
Practical Fault Localization for Dynamic Web Applications

Shay Artzi Julian Dolby Frank Tip Marco Pistoia

IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

{artzi,dolby,ftip,pistoia}@us.ibm.com

ABSTRACT
We leverage combined concrete and symbolic execution and sev-
eral fault-localization techniques to create a uniquely powerful tool
for localizing faults in PHP applications. The tool automatically
generates tests that expose failures, and then automatically local-
izes the faults responsible for those failures, thus overcoming the
limitation of previous fault-localization techniques that a test suite
be available upfront. The fault-localization techniques we employ
combine variations on the Tarantula algorithm with a technique
based on maintaining a mapping between statements and the frag-
ments of output they produce. We implemented these techniques in
a tool called Apollo, and evaluated them by localizing 75 randomly
selected faults that were exposed by automatically generated tests
in four PHP applications. Our findings indicate that, using our best
technique, 87.7% of the faults under consideration are localized to
within 1% of all executed statements, which constitutes an almost
five-fold improvement over the Tarantula algorithm.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification ;
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

1. INTRODUCTION
Web applications are typically written in a combination of sev-

eral programming languages, such as JavaScript on the client side,
and PHP with embedded SQL commands on the server side. Such
applications generate structured output in the form of dynamically
generated HTML pages that may refer to additional scripts to be ex-
ecuted. As with any program, programmers make mistakes and in-
troduce faults, resulting in Web-application crashes and malformed
dynamically generated HTML pages. While malformed HTML er-
rors may seem trivial, and indeed many of them are at worst minor
annoyances, they have on occasion been known to enable serious

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

attacks such as denial of service1. We present the first fully auto-
matic tool that finds and localizes malformed HTML errors in Web
applications that execute PHP code on the server side.

In previous work [3, 4], we adapted the well-established tech-
nique of combined concrete and symbolic execution [9, 25, 5, 10,
28] to Web applications written in PHP. With this approach, an ap-
plication is first executed on an empty input, and a path condition is
recorded that reflects the application’s control-flow predicates that
have been executed that depend on input. Then, by changing one of
the predicates in the path condition, and solving the resulting con-
dition, new inputs can be obtained, and executing the program on
these inputs will result in additional control-flow paths being exer-
cised. In each execution, faults that are observed during the exe-
cution are recorded. This process is repeated until either sufficient
coverage of the statements in the application has been achieved,
a sufficient number of faults has been detected, or the time bud-
get is exhausted. Our previous work addresses a number of issues
specific to the domain of PHP applications that generate HTML
output. In particular: (i) it integrates an HTML validator to check
for errors that manifest themselves by the generation of malformed
HTML, (ii) it automatically simulates interactive user input, and
(iii) it keeps track of the interactive session state that is shared be-
tween multiple PHP scripts. We implemented these techniques in a
tool called Apollo. In previous experiments on 6 open-source PHP
applications, Apollo found a total of 673 faults [4].

A problem not addressed by our previous work is that it fails to
pinpoint the specific Web-application instructions that cause exe-
cution errors or the generation of malformed HTML code. Without
that information, correcting these types of issues can be very diffi-
cult. This paper addresses the problem of determining where in the
source code changes need to be made in order to fix the detected
failures. This task is commonly referred to as fault localization,
and has been studied extensively in the literature [30, 15, 23, 16,
7, 14]. Our use of combined concrete and symbolic execution to
obtain passing and failing runs overcomes the limitation of many
existing fault-localization techniques that a test suite with passing
and failing runs be available upfront. The fault-localization tech-
niques explored in this paper combine variations on the Tarantula
algorithm by Jones et al. [15, 14] with the use of an output map-
ping.

The first main ingredient of our combined approach is the Taran-
tula algorithm by Jones, et al. [15, 14], which predicts statements
that are likely to be responsible for failures. It does so by comput-
ing, for each statement, the percentages of passing and failing tests
that execute that statement. From this, a suspiciousness rating is
computed for each executed statement. Programmers are encour-
aged to examine the statements in order of decreasing suspicious-

1For example http://support.microsoft.com/kb/810819.

ness. This has proved to be quite effective in experiments with the
Siemens suite [12], consisting of versions of small C programs into
which artificial faults have been seeded [14]. A variation on the
basic Tarantula approach that we consider is an enhanced domain
for conditional statements, which enables us to more accurately
pinpoint errors due to missing branches in conditional statements.
The second main ingredient of our approach is the use of an output
mapping from statements in the program to the fragments of out-
put they produce. This mapping—when combined with the report
of the HTML validator, which indicates the parts of the program
output that are incorrect—provides an additional source of infor-
mation about possible fault locations, and is used to fine-tune the
suspiciousness ratings provided by Tarantula.

We implemented several fault-localization techniques that com-
bine variations on Tarantula with the use of the output mapping
in Apollo, making Apollo a fully automated tool for failure de-
tection and fault localization for Web applications written in PHP.
We then investigated Apollo’s ability to localize 75 randomly se-
lected faults that were exposed by automatically generated tests in
4 open-source PHP applications. Using the basic Tarantula tech-
nique, the programmer had to examine an average of 13.2% of
an application’s executed statements to find each of the 75 faults,
when exploring the executed statements in order of decreasing sus-
piciousness. Using our best technique, which augments the do-
main of Tarantula for conditional statements and uses the output
mapping to fine-tune Tarantula’s suspiciousness ratings, the pro-
grammer needs to explore only 2.2% of the executed statements,
on average. More significantly, using our best technique, 87.7%
of the 75 faults under consideration are localized to within 1% of
all executed statements, which constitutes an almost five-fold im-
provement over the 17.8% for the basic Tarantula algorithm.

To summarize, the contributions of this paper are as follows:

1. We present an approach for fault localization that uses com-
bined concrete and symbolic execution to generate a suite of
passing and failing tests. This overcomes the limitation of pre-
vious methods by not requiring the upfront availability of a test
suite.

2. We demonstrate that automated techniques for fault localiza-
tion, which were previously only evaluated on programs with
artificially seeded faults, is effective at localizing real faults in
open-source PHP applications.

3. We present 6 fault localization techniques that combine vari-
ations on the Tarantula algorithm with the use of an output
mapping from statements to the fragments of program output
that they produce.

4. We implemented these 6 techniques in Apollo, an automated
tool for detecting failures and localizing faults in PHP.

5. We used Apollo to localize 75 randomly selected faults in 4
PHP applications and compared the effectiveness of the 6 fault
localization techniques. Our findings show that, using our best
technique, 87.7% of the faults are localized to within 1% of
all executed statements, which constitutes an almost five-fold
improvement over the Tarantula algorithm.

