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Abstract

Software development teams exchange source code in
shared repositories. These repositories are kept consistent
by having developers follow a commit policy, such as “Pro-
gram edits can be committed only if all available tests suc-
ceed.” Such policies may result in long intervals between
commits, increasing the likelihood of duplicative develop-
ment and merge conflicts. Furthermore, commit policies are
generally not automatically enforceable.

We present an analysis-based algorithm to identify com-
mittable changes that can be released early, without caus-
ing failures of existing tests, even in the presence of failing
tests in a developer’s local workspace! The algorithm can
support relaxed commit policies that allow early release
of changes, reducing the potential for merge conflicts. In
experiments using several versions of Daikon with failing
tests, 3 newly enabled commit policies were shown to allow
a significant percentage of changes to be committed.

1 Introduction

Software development of large systems today is a highly
collaborative process where teamwork is essential. Team
development reduces the time to market, but the cost of
coordination problems caused by duplicative and conflict-
ing edits in a code base can be nontrivial [17]. Although it
is customary to assign clear responsibilities for each mod-
ule, team members may be affected unavoidably when their
changes conflict with the changes made by others.

Modern revision control systems such as CVS [4] and
Subversion [18] can automatically resolve direct merge con-
flicts that arise when multiple developers concurrently ac-
cess the same file. However, this conflict resolution is lim-
ited in several ways:

• Manual conflict resolution is needed when the edits in-
volve overlapping text regions.

• Current revision control systems are unable to detect
indirect merge conflicts that arise when the changes
made by different developers on different files ad-
versely impact each other.

• Most importantly, the detection and resolution of con-
flicts in current revision control systems is based on a
textual analysis, and unexpected interactions between
changes may cause erroneous program behavior, even
in cases where no conflicts are reported.

When problems arise, they often manifest themselves as test
failures experienced by other team members. Such test fail-
ures are notoriously difficult to debug for developers be-
cause the problem was not caused by their own changes.

Therefore, the process of committing changes to a shared
repository is typically governed by a commit policy that
aims to minimize merge conflicts, eliminate build problems
and avoid test outcome degradations. A policy imposed by
the project management usually consists of a small number
of informally stated guidelines that developers are encour-
aged to follow. For example, many development teams fol-
low the “Commit early and commit often” rule (see, e.g.,
[3, 11]), in order to avoid long time intervals between com-
mits that may lead to duplicative development and merge
conflicts. To preserve code quality, the commit policy fol-
lowed by the KDE team [14] includes rules such as “Never
commit code that doesn’t compile” and “Test your changes
before committing”. The latter is commonly interpreted to
mean that all tests in a developer’s local workspace must
pass before changes can be committed; this corresponds to
the Conservative policy: “Do not commit changes in the
presence of failing tests in the local workspace”. Unfortu-
nately, this requirement also will generally increase the time
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intervals between commits, at odds with the “Commit early
and commit often” rule.

In addition, the Conservative policy may be overly re-
strictive. For example, test failures that already occur in the
original version of the program may be completely unre-
lated to the developer’s changes, and fixing them may re-
quire very different knowledge of the application.1 Further-
more, several widely used development methodologies such
as extreme programming [2] and test-driven development
[1] advocate that tests be written before the tested func-
tionality is implemented. Such tests initially fail until the
functionality is implemented, and the Conservative policy
blocks such tests from being released, thereby preventing
developers from collaborating on test development.

We conclude from the above discussion that it is de-
sirable to use a more relaxed commit policy that allows
parts of an evolving program to be committed before the
entire implementation of a feature is complete, provided
that the released changes do not introduce additional test
failures. Our research focuses on using program analy-
sis to define practical relaxed commit policies that prevent
the introduction of new test failures, while allowing early
commits of changes. Thus, the analysis determines a set
of safe committable changes that can be exposed to other
team members. The analysis is based on an existing change
impact technique [20] that compares successive versions
of a software system and expresses their difference as a
set of coarse-grained atomic changes. Each test in a test
suite, represented by its dynamic call graph, is then cor-
related with the changes that may affect its outcome. We
present Safe-commit, an algorithm that computes a commit-
table subset of the changes in the edit using this change-test
correlation.

We show how Safe-commit can be used to implement 3
commit policies of varying degrees of “strictness”; each al-
lows changes to be released safely in the presence of test
failures in a developer’s local workspace. The Restrictive
policy allows the release of changes that are “successfully
tested”, that is, they only impact tests that pass in the edited
program version. This policy is useful in situations where
the release of changes needs to be controlled tightly, e.g.,
when a major release is imminent and the only permissi-
ble changes are bug fixes. The Moderate policy permits
the release of changes that are tested, provided that no out-
come of an existing test degrades. Finally, the Permissive
policy relaxes the Moderate policy by additionally allowing
the release of untested changes. Either of the Moderate or

1 For example, if a test t fails in both the original and the edited version
of a program, then the failure of t in the edited program may be caused
by the changes, or it may be due to the same reason that caused t’s failure
in the original version. Determining why t fails in the edited program is
beyond the scope of this paper; therefore, we have concentrated on devel-
oping an analysis that guarantees that there are no additional tests that fail
after committing changes.

Permissive policies can be used instead of the Conservative
policy without compromising the integrity of the repository.

