same as above.

Figure 2: Problematic Data Access Patterns.

A data access pattern is a sequence of events that originate
from two or more threads. For example, Ru(l) Wu′(l) Wu(l)
is a data access pattern where unit of work u first reads l,
then another unit of work u′ performs a write, followed by a
write by u. An execution is in accordance with a data access
pattern if it contains the events in the data access pattern,
and these appear in the same order.

Figure 2 shows a number of problematic data access pat-
terns (taken from [32] where 3 patterns were pairwise sym-
metric) in which data may be read or written inconsistently.
Definition 1 below defines a data race in terms of the prob-
lematic data access patterns of Figure 2.

Definition 1 (data race). Let L be an atomic set,
l1, l2 ∈ L, l one of l1 or l2, and u and u′ two units of work
for L, such that thread(u) 6= thread(u′). An execution has
a data race if it is in accordance with one of the data access
patterns of Figure 2.

As an example, consider Figure 3(a) which shows two
threads T1 and T2 with associated units of work u1 and
u2, respectively, which operate on two shared locations, x

and y. Figure 3(b) shows an execution in which the follow-
ing sequence of operations occurs: First (i) T1 executes its
conditional expression, then (ii) T2 executes its conditional
expression, then (iii) T2 executes the body of its if-statement,
and finally (iv) T1 executes the body of its if-statement. An
occurrence of problematic interleaving pattern 11 is high-
lighted in Figure 3(b) using underlining.

3.1 Race Automata
Our approach for detecting atomic-set serializability vio-

lations relies on the construction of a set of race automata

x=3; y=2;
fork;

//Unit of Work u1 (T1):
if (x+y+3<10){
x+=3
y=2;

}

//Unit of Work u2 (T2):
if (x+y+4<10){
y+=4
x=1;

}
(a)

Ru1(x), Ru1(y), Ru2(x), Ru2(y), Ru2(y), Wu2(y), Wu2(x), Ru1(x),

Wu1(x), Wu1(y)

(b)

Figure 3: (a) Example threads. (b) An execution that
exhibits an occurrence of problematic data access pattern 11
(shown underlined). The variables u, u′, l1, and l2 in the
pattern are bound to u1, u2, y, and x, respectively.

0 1 2 3 4
Ru(l1) Wu′(l1) Wu′(l2) Ru(l2)

Figure 4: Automaton to detect pattern 11.

that are used to match the problematic data access patterns
of Figure 2 during program execution. Each race automaton
has an initial state in which no event of the pattern has been
matched yet, an accept state in which the entire pattern has
been matched, and a number of intermediate states. Transi-
tions between states are labeled with the events of the pat-
tern under consideration, and each state has a self-transition
for all other events. Reaching an accept state results in our
tool issuing a warning. For example, the race automaton
depicted in Figure 4 detects the problematic data access
pattern corresponding to pattern 11 of Figure 2. To detect
pattern 11 in the execution of Figure 3(b), u1 and u2 in
the execution are bound to u and u′ in the pattern, and
locations y and x are bound to pattern variables l1 and l2,
respectively. The automaton stays in state 0 after the first
event Ru1(x) in the execution of Figure 3(b), which does
not match the first event in the pattern, and transitions to
state 1 when it observes the second event, Ru1(y). The next
three events do not change the state, but then Wu2(y) causes
a transition to state 2. The next two events, Wu2(x) and
Ru1(x) cause transitions to states 3 and 4, respectively, at
which point the pattern is fully recognized, and a warning
is issued.

Figure 2 shows that there are 14 patterns that need to be
matched simultaneously. In addition, for each pair of vari-
ables l and l′, there are two ways of matching them against
two program locations, and likewise, there are two ways of
matching the units of work u and u′ against observed units of
work in the execution. Therefore, we need to construct the
14 automata discussed above for each tuple t ∈ U×U×L×L.
The corresponding automata (Qi, Σ, δi, Si

0, F
i) are defined

as follows: For each scenario i, Qi contains states Si
j rep-

resenting that exactly j events of the scenario have already
been detected, including the accept state F i. The input
alphabet Σ is the union of all traceable events

Σ =
[

u∈U,l∈L

{Ru(l), Wu(l)},

and the transition function δi : Qi × Σ → Qi is defined as

follows:

δ
i(Si

j , e) =

(

Si
j+1 if e is the jth event of scenario i

Si
j otherwise

Conceptually, when we process an event e, all automata
for all tuples q ∈ {(u1, u2, l1, l2) | unit(e) ∈ {u1, u2} ∧
thread(u1) 6= thread(u2) ∧ loc(e) ∈ {l1, l2}} need to be up-
dated. While this may require significant space and process-
ing time in principle, the implementation techniques pre-
sented below make this approach quite feasible in practice.