2. PHP WEB APPLICATIONS
PHP is a widely used scripting language for implementing Web

applications, in part due to its rich library support for network in-
teraction, HTTP processing and database access. A typical PHP
Web application is a client/server program in which data and con-
trol flow interactively between a server, which runs PHP scripts,
and a client, which is a Web browser. The PHP scripts generate
HTML code, which gets pushed to the client. Such code often

includes forms that invoke other PHP scripts and pass them a com-
bination of user input and constant values taken from the generated
HTML.

2.1 The PHP Scripting Language
PHP is object-oriented, in the sense that it has classes, interfaces

and dynamically dispatched methods with syntax and semantics
similar to those of Java. PHP also has features of scripting lan-
guages, such as dynamic typing, and an eval construct that inter-
prets and executes a string value that was computed at run-time as
a code fragment. For example, the following code fragment:

$code = "$x = 3;"; $x = 7; eval($code); echo $x;

prints the value 3. Other examples of the dynamic nature of PHP
are the presence of the isset() function, which checks whether
a variable has been defined, and the fact that statements defining
classes and functions may occur anywhere.

The code in Figure 1 illustrates the flavor of a PHP Web applica-
tion and the difficulty in localizing faults. As can be seen, the code
is an ad-hoc mixture of PHP statements and HTML fragments. The
PHP code is delimited by <?php and ?> tokens. The use of HTML
in the middle of PHP indicates that HTML is generated as if it
occurred in a print statement. The require statements resemble
the C #include directive by causing the inclusion of code from an-
other source file. However, while #include in C is a preprocessor
directive that assumes a constant argument, require in PHP is an
ordinary statement in which the filename is computed at run time;
for example, the arguments of the require statements in line 6 of
the PHP script of Figure 1(c) and in line 6 of the PHP script of Fig-
ure 1(d). are dynamically computed at run time based on the output
of the dirname function, which returns the directory component of
a filename. Similarly, switch labels in PHP need not be constant
but, unlike in other languages, can be dynamically determined at
run time. This degree of flexibility is prized by PHP developers for
enabling rapid application prototyping and development. However,
the flexibility can make the overall structure of program hard to dis-
cern and render programs prone to code-quality problems that are
difficult to localize.

2.2 Failures in PHP Programs
Our technique targets two types of failures that may occur during

the execution of PHP Web applications and that can be automati-
cally detected:

• Execution Failures. These are caused by missing included
files, incorrect SQL queries and uncaught exceptions. Such
failures are easily identified since the PHP interpreter gener-
ates an error message and halts execution. Less serious exe-
cution failures, such as those caused by the use of deprecated
language constructs, produce obtrusive error messages but do
not halt execution.
• HTML Failures. These involve situations in which generated

HTML code is not syntactically correct, causing them to be
rendered incorrectly in certain browsers. This may not only
lead to portability problems, but also decrease performance
since the resulting pages may render slower when browsers
attempt to compensate for the malformed HTML code.

2.3 Fault Localization
Detecting failures only demonstrates that a fault exists; the next

step is to find the location of the fault that causes each failure.
There are at least two pieces of information that might help:

1 <HTML>
2 <HEAD><TITLE>Login</TITLE></HEAD>
3 <BODY>
4 <FORM METHOD = "post" NAME = "login" ACTION = "login.php">
5 User Name: <INPUT TYPE = "text" NAME = "user"/>

6 Password: <INPUT TYPE = "password" NAME = "pw"/>

7 <INPUT TYPE = "submit" VALUE = "submit" NAME = "Submit"/>
8 </FORM>
9 </BODY>

10 </HTML>

1 <?php
2 $userTag = ’user’;
3 $pwTag = ’pw’;
4 $typeTag = ’type’;
5 $topicTag = ’topic’;
6 $authTag = ’auth’;
7 function check_password($user, $pw) {
8 /* authentication code... */
9 }

10 ?>
(a) index.php (b) constants.php

1 <HTML>
2 <HEAD><TITLE>Topic Selection Page</TITLE></HEAD>
3 <BODY>
4 <?php
5 session_start();
6 require(dirname(__FILE__).’/includes/constants.php’);
7 $user = $_REQUEST[$userTag];
8 $pw = $_REQUEST[$pwTag];
9 $_SESSION[$authTag] = false;

10 if (check_password($user, $pw)) {
11 ?>
12 <FORM action="view.php">
13 Topic: <INPUT TYPE="text" NAME="topic"/>

14 <INPUT TYPE="submit" VALUE="submit" NAME="Submit"/>
15 </FORM>
16 </BODY>
17 <?php
18 $_SESSION[$userTag] = $user;
19 $_SESSION[$pwTag] = $pw;
20 $_SESSION[$authTag] = true;
21 if ($user == ’admin’) {
22 $_SESSION[$typeTag] = ’admin’;
23 } else {
24 $_SESSION[$typeTag] = ’regularUser’;
25 }
26 }
27 ?>
28 </HTML>

1 <HTML>
2 <HEAD><TITLE>Topic View</TITLE></HEAD>
3

4 <?php
5 session_start();
6 require(dirname(__FILE__).’/includes/constants.php’);
7 print "<BODY>\n";
8 if ($_SESSION[$authTag]) {
9 $type = $_SESSION[$typeTag];

10 $topic = $_REQUEST[$topicTag];
11 if ($type == ’admin’) {
12 print "<H1>Administrative ";
13 } else {
14 print "<H1>Normal ";
15 }
16 print "View of topic " . $_REQUEST[$topicTag] . "</H1>\n";
17 if ($type == ’admin’) {
18 print "<H2>Administrative Details\n";
19 /* code to print administrative details... */
20 } else {
21 print "<H2>Details</H2>\n";
22 /* code to print normal details... */
23 }
24 }
25 print "</BODY>\n";
26 ?>
27

28 </HTML>
(c) login.php (d) view.php

Figure 1: Sample PHP Web Application

1. For HTML failures, HTML validators provide the problematic
locations in the HTML code. Malformed HTML fragments
can then be correlated with the portions of the PHP scripts that
produced them.

2. For both kinds of failures, one could look at runs that do not
exhibit the error, and record what set of statements such runs
execute. Comparing that set of statements with the set of state-
ments executed by the failing runs can then provide clues that
can help localizing the fault. The extensive literature on fault-
localization algorithms that exploit such information is dis-
cussed in Section 7.

2.4 Motivating Example
Figure 1 shows an example of a PHP application that is designed

to illustrate the particular complexities of finding and localizing
faults in PHP Web applications. The top-level index.php script in
Figure 1(a) contains static HTML code. The login.php script in
Figure 1(c) attempts to authenticate the user. The view.php script
in Figure 1(d) is for data display. The two PHP scripts login.php
and view.php rely on a shared constants.php include file, shown
in Figure 1(b); this file defines some standard constants and an au-
thentication function.