The contributions of this paper are threefold:

• Safe-commit, an algorithm to calculate a set of safely
committable changes. Releasing these changes is guar-
anteed not to cause the failure of any existing test. To
our knowledge, this is the first semantic analysis for
calculating committable changes;

• A prototype implementation of Safe-commit in JU-
NITMX, a plug-in that seamlessly extends the JUnit
support in Eclipse, and shows developers the set of
committable changes after running their test suite; and

• A preliminary evaluation of three new commit policies
that were implemented using Safe-commit on several
versions of Daikon [9]. In this experiment, an aver-
age of 4.6%, 31.4%, and 99.5% of all atomic changes
were identified as committable according to the Re-
strictive, Moderate, and Permissive commit policies,
respectively.

We also report on an experiment where Safe-commit is
applied to public releases of JMeter [8]. Surprisingly,
Safe-commit was capable of identifying a nontrivial num-
ber of committable changes, despite the huge number of
changes that separates these releases.

2 Motivating Example

The program shown in Figure 1 will serve as a running
example throughout the paper to illustrate the algorithm.
Part (a) of the figure shows the program itself, and part (b)
shows the associated test suite. Since we will use two ver-
sions of this program to illustrate our approach, program
changes are indicated with boxes (for additions) and with
strikeout font (for deletions). In other words, the original
program contains none of the boxed code fragments and
all of the code fragments in strikeout font, and the edited
program version is constructed by adding all boxed code
fragments and removing all fragments in strikeout font. In
Figure 1, gray labels are used to indicate various kinds of
changes (e.g., AM changes correspond to added methods).
These annotations are used to illustrate our analysis ap-
proach and will be explained in Section 3.

The example program consists of two classes A and B
and a test suite of five tests. In the original program version,
class A defines (from top to bottom) 5 methods: A.zip(),
A.foo(), A.bar(), A.baz(), and A.val(), each re-
turning an integer value. Furthermore, in the original pro-
gram version, the subclass B of class A contains 3 methods
B.waff(), B.bla(), and B.val(). The test suite ex-
ercises most of the methods in these classes and compares
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Program Code Test Suite

public class A {

  protected int y;

  public int zip(int x) {

    this.y = x;

    x = zap(x);

    return x + 2;

  }

  public int zap(int x) { return 2 * x; }

  public int foo(int x) { 

    return 2 * x; 

  }

  public int bar(int x) { return x / 2 ; }

  public int wiff(int x) { return x; }

  public int baz(int x) { 

                   return x + 1; 

  }

  public int val() { return 2; }

}

public class B extends A {

  public int waff(int x) { this.y = x; return x; }

  

  public int bla(int x) { return 7 + this.val(); }

  

  public int val() { return 1; }

}

public class Tests extends TestCase {

  public void test1() {

    A a = new A();

    a.bar(3);

    assertEquals(5, a.zip(3));

  }

  public void test2() {

    A a = new A();

    int temp = a.bar(2);

    assertEquals(2, a.foo(temp));

  }

  public void test3() { 

    B b = new B(); 

    assertEquals(5, b.waff(5));

  }

  public void test4() {

    B b = new B();

    assertEquals(8, b.bla(5));

  }

  public void test5() {

    A a = new B();

    assertEquals(a.baz(1), a.val());

  }

}

(a) (b)

CM(1)

CM(6)

AM(2), CM(3), LC(4), LC(5)

CM(7)

Lookup Changes

LC(4) [A, A.zap()]

LC(5) [B, A.zap()]

LC(10) [A, A.wiff(int)]

LC(11) [B, A.wiff(int)]

LC(18) [B, B.val()]

LC(19) [B, A.val()]

CM(14)

Test Results

original edited

test1 ! "

test2 ! !

test3 ! !

test4 ! "

test5 ! !

(c)

Covered Changes

test1 CM(1), AM(2), CM(3), LC(4), LC(5), CM(7)

test2 CM(7), CM(6)

test3 AF(13), CM(14)

test4 CM(15), DM(16), CM(17), LC(18), LC(19)

test5 CM(12), CM(15), DM(16), CM(17), LC(18), LC(19)

Covered Changes

test1 CM(1), AM(2), CM(3), LC(4), LC(5), CM(7), AF(13)

test2 CM(6), CM(7)

test3 AF(13), CM(14)

test4 CM(15), DM(16), CM(17), LC(18), LC(19)

test5 CM(12), CM(15), DM(16), CM(17), LC(18), LC(19)

CM(15)

DM(16), CM(17), LC(18), LC(19)

CM(12)

(d)

AF(13)

AM(8), CM(9), LC(10), LC(11)

Figure 1. (a) Original and edited version of the example program. The original program consists of
all program fragments except those shown in boxes. The edited program is obtained by adding all
boxed code fragments. Each box is labeled with the numbers of the corresponding atomic changes.
(b) Tests associated with (both versions of) the example program. (c) Test results for both versions
of the example program (here, 4 indicates that a test is passing, and 8 indicates that a test is failing).
(d) Lookup changes indicating changes to dynamic dispatch.

the values actually returned with the expected values. All
the tests in the test suite pass on the original program.

In the edited program version, methods A.zap() and
A.wiff() are added to class A and several changes are
applied to the other methods. In addition, a field A.y is
added, the bodies of methods B.waff() and B.bla()
are changed, and method B.val() is deleted. A run of
the test suite after the edit shows that some of the changes
break our assertions, resulting in the failures of test1 and
test4. Figure 1(c) summarizes the results of running the
tests in the original and edited versions of the program.

If, after running the test suite, a developer wants to com-
mit some of these changes to the shared repository without
breaking any test, there are two options:

• identify those changes that are not exercised by any
test (e.g., the addition of methods or fields that are not
yet used), or

• identify changes that are exercised by one or more
tests, but that do not contribute to any test failure.