3.2 Efficient Representation of Race Automata
For each tuple t ∈ U×U×L×L, there are 14 race automata

that need to be represented. Since each automaton has at
most 5 states, we can represent the dynamic state of an
automaton with 3 bits. For each tuple t, we use a long

value to capture the state of all 14 corresponding automata
(42 bits). Representing automata for all tuples in a program
is prohibitive. So we only capture automata for the tuples
that actually appear during the dynamic analysis and delete
them when they are no longer needed.

We use the notation (u, ∗, l, ∗) to represent the set of tu-
ples

S

u′∈U,l′∈L(u, u′, l, l′). Likewise, the notation (u, u′, l, ∗)

denotes the set of tuples
S

l′∈L(u, u′, l, l′). We call such tu-
ples summary tuples. We define a map Bits which takes a
(summary) tuple and maps it to a bitset containing the dy-
namic state of all 14 corresponding race automata. We use
the shorthand notation Bits to denote the range of the map.

Procedures for manipulating bitsets are the follow-
ing. There are two ways of creating a new bitset.
createBits(u, ∗, l, ∗) creates a new bitset, initializes it to all
zeroes, and associates it to tuple (u, ∗, l, ∗) in map Bits.
copyBits(u, u′, l, l′, b) creates a new bitset, copies the con-
tents of the bitset b into it, and associates it to tuple
(u, u′, l, l′) in map Bits. Procedure deleteBits(u, u′, l, l′)
deletes the bitset corresponding to tuple (u, u′, l, l′) in Bits.
Function Bits(u, u′, l, l′) returns the bitset, if any, associ-
ated with (u, u′, l, l′) in map Bits. Procedure updateBits(b, e)
takes a bitset b and an event e and updates the states of
the automata represented by b according to e. Finally,
reportBits(u, u′, l, l′) checks if any of the automata associ-
ated with (u, u′, l, l′) have reached an accept state and re-
ports them to the user.

Figure 5 shows pseudocode for our algorithm. The algo-
rithm consists of intercepting events in the execution and
for each event e = (u, l): (i) creating automata if necessary
(Create(e)); and (ii) updating existing automata (Update(e)).
At the end of the updates, any automata that have reached
an accept state are reported to the user. GC() runs regularly
to clean up unnecessary bitsets.

Procedure Create(e) works as follows: If e is a first occur-
rence of an event in u on l, then a new bitset is created for
tuple summary (u, ∗, l, ∗). The rest of the body of Create(e)
deals with refining tuple summaries and creating new bit-
sets based on their corresponding ones. For example, if b =
Bits(u′, ∗, l′, ∗) such that u and u′ are from different threads,
and l and l′ are different memory locations from the same
atomic set, then event e causes the creation of a new bitset
for tuple (u′, u, l′, l). The state of b is copied into this new
bitset, which is then associated with tuple (u′, u, l′, l) in map
Bits.

Procedure Update(e), where e is an event of u on l, goes
through the set of bitsets and updates those having u as

Algorithm

T := ∅

upon each event e

Create(e)
Update(e)
GC(e)

Create(e)
let u = unit(e) and l = loc(e)
if e is a first occurrence of an event in u on l

createBits(u, ∗, l, ∗)
for each b in Bits

if (b = Bits(u′, ∗, l′, ∗) or b = Bits(u′, u, l′, ∗)
s.t. thread(u) 6= thread(u′)
and l 6= l′ and sameSet(l, l′))

copyBits(u′, u, l′, l, b)
if (b = Bits(u′, ∗, l′, ∗) s.t. thread(u) 6= thread(u′)

and l = l′)
copyBits(u′, u, l, ∗, b)

if (b = Bits(u, u′, l′, ∗) s.t. l 6= l′ and sameSet(l, l′))
copyBits(u, u′, l′, l, b)

Update(e)
let u = unit(e) and l = loc(e)
for each b in Bits

if (b = Bits(u1, u2, l1, l2) s.t. u ∈ {u1, u2}, l ∈ {l1, l2}
or b = Bits(u, ∗, l, ∗)
or b = Bits(u1, u2, l, ∗) s.t. u ∈ {u1, u2})

updateBits(b,e)

GC(e)
if (e terminates unit of work u)