These fragments are part of the client/server work flow in a Web
application: the user first sees the index.php page of Figure 1(a)
and enters the required credentials. The user-input credentials are
processed by the login.php script in Figure 1(c). This script gen-
erates a response page that allows the user to enter further input,
causing further processing by the view.php script in Figure 1(d).
Note that the user name and password that are entered by the user
during the execution of login.php are stored in special locations

$_SESSION[$userTag] and $_SESSION[$pwTag], respectively.
Moreover, if the user is the administrator, this fact is recorded in
$_SESSION[$typeTag]. This illustrates how PHP handles ses-
sion state, which is data that persists from one page to another to
keep track of the interactions with the application by a particular
user. Thus, the updates to _SESSION in Figure 1(c) will be seen by
the code in Figure 1(d) when the user follows the link to view.php
in the HTML page that is returned by login.php. The view.php
script uses this session information in line 8 to verify the username
and password provided by the user.

Our sample program contains an error in the HTML code it pro-
duces: the H2 tag opened in line 18 of Figure 1(d) is never closed.
While this fault itself is trivial, localizing its cause is not. An ordi-
nary tester would likely start executing this application by entering
credentials into the script in Figure 1(c). The tester must then dis-
cover that setting $user to the value admin results in the selection
of a different branch that records the user type $typeTag as admin
in the session state, as shown in lines 21–23 of login.php. After
that, the tester would have to enter a topic in the form generated
by the login.php script, and would then proceed to execute the
code in Figure 1(d) with the appropriate session state, which will
finally generate the HTML code exhibiting the fault, as shown in
Figure 2(a). Thus, finding the fault requires careful selection of in-
puts to a series of interactive scripts, and tracking updates to the
session state during the execution of those scripts.

The next step is to determine the cause of the malformed HTML.
Consider the two sources of information suggested in Section 2.3:

1. Our validator produces the output shown in Figure 2(c) for this
fault, indicating that lines 5 and 6 in the malformed HTML of

1 <HTML>
2 <HEAD>Topic View</HEAD>
3 <BODY>
4 <H1>Administrative View of topic A</H1>
...
5 <H2>Administrative Details
...
6 </BODY>
7 </HTML>

HTML line PHP lines in 1(d)
1 1
2 2
3 7
4 12, 16
5 18
6 25
7 28(a) HTML output (b) output mapping

Error at line 6, character 7: end tag for "H2" omitted; possible causes include a missing
end tag, improper nesting of elements, or use of an element where it is not allowed
Line 5, character 1: start tag was here

(c) Output of WDG Validator

Figure 2: (a) HTML Produced by the Script of Figure 1(d) – (b) Output Mapping Constructed during Execution – (c) Part of Output
of WDG Validator on the HTML of Figure 2(a)

Figure 2(a) are associated with the HTML failure. These lines
correspond to the H2 heading and the following /BODY tags,
respectively. By correlating this information with the output
mapping shown in Figure 2(b), we can determine that lines 18
and 25 in view.php produced these lines of output.

2. The second source of information is obtained by comparing
the statements executed in passing and failing runs. The HTML
failure only occurs when the value of $type is admin. Thus,
the difference between passing and failing runs consists of
all code that is guarded by the two conditionals in lines 11
and 17 in view.php. We can conclude that the statements in
lines 12, 14, 18 and 21 are suspect.

Neither of these estimates is precise, because the fault is clearly the
omission of the printing of an /H2 tag in line 18. We can, however,
combine the results of the validator and the sets of statements ex-
ecuted in passing and failing runs. Specifically, we could observe
that the printing of /BODY in line 25 in view.php occurs in both
passing and failing executions, and is therefore unlikely to be the
location of the fault. Furthermore, we can observe that lines 12
and 14, each of which is only executed in one of the executions,
are not associated with the failure according to the information we
received from the oracle. Therefore, we can conclude that the fault
is most closely associated with line 18 in view.php.

Another thing to observe about the PHP Web application in Fig-
ure 1 is that the login.php script in Figure 1(c) has an if state-
ment in line 10 for which there is no matching else branch. This
implies that the BODY tag is closed (in line 16) only if the authen-
tication check of line 10 succeeds; if that check fails, the BODY
tag will never be closed, giving rise to a malformed HTML page.
This problem may not be discovered during testing, since it man-
ifests itself only if invalid authentication credentials are provided.
Furthermore, since the code that should close the BODY tag is miss-
ing, there is no line that is only executed by a failing run, and the
Tarantula fault-localization technique will fail to pinpoint the ex-
act program point responsible for the malformed HTML code. This
paper introduces a novel condition-modeling technique to address
such errors by omission. In Section 4.4, we will discuss condition
modeling and its applicability to the example of Figure 1.

Note that, due to the necessarily small size of this example, the
HTML errors it contains are localized and could likely be found
with grep or a similar tool; however, in more complex applications,
we encounter HTML errors that combine HTML generated by mul-
tiple statements that are not all in one place.

3. COMBINED CONCRETE AND SYMBOLIC
EXECUTION

Our technique for finding failures in PHP applications is a vari-
ation on combined concrete and symbolic execution [9, 25, 5, 10,
28], a well-established test generation technique. The basic idea

behind this technique is to execute an application on some initial
(e.g., empty or randomly-chosen) input, and then on additional in-
puts obtained by solving constraints derived from exercised control
flow paths. Failures that occur during these executions are reported
to the user.

In a previous paper [3], we described how this technique can
be adapted to the domain of dynamic web applications written in
PHP. Our Apollo tool takes into account language constructs that
are specific to PHP, uses an oracle to validate the output, and sup-
ports database interaction. In [4], we extended the work to address
interactive user input (described in Section 2): PHP applications
typically generate HTML pages that contain user-interface features
such as buttons that—when selected by the user—result in the ex-
ecution of additional PHP scripts. Modeling such user input is im-
portant, because coverage of the application will typically remain
very low otherwise. Apollo tracks the state of the environment, and
automatically discovers additional scripts that the user may invoke
based on an analysis of available user options. This is important
because a script is much more likely to perform complex behavior
when executed in the correct context (environment). For example,
if a web application does not record in the environment that a user
is logged in, most scripts will present only vanilla information and
terminate quickly (e.g., when the condition in line 8 of Figure 1(d)
is false).

The inputs to Apollo’s algorithm are: a program P composed
of any number of executable components (PHP scripts), the ini-
tial state of the environment before executing any component (e.g,
database), a set of executable components reachable from the ini-
tial state C, and an output oracle O. The output of the algorithm is
a set of bug reports B for the program P, according to O. Each bug
report contains the identification information of the failure (mes-
sage, and generating program part), and the set of tests exposing
the failure.

The algorithm uses a queue of tests2. Each test is comprised of
three components: (i) the program component to execute, (ii) a path
constraint which is a conjunction of conditions on the program’s in-
put parameters, and (iii) the environment state before the execution.
The queue is initialized with one test for each of the components
executable from the initial state, and the empty path constraint. The
algorithm then processes each element of this queue as follows:

1. Using a constraint solver to find a concrete input that satisfies
a path constraint from the selected test.

2. Restoring the environment state, then executing the program
component on the input and checking for failures. Detected
failures are merged into the corresponding bug reports. The
program is also executed symbolically on the same input. The
result of symbolic execution is a path constraint,

∧n
i=1 ci, which

2The criteria of selecting tests from the queue prefers tests that will
cover additional code. More details can be found in [4].

is satisfied if the given path is executed (here, the path con-
straint reflects the path that was just executed).