Considering the changes in Figure 1, it is obvious that the
method A.wiff() and the field A.y can be added with-
out breaking any tests, because none of the tests exercises
this new functionality. However, identifying the remain-
ing changes that can be committed requires a deeper un-
derstanding of the program.

For example, the reader may observe that test3 is the
only test that exercises the change to the body of method
B.waff(), which requires the addition of field A.y. A
careful examination reveals that these two changes can be
committed safely because test3 passes in both versions
of the program and because committing these changes will
not affect the behavior of the other tests.

In general, as programs become larger and more com-
plex, the effects of changes on program behavior become
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harder to understand. Dependences between changes com-
plicate the analysis because a change that is not responsible
for any test’s failure may still be non-committable because
it may be dependent on a responsible change.

3 Change Impact Analysis

This section reviews a change impact analysis [20, 16]
that is used as the basis for the Safe-commit algorithm that
will be presented in Section 4. The change impact analysis
used in this paper [20, 19, 21, 24] consists of two steps: (i) a
decomposition of the edit into atomic changes, and (ii) cor-
relating these changes with dynamic call graphs that are ob-
tained by running a test suite on the two program versions.
Our analysis makes the following common assumptions:

• Tests are deterministic, so that multiple runs produce
the same dynamic call graph and the same outcome.

• The execution of a test is independent from the execu-
tions of other tests, (e.g., a test must not use data stored
in a global object by a previously executed test).

• There are no changes to the environment and libraries
between executions of tests.

This section reviews the change model and defines classifi-
cations of changes and tests that will be used in Section 4.

3.1 Change Model

A software edit can be decomposed into a set of atomic
changes. We use a fairly coarse-grained change model that
reflects the semantics of an object-oriented program. It sup-
ports change categories such as added classes (AC), deleted
classes (DC), added methods (AM), deleted methods (DM),
changed method bodies (CM), added fields (AF), deleted
fields (DF), and lookup changes (LC) (i.e., changes to dy-
namic dispatch) [20]. Regarding changes to method bod-
ies (CM changes), note that we generate one CM change
regardless of the number of statements within the respec-
tive method’s body that have been changed, as we employ a
method-level analysis.

In Figure 1, the developer adds method A.zap() to
class A as part of the edit that leads to the new version
of the program. This method addition is expressed as
four atomic changes, including the addition of an empty
method, AM(2), and a change to the method’s body, CM(3),
as shown in the shaded box label. The remaining two
atomic changes associated with this method addition, LC(4)
and LC(5), represent the effect of the method addition on
dynamic dispatch behavior, specifically, the newly possi-
ble dispatches of method A.zap() on objects of types

test1() test2() test3()

test4()

CM(1)
[A.zip()]

CM(3)
[A.zap]

AM(2)
[A.zap()]

CM(6)
[A.foo()]

CM(7)
[A.bar()]

DM(16)
[B.val()]

LC(18)
[B, B.val()]

CM(15)
[B.bla()]

CM(14)
[B.waff()]

Legend
exercised by
depends on

LC(4)
[A, A.zap()]

LC(19)
[B, A.val()]

LC(5)
[B, A.zap()]

CM(17)
[B.val()]

test5()

CM(12)
[A.baz()]

AF(13)
[A.y]

AM(8)
[B.wiff()]

CM(9)
[A.wiff()]

LC(10)
[A, A.wiff()]

LC(11)
[B, A.wiff()]

Figure 2. Atomic changes, dependences
between atomic changes, and exercised
changes for the example program of Figure 1.

A and B, respectively. There are many other kinds of ed-
its that may also impact dispatch behavior. For exam-
ple, the removal of method B.val() gives rise to the
atomic changes LC(18) and LC(19), which correspond to
the changed dispatch behavior of method A.val() when
invoked on objects of type B (originally, such calls dis-
patched to B.val(), but after the edit they dispatch to
A.val()), and the removed dispatch behavior of method
B.val() on objects of type B, respectively. Figure 1(d)
shows all of the LC changes corresponding to the edits
shown in Figure 1(a).

3.2 Dependences between changes

An atomic change may be dependent on one or more
other atomic changes, that must be applied also in order
for the resulting program to compile [19]. Intuitively, an
atomic change c1 structurally depends on another atomic
change c2, if applying c1 to the original version of the pro-
gram without also applying c2 results in an invalid pro-
gram. These dependences can be used to construct syntac-
tically valid intermediate versions of the program that con-
tain some, but not all of the atomic changes, as described in
detail in [7, 19].

For example, consider the deleted method B.val() in
the example program of Figure 1. This method is referenced
in the body of method B.bla(), which has been edited to
remove the reference to B.val(). The structural depen-
dence between the corresponding atomic changes DM(16)
and CM(15) reflects the fact that DM(16) can only be com-
mitted together with CM(15): Committing the deletion of
B.val() without committing the change to the body of
B.bla() results in a program with a compilation error.

Structural dependences only capture the requirements
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for creating a syntactically valid program, and do not cap-
ture all effects of an edit on program behavior. Certain
changes indirectly impact program behavior. For example,
the addition of a virtual method may give rise to changes in
dispatch behavior, and changing a field initializer may re-
sult in an implicit change to the bodies of the constructors
for the class in which the field is declared. Such effects are
captured by mapping dependences between changes. Map-
ping dependences are symmetrical, (i.e., if c1 is mapping-
dependent on c2, then c2 is mapping-dependent on c1) be-
cause it is not possible to apply one without the other.