T := T ∪ u

deleteBits(u, ∗, l, ∗)
for each b in B s.t. b = Bits(u, u′, l, ∗)

or b = Bits(u, u′, l, l′)
if ({u, u′} ⊆ T)

reportBits(u, u′, l, ∗)
deleteBits(u, u′, l, ∗)
reportBits(u, u′, l, l′)
deleteBits(u, u′, l, l′)

Figure 5: Algorithm for detecting atomic-set serializability violations.

one of their units of work, and l as one of their memory
locations. Finally, procedure GC() works as follows: The
set T represents the set of units of work whose execution
has terminated, and is initially empty. Upon termination of
each unit of work u, the procedure adds u to T , and deletes
the bitset. It also goes through all bitsets to find those
corresponding to tuples with both units of work terminated
and deletes them as well, reporting any detected patterns.
Note that the bitset corresponding to a summary tuple could
reach a final state (detecting one of patterns 1 through 5).

4. IMPLEMENTATION
In this section, we present details of our implementation

of the algorithm presented in Section 3.1. We first present
our choice of defaults for atomic sets and units of work (Sec-
tion 4.1). We then discuss how we perform instrumentation
to capture events (Section 4.2).

4.1 Defaults for Atomic Sets and Units of Work
We assume that all non-final, non-volatile instance

fields of a class (including inherited instance members) are
members of a single per-instance atomic set. All accessible
non-static public and protected methods in that class,
and its superclasses are considered initial units of work de-
clared on these atomic sets. All its non-final, non-volatile
static fields form another per-class atomic set with all non-
private methods of the class as initial units of work.

Our previous work states a crucial condition: We assume
that each access to a member of an atomic set is done within
a unit of work declared on that atomic set [32, Section 4.1].
In order to fulfill this requirement, we assume that a method
containing a direct access to a field is an additional unit of
work for the atomic set the field belongs to.

4.2 Program Instrumentation
We instrument the program to intercept data accesses and

to determine what unit of work each access belongs to. To
this end, we use the Shrike bytecode instrumentor of the
WALA program analysis infrastructure [1].

Before instrumentation, our tool performs a simple static
escape analysis [5] to determine possibly shared fields. This
analysis determines a conservative set of possibly-escaping

fields by computing the set of all types that are transitively
reachable from a static field or are passed to a thread con-
structor1. We instrument all non-final and non-volatile
fields of such types. In addition, we instrument accesses to
arrays, treating each array element as a separate location.

Our tool uses a concurrent, non-blocking queue similar
to [19, Section 15.4.2] to store the events of different threads,
which guarantees that no user-thread has to wait because of
trace collection. Furthermore it timestamps the events in
a sequential order which is a prerequisite for detecting the
problematic interleaving scenarios. We chose a non-blocking
queue to keep the probe effect [18] (i.e., changes to the sys-
tem’s behavior due to observation) as low as possible, and
since, under contention, a blocking queue will show degraded
performance due to context-switching overhead and schedul-
ing delays.

Since a field access itself and the recording of that ac-
cess do not happen atomically, the scheduler could activate
another thread between the actual field access and its in-
terception. Nevertheless, the execution obtained is always
a valid execution of the program, i.e., it might happen with
a possible scheduling. This is because the recording of an
event takes place in the same thread as the access itself, and
there is no synchronization between them. Hence, any syn-
chronization that applies to the access also applies to the
recording. Thus, the intercepted execution must be consis-
tent with the program’s synchronization scheme, so it is a
feasible execution.

To determine what unit of work each access belongs to,
we keep track of a dynamic call graph, which is essentially
the stack trace for each called method. An access to a loca-
tion in an atomic set belongs to the top-most unit of work
declared on that atomic set. To maintain the dynamic call
graph, we instrument method entry and exit points. To de-
tect library callbacks, we also instrument invocation points
in the program and compare the invocation’s target to the
invoked method at the entry. If the target and the called
method do not match, a callback has been detected, in which
case we start a new unit of work in the called method.

1 This case covers both explicit constructor parameters and
uses within thread or runnable methods of state defined in
an enclosing scope.

As an option, our instrumentation adds yields at certain
points in the program to achieve more interleavings, a tech-
nique is called noise making. Ben-Asher et al. found that,
with a more elaborate noise strategy, the probability of pro-
ducing a bug increases considerably [6].

