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ABSTRACT
Recent versions of the Java standard library offer flexible locking
constructs that go beyond the language’s built-in monitor locks in
terms of features, and that can be fine-tuned to suit specific appli-
cation scenarios. Under certain conditions, the use of these con-
structs can improve performance significantly, by reducing lock
contention. However, the code transformations needed to con-
vert between locking constructs are non-trivial, and great care
must be taken to update lock usage throughout the program consis-
tently. We present Relocker, an automated tool that assists program-
mers with refactoring synchronized blocks into ReentrantLocks
and ReadWriteLocks, to make exploring the performance tradeoffs
among these constructs easier. In experiments on a collection of
real-world Java applications, Relocker was able to refactor over 80%
of built-in monitors into ReentrantLocks. Additionally, in most
cases the tool could automatically infer the same ReadWriteLock
usage that programmers had previously introduced manually.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Measurement, Performance

Keywords
Refactoring, monitors, read-write locks

1. INTRODUCTION
As multi-core processors are becoming pervasive, programs are

becoming more concurrent to take advantage of the available par-
allelism. However, increasing concurrency in a program is often
non-trivial, due to various potential scalability bottlenecks. One
common bottleneck is lock contention, where scalability is limited
by many threads waiting to acquire some common lock in order to
safely access shared memory.
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Various solutions exist for addressing lock contention, each with
benefits and drawbacks. Approaches that avoid locks altogether
include lock-free data structures (see, e.g., [17]) and transactional
memory (TM) [11]. However, writing correct lock-free data struc-
tures requires more expertise than can be expected from most pro-
grammers, and the semantics of TM may not be suitable in some
cases (e.g, if I/O needs to be performed). Making locking more
fine-grained can also increase concurrency, but potentially risks
introducing subtle race conditions. In the context of Java, the stan-
dard java.util.concurrent library (in the sequel abbreviated as
j.u.c) provides a number of data structures and locking constructs
that could also be helpful, with their own tradeoffs. With all these
options, there is a strong need for tool support to help programmers
experiment with different solutions to see what works best in a
particular situation.

In this paper, we focus on refactoring support for the advanced
locking constructs available in j.u.c [21]. The ReentrantLock
type enables many features unsupported by Java’s built-in locks,
such as non-block-structured lock operations, checking if a lock is
held (tryLock()), interrupting lock acquisition, and specifying fair-
ness behavior under contention. Additionally, the ReadWriteLock
type enables distinguished reader and writer locks, where multi-
ple threads holding the reader lock may execute concurrently. The
goal of our research is to provide refactoring tools that support the
transition from built-in locks to these advanced lock types.

Many difficulties arise when manually transforming a program to
use the locking constructs of j.u.c, motivating better tool support.
First, these constructs lack the concise and intuitive syntax of the
synchronized blocks associated with Java’s built-in monitor locks.
Instead, locks are modeled as objects, and lock operations as method
calls, and the burden is on the programmer to ensure that acquisition
and release of locks are properly matched. Second, the relative
performance of different lock types strongly depends on the number
of threads and their workload, and on the architecture and JVM
being used. As we shall show in Section 2, these performance
tradeoffs are often unclear, and may change as programs and JVMs
evolve. Therefore, programmers may need to switch back and forth
between different lock types to determine the best lock for the job.
Third, the transformation from one locking construct to another can
require tricky non-local reasoning about program behavior. All code
blocks using the same lock must be transformed together to ensure
behavior preservation, and discovering all such blocks can be non-
trivial. In some cases, the migration to advanced locks is impossible
when the program extends a framework that relies on a specific form
of synchronization. Introducing read-write locks requires careful
reasoning about where a read lock is safe to introduce, as incorrect
use of a read lock can lead to subtle race conditions.

In this paper, we present Relocker, an automated refactoring tool
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that can replace built-in monitor locks with ReentrantLocks and
ReadWriteLocks.1 Building a practical tool for performing these
lock refactorings is challenging—the transformations involved re-
quire knowledge about object aliasing and possible heap side effects,
but most analyses for computing such information are not suitable
for use in a refactoring tool, due to performance issues or the as-
sumption that all relevant code is reachable from a set of entry points.
Relocker is carefully designed to enable automation of most of the
code transformations needed to switch between locking constructs
in real-world programs, while only using analyses suitable for a
practical refactoring tool.