3. Creating new test inputs by solving modified versions of the
path constraint as follows: for each prefix of the path con-
straint, the algorithm negates the last conjunct. A solution, if
it exists, to such an alternative path constraint corresponds to
an input that will execute the program along a prefix of the
original execution path, and then take the opposite branch.

4. Analyzing the output to find new transitions (referenced scripts,
and parameter values) from the new environment state. Each
transition is expressed as a pair of path constraints and an exe-
cutable component.

5. Adding new tests for each transition not explored before.

For instance, an execution of login.php that did not define $user
would generate a path constraint noting that $user is not set, i.e.
!isset($user). A subsequent execution could be constructed by
negating this constraint to isset($user). An execution satisfying
this new constraint will define $user to some value.

4. FAULT LOCALIZATION
In this section, we first review the Tarantula fault-localization

technique. We then present an alternative technique that is based
on the output mapping and positional information obtained from
an oracle. Next, a technique is presented that combines the former
with the latter. Finally, we discuss how the use of an extended
domain for conditional expressions can help improve Tarantula’s
effectiveness.

4.1 Tarantula
Jones, et al. [15, 14] presented Tarantula, a fault-localization

technique that associates with each statement a suspiciousness rat-
ing that indicates the likelihood for that statement to contribute to a
failure. The suspiciousness rating Star(l) for a statement that occurs
at line3 l is a number between 0 and 1, defined as follows:

Star(l) =
Failed(l)/TotalFailed

Passed(l)/TotalPassed + Failed(l)/TotalFailed

where Passed(l) is the number of passing executions that execute
statement l, Failed(l) is the number of failing executions that ex-
ecute statement l, TotalPassed is the total number of passing test
cases, and TotalFailed is the total number of failing test cases. Af-
ter suspiciousness ratings have been computed, each of the exe-
cuted statements is assigned a rank, in the order of decreasing sus-
piciousness. Ranks need not be unique: The rank of the statement l
reflects the maximum number of statements that would have to be
examined if statements are examined in order of decreasing suspi-
ciousness, and if l were the last statement of that particular suspi-
ciousness level chosen for examination.

Jones and Harrold [14] conducted a detailed empirical evaluation
in which they apply Tarantula to faulty versions of the Siemens
suite [12], and compare its effectiveness to that of several other
fault-localization techniques (see Section 7). The Siemens suite
consists of several versions of small C programs into which faults
have been seeded artificially. Since the location of those faults
is given, one can evaluate the effectiveness of a fault-localization
technique by measuring its ability to identify those faults. In the
fault-localization literature, this is customarily done by reporting
the percentage of the program that needs to be examined by the
programmer, assuming that statements are inspected in decreasing
order of suspiciousness [7, 1, 23, 14].
3We use line numbers to identify statements, which enables us to
present different fault localization techniques in a uniform manner.

More specifically, Jones and Harrold compute for each failing-
test run a score (in the range of 0%-100%) that indicates the per-
centage of the application’s executable statements that the program-
mer need not examine in order to find the fault. This score is com-
puted by determining a set of examined statements that initially
contains only the statement(s) at rank 1. Then, iteratively, state-
ments at the next higher rank are added to this set until at least
one of the faulty statements is included. The score is now com-
puted by dividing the number of statements in the set by the total
number of executed statements. Using this approach, Jones and
Harrold found that 13.9% of the failing-test runs were scored in
the 99-100% range, meaning that for this percentage of the failing
tests, the programmer needs to examine less than 1% of the pro-
gram’s executed statements to find the fault. They also report that
for an additional 41.8% of the failing tests, the programmer needs
to inspect less than 10% of the executed statements.

4.2 Fault Localization Using Output Mapping
An oracle that determines whether or not a failure occurs can

often provide precise information about the parts of the output that
are associated with that failure. For instance, given an HTML page,
an HTML validator will typically report the locations in the cor-
responding HTML code where the code is syntactically incorrect.
Such information can be used as a heuristic to localize faults in the
program, provided that it is possible to determine which portions of
the program produced the faulty portions of the output. The basic
idea is that the code that produced the erroneous output is a good
place to start looking for the causative fault. This is formalized as
follows. Assume we have the following two functions:

• O(f) returns output line numbers reported by the oracle O for
failure f , and
• P(o) returns the set of program parts of the source program

responsible for output line o

Given these two functions, we define a suspiciousness rating Smap(l)
of the statement at line l for failure f as follows:

Smap(l) =
{

1 if l ∈
⋃

o∈O(f) P(o)
0 otherwise

Note that this is a binary rating: program parts are either highly
suspicious, or not suspicious at all.

This output mapping depends on an oracle that can provide a
good mapping of an error to the location that generated it; the
HTML validator is a good example of such an oracle, but, in gen-
eral, not all errors will have such an oracle available. Thus, we
combine this approach with others to handle the full range of er-
rors.

4.3 Tarantula with Output Mapping
The Tarantula algorithm presented in Section 4.1 localizes fail-

ures based on how often statements are executed in failing and pass-
ing executions. However, in the Web-application domain, a signif-
icant number of lines are executed in both cases, or only in failing
executions. The fault-localization technique presented in Section
4.2 can be used to enhance the Tarantula results by giving a higher
rank to statements that are blamed by both Tarantula and the map-
ping technique. More formally, we define a new suspiciousness
rating Scomb(l) for the statement at line l as follows:

Scomb(l) =
{

1.1 if Smap(l) = 1 ∧ Star(l) > 0.5
Star(S) otherwise

Informally, we give the suspiciousness rating 1.1 to any statement
that is identified as highly suspicious by the oracle, and for which

line(s) executed by Star(l) Smap(l) Scomb(l)

5,6,7,8,9,10,11 both 0.5 0.0 0.5
12 failing only 1.0 0.0 1.0
13,14 passing only 0.0 0.0 0.0
16,17 both 0.5 0.0 0.5
18 failing only 1.0 1.0 1.1
20,21 passing only 0.0 0.0 0.0
25 both 0.5 1.0 0.5

Figure 3: Suspiciousness ratings for lines in the PHP script of
Figure 1(d), according to three techniques. The columns of the
table show, for each line l, when it is executed (in the passing
run, in the failing run, or in both runs), and the suspiciousness
ratings Star(l), Smap(l), and Scomb(l).

Tarantula indicates that the given line is positively correlated with
the fault (indicated by a Tarantula suspiciousness rating greater
than 0.5).