5. EVALUATION
We evaluated our analysis on a suite of benchmarks: pro-

grams from the ConTest suite [12, 11], the W3C’s Java-
based Web server Jigsaw (version 2.2.5), and classes from
the Java Collections Framework. The ConTest bench-
mark suite [12, 11] consists of short programs of up to
420 lines of code created by students of a class on con-
currency. They contain a variety of known non-trivial
concurrency-related bugs. Jigsaw is a large program and
we analyzed all 939 classes of the main package, omitting
other loaded libraries. For the Java Collections Frame-
work, we chose representatives of different synchroniza-
tion patterns: java.util.Vector, a fully synchronized class
containing known bugs; java.util.ArrayList wrapped in
a synchronization wrapper2; and classes containing new
Java 5 synchronization primitives such as atomic vari-
ables and explicit locks like java.util.concurrent.Array-
BlockingQueue. For each collection class analyzed, we gen-
erated a test harness that randomly calls its methods 10000
times with appropriate parameters in each of ten threads.
Noise making was crucial when executing on a single core
processor, but with multicores our exhaustive noise insertion
exposed about the same number of races as without (which
is consistent with [6]).

Table 1 shows the results of our analysis, where each
benchmark was at most executed twice. We evaluated each
error report from our tool manually to determine benign
(Table 2) and malign violations. For evaluation purposes,
we followed the strict semantics of the new Java memory
model (JMM) as described in [20]. We classified all ac-
cess to shared data (in non-volatile variables) without
proper synchronization as a malign bug. We also classi-
fied the double-checked-locking anti-pattern as broken when
we found it on non-volatile variables. There are, however,
executions that exhibit a problematic data access pattern
where the code does not exhibit erroneous behavior, largely
due to our heuristic choice for units of work. These viola-
tions were classified as benign. Note that bugs in the pro-
gram may manifest themselves as several problematic data
access patterns, so there are fewer bugs than serializability
violations.

The column “Specified bug found” in Table 1 applies to
the documented bugs in the ConTest suite only. It indi-
cates whether the (intended) bug of that program was found
by our tool. The column “SF” in Table 1 shows the slow-
down factor of our analysis compared to non-instrumented
execution. The instrumentation itself imposes a slowdown
of about 2-4x. Our slowdown factors are comparable with
other dynamic analyses [14, 36, 37, 38, 22]. Indeed, our av-
erage slowdown of 14x is faster than these works, which re-
port average slowdown factors from 25x [22] to more than

2 This synchronization wrapper is an object of a class
that implements the List interface. All public meth-
ods in this class, except those dealing with iterators, are
synchronized and delegate to the corresponding meth-
ods in an encapsulated ArrayList object. See method
java.util.Collections.synchronizedList().

Nr 1 2 3 4 5 6 7 8 9 10 11 12 13 14
6 7 7 7 7 7 4 4 4 2 2 2 2 2 2

12 0 3 2 0 0 0 0 0 0 0 1 1 1 0

18 2 2 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Number of benign violations for each data access
pattern, other programs displayed no benign patterns

200x [36, block-based]. Regarding our false positive rate
of about 11%, our tool improves significantly over previous
approaches: With Atomizer [14] 93% of all found serializ-
ability violations were no actual bugs, while the best rate
was achieved by algorithms in Wang’s work [36] with about
67% false positives. The column “|B|” shows the maximum
number of quadruples in the algorithm of Figure 5 before
each call to GC(), and the column “Stack depth” shows the
average call stack depth of intercepted events. No direct cor-
relation between these two numbers and the program size or
slowdown factor is evident.

For the ConTest benchmarks, our tool found all the spec-
ified bugs for all but 4 programs. For 3 benchmarks, our
tool missed the violations due to the heuristics for units of
work: For MergeSort, AllocationVector and Shop the ac-
tual unit of work was in an unsynchronized method, that
called two synchronized methods of another object. Our
tool groups only calls to the same target object into one
unit of work, unless the calling method accesses fields of the
called method’s target directly. To circumvent this problem,
future work needs to offer an annotation mechanism for unit-
for constructs as presented in our previous work [32]. Atom-
icity checkers like [36] would miss those three bugs, too, as
the transaction boundaries are determined according to syn-
chronized blocks, but the bug in these programs is the fact
that synchronization in the caller is missing. Our heuristics
miss the bug in FileWriter due to its curious data access
pattern: units of work span multiple threads. Our heuristics
assume that this is not the case.

In Jigsaw, we found a bug in httpd: its field finishing

is updated in the synchronized method shutdown (invoked
by some other thread of class org.w3c.jigsaw.daemon.

ServerShutdownHook), but read in run without synchroniza-
tion. To make this code safe, the new JMM requires that
this field be volatile, or else the program might never ter-
minate on a multi-core processor. In addition, we found
violations that were due to a possible view inconsistency in
a synchronized method containing a wait(). We did not find
the bug described in [36] in the version we analyzed (2.2.5).
When manually inspecting the source code we found that
the corresponding code sections are synchronized.