For example, the addition of method A.zap() (AM(2)
in Figure 1) causes two LC changes, LC(4) and LC(5), that
witness its impact on dispatch behavior. These two LC
changes indicate that this method addition may alter the out-
come of tests that exercise this dispatch behavior.

In remainder of the paper, structural and mapping de-
pendences are not further distinguished, and we will simply
write c1  c2 if c1 is structurally dependent on c2 or if c1

is mapping dependent on c2. Figure 2 shows the atomic
changes and dependences for the program of Figure 1.

3.3 Call Graphs and Exercised Changes

Our algorithm for computing committable changes relies
on two sets of (dynamic) call graphs. First, the original test
suite is executed using the original version of the program
and, then the edited version of the test suite is applied to the
edited program version. A dynamic call graph is obtained
for each test in each version. Figure 3 shows the call graphs
for each of the five tests in the original and edited versions.
Bold boxes and arrows indicate added nodes and edges in
the edited version, whereas dashed boxes and arrows indi-
cate deletions.

If a test t fails (or crashes2), then we determine the sub-
set of atomic changes that may have impacted t’s behav-
ior. In particular, we identify a set of exercised changes by
correlating the computed call graphs with the set of atomic
changes: Each CM or LC change that corresponds to a node
or edge in t’s call graph in either version is exercised by
t. We will use ExercisedChanges(t) to denote the set of
changes exercised by test t. Figure 2 visualizes the exer-
cised changes for each test by way of dashed arrows. In Fig-
ure 3, the exercised changes for each test are shown as labels
attached to nodes and edges in the call graph. For exam-
ple, for test1, the exercised changes are CM(1), CM(3),
LC(4), and CM(7).

2 JUnit distinguishes between assertion failures and exceptions; both
are treated as test failures by our algorithm.

3.4 Test Classification

We classify tests based on whether or not they exist in
the original and edited versions of the program, and on their
outcome in each program version. Each test falls into one
of the following categories:

pass→pass pass in both program versions,
fail→pass fail in the original version, and pass

in the edited version,
pass→fail pass in the original version, and fail

in the edited version,
fail→fail fail in both program versions,
∅→pass added and pass in the edited version,
∅→fail added and fail in the edited version,

pass→∅ deleted and pass in the original ver-
sion, and

fail→∅ deleted and fail in the original ver-
sion.

The pass→∅ and fail→∅ categories are only mentioned
for completeness. Deleted tests no longer exercise program
behavior, and therefore do not play a role in the computation
of committable changes in Section 4.

According to this classification, test1 and test4 in
the example program are in the pass→fail category, and
test2, test3 and test5 are in the pass→pass category.

3.5 Change Coverage

Finally, we define a notion of change coverage that will
be used for two purposes. First, we will use this notion to
conservatively approximate the impact of applying changes
on test behavior in the following sense: If two tests t and t′

cover non-intersecting sets of changes, then the outcome of
t cannot be affected by committing the changes covered by
t′ and vice versa.

Second, we will use the total number of changes cov-
ered by any test for measuring the effectiveness of our al-
gorithm. Intuitively, our goal is to use a metric that differ-
entiates changes that are “used by tests” from changes that
are completely untested (otherwise, a scenario in which a
very low percentage of an application’s code is covered by
tests is likely to give rise to an artificially high percentage
of committable changes).

From the discussion of the change model, it is clear that
changes cannot be applied or tested in isolation because
of their interdependences, and our notion of change cov-
erage takes this into account. Specifically, we will say that
a change c is covered by a test t if (i) c is exercised by t,
(ii) c c′, and c′ is covered by t, or (iii) c′  c, and c′ is
covered by t. We will write CoveredChanges(t) to denote
the set of changes covered by test t.

Once all covered changes are computed, we calculate
those remaining uncovered changes that are not covered by
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<B,B.val()>

Assert.assertEquals()

Tests.test2()

<A,A.bar()> <A,A.foo()>

A.A()

A.bar()

CM(7)

A.foo()

CM(6)

Tests.test3()

Assert.assertEquals()

<B,B.waff()>

A.A()

B.B()

B.waff()

CM(14)

Tests.test4()

A.A()

B.B()

<B,B.bla()>

Assert.assertEquals()

LC(18)

B.val()
CM(17)

Tests.test5()

Assert.assertEquals()

<B,A.baz()>

A.A()

B.B() A.val()

<B,A.val()>

B.val()

<B,A.val()>

CM(17)

A.baz()

CM(12)

LC(19)

Legend

edge

Node Change added

deleted

Tests.test1()

<A,A.bar()>

<A,A.zap()>

A.A() Assert.assertEquals()A.zip()
CM(1)

A.bar()

CM(7)

LC(4)

A.zap()

CM(3)

<A,A.zip()>

B.bla()

CM(15)

Figure 3. Call graphs for the tests in the original and edited versions of the example program. Bold
boxes and arrows indicate added nodes and edges in the edited version, dashed boxes and arrows
indicate deletions. Gray annotations to the boxes refer to the atomic changes shown in Figure 1.

any test. In the example program, the newly added method
A.wiff() is not exercised by the test suite, thus AM(8),
CM(9), LC(10) and LC(11) are uncovered changes.

4 Determining Committable Changes

Figure 4 shows our algorithm for computing a set of
committable changes. The algorithm takes as inputs: (i)
the set AC containing all atomic changes, with the depen-
dence relation that was defined in Section 3, (ii) a set In-
putTests of tests that exhibit unwanted behavior in the edited
version of the program (according to the selected commit
policy), and for each test t, (iii) the set CoveredChanges(t)
of changes covered by that test, and (iv) its set of exercised
changes ExercisedChanges(t). The output of the algorithm
is a set CommitChanges of changes that can be committed
safely.