The contributions of this paper are:

• Algorithms for converting from built-in monitor locks to
ReentrantLocks, and for converting from ReentrantLocks
to ReadWriteLocks.

• An implementation of these algorithms in an automated refac-
toring tool called Relocker.

• An evaluation of Relocker on a set of Java programs, demon-
strating that Relocker was able to refactor over 80% of all
monitor locks into ReentrantLocks, and showing that, on sev-
eral programs that already used ReadWriteLocks, Relocker
was able to infer read locks in most cases where programmers
had previously introduced them manually.

The remainder of this paper is organized as follows. Section 2
presents background on the advanced lock types from j.u.c and
an example to motivate our refactorings. Sections 3 and 4 present
algorithms for converting from monitor locks to ReeentrantLocks,
and from the latter to ReadWriteLocks, respectively. In Section 5,
we present the implementation of Relocker and its evaluation on
a set of Java benchmarks. Section 6 discusses related work, and
conclusions are presented in Section 7.

2. MOTIVATING EXAMPLE
In this section, we give an overview of our proposed refactorings

via three versions of an example class implemented with the differ-
ent locking constructs. We introduce these constructs and present
variants of the example class using each of these constructs in Sec-
tion 2.1. Then, in Section 2.2, we discuss the complex performance
tradeoffs between the variants, motivating the need for a refactor-
ing tool to enable experimentation. Finally, Section 2.3 illustrates
some challenges of performing the refactorings in the context of the
examples.

2.1 Example
Figure 1 illustrates the different locking constructs involved in

our refactorings. The figure shows three different implementations
of a class SyncMap, a synchronization wrapper similar to the ones
available in class java.util.Collections. Each SyncMap imple-
mentation handles all map operations by acquiring a lock, delegating
to the corresponding operations in a contained Map object, and finally
releasing the lock.

The program of Figure 1(a) uses the built-in monitor locks that
are associated with Java’s synchronized blocks. While these locks
have the benefit of concise syntax and low overhead in the uncon-
tended case, there are situations where more flexibility is required,
and where their performance is suboptimal. To address these short-
comings, two alternative types of locks are available in Java standard
libraries since Java 5.0, in package java.util.concurrent.locks:
1Refactoring ReentrantLocks and ReadWriteLocks back into built-
in monitor locks is easy, provided that none of the features specific
to the advanced lock types are used.

throughput (ops/second)
JVM # # # sync’d reentrant R/W

cores readers writers
Sun 1.6.0_07 8 9 1 528.7 360.9 1072.3
Sun 1.6.0_07 8 1 1 299.6 206.9 169.4
Sun 1.6.0_07 8 1 9 273.2 218.9 181.8
Sun 1.5.0_15 8 9 1 244.3 368.9 1677.7
Sun 1.5.0_15 8 1 1 187.7 195.5 208.8
Sun 1.5.0_15 8 1 9 227.4 179.8 199.2
Sun 1.5.0_17 2 9 1 305.2 288.1 611.7
Sun 1.5.0_17 2 1 1 161.6 176.4 164.6
Sun 1.5.0_17 2 1 9 200.9 175.4 159.5

Table 1: Synthetic benchmark throughput. All measurements
are averages of 10 runs of 10 seconds each. 8-core numbers
were taken on a 4-way dual-core 3.2GHz Intel Xeon Linux ma-
chine with 20GB RAM. 2-core numbers were taken on a 2GHz
AMD Athlon 64 X2 Dual Core Linux machine with 4 GB RAM.

• ReentrantLock has similar behavior to a built-in monitor
lock, but is more flexible by (i) allowing non-block-structured
regions to be protected by locks, (ii) supporting tryLock(),
a mechanism for testing whether a lock is held, and (iii) sup-
porting fairness parameters and multiple condition variables.

• A ReadWriteLock has an associated read lock and write lock.
Only one “writer” thread may execute while holding the write
lock, but multiple “reader” threads can execute concurrently
while holding the read lock (as long as no thread holds the
write lock). This construct enables better performance when
write operations are relatively infrequent.