Example.
As described in Section 2.4, the test input generation algorithm

produces two runs of the script in Figure 1(d): one that exposes an
HTML error and one that does not. Figure 3 shows the suspicious-
ness ratings Star(l), Smap(l), and Scomb(l) that are computed for each
line l in the PHP script in Figure 1(d), according to the three fault
localization techniques under consideration.

To understand how the Tarantula ratings are computed, consider
statements that are only executed in the passing run. Such state-
ments obtain a suspiciousness rating of 0/(1+0) = 0.0. By similar
reasoning, statements that are only executed in the failing run ob-
tain a suspiciousness rating of 1/(0+1) = 1.0, and statements that
are executed in both the passing and the failing run obtain a suspi-
ciousness rating of 1/(1+1) = 0.5.

The suspiciousness ratings computed by the mapping-based tech-
nique can be understood by examining the output of the validator
in Figure 2(c), along with the HTML in Figure 2(a) and the map-
ping from lines of HTML to the lines of PHP that produced them
in Figure 2(b). The validator says the error is in line 5 or 6 of the
output, and those were produced by lines 18 and 25 in the script of
Figure 1(d). Consequently, the suspiciousness ratings for lines 18
and 25 are 1.0, and all other lines are rated 0.0 by the mapping-
based technique. The suspiciousness ratings for the combined tech-
nique follow directly from its definition in Section 4.3.

As can be seen from the table, the Tarantula technique identifies
lines 12 and 18 as the most suspicious ones, and the output map-
ping based technique identifies lines 18 and 25 as such. In other
words, each of these fault localization techniques—when used in
isolation—reports one non-faulty statement as being highly suspi-
cious. However, the combined technique correctly identifies only
line 18 as the faulty statement.

4.4 Tarantula with Condition Modeling
As we observed in Section 4.1, the Tarantula algorithm works by

associating a suspiciousness rating with each statement present in
the program under analysis. Sometimes, however, it is the absence
of a statement that causes a failure. For example, a switch state-
ment in which the default case is omitted can cause a failure if the
missing default case was supposed to close certain HTML tags.
Similarly, an if statement for which the matching else branch is
missing can cause the resulting HTML code to be malformed if
the boolean predicate in the if statement is false, as we noticed
in Section 2.4 when discussing the if statement in line 10 of the
login.php script. The Tarantula fault-localization technique, as
previously applied to statements, cannot rank a missing statement

since that will never be executed.
We enhance Tarantula’s effectiveness by employing a new

condition-modeling technique. This new technique uses an aug-
mented domain for modeling conditional statements: instead of as-
signing a suspiciousness rating and rank to a conditional statement
itself, it assigns a rating and rank to pairs of the form (statement,
index of first true case).

The number of pairs associated with a switch statement is equal
to the number of cases in the statement plus 1. For example, if a
switch statement s has three case predicates, then the pairs con-
sidered by the condition-modeling technique are as follows:

1. (s, 0), modeling the fact that all case predicates evaluate to
false, causing the default branch—if it exists—to be exe-
cuted

2. (s, 3), modeling the fact that both the first and second case
predicates evaluate to false, and the third one to true

3. (s, 2), modeling the fact that the first case predicate evaluates
to false and the second one to true

4. (s, 1), modeling the fact that the first case predicate evaluates
to true

If s is an if statement, there are two pairs associated with s:
1. (s, 0), modeling the fact that the predicate evaluates to false
2. (s, 1), modeling the fact that the predicate evaluates to true

After computing suspiciousness ratings for all pairs (s, · · ·), the
conditional statement s is assigned the maximum of these ratings,
from which its rank is computed in the normal manner. This tech-
nique allows us to rank a switch statement with a missing default
case and an if statement with a missing else branch, as explained
in the following example.

Example.
In the login.php script of Figure 1(c), if s is the if statement

in line 10, then (s, 1) is going to be assigned rank 0 because when
its predicate is true, s is never going to participate in a faulty ex-
ecution. On the other hand, (s, 0) is assigned rank 1 because exe-
cuting s with its predicate set to false leads to a faulty execution,
as discussed in Section 2.4. Our enhancement of Tarantula with
condition modeling will assign to s the higher of the two ranks, 1.
This is in contrast to the rank 0.5 that the statement-based Tarantula
algorithm would have assigned to s.

5. IMPLEMENTATION
In Apollo [4], we implemented a shadow interpreter based on the

Zend PHP interpreter 5.2.24 that simultaneously performs concrete
program execution using concrete values, and a symbolic execution
that uses symbolic values that are associated with variables. We
implemented the following extensions to the shadow interpreter to
support fault localization:

• Statement Coverage. All fault localization techniques based
on Tarantula use the percentage of failing and passing tests
executing a given statement to calculate the statement’s sus-
piciousness score. Our shadow interpreter records the set of
executed statements for each execution by hooking into the
zend_execute and compile_file methods.
• HTML Validator. Apollo has been configured to use one

of the following HTML validators as an oracle for checking
HTML output: the Web Design Group (WDG) HTML valida-
tor5 and the CSE HTML Validator V9.06.

4http://www.php.net/
5http://htmlhelp.com/tools/validator/
6http://www.htmlvalidator.com/

program version #files PHP LOC #downloads
faqforge 1.3.2 19 734 14,164
webchess 0.9.0 24 2,226 32,352
schoolmate 1.5.4 63 4,263 4,466
timeclock 1.0.3 62 13,879 23,708

Table 1: Characteristics of subject programs. The #files col-
umn lists the number of .php and .inc files in the program.
The PHP LOC column lists the number of lines that contain
executable PHP code. The #downloads column lists the num-
ber of downloads from http://sourceforge.net.

• Output Mapping. The output mapping technique, described
in Section 4.2, localizes a fault found in the output to the state-
ments producing the erroneous output part. Our shadow inter-
preter creates the mapping by recording the line number of the
originating PHP statement whenever output is written out us-
ing the echo and print statements. The producing statement
is found in the map using the positional information reported
by an oracle checking the output for faults.
• Condition Modeling. Our shadow interpreter records the re-

sults of all comparisons in the executed PHP script for the
conditional modeling technique, as described in Section 4.4.
For each comparison, it records a pair consisting of the state-
ment’s line number and the relevant boolean result. The only
exception is the execution of a switch statement. For this,
the shadow interpreter stores the set of results for all executed
case blocks together with the switch line number.

6. EVALUATION
This evaluation aims to answer two questions:

Q1. How effective is the Tarantula [14] fault localization tech-
nique in the domain of PHP web applications?

Q2. How effective is Tarantula, when combined with the use of an
output mapping and/or when modeling the outcome of condi-
tional expressions, as presented in Section 4?

6.1 Subject Programs
For the evaluation, we selected 4 open-source PHP programs7:

• faqforge is a tool for creating and managing documents.
• webchess is an online chess game.
• schoolmate is a PHP/MySQL solution for administering ele-

mentary, middle, and high schools.
• timeclock is a web-based timeclock system.