Previous work on atomicity [36] reported a serializabil-
ity violation in the 1.4 version of Vector: The constructor
with a collection argument does not synchronize on the col-
lection parameter. We found this bug still present in Java
5. In java.util.concurrent.ArrayBlockingQueue we dis-
covered a similar bug in the addAll(Collection) method.
The JavaDoc of AbstractBlockingQueue, which it inherits,
states that the“behavior of this operation is undefined if the
specified [parameter] collection is modified while the opera-
tion is in progress”. We discovered this bug together with
violations for the other “bulk” methods that take parame-
ters of type Collection. Manual inspection found that if
the parameter collection is properly synchronized, the other
bulk methods’ violations are benign.

We also instrumented ArrayLists in a synchro-

Pattern Specified SF |B| Stack
Nr Program LOC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bug found depth
1 account 155 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Y 3.1 4K 2.6
2 airlinesTckts 95 1 2 0 2 0 0 1 0 0 1 0 1 0 0 Y 6.2 20K 3.1
3 AllocationV 286 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 25 10K 2.61
4 bubbleSort 362 1 1 2 1 1 1 0 0 2 1 2 1 1 1 Y 2.1 4K 2.8
5 BubbleSort2 130 1 1 1 0 0 0 0 0 1 0 1 1 1 0 Y 14 1K 2.5
6 BufWriter 255 0 2 2 0 3 0 7 8 2 2 2 2 2 2 Y 1.3 357 2.0
7 Critical 68 0 0 1 1 1 0 0 0 0 0 0 0 0 0 Y 1.7 10 2.1
8 DCL 183 0 1 0 0 0 0 0 0 1 0 1 0 0 0 Y 26 275 2.2
9 FileWriter 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 1.3 2K

10 LinkedList 416 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Y 1.6 32 3.6
11 Lottery 359 0 2 0 3 0 0 0 0 0 0 0 0 0 0 Y 6.7 205K 2.2
12 Manager 188 1 1 0 1 1 1 1 1 3 3 1 1 1 2 Y 1.7 6 2.9
13 MergeSort 375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 4.0 154 5.0
14 MergeSort2 257 1 1 0 1 0 0 0 0 0 0 0 0 0 0 Y 12 6k 4.8
15 PingPong 272 2 1 1 0 1 0 0 0 0 0 0 0 0 0 Y 3.1 221 4.0
16 Shop 273 0 2 0 0 0 0 0 0 0 0 0 0 0 0 N 7.0 2k 3.2
17 Sun’s Accnt 144 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Y 4.3 40k 3.5

18 Jigsaw 142K 0 1 0 0 0 0 0 0 0 0 0 0 0 0 N/A 7.5 11K 15.4
19 Vector 2636 0 4 0 0 0 0 0 0 0 0 8 1 0 0 N/A 43 1K 5.0
20 ArrayL. (syn) 2266 0 1 0 0 0 0 0 0 0 3 3 1 3 2 N/A 40 365 5.2
21 ArrayBlQ. 1576 0 1 8 0 2 1 2 0 1 5 6 9 1 0 N/A 39 406 5.6
22 LinkedBlQ. 1620 4 4 8 4 6 3 1 0 4 2 0 0 0 0 N/A 45 274 5.7
23 DelayQueue 1961 3 5 9 4 3 9 8 6 2 1 1 1 6 6 N/A 33 728 6.8

Table 1: For each benchmark, the table indicates the number of malign violations for each data access pattern, as well as
whether the specified bug is found (ConTest suite only), the slowdown factor, max. number of tuples, avg. call stack depth.

nization wrapper (Collections.synchronizedList(...)).
ArrayList’s constructors resemble the code of Vector, so
our tool reported the same serializability problem as for the
constructor of Vector with a collection parameter. Apart
from that, we found all bulk methods (except for addAll(),
which is redefined in ArrayList) unserializable when the pa-
rameter collection is modified concurrently. The reason for
this is that the synchronization wrappers do not provide a
synchronized version of the iterator() method3 but returns
an iterator to the backing (unsynchronized) collection.

For LinkedBlockingQueue we found a serializability vio-
lation when the inherited addAll(Collection) is executed
concurrently with the clear() method. We also found sev-
eral problematic data access patterns involving the last

field. If the queue is cleared while addAll() is being ex-
ecuted the resulting state does not correspond to any serial
execution of the two methods. The documentation for this
class confirms that behavior is undefined in this case.