Both of these types of locks require slightly more awkward syn-
tax than traditional synchronized blocks: the programmer creates
a lock by calling the constructor for the appropriate lock type,
and must call methods on the returned lock object to perform
lock()/unlock()/tryLock() operations.

Figure 1(b) shows an alternative implementation of class SyncMap
based on ReentrantLocks that is semantically equivalent to the
one in Figure 1(a). In this version, the lock is created when the
SyncMap-object is being constructed, a call to lock() is inserted
at the beginning of each method, and a call to unlock() before
returning. Note that a try-finally construct must be used in order
to ensure that the lock is released when a method exits exceptionally.
The solution based on ReadWriteLocks shown in Figure 1(c) is
analogous to that of Figure 1(b), but utilizes the read lock, obtained
by invoking method readLock(), for methods that do not update the
map; only method put() requires the use of the write lock.

2.2 Performance Tradeoffs
The performance differences between the different locking con-

structs can be both dramatic and unpredictable. Table 1 presents a
performance comparison of a synthetic benchmark using our im-
plementations of SyncMap on different JVMs and hardware. The
benchmark spawns some number of reader and writer threads that
respectively perform random reads (i.e. get and containsKey op-
erations) and writes (i.e. put operations) to a shared SyncMap, and
then measures throughput in terms of total operations per second.2

The final three columns of Table 1 give throughput numbers for the
SyncMap implementations using synchronized methods, reentrant
locks, and read-write locks (Figure 1(a), (b), and (c) respectively).

Clearly, switching to a different type of lock can have signifi-
cant performance benefits. For example, on the 8-core machine

2The full benchmark code is available at http://progtools.
comlab.ox.ac.uk/projects/refactoring/relocker.
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public class SyncMap {
private final Map map;
public SyncMap(Map map) { this.map = map; }
public synchronized Object put(Object k, Object v) {

return map.put(k, v);
}
public synchronized Object get(Object k) {

return map.get(k);
}
public synchronized int size() {

return map.size();
}

}

(a)

public class SyncMap {
private final ReentrantLock lock;
private final Map map;
public SyncMap(Map map){

this.map = map;
lock = new ReentrantLock();

}
public Object put(Object k, Object v) {

lock.lock();
try { return map.put(k, v);
} finally { lock.unlock(); }

}
public Object get(Object k) {

lock.lock();
try { return map.get(k);
} finally { lock.unlock(); }

}
public int size() {
lock.lock();
try { return map.size();
} finally { lock.unlock(); }

}
}

(b)

public class SyncMap {
private final ReadWriteLock lock;
private final Map map;
public SyncMap(Map map){

this.map = map;
lock = new ReentrantReadWriteLock();

}
public Object put(Object k, Object v) {

lock.writeLock().lock();
try {
return map.put(k, v);

} finally { lock.writeLock().unlock(); }
}
public Object get(Object k) {

lock.readLock().lock();
try {
return map.get(k);

} finally { lock.readLock().unlock(); }
}
public int size() {

lock.readLock().lock();
try {

return map.size();
} finally { lock.readLock().unlock(); }

}
public int sizeViaIter() {

lock.readLock().lock();
try {

Iterator i = map.entrySet().iterator();
int count = 0;
while (i.hasNext()) {
count++; i.next();

}
return count;

} finally { lock.readLock().unlock(); }
}

}

(c)

Figure 1: Alternative implementations of class SyncMap based on standard monitor locks (a), ReeentrantLocks (b) and on
ReadWriteLocks (c).

running the Sun 1.6.0_07 JVM, switching from a monitor-based im-
plementation of SyncMap to one based on ReadWriteLocks yielded
a more than twofold increase in throughput when read operations
dominate. When the Sun 1.5.0_15 JVM was used on the same con-
figuration, the version based on ReadWriteLocks won by an even
more dramatic factor of 5. However, in a configuration where write
operations were more prevalent, the version with synchronized
blocks was 50% faster than one based on read-write locks with the
Sun 1.6.0_07 JVM (14% faster with the Sun 1.5.0_15 JVM). In a
low-contention case with just 1 reader and 1 writer, the performance
differences were less extreme, and each of the three types of locks
yielded the fastest version on at least one machine/VM configuration
(e.g., note that ReentrantLocks were fastest on the 2-core machine
with the Sun 1.5.0_15 JVM).