The algorithm follows an iterative workset-based ap-
proach to simultaneously identify sets of non-committable
changes and preserved tests for which the original be-
havior must be preserved. For each non-committable
change, the set NewNonCommitChanges contains non-
committable changes that are identified in the current iter-
ation, and the set ProcessedNonCommitChanges contains
non-committable changes that have already been processed
(i.e., their impact on test behavior has been explored fully).
Likewise, there are sets NewPreservedTests and Processed-
PreservedTests of preserved tests that are identified in the
current iteration, and preserved tests that have already been
processed.

An important property of the algorithm is that for each

test t, either all changes that impact t’s behavior are com-
mittable (along with the changes that depend on them via
the  relation), or all such changes are non-committable.
Intuitively, this means that such a test t will have either the
behavior that it had in the original version program, or the
behavior that it has in the edited version.

The algorithm begins on lines 1–4 by initializing New-
PreservedTests to InputTests, and initializing each of Pro-
cessedPreservedTests, NewNonCommitChanges, and Pro-
cessedNonCommitChanges to the empty set.

The algorithm then traverses the outer while-loop
(lines 5–31) as long as new tests are found for which the
original behavior must be preserved. Each such test t is
removed from NewPreservedTests and added to Processed-
PreservedTests (lines 8–9), and each LC or CM change c
that is exercised by test t, and that is not already marked
as non-committable is added to NewNonCommitChanges
(lines 10–14).

Next, on lines 16–30 the impact of each new non-
committable change c on tests is explored. Specifically,
each test t that has not already been marked as a preserved
test and for which c ∈ CoveredChanges(t) is added to New-
PreservedTests.

The purpose of the loop on lines 25–29 is to ensure that
applying the identified set of committable changes results
in a syntactically valid program with correct test behavior.
To this end, the algorithm marks as non-committable any
atomic change c′ that is dependent on a non-committable
change c, according to the relation defined in Section 3.

Finally, the algorithm computes the set of committable
changes as any covered atomic change that is not found to
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Input: AC: set containing all atomic changes, with dependence
relation 

Input: InputTests: set of tests with undesirable behavior
Input: CoveredChanges(t): set of changes covered by test t
Input: ExercisedChanges(t): the changes exercised by test t
Output: CommitChanges: set of committable changes

NewPreservedTests = InputTests;1
ProcessedPreservedTests = ∅;2
NewNonCommitChanges = ∅;3
ProcessedNonCommitChanges = ∅;4
while NewPreservedTests 6= ∅ do5

while NewPreservedTests 6= ∅ do6
select a test t ∈ NewPreservedTests;7
NewPreservedTests = NewPreservedTests \ { t } ;8
ProcessedPreservedTests =9

ProcessedPreservedTests ∪ { t };
foreach change c in ExercisedChanges(t) do10

if change c 6∈ (NewNonCommitChanges ∪11
ProcessedNonCommitChanges) then

NewNonCommitChanges =12
NewNonCommitChanges ∪ { c };

end13
end14

end15
while NewNonCommitChanges 6= ∅ do16

select a change c ∈ NewNonCommitChanges;17
NewNonCommitChanges =18

NewNonCommitChanges \ { c };
ProcessedNonCommitChanges =19

ProcessedNonCommitChanges ∪ { c };
foreach test t such that CoveredChanges(t) 6= ∅ do20

if c ∈ CoveredChanges(t) ∧ (t 6∈21
(NewPreservedTests∪ ProcessedPreservedTests))

then
NewPreservedTests =22

NewPreservedTests ∪ { t };
end23

end24
foreach change c′ ∈ AC do25

if c′ c ∧ (c′ 6∈ (NewNonCommitChanges ∪26
ProcessedNonCommitChanges)) then

NewNonCommitChanges =27
NewNonCommitChanges ∪ { c′ };

end28
end29

end30
end31
CommitChanges = AC \32

(ProcessedNonCommitChanges ∪ UncoveredChanges);

Figure 4. Algorithm for computing commit-
table changes.

be non-committable (line 32).

4.1 Modeling Commit Policies

The algorithm of Figure 4 can be used to implement the
following three commit policies:

Restrictive. Allow programmers to commit a set of
changes if each change in this set is covered only by

passing (pass→pass, fail→pass, or ∅→pass) tests.

Moderate. Allow programmers to commit a set of
changes if each change in this set is covered only by
pass→pass, fail→pass, fail→fail, ∅→pass, or ∅→fail
tests.

Permissive. Allow programmers to commit a set of
changes if each change in this set is uncovered, or if it
is covered only by pass→pass, fail→pass, fail→fail,
∅→pass, or ∅→fail tests.

Informally, the Restrictive commit policy allows program-
mers to commit only those changes that are “successfully
tested”, i.e., exercised by tests that pass in the edited ver-
sion of the program. This policy could be used in the later
stages of development, when avoiding the introduction of
new and untested functionality is crucially important. The
Moderate commit policy enables programmers to commit
changes provided that they are covered and do not break
existing tests. Introducing new failing tests is permitted un-
der the Moderate policy, in order to enable collaborative
development scenarios in which one team member writes
and commits tests (that initially fail), and the functionality
needed to make the tests pass is implemented later by other
team members. The Permissive policy extends the Moder-
ate policy by allowing programmers also to commit uncov-
ered changes. Both the Moderate and Permissive commit
policies could be used during development instead of the
commonly used Conservative policy without compromising
the integrity of the repository.