In summary, we found our analysis effective for determin-
ing atomic-set serializability problems. In Table 1, 89% of
the reported violations are malign. We ran our analysis on
a realistic web server implementation and on typical library
code with inner classes and inheritance. All these features
are naturally supported by our heuristics.

6. RELATED WORK
We discuss three broad classes of related work: traditional

data race detection, high-level data race detection, and de-
tection of violations of atomicity and serializability.

Traditional work on error detection for concurrent pro-
grams has been focused on data races. A data race occurs
when there are two concurrent accesses to a shared memory
location, at least one of which is a write, and there is no syn-
chronization between them. Static approaches for detecting
data races include type systems where the programmer in-
dicates proper synchronization via type annotations [8, 13],
model checking (see, e.g., [29]), and static analysis [25,24].

3This problem is documented in the JavaDoc of
Collections.synchronizedCollection(...) as well.

Dynamic analyses for detecting data races include those
based on the lockset algorithm [31, 33], on the happens-
before relation [23], or on a combination of the two [28].
Savage et al. [31] present a practical implementation of the
lockset algorithm in the Eraser tool. The basic idea is lock-
set refinement: associated with each variable v is the set
of locks C(v) that initially consists of all locks. At each
access to v, C(v) is intersected with the locks held by the
current thread. If C(v) becomes empty, no lock consistently
protects v, and a race is reported. The happens-before ap-
proach checks whether conflicting accesses to shared data are
ordered by explicit synchronization. O’Callahan et al. [28]
combined lockset based and happens-before based detection
to improve both the overhead and the accuracy of traditional
data race detection.

Narayanasamy et al. [26] present a dynamic race detection
tool and an automated technique for classifying the races
found by the tool as benign or malign. This classification
is based on replaying the execution of a piece of code that
exhibits a race according to two different executions, and
observing whether or not the resulting executions produce
different results.

Both static and dynamic approaches to detecting races
scale reasonably well for real applications and have detected
a large number of bugs in real software [33,28,10,34,25,24].
However, a data race is a heuristic indication that a concur-
rency bug may exist, and does not directly correspond to
a notion of program correctness. In our approach, we con-
sider serializability, and in particular atomic-set serializabil-
ity as a correctness criterion, which captures the program-
mer’s intentions for correct behavior directly. Moreover, our
approach is independent of any synchronization mechanism
unlike these techniques.

A program without data races may not be free of concur-
rency bugs as shown in [4,9]. These high-level data races may
take the form of view inconsistency, where memory is read
inconsistently, as well as stale-value errors [9], where value
read from a shared variable is used beyond the synchroniza-
tion scope in which it was acquired. Our problematic data
access patterns capture these forms of high-level data races,

as well as several others, in one framework.
In Section 2, we illustrated the differences between atomic-

set serializability and atomicity and other forms of serializ-
ability. Flanagan and Freund [14] present Atomizer, a dy-
namic atomicity checker for multi-threaded Java programs,
based on Lipton’s theory of reduction [21]. Atomizer uses
a variation on Eraser’s LockSet algorithm [31] to determine
which shared variables may be involved in data races, and in-
serts instrumentation code that issues warnings when atom-
icity violations are detected.

Wang and Stoller present a number of different algorithms
for detecting atomicity violations [35,37,36]. The Multilock-
set algorithm [37] improves on the Eraser algorithm [31] by
using dynamic escape analysis, happens-before information,
and information about held locks. The Reduction-Based
Algorithm for checking atomicity [37] resembles Flanagan
and Freund’s approach [14], but relies on the Multilock-
set algorithm for determining variables involved in data
races [37]. The Block-Based Algorithm [35, 37] is based on
non-serializable interleaving patterns that correspond to our
patterns 1–4. Atomicity violations are detected by consider-
ing pairs of blocks from different transactions; warnings are
issued for matches with one of the unserializable patterns.
Wang and Stoller present an extension of this approach to
non-serializable interleaving patterns that involve multiple
variables. However, they view the heap as a single atomic
set, whereas our approach is parameterized by a partition-
ing of the heap into multiple atomic sets. Wang and Stoller
also [36] present two Commit-Node Algorithms for check-
ing view serializability and conflict serializability (detailed
comparison presented in Section 2).