As shown by Table 1, the relative performance of different types
of locks strongly depends on the mix of read and write operations,
and on the architecture and JVM being used. Careful experimen-
tation is needed to determine which locks perform best, and this
argues strongly for refactoring tools that make it easy to switch
between different types of locks.

2.3 Refactoring Challenges
The Relocker tool that we developed is capable of automatically

inferring the version of SyncMap of Figure 1(b) from the original

code in Figure 1(a). While the transformation needed to perform the
refactoring is fairly straightforward for the simple example under
consideration, a slightly more involved transformation is sometimes
needed. Also, determining when the transformation is safe requires
non-local reasoning. With the SyncMap example, in addition to the
code shown, the refactoring must check which other synchronized
blocks in the program might lock a SyncMap object. This check
requires aliasing information, which is typically computed with
expensive whole-program analysis. However, we have devised tech-
niques that are sufficient for handling typical usage of synchronized
blocks and methods while avoiding any costly whole-program anal-
ysis. Section 3 details our algorithm for refactoring built-in monitor
locks into ReeentrantLocks.

Relocker can also automatically refactor from ReentrantLocks
to ReadWriteLocks, transforming the class in Figure 1(b) into that
of Figure 1(c). A key goal of this refactoring is to introduce as many
read locks as possible, in order to increase potential parallelism in
the refactored program. However, determining when a read lock
can be used safely can be quite challenging in the presence of heap
updates, only some of which are relevant to locking.

Consider the (contrived) sizeViaIter() method in Figure 1(c),
which computes the size of the map by iterating through its entries.
For typical Java Iterators, the next() method updates the state
of the object to reflect the current traversal position. In this case,
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however, this heap update mutates a local object (allocated by the
iterator() call), and hence does not affect the correctness of using
a read lock. Most attempts to prove such program properties in the
literature are again based on costly whole-program analysis, but in
Section 4 we describe a carefully-designed local analysis that often
suffices for the task of read lock inference.

3. INTRODUCING REENTRANT LOCKS
The CONVERT TO REENTRANT LOCK refactoring allows the pro-

grammer to replace all uses of a built-in monitor with corresponding
uses of an object of type ReentrantLock; in particular, it can trans-
form the code from Figure 1(a) to that of Figure 1(b). All operations
on built-in monitors have their equivalent on reentrant locks, and
moreover the semantics of reentrant locks with respect to ordering,
visibility and atomicity is the same as for built-in monitors [21].
Hence this refactoring preserves program behavior as long as it is
performed consistently in the following sense: two operations on
the same built-in monitor in the original program either still operate
on the same monitor in the refactored program, or they have both
been refactored to work on the same reentrant lock, and vice versa.

Because using ReentrantLock objects for locking can carry a
higher overhead than using built-in monitors on modern JVMs, this
refactoring can degrade program performance. As explained pre-
viously, however, reentrant locks offer additional features, such as
non-block-structured locking, that may be useful in some circum-
stances. While this refactoring does not aim to introduce the use
of such features into the program, it makes it much easier for the
programmer to experiment with them; it also lays the groundwork
for a more sophisticated refactoring for converting reentrant locks
to read-write locks, introduced in Section 4.

It is, of course, not possible for the refactoring to transform a sin-
gle monitor as it exists at runtime into a reentrant lock: for instance,
the same synchronized instance method will use different monitors
when invoked on different objects, and the monitor expression of
a synchronized block may evaluate to different objects at differ-
ent times. Hence, it is more correct to think of the refactoring as
changing a set M of monitors into a set L of reentrant locks.

To achieve the goal of consistently refactoring all uses of monitors
from M to corresponding uses of locks from L, we have to answer
two questions: (1) which monitor uses have to be refactored together,
and (2) how they ought to be refactored. To answer question 1, we
must categorize all uses of built-in monitors into those that use a
monitor from M (and hence must be refactored) and those that
cannot possibly do so. For the second question, we have to uniquely
assign a lock from L to every monitor from M , and replace all
relevant monitor uses with a use of the corresponding lock.