Figure 1 presents some characteristics of these programs.

6.2 Methodology
In order to answer our research questions, a set of localized

faults, and a test suite exposing them is needed for each subject
program. Since neither a test suite nor a set of known faults exists
for our subject programs, we use Apollo’s combined concrete and
symbolic execution technique that was presented in Section 3 to
generate a test suite, and to detect failures. For this initial experi-
ment, we gave the test generator a time budget of 20 minutes, and
during this time hundreds of tests were generated and many failures
were found for each subject program.

In order to investigate the effectiveness of an automatic fault
localization technique such as Tarantula, it is necessary to know
where faults are located. Unlike previous research on automated
fault localization techniques [15, 14, 24], where the location of
7http://sourceforge.net

program tests failures localized faults
HTML exec. total HTML exec. total

faqforge 748 121 9 130 17 3 20
webchess 503 15 20 35 8 7 15
schoolmate 583 105 42 147 18 2 20
timeclock 562 435 3 438 19 1 20
total 2393 676 74 750 62 13 75

Table 2: Characteristics of the test suites, failures and localized
faults in the subject programs. The columns of the table in-
dicate: (i) the subject program, (ii) the number of tests in the
test suite generated for that program, (iii) the number of fail-
ures exposed by the test suite (three columns: HTML failures,
execution errors, total), and (iv) the number of faults manu-
ally localized for that program (three columns: HTML faults,
execution faults, total).

faults was known (e.g., because faults were seeded), we did not
know where the faults were located, and therefore needed to local-
ize them manually. Manually localizing and fixing faults is a very
time-consuming task, so we limited ourselves to 20 faults in each
of the subject programs. In webchess, only 15 faults were found
to cause the 35 failures, so we use a total of 75 faults as the basis
for the experiments discussed in this section. For each fault, we
devised a patch and ensured that applying this patch fixed the prob-
lem, by running the tests again, and making sure that the associated
failures8 did not recur. Table 2 summarizes the details of the gen-
erated test suites, and the localized faults used in the remainder of
this section. We used the following fault localization techniques to
assign suspiciousness ratings to all executed statements:

T The Tarantula algorithm that was presented in Section 4.1
O The technique of Section 4.2 based on using an output map-

ping in combination with positional information obtained from
an oracle (HTML validator).

T+O The combined technique described in Section 4.3 that com-
bines Tarantula with the use of the output mapping.

TC The variation on Tarantula presented in Section 4.4 in which
conditional expressions are modeled as (condition, value) pairs.

TC+O The variation on Tarantula presented in Section 4.4, com-
bined with the use of the output mapping.

TC or O A combined fault localization technique that uses TC for
execution errors, and O for HTML failures.

We computed suspiciousness ratings separately for each localized
fault, by applying each of these fault localization techniques to a
test suite that comprised the set of failing tests associated with the
fault under consideration, and the set of all passing tests.

Similar to previous fault-localization studies [15, 7, 14, 24], we
measured the effectiveness of a fault localization algorithm as the
minimal number of statements that needs to be inspected until the
first faulty line is detected, assuming that statements are examined
in order of decreasing suspiciousness.

6.3 Results
Table 3 shows experimental results for each of the six techniques

(T ,O, T+O, TC, TC+O andTC orO) discussed above. The table
shows, for each subject program (and for the subject programs in
aggregate) a group of six rows of data, one for each technique. Each
row shows, from left to right, the average number (percentage) of
statements that needs to be explored to find each fault, followed
by 11 columns of data that show how many of the faults were lo-
calized by exploring up to 1% of all statements, up to 10% of all
8In general, a single fault may be responsible for multiple failures.

program technique # statements(%) 0-1 1-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

faqforge

T 54.6(7.7) 15.0 50.0 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
O 142.5(20.1) 80.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0
T+O 9.3(1.3) 85.0 10.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC 58.4(8.2) 10.0 55.0 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC or O 79.5(11.2) 75.0 10.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0
TC+O 7.4(1.0) 85.0 10.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

webchess

T 203.1(23.0) 15.4 30.8 0.0 15.4 23.1 7.7 0.0 0.0 0.0 0.0 0.0
O 339.8(38.5) 61.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.5
T+O 135.8(15.4) 69.2 0.0 0.0 7.7 7.7 7.7 0.0 0.0 0.0 0.0 0.0
TC 139.1(15.8) 30.8 30.8 0.0 0.0 30.8 0.0 7.7 0.0 0.0 0.0 0.0
TC or O 133.8(15.2) 53.8 23.1 0.0 0.0 7.7 0.0 7.7 0.0 0.0 0.0 7.7
TC+O 61.8(7.0) 84.6 0.0 0.0 0.0 7.7 0.0 7.7 0.0 0.0 0.0 0.0

schoolmate

T 508.5(18.2) 25.0 45.0 10.0 0.0 0.0 0.0 0.0 10.0 0.0 5.0 5.0
O 976.5(35.0) 65.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.0
T+O 149.5(5.4) 80.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0
TC 382.8(13.7) 30.0 45.0 10.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 5.0
TC or O 837.5(30.0) 70.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0
TC+O 9.1(0.3) 90.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

timeclock

T 136.5(3.8) 15.0 85.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
O 360.0(10.0) 90.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0
T+O 18.3(0.5) 90.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC 138.5(3.9) 15.0 85.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC or O 183.1(5.1) 90.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0
TC+O 18.4(0.5) 90.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

aggregated

T 227.8(13.2) 17.8 54.8 12.3 2.7 4.1 1.4 0.0 2.7 0.0 1.4 2.7
O 465.7(25.9) 75.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.7
T+O 72.7(5.6) 82.2 9.6 1.4 1.4 1.4 1.4 0.0 0.0 0.0 0.0 2.7
TC 183.6(10.4) 20.5 56.2 12.3 0.0 5.5 0.0 1.4 2.7 0.0 0.0 1.4
TC or O 352.2(15.4) 74.0 8.2 1.4 0.0 1.4 0.0 1.4 0.0 0.0 0.0 13.7
TC+O 20.5(2.2) 87.7 8.2 1.4 0.0 1.4 0.0 1.4 0.0 0.0 0.0 0.0

Table 3: Results of fault localization using the different fault localization techniques. The columns of the table indicate (i) the
subject program, (ii) the fault localization technique used (iii) the average number of statements to inspect, and average percentage
of statements to inspect, (iv)-(xiv) indicate the percentage of faults in each range of percentage of statements to inspect.

statements, up to 20% of all statements, and so on. Consider, for ex-
ample, the case where the T+O technique is used to localize faults
in faqforge. If a programmer inspects the statements reported by
this technique in decreasing order of suspiciousness, then on aver-
age, he will need to inspect 9.3 statements until he has found the
first faulty statement, and this corresponds to 1.3% of the executed
statements. Furthermore, we can see that for 85% of the faults in
faqforge, less than 1% of the executed statements needs to be in-
spected, for an additional 10% of the faults, between 1% and 10%
of the executed statements needs to be inspected, and that the re-
maining 5% of the faults requires inspecting between 10% of 20%
of the executed statements.