The algorithm of Figure 4 can be used to compute a set
of committable changes that is compatible with the Restric-
tive policy by initializing the set InputTests to include all
pass→fail, fail→fail, and ∅→fail tests. By contrast, the
Moderate commit policy can be implemented by initializ-
ing InputTests to include all pass→fail tests. Alternatively,
the Permissive policy is obtained by initializing InputTests
to include all pass→fail tests and by adding the set Uncov-
eredChanges to the computed set of CommitChanges.

4.2 Example

We will now discuss how the algorithm of Figure 4 is
applied to the example of Figure 1(a). Assuming that the
Restrictive policy is chosen, InputTests is initialized to the
set { test1,test4 }.

The while-loop on lines 6–15 is executed twice. Dur-
ing the first iteration, t is bound to test1, and the exe-
cution of the foreach-loop on lines 10–14 results in adding
the changes CM(1), CM(3), LC(4), and CM(7) to NewNon-
CommitChanges (these changes are correlated with nodes
in the call graph for test1 that was shown in Figure 3).
During the second iteration, t is bound to test4, and
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the execution of the foreach-loop on lines 10–14 results
in adding the changes CM(15), CM(17), and LC(18) to
NewNonCommitChanges. When execution reaches line 16,
NewNonCommitChanges contains the elements CM(1),
CM(3), LC(4), CM(7), CM(15), CM(17), and LC(18), Pro-
cessedNonCommitChanges is empty, NewPreservedTests is
empty, and ProcessedPreservedTests contains test1 and
test4.

Next, the loop on lines 16–30 is entered. Line 17 is
executed for each change c in NewNonCommitChanges.
This results in adding test2 (because CM(7) ∈
CoveredChanges(test2)) and test5 (because CM(17)
∈ CoveredChanges(test5)) to NewPreservedTests.

The execution of the loop on lines 25–29 results in
adding any change c′ to NewNonCommitChanges such that
C ′ C, for some non-committable change c. By examin-
ing the dependences in Figure 2, we determine that AM(2),
LC(5), DM(16), and LC(19) are added to NewNonCom-
mitChanges. Note that AF(13) is not added to NewNon-
CommitChanges because it has no dependence to any non-
committable change. Hence, at the end of the first it-
eration of the outer while loop, we have that NewNon-
CommitChanges contains AM(2), LC(5), DM(16), and
LC(19), ProcessedNonCommitChanges contains CM(1),
CM(3), LC(4), CM(7), CM(15), CM(17), and LC(18),
NewPreservedTests contains test2 and test5, and Pro-
cessedPreservedTests contains test1 and test4.

In the second iteration of the outer while loop,
CM(6) is added to NewNonCommitChanges because
CM(6) ∈ CoveredChanges(test2) and CM(12) is
added to NewNonCommitChanges because CM(12) ∈
CoveredChanges(test5). During the execution of the
loop on lines 16–30, no additional preserved tests are iden-
tified. No additional changes are found during the ex-
ecution of the loop on lines 25–29. So at the end of
the second iteration of the outer while loop, NewNon-
CommitChanges and NewPreservedTests are empty, Pro-
cessedPreservedTests contains test1, test2, test4,
and test5, and ProcessedNonCommitChanges contains
CM(1), AM(2), CM(3), LC(4), LC(5), CM(6), CM(7),
CM(12), CM(15), DM(16), CM(17), LC(18) and LC(19).

Finally, the set of committable changes is computed on
line 32 as AF(13) and CM(14). Intuitively, these changes
are committable under the Restrictive policy because they
are successfully tested by test3.

5 Implementation and Evaluation

5.1 Implementation

JUNITMX is built as an extension of the widely used
JUnit plug-in for Eclipse, enabling developers already fa-

miliar with JUnit and the Eclipse Java Development Tools3

to leverage their experience with these tools. JUNITMX re-
quires two versions of the program: the original version, for
which the CVS HEAD version is used by default, and the
edited version, for which the current version in the devel-
oper’s local workspace is used. In order to use the tool,
developers must select a standard JUnit test suite in the
edited version and run it using a special launch configu-
ration; note that JUNITMX runs the tests associated with
both versions. JUNITMX enables developers to compute
committable changes according to the Restrictive, Moder-
ate, and Permissive policies that were presented earlier. In
addition, all standard JUnit functionality is still available.

JUNITMX hooks into the execution of a JUnit test suite
and adds a pre- and a post-processing phase. In the pre-
processing phase, JUNITMX uses CHIANTI4 [20, 19], a
tool that was previously developed by our group. CHI-
ANTI creates an abstract syntax tree (AST) for the classes
in each version and compares their structure to obtain the
set of atomic changes to construct the change model as pre-
sented in Section 3. In addition, JUNITMX uses DILA, a
library for efficiently constructing dynamic program repre-
sentations such as call graphs, that we developed specifi-
cally for this project5. DILA uses a custom class loader to
instrument the target application’s classes before they are
executed. The purpose of the added instrumentation code is
to construct a separate dynamic call graph on-the-fly, dur-
ing the execution of each test. In its post-processing phase,
JUNITMX performs the analyses for computing commit-
table changes that was presented in Section 4. An interme-
diate version of the program can be constructed from the
computed set of committable changes by adding only those
changes to the original program version. A subsequent run
of the test suite on this version can validate the correctness
of our committable change analysis.