In principle, the two questions are independent. However, answer-
ing the second question leads to a simple and practical answer to
the first, so we discuss how to perform the refactoring (Section 3.1)
before discussing what code to refactor (Section 3.2).

3.1 How to Refactor
We call a language construct that operates on a built-in monitor

a monitor action. Every monitor action a has a monitor expression
me(a) that evaluates to the object whose monitor is accessed by the
action. There are four kinds of monitor actions:

1. synchronized instance methods, which enter and exit the mon-
itor of their receiver object; their monitor expression is this;

2. synchronized static methods, which enter and exit the monitor
of the class object for their enclosing class; their monitor
expression is a class literal for that class;

class C {
private Map m = new HashMap();
public Object get(Object k) {

synchronized(m) { return m.get(k); }
}
public void put(Object k, Object v) {

synchronized(m) { m.put(k, v); }
}

}

Figure 2: Monitor actions on unshared fields

3. synchronized blocks, which enter and exit the monitor of the
object their expression evaluates to; that expression is their
monitor expression;

4. calls to methods wait, notify and notifyAll, which operate
on the monitor of their receiver object; their monitor expres-
sion is their receiver argument.

Note that both types of synchronized methods can easily be desug-
ared into synchronized blocks. Hence, we limit our discussion to
handling of synchronized blocks and calls to wait or notify.

For a synchronized block with monitor expression e, let lock
expression l(e) evaluate to a corresponding reentrant lock. Given
l(e), the block can be rewritten like this:

synchronized(e) {
...

} ⇒
l(e).lock();
try {

...
} finally {
l(e).unlock();

}

As the program transformation is straightforward, the main prob-
lem in performing the refactoring is determining l(e).

Our strategy for associating a reentrant lock with an object o
is to store the lock in a field l of o, which is made public to allow
access from any package. This technique is natural, as it matches the
association of Java’s built-in monitors with unique objects. Syntacti-
cally, the refactoring needs to insert a final instance field l of type
ReentrantLock into the declaration of the class of o, and initialize
it to a new instance of ReentrantLock. Now, l(e) can simply be
defined as e.l. This strategy only works if the type of o is a class
(since Java interfaces cannot have instance fields) and if the source
code of the class is modifiable, i.e., it cannot be a library class.

For static synchronized methods, the instance field insertion strat-
egy does not work: the locked object for a synchronized static
method in class C is of type Class<C>, which cannot be modified.
Fortunately, we can achieve the same effect by storing the reentrant
lock in a new static field C.l (again, assuming C is modifiable). In
this case, we define l(e) to be C.l.

This leaves us with the case of monitor actions on expressions
whose type is neither a parameterized instance of Class nor a modifi-
able class. Such monitor actions occur quite frequently in real code,
and hence cannot be ignored by the refactoring. A common usage
pattern of this kind is shown in Figure 2: class C has a member field
m, which is initialized to a fresh object, and is used to synchronize
access to other data (in this case the map itself).

We can exploit encapsulation to handle most such cases. Note
that the reference stored in m is never leaked in any way, so the stored
HashMap object is only accessible through m itself. Consequently,
the field satisfies the following important property:

Any monitor action that operates on the monitor of an
object stored in the field must access it through that
very field.
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We call fields with this property unshared.
The field m of Figure 2 is unshared, since it is only ever assigned

newly created objects, its value is never assigned to another variable,
and the methods invoked on it (HashMap.put and HashMap.get) do
not leak the value of their receiver object. In Section 5, we will
discuss a simple syntactic check to determine whether a field is
unshared.

Suppose we want to refactor the set of monitors associated with
all the objects stored in an unshared field like m. To associate lock
objects with these monitors, we introduce a new lock field l into m’s
enclosing class C (which must be modifiable). Every monitor action
operating on m has a monitor expression of the form e.m, so we can
easily refactor it into a corresponding lock operation on e.l.