Lu et al. [22] detect atomicity violations in C programs.
They observe many correct“training”executions of a concur-
rent application and record nonserializable interleavings of
accesses to shared variables. Then, nonserializable interleav-
ings that only arise in incorrect executions are reported as
atomicity violations. They only detect atomicity violations
that involve a single shared variable, whereas our approach
can handle multiple locations. The patterns of nonserial-
izable interleavings in [22] correspond to our patterns 1–4.
They view our pattern 5 (two writes interleaved by a write)
as serializable, due to the use of a slightly different notion
of serializability (view-serializability).

Another serializability violation detector was presented
by Xu et al. [38]. It dynamically detects atomic regions
(called Computation Units or CUs) using a region hypothe-
sis, which proved useful in their experiments but is not sound
in general. Thus, their analysis produces both false positives
and negatives. Non-serializability checking is done using a
heuristic based on strict two-phase locking. Like our work,
it does not rely on the possibly buggy locking structure of
the program.

7. CONCLUSIONS AND FUTURE WORK
In previous work [32], we proposed a correctness criterion

for concurrent object-oriented programs. This criterion, re-
ferred to as atomic-set-serializability in this paper, is more
flexible than existing notions of atomicity and serializabil-
ity because it is parameterized by a programmer-specified
partitioning of memory locations into atomic sets. Selecting
a partitioning that matches the granularity of a concurrent
data structure can help avoid some of the false positives and
missed errors associated with existing notions of atomicity

and serializability. Moreover, atomic-set-serializability is in-
dependent of a specific synchronization mechanism, and can
therefore be applied in settings where most other approaches
cannot (e.g., lock-free algorithms).

The contributions of this paper are threefold. First, we
present a dynamic analysis technique to find violations of
atomic-set serializability. Second, we implemented the dy-
namic analysis in a practical tool that can be applied in real-
istic scenarios with acceptable overhead. Third, we demon-
strated that our tool is capable of detecting a high number
of atomic-set serializability problems, including both known
errors and problems not previously reported. To the best of
our knowledge, we are the first to report concurrency-related
problems in classes from the Java 5 concurrent collections
framework in package java.util.concurrent.

Currently, our tool uses a fixed set of heuristics for par-
titioning memory locations into atomic sets. Our present
results indicate that, in some cases, our tool fails to find er-
rors when this partitioning is suboptimal. Longer term, we
plan to extend our tool to allow users to specify atomic sets
using annotations.

Acknowledgments
We thank Stephen Fink for useful discussions about pro-
gram instrumentation with Shrike, and Jan Vitek, Andreas
Lochbihler and Daniel Wasserrab for useful feedback.

8. REFERENCES
[1] T. J. Watson Libraries for Analysis (WALA).

http://wala.sourceforge.net/wiki/index.php.

[2] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller.
Optimized run-time race detection and atomicity
checking using partial discovered types. In ASE ’05:
Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages
233–242, New York, NY, USA, 2005. ACM Press.

[3] C. Artho, K. Havelund, and A. Biere. High-level data
races. Journal on Software Testing, Verification and
Reliability (STVR), 13(4):207–227, 2003.

[4] C. Artho, K. Havelund, and A. Biere. Using
block-local atomicity to detect stale-value concurrency
errors. In Automated Technology for Verification and
Analysis (ATVA’04), 2004.

[5] I. Balaban, F. Tip, and R. Fuhrer. Refactoring
support for class library migration. SIGPLAN Not.,
40(10):265–279, 2005.

[6] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur. Noise
makers need to know where to be silent - producing
schedules that find bugs. In International Symposium
on Leveraging Applications of Formal Methods,
Verification and Validation (ISOLA), 2006.

[7] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[8] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: Preventing data races and
deadlocks. In OOPSLA ’02: Proceedings of the 17th
ACM conference on Object oriented programming,
systems, languages, and applications, 2002.

[9] M. Burrows and K. R. M. Leino. Finding stale-value
errors in concurrent programs. Conc. & Comp.:
Practice & Experience, 16(12):1161–1172, 2004.

http://wala.sourceforge.net/wiki/index.php

[10] D. Engler and K. Ashcraft. RacerX: Effective, static
detection of race conditions and deadlocks. In Proc.
SOSP’03, pages 237–252, October 2003.

[11] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur.
Towards a framework and a benchmark for testing
tools for multi-threaded programs. Conc. & Comp.:
Practice & Experience, 19(3):267–279, 2007.

[12] Y. Eytani and S. Ur. Compiling a benchmark of
documented multi-threaded bugs. In Proc. IEEE
International Parallel & Distributed Processing
Symposium (IPDPS’04), 2004.

[13] C. Flanagan and S. N. Freund. Type-based race
detection for java. In PLDI ’00: Proceedings of the
ACM SIGPLAN conference on programming language
design and implementation, 2000.