5.2 Goals and Experimental Setup

In cases where all tests pass, every change that is cov-
ered by the tests is committable. Our evaluation therefore
focuses on version pairs with worsening tests that fail in the
edited version. The major goal of the evaluation is to show
that the percentage of committable changes is significant
even in the presence of test failures, so that development
teams have a significant benefit from adopting the presented
approach.

As mentioned in previous papers [19], failing tests are
rarely found in the versions that are checked into public
repositories. We analyzed 6 version pairs with failing tests
of Daikon, a dynamic invariant detector developed by M.

3 http://www.eclipse.org/jdt/
4 http://www.prolangs.rutgers.edu/projects/chianti/
5 http://www.prolangs.rutgers.edu/projects/dila/
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Project Daikon
Version Pair p1 p2 p3 p4 p5 p6

Average

01/07-01/14, 

2002

01/14-01/21, 

2002

01/21-01/28, 

2002

01/28-02/04, 

2002

04/15-05/06, 

2002

11/11-11/19, 

2002

Tests (original) 40 42 42 42 52 62

Tests (edited) 42 42 42 42 60 59

Tests (pass-->pass) 36 37 37 37 52 57

Tests (pass-->fail) 0 1 0 0 0 2

Tests (fail-->pass) 0 0 0 0 0 0

Tests (fail-->fail) 4 4 5 5 0 0

Tests (new-->pass) 2 0 0 0 0 0

Tests (new-->fail) 0 0 0 0 8 0

Changes (total) 1751 274 1485 614 302 6050

Changes (covered) 1013 5 1225 20 130 185

Restrictive Policy

Tests (selected) 4 5 5 5 8 2

Changes (committable) 111 4 26 6 50 28

Committable (% of total) 4.6% 6.3% 1.5% 1.8% 1.0% 16.6% 0.5%

Committable (% of covered) 29.4% 11.0% 80.0% 2.1% 30.0% 38.5% 15.1%

Moderate Policy

Tests (selected) 0 1 0 0 0 2

Changes (committable) 1013 4 1225 20 130 28

Committable (% of total) 31.4% 57.9% 1.5% 82.5% 3.3% 43.0% 0.5%

Committable (% of covered) 82.5% 100.0% 80.0% 100.0% 100.0% 100.0% 15.1%

Permissive Policy

Tests (selected) 0 1 0 0 0 2

Changes (committable) 1751 273 1485 614 302 5893

Committable (% of total) 99.5% 100.0% 99.6% 100.0% 100.0% 100.0% 97.4%

Table 1. Data gathered for the selected version pairs of Daikon.

Ernst [9]. Each version pair contains a week’s worth of
changes during the year 2002.

5.3 Experimental Results

Table 1 summarizes the results obtained for Daikon. The
columns of the table correspond to version pairs of Daikon
(identified by their dates), with one additional column for
each application that provides averages where appropriate.
The rows of the table show, from top to bottom: the num-
ber of tests in the original version, the number of tests in
the edited version, and a further breakdown of the tests
by outcome into the categories we discussed previously
(pass→pass, pass→fail, etc.). Next, the table shows 3 sets
of rows for the results of our analysis, one for each of the
Restrictive, Moderate, and Permissive commit policies. For
each policy, we show the number of tests selected as input to
the algorithm of Figure 4, the total number of committable
changes, the number of committable changes as a percent-
age of all changes, and the number of committable changes
as a percentage of covered changes (the latter is omitted
for the Permissive policy where this metric does not make
sense, because uncovered changes also are committed).

We found that under the Restrictive policy, an average
4.6% of all atomic changes could be committed. For the
Moderate policy, the average percentage of committable
changes among all changes is 31.4%. Finally, for the Per-
missive policy, we found an average of 99.5% of all changes
to be committable.

From Table 1, it is clear that often the majority of

changes is uncovered. For the Restrictive and Moderate
policies, we also report the number of committable changes
as a percentage of covered changes because this measure
provides a better measure of the accuracy of our analysis.
The Restrictive policy identifies 29.4% of covered changes
as committable, and the Moderate policy identifies 82.5%
of covered changes as committable.

In the deployment scenario we envision, programmers
would apply the analysis frequently—perhaps as part of
each test run—resulting in significantly smaller differences
between successive versions. We conjecture that the per-
centage of committable changes would increase in this sce-
nario, but further experimentation is needed to validate this
conjecture.

On average, our analysis added a total overhead of 4 min-
utes to the execution of the tests in both versions. The actual
overhead for each version pair varied from 1 to 15 minutes.
It is dominated by the computation of covered changes for
each test which becomes more expensive as the size of the
call graphs or the number of changes increases6. We are
currently working on optimizations that are likely to reduce
this overhead considerably.

5.4 Experiments with Releases

We also analyzed 5 public releases of JMeter7, taken
from the SIR repository [8]. These releases are separated

6 All performance data were measured on an Apple MBP Laptop Com-
puter with 2.6 GHz Intel Core 2 Duo processor and 2GB main memory.

7 http://jakarta.apache.org/jmeter/
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by time intervals of up to 4 months and by huge numbers of
atomic changes (up to 17475). As another indication of the
amount of change, we found that, on average, 31.4% of the
methods was changed between releases. In other words, this
is a scenario for which we did not envision our technique to
be applicable. For each release, SIR provides a number of
artificial faults that—when seeded into that version—result
in a number of test failures. In our experiments, we used 4
version pairs to determine the changes that can be commit-
ted when comparing the unmodified version N of JMeter
with version N +1 into which all provided faults have been
seeded.