To refactor invocations of wait and notify, we utilize
the condition variables of type Condition associated with
ReentrantLocks. Multiple condition variables can be associated
with a ReentrantLock via calls to newCondition(), but for our
refactoring only one such variable is needed. The refactoring in-
troduces an additional condition variable field c alongside the lock
field l and initializes it to a new variable whenever l is initialized to
a new lock. Uses of wait and notify can then be straightforwardly
rewritten into corresponding uses of await and signal on c.

3.2 What to Refactor
The previous subsection introduced three ways of associating a

lock object with a built-in monitor: (1) as an instance field of the
type C of the object to which the monitor belongs, (2) as a class
field of the type C to whose class object the monitor belongs, and (3)
as a sibling field of the unshared field f to whose value the monitor
belongs.

This suggests an abstraction of sets of monitors as abstract moni-
tors of the following three types:

1. for a type C, the T-monitor TM(C) represents the monitors
belonging to all objects of type C or its subtypes;

2. for a type C, the C-monitor CM(C) represents the (single)
monitor belonging to the class object of type C;

3. for an unshared field f , the F-monitor FM(f) represents the
monitors of all objects stored in f .

For an abstract monitor M , we write JMK to denote the set of
concrete monitors it represents. We write M ⊆ M ′ to denote
JMK ⊆ JM ′K, and M ⊥ M ′ to denote JMK ∩ JM ′K = ∅. For
instance, we have CM(C) ⊆ TM(java.lang.Object) for any
class C, since Class<C> extends java.lang.Object. Similarly,
if field f has type C, then FM(f) ⊆ TM(C); and, of course,
TM(C) ⊆ TM(B) whenever C is a subtype of B.

On the other hand, note that CM(C) ⊥ FM(f) for every C and
f : if the class object of C were stored in f , then f would not be
unshared, since its value could be accessed as C.class without
reference to f . Likewise, for two unshared fields f and g, JFM(f)K
and JFM(g)K are either equal or disjoint, and they can only be equal
if f = g.

To determine which monitor actions to refactor, the refactoring
assigns to every monitor action a an abstract monitor M(a) that
conservatively overapproximates the set of monitors that a could
operate on at runtime. Given this assignment, if M is the abstract
monitor representing the monitors whose uses are to be replaced
with reentrant locks, then all a with M(a) ⊆ M should be refac-
tored, and for all other actions a′ we must have M(a′) ⊥M .

A straightforward definition of M(a) is as follows:

M(a) :=





FM(f) if me(a) is an access to unshared field f

CM(C) if me(a) is of type Class<C>

TM(C) otherwise, where me(a) is of type C

However, this definition does not capture all the information we
need. If M(a) is TM(C), we only know that a operates on the
monitor of some object assignable to type C. In fact, however, a
also cannot operate on the monitor belonging to any object stored
in an unshared field (even if that field is of type C), for otherwise
M(a) would have to be an F-monitor.

In order to track this additional information, we slightly modify
our definition of TM(C):

1’. for a type C, the abstract monitor TM(C) represents the
set of all monitors belonging to all objects of type C or its
subtypes, except those stored in unshared fields.

The definition of M(a) above still gives a sound overapproximation
of the set of monitors that a could operate on under this new defini-
tion, but it is now very easy to check inclusion and disjointness of
abstract monitors.

To describe how we compute inclusion and disjointness, let us
first define the type tp(M) of an abstract monitor M by stipulating
that tp(CM(C)) := Class<C> and tp(TM(C)) := C, whereas
tp(FM(f)) is undefined. Then, it is easy to see that

• M ⊆ M ′ iff either M = M ′, or tp(M) is a subtype of
tp(M ′);

• M ⊥M ′ iff one of the following holds:

– M is FM(f), M ′ is FM(f ′), and f 6= f ′;
– M is CM(C), M ′ is CM(C′), and C 6= C′;
– tp(M) and tp(M ′) have no common (reflexive, transi-

tive) subtype.