[14] C. Flanagan and S. N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In
POPL ’04: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 256–267, 2004.

[15] C. Flanagan, S. N. Freund, and M. Lifshin. Type
inference for atomicity. In TLDI ’05: Proceedings of
the 2005 ACM SIGPLAN international workshop on
Types in languages design and implementation, pages
47–58, New York, NY, USA, 2005. ACM Press.

[16] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In PLDI ’03: Proceedings of the ACM
2003 conference on Programming language design and
implementation, pages 338–349, New York, NY, 2003.

[17] C. Flanagan and S. Qadeer. Types for atomicity. In
TLDI ’03: Proceedings of the 2003 ACM international
workshop on Types in languages design and
implementation, pages 1–12, New York, NY, 2003.

[18] J. Gait. A probe effect in concurrent programs.
Software: Practice & Experience, 16(3):225–233, 1986.

[19] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes,
and D. Lea. Java Concurrency in Practice. Addison
Wesley Professional, May 2006.

[20] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison Wesley Professional,
3rd edition, 2005.
http://java.sun.com/docs/books/jls/.

[21] R. J. Lipton. Reduction: a method of proving
properties of parallel programs. Commun. ACM,
18(12):717–721, 1975.

[22] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO:
Detecting atomicity violations via access interleaving
invariants. In International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’06), 2006.

[23] S. L. Min and J.-D. Choi. An efficient cache-based
access anomaly detection scheme. In ASPLOS ’91:
Proceedings of the fourth international conference on
architectural support for programming languages and
operating systems, 1991.

[24] M. Naik and A. Aiken. Conditional must not aliasing
for static race detection. In POPL ’07: Conference
record of the 34th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 327–338, Nice, France, 2007.

[25] M. Naik, A. Aiken, and J. Whaley. Effective static
race detection for java. In PLDI ’06: Proceedings of

the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 308–319,
New York, NY, USA, 2006. ACM Press.

[26] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards,
and B. Calder. Automatically classifying benign and
harmful data races using replay analysis. In
Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation
(PLDI’07), pages 22–31, San Diego, CA, June 2007.

[27] R. H. B. Netzer and B. P. Miller. What are race
conditions?: Some issues and formalizations. ACM
Lett. Program. Lang. Syst., 1(1):74–88, 1992.

[28] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In PPoPP ’03: Proceedings of the
ninth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 167–178, New
York, NY, USA, 2003. ACM Press.

[29] S. Qadeer and D. Wu. Kiss: keep it simple and
sequential. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI’04), 2004.

[30] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller.
Automated type-based analysis of data races and
atomicity. In PPoPP ’05: Proceedings of the tenth
ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 83–94, New
York, NY, USA, 2005. ACM Press.

[31] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

[32] M. Vaziri, F. Tip, and J. Dolby. Associating
synchronization constraints with data in an
object-oriented language. In POPL ’06: Conference
record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 334–345, 2006.

[33] C. von Praun and T. R. Gross. Object race detection.
In OOPSLA ’01: Proceedings of the 16th ACM
SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
pages 70–82, New York, NY, USA, 2001. ACM Press.

[34] C. von Praun and T. R. Gross. Atomicity violations in
object-oriented programs. Journal of Object
Technology, 3(6):103–122, June 2004. Special issue:
ECOOP 2003 workshop on FTfJP.

[35] L. Wang and S. D. Stoller. Run-time analysis for
atomicity. In Proceedings of the Workshop on Runtime
Verification (RV’03), 2003. Volume 89(2) of Electronic
Notes in Theoretical Computer Science. Elsevier.

[36] L. Wang and S. D. Stoller. Accurate and efficient
runtime detection of atomicity errors in concurrent
programs. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, (PPoPP’06), 2006.

[37] L. Wang and S. D. Stoller. Runtime analysis of
atomicity for multithreaded programs. IEEE Trans.
on Software Engineering, 32(2):93–110, 2006.

[38] M. Xu, R. Bod́ık, and M. D. Hill. A serializability
violation detector for shared-memory server programs.
In PLDI ’05: Proc. ACM conference on Programming
language design and implementation, 2005.

http://java.sun.com/docs/books/jls/

	Introduction
	Background
	Atomicity/Serializability
	Atomic-set serializability

	Algorithm
	Race Automata
	Efficient Representation of Race Automata

	Implementation
	Defaults for Atomic Sets and Units of Work
	Program Instrumentation

	Evaluation
	Related Work
	Conclusions and Future Work
	References