In order to ease the discussion of the relative effectiveness of
the techniques, we will say that a fault is well-localized by a fault-
localization technique if inspecting the statements in decreasing or-
der of suspiciousness according to that technique implies that all
faulty statements are found after inspecting fewer than 1% of all
executed statements. Using this terminology, we can see that:

• Using the basic Tarantula algorithm, only 17.8% of all faults
are well-localized, on average (see the first row of data in the
set of rows labeled aggregated).
• Using the oracle-based technique O, 75.3% of all faults are

well-localized, on average over all subjects.
• Combining Tarantula with the oracle (T+O) yields a tech-

nique that outperforms either of its constituents, with 82.2%
of all faults being well-localized on average.
• Adapting Tarantula to operate on statements and (condi-

tion,value) pairs (TC) is slightly helpful, by well-localizing
20.5% of all faults, versus the previously mentioned 17.8%
for the statement-based Tarantula-algorithm.
• The most effective fault localization technique is obtained by

using the variant of Tarantula that operates on statements and
(condition,value) pairs, in combination with the oracle (TC+O).

Using this technique, 87.7% of all faults are well-localized, on
average over all subjects.
• For the combined technique that uses the TC technique for ex-

ecution errors and the O technique for HTML failures, 74.0%
of all faults are well-localized.

6.4 Discussion
While we have discussed only aggregated data so far, the results

appear to be consistent across the four subject applications. It is
interesting to note that the effectiveness of the more precise mod-
eling of conditionals depends on whether the subject program con-
tains any faults that consist of missing branches in conditions. For
one subject (webchess) this accounts for a 15.4% improvement in
well-localized faults over the basic Tarantula algorithm, whereas
for another (timeclock), it makes no difference at all. In summary,
we found that the TC+O yields an almost five-fold increase in the
percentage of well-localized bugs, when compared with the basic
Tarantula algorithm. Most of this increment is due to the use of
the output mapping in combination with positional information ob-
tained from the oracle. This is undoubtedly due to the fact that
many of the localized faults manifest themselves via malformed
HTML output. Our treatment of conditional expressions accounts
for a much smaller part of the gains in precision, but is still helpful
in cases where the fault consists of a missing branch in a condi-
tional statement.

It is interesting to note that, since the oracle provides a binary
suspiciousness rating, it tends to either be very helpful, or not help-
ful at all. This argues strongly for a fault-localization method that
combines a statistical method such as Tarantula, with one based on
an output mapping. One could consider using different techniques
for different kinds of faults (e.g., use Tarantula for execution er-
rors, and the oracle-based technique for HTML errors). However,
the example that we discussed previously in Section 2.4 shows that

the two techniques can reinforce each other in useful ways. This
is confirmed by our experimental results: the combined technique
TC or O is significantly less effective (74.0% of all statements be-
ing well-localized) than the combined technique TC+O (87.7%).

Figure 4 shows a graph depicting the aggregated data of Table 3.
The X-axis represents the percentage of statements that need to be
examined in decreasing order of suspiciousness until the first fault
has been found, and the Y-axis the number of faults localized. A
line is drawn for each of the six fault localization techniques under
consideration. From these lines, it is clear that theTC+O technique
outperforms all other techniques. In particular, note that, for any
percentage n between 0% and 100%, TC+O localizes more faults
than any of the other algorithms when up to n% of all statements
are examined in decreasing order of suspiciousness.

Figure 4: Effectiveness comparison of different fault-
localization techniques. X-axis: percentage of statements that
need to be inspected. Y-axis: percentage of faults.

6.5 Threats to Validity
There are several objections a critical reviewer might raise to

the evaluation presented in this section. First, one might argue that
the benchmarks are not representative of real-world PHP programs.
While this may be the case, we selected open-source PHP applica-
tions that are widely used, as is evidenced by the number of down-
loads reported in Figure 1. The same subject programs were also
used as subject programs by Minamide [20]. Second, it could be the
case that the faults we exposed and localized are not representative.
We do not consider this to be a serious risk, because we were pre-
viously unfamiliar with the faults in these subject programs, and
all of them were exposed by automatic and systematic means. A
potentially more serious issue is that any given fault may be fixed

in multiple different ways. The fixes we devised were mostly one-
line code changes, for which we attempted to produce the simplest
possible solution. A possible experiment (which we plan to pursue
as future work) is to submit patches with our fixes to the develop-
ers of the subject programs, and observe if they are accepted. The
most serious criticism to our evaluation, in our own opinion, is the
assumption that programmers would inspect the statements strictly
in decreasing order of suspiciousness. In practice, it is very likely
that programmers who try to follow this discipline would automati-
cally look at adjacent statements, so the assumption is probably not
completely realistic. Our rebuttal to this argument is that we evalu-
ate all techniques in exactly the same way, and that this approach to
measuring the effectiveness of fault localization methods has been
used in previous research in the area (e.g., [15, 14, 24]).

7. RELATED WORK
This section reviews the literature on fault localization, focusing

on Tarantula and other approaches.

7.1 Tarantula
In this paper, we apply the Tarantula technique [15, 14], which

was previously discussed in Section 4, in a new domain (web appli-
cations written in PHP). Previous evaluations of the Tarantula algo-
rithm have primarily focused on the Siemens suite, a collection of
small C programs into which artificial faults have been seeded and
for which a large number of test cases is available. By contrast, we
study real faults in open-source PHP web applications. Moreover,
unlike previous work on Tarantula, we do not assume the avail-
ability of a test suite but rely on combined concrete and symbolic
execution to generate a large number of (passing and failing) test
cases instead.

Santelices, et al. [24] investigate the tradeoffs of applying the
Tarantula algorithm to different types of program entities: state-
ments, branches, and def-use pairs. The results for the branch-
based and def-use-based variants are mapped to statements, so that
their effectiveness can be compared. The outcome of this com-
parison is that the branch-based algorithm is more precise than
the statement-based one, and that def-used based variant is more
precise still. Santelices, et al. also present algorithms that com-
bine the variants by computing an overall suspiciousness rating for
each statement that is derived from the underlying suspiciousness
ratings, and report that one of these combined algorithms is even
more precise than the def-use based algorithm. In this paper, we
also explore special treatment of branches, but unlike Santelices,
et al., we do not compute a separate suspiciousness rating based
on branch information but instead extend the statement-based ap-
proach by treating each control-flow predicate as several distinct
statements, one for each branch.

7.2 Other Approaches for Fault Localization
Early work on fault localization relied on the use of program slic-

ing [27]. Lyle and Weiser [19] introduce program dicing, a method
for combining the information of different program slices. The ba-
sic idea is that, when a program computes a correct value for vari-
able x and an incorrect value for variable y, the fault is likely to be
found in statements that are in the slice w.r.t. y, but not in the slice
w.r.t. x. Variations on this idea technique were later explored by
Pan and Spafford [21], and by Agrawal, et al. [2].