To our surprise, the Restrictive and Moderate still man-
aged to identify an average of 3.8% and 4.0% of the cov-
ered changes as committable, despite the huge amount of
change between releases. The Permissive policy even iden-
tified 46.0% of all changes as committable, because a sig-
nificant percentage of the changes was uncovered.

6 Related Work

6.1 Revision Control, Software Merging

Traditional pessimistic revision control system such as
SCCS [12] and RCS [25] prevent direct merge conflicts by
allowing only one developer to have a writable copy of any
artifact at any given time. Most modern revision control
systems are optimistic in the sense that they allow multiple
developers to modify a file concurrently. For example, CVS
[4] and Subversion [18] allow developers to modify arti-
facts concurrently. Whenever a developer wants to commit
changes, the local copy must be reconciled with the current
“head” of the repository. Conflicting changes are merged
by a simple textual merging algorithm if they do not involve
overlapping regions of files, and the user must manually re-
solve conflicts otherwise. The only conflicts detected by
CVS and SCCS are syntactic ones in which two developers
are editing the same textual region of a file. However, indi-
rect merge conflicts, where a developer’s changes to one file
adversely affect the changes by another developer to another
file may still arise. In our work, the preservation of behavior
of the tests in a test suite is used as an oracle to establish the
absence of indirect merge conflicts.

We are not aware of any previous work where program
analysis is used to determine subsets of changes that can
be committed safely. However, there has been a significant
amount of research on problems related to the merging of
software artifacts [15]. Some of this work involves the use
of program analysis to determine whether or not a given set
of changes can be integrated into a program in its entirety
without affecting behavior. In work by Binkley et al. [5],
static slicing [13] serves as the basis for an algorithm that
integrates changes in variants of a program in a way that is

guaranteed to preserve behavior. In cases where preserva-
tion of behavior cannot be guaranteed, their technique sim-
ply reports that interference was detected.

6.2 Workspace Awareness Tools

The goal of workspace awareness tools is to make devel-
opers aware of each other’s changes before these are com-
mitted to a central repository, so that they can take proac-
tive steps to prevent or minimize unforeseen interferences
and/or duplicative development. Such steps may include
talking to other developers, reassigning tasks, and postpon-
ing changes until the other developer has done a commit.

Palantı́r [23] is a workspace awareness tool that increases
awareness by continuously sharing, among a team of devel-
opers, information about changes and an estimate of their
severity via a graphical user-interface. This information is
captured and shared at the level of events such as POPU-
LATED (indicating that an artifact has been placed in a de-
veloper’s workspace), CHANGESCOMMITTED (a new ver-
sion of an artifact has been stored in the repository), and
SEVERITYCHANGED (the amount of change—e.g., as the
percentage of lines of code changed—has changed signif-
icantly). Palantı́r initially only supported functionality for
reporting direct conflicts (i.e., situations in which two or
more developers edit the same artifact) [23], but was re-
cently extended with support for a limited class of indirect
conflicts. In this work, syntactic information about depen-
dences between artifacts is used to determine if changes to
different artifacts may interfere with each other [22].

Cheng et al. [6] discuss a “Concert Awareness” feature
of the Jazz environment that visualizes what other devel-
opers are doing with their local copies of files. Estublier
and Garcia [10] point out the importance of considering se-
mantic dependences between artifacts in different files in
the context of workspace awareness tools. Their tool, Ce-
line, also takes into account factors such as the workspace
topology and the cooperative engineering policy that is be-
ing used. The Hipikat system [26] aims to reduce parallel
development by providing a facility that recommends arti-
facts related to a specific task. Hipikat’s generates recom-
mendations by performing a textual similarity analysis of
CVS repositories, issue-tracking systems (e.g., Bugzilla),
newsgroups, and web sites associated with the project.

Our techniques complement workspace awareness tools
by helping developers prevent the premature release of
changes that may hamper others.

6.3 Continuous Integration

To avoid merge conflicts, it has long been known that
it is advisable to “commit early, and commit often” [3].
Development methodologies such as continuous integra-
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tion [11] advocate that team members commit their work
frequently using an automated build process that includes
running tests. Team members who experience test failures
in their local workspace are discouraged from committing
their changes. Our research is well-aligned with continu-
ous integration because it enables programmers to commit
(some of) their changes earlier, even when there are failing
tests in their local workspace.

7 Conclusions

In current practice, developers often postpone the release
of their changes until all tests pass in their local workspace
in order to preserve code quality. This increases the time
intervals between commits, thereby increasing the risk of
merge conflicts and duplicative development later on.

We have presented an analysis-based technique for de-
termining changes that be committed without compromis-
ing the integrity of the repository, even in cases where there
are failing tests in a developer’s local workspace. Our al-
gorithm, Safe-commit, is based on a previously developed
change impact analysis [20, 19, 21, 24], and we show how
it can be used to implement 3 new commit policies (Re-
strictive, Moderate, and Permissive) with varying levels of
strictness. This enables developers to release their changes
more quickly, thus reducing the risk of duplicative develop-
ment and merge conflicts.

We measured the effectiveness of the new commit poli-
cies using versions of Daikon with associated failing tests.
In this experiment, an average of 4.6%, 31.4%, and 99.5%
of all changes were identified as committable according
to the Restrictive, Moderate, and Permissive commit poli-
cies, respectively. In another experiment, we applied
Safe-commit to public releases of JMeter. To our surprise,
a nontrivial number of committable changes was identified,
despite a huge number of changes that separates these re-
leases.
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