In the spirit of this early work, Renieris and Reiss [23] use set-
union and set-intersection methods for fault localization, that they
compare with their nearest neighbor fault localization technique
(discussed below). The set-union technique computes the union of
all statements executed by passing test cases and subtracts these

from the set of statements executed by a failing test case. The re-
sulting set contains the suspicious statements that the programmer
should explore first. In the event that this report does not contain
the faulty statement, Renieris and Reiss propose a ranking tech-
nique in which additional statements are considered based on their
distance to previously reported statements along edges in the Sys-
tem Dependence Graph (SDG) [11]. The set-intersection technique
identifies statements that are executed by all passing test cases, but
not by the failing test case, and attempts to address errors of omis-
sion, where the failing test case neglects to execute a statement.

The nearest neighbors fault localization technique by Renieris
and Reiss [23] assumes the existence of a failing test case and
many passing test cases. The technique selects the passing test case
whose execution spectrum most closely resembles that of the fail-
ing test case according to one of two distance criteria9, and reports
the set of statements that are executed by the failing test case but
not by the selected passing test case. In the event that the report
does not contain the faulty statement, Renieris and Reiss use the
SDG-based ranking technique mentioned above to identify addi-
tional statements that should be explored next. Nearest Neighbor
was evaluated on the Siemens suite [12], and was found to be su-
perior to the set-union and set-intersection techniques.

Recent papers by Jones and Harrold [14] and by Abreu, et al. [1]
empirically evaluate various fault-localization techniques (includ-
ing many of the ones discussed above) using the Siemens suite.
Dallmeier, et al. [8] present a technique in which differences be-
tween method-call sequences that occur in passing and failing ex-
ecutions are used to identify suspicious statements. They evaluate
the technique on buggy versions of the NanoXML Java application.
Cleve and Zeller [7, 30], Zhang et al. [31], and Jeffrey, et al. [13]
present fault localization techniques that attempt to localize faults
by modifying the program state at selected points in a failing run,
and observing whether or not the failure reoccurs. Other fault local-
ization techniques analyze statistical correlations between control
flow predicates [17, 18] or path profiles [6] and failures, time spec-
tra [29], and correlations between changes made by programmers
and test failures [26, 22]. In recent work by Zhang et al. [32], suspi-
ciousness scores are associated with basic blocks and control-flow
edges, and computed by solving (e.g., using Gaussian elimination)
a set of equations that reflect control flow between basic blocks.

8. CONCLUSIONS AND FUTURE WORK
We have leveraged combined concrete and symbolic execution

and several fault-localization techniques to create a uniquely pow-
erful tool that automatically detects failures and localizes faults in
PHP Web applications. The fault-localization techniques that we
evaluated combine variations on the Tarantula algorithm with a
technique based on maintaining a mapping between executed state-
ments and the fragments of output they produce. We implemented
these techniques in a tool called Apollo, and evaluated them by
localizing 75 randomly selected faults that were exposed by auto-
matically generated tests in four PHP applications. Our findings
indicate that, using our best technique, 87.7% of the faults under
consideration are localized to within 1% of all executed statements,
which constitutes an almost five-fold improvement over the Taran-
tula algorithm.

For future work, we plan to investigate if the effectiveness of our
techniques can be enhanced by generating additional tests whose

9One similarity measure defines the distance between two test
cases as the cardinality of the symmetric set difference between
the statements that they cover. The other measure considers the
differences in the relative execution frequencies.

execution characteristics are similar to those of failing tests. We
also plan to explore the effectiveness of variations on the Ochiai
fault localization technique [1], and to submit the patches we de-
vised to remedy the localized faults to the developers of our test
subjects.

9. REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An evaluation of similarity

coefficients for software fault localization. In PRDC 2006, pages 39–46, 2006.
[2] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localization using

execution slices and dataflow tests. In ISSRE, Toulouse, France, 1995.
[3] S. Artzi, A. Kieżun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst.

Finding bugs in dynamic web applications. In ISSTA, pages 261–272, 2008.
[4] S. Artzi, A. Kieżun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst.

Finding bugs in web applications using dynamic test generation and explicit
state model checking. IEEE Transactions on Software Engineering, 2010. To
appear.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
automatically generating inputs of death. In CCS, 2006.

[6] T. M. Chilimbi, B. Liblit, K. K. Mehra, A. V. Nori, and K. Vaswani. Holmes:
Effective statistical debugging via efficient path profiling. In ICSE, 2009.

[7] H. Cleve and A. Zeller. Locating causes of program failures. In ICSE, pages
342–351, May 2005.

[8] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization for java.
In ECOOP, pages 528–550, 2005.

[9] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In PLDI, 2005.

[10] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz testing. In
NDSS, 2008.

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In ICSE,
pages 191–200, 1994.

[13] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value replacement.
In ISSTA, pages 167–178, 2008.

[14] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. In ASE, pages 273–282, 2005.

[15] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to
assist fault localization. In ICSE, pages 467–477, 2002.

[16] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote
program sampling. In PLDI, pages 141–154, 2003.

[17] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical
bug isolation. In PLDI’05, pages 15–26, 2005.

[18] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: statistical model-based
bug localization. In FSE, pages 286–295, 2005.

[19] J. Lyle and M. Weiser. Automatic bug location by program slicing. In ICCEA,
pages 877–883, Beijing (Peking), China, 1987.

[20] Y. Minamide. Static approximation of dynamically generated Web pages. In
WWW, 2005.

[21] H. Pan and E. H. Spafford. Heuristics for automatic localization of software
faults. Technical Report SERC-TR-116-P, Purdue University, July 1992.

[22] X. Ren and B. G. Ryder. Heuristic ranking of java program edits for fault
localization. In ISSTA, pages 239–249, 2007.

[23] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In
ASE, pages 30–39, 2003.

[24] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight
fault-localization using multiple coverage types. In ICSE, pages 56–66, 2009.

[25] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C.
In FSE, 2005.

[26] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. Finding Failure-inducing Changes
in Java Programs Using Change Classification. In FSE, pages 57–68, Portland,
OR, USA, Nov. 7–9, 2006.

[27] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, 1995.

[28] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su.
Dynamic test input generation for web applications. In ISSTA, 2008.

[29] C. Yilmaz, A. M. Paradkar, and C. Williams. Time will tell: fault localization
using time spectra. In ICSE, pages 81–90, 2008.

[30] A. Zeller. Isolating cause-effect chains from computer programs. In FSE, pages
1–10. ACM Press, November 2002.

[31] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated predicate
switching. In ICSE, pages 272–281, 2006.

[32] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang. Capturing propagation
of infected program states. In ESEC/FSE, pages 43–52, 2009.