3.3 The Algorithm
We now describe the refactoring algorithm in more detail. Fig-

ure 3 gives a pseudocode description of the main procedure of the
refactoring, CONVERT TO REENTRANT LOCK. Given an abstract
monitor M to refactor, it creates a corresponding lock field using pro-
cedure createLockField, and then iterates over all monitor actions
a in the program. Those actions that must acquire the same monitor
(M(a) ⊆M ) are refactored using procedure transformAction; for
all others, the refactoring ensures that their set of monitors is disjoint
from M , and aborts if that is not the case, reverting any changes it
has already made.

Procedure createLockField, shown in the same figure, analyzes
the kind of M and creates the lock field in the appropriate type,
ensuring that the type is modifiable. We ignore here shallow issues
to do with name binding; for instance, the name of the lock field
cannot have the same name as a field already declared in the same
class.

Procedure transformAction syntactically transforms a given
monitor action a into a corresponding action on reentrant locks. We
use function mkLockAccess to compute an expression l that refers
to the reentrant lock object. Finally, transformAction performs the
appropriate syntactic transformation of the program.3

3Note that in some cases, l is inserted into the program twice. If
l is a complicated expression that should not be evaluated twice,
or whose value may have been changed by the block, we can first
perform an EXTRACT TEMP refactoring to extract its value into a
fresh local variable x, and then perform locking and unlocking on x
instead.
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1: procedure CONVERT TO REENTRANT LOCK (AbstractMoni-
tor M ):

2: createLockField(M )
3: for all monitor actions a do
4: if M(a) ⊆M then
5: transformAction(a)
6: else
7: assert M(a) ⊥M

8: procedure createLockField (AbstractMonitor M ):
9: if M is FM(f) then

10: assert f is declared in a modifiable type
11: create lock field l as sibling field of f
12: for all assignments a to f do
13: insert assignment l = new ReentrantLock() after a
14: else if M is CM(C) then
15: assert C is a modifiable type
16: create static lock field l in C
17: else /* M must be of the form TM(C) */
18: assert C is a modifiable class
19: create lock field l in C

20: procedure transformAction (MonitorAction a):
21: assert a is from source code
22: l←mkLockAccess(a)
23: if a is synchronized(e) { ... } then
24: replace a with

l.lock(); try { ... } finally { l.unlock(); }
25: else if a is a synchronized method then
26: remove synchronized modifier from a
27: replace body of a with

l.lock(); try { ... } finally { l.unlock(); }
28: else /* a must be call to wait or notify */
29: . . .

30: function mkLockAccess (MonitorAction a):
31: e← me(a)
32: if M(a) is FM(f) then /* e is of the form e′.f */
33: return e′.l
34: else if M(a) is CM(C) then
35: return C.l
36: else /* M(a) must be of the form TM(C) */
37: return e.l

Figure 3: Refactoring CONVERT TO REENTRANT LOCK

We have elided the code to deal with refactoring of wait and
notify monitor actions. To handle this, we need a procedure
createConditionField to create a field to hold the condition vari-
able, which is completely analogous to createLockField, and pro-
cedure transformAction must rewrite the method call in question
into an appropriate call on the condition variable field, which is cre-
ated by a function mkConditionAccess similar to mkLockAccess.

Observe that this refactoring can fail for three reasons: refac-
toring the abstract monitor would require refactoring a monitor
action that comes from compiled code and is hence not modifiable
(Line 21); there are ambiguous monitor actions that cannot be refac-
tored consistently (Line 7); the refactoring would need to modify an
unmodifiable type (Lines 10, 15, 18).

4. INTRODUCING READ-WRITE LOCKS
As discussed in Section 2, lock contention can sometimes be

reduced through use of a read-write lock, which allow threads to
read the state protected by the lock concurrently, as long as no other
thread is writing the state. In this section, we present a refactor-
ing CONVERT TO READ-WRITE LOCK that enables programmers
to more easily experiment with using read-write locks to improve
performance. Note that we only describe the refactoring for pro-
grams already using reentrant locks; the CONVERT TO REENTRANT
LOCK refactoring of Section 3 can be used to introduce such locks
if needed.

Our refactoring aims to introduce read locks (rather than write
locks) whenever it can prove it is safe to do so, thereby maximizing
potential concurrency in the transformed program. Conceptually,
a reentrant lock l can only be transformed into a read lock if any
code that may execute while l is held does not modify the shared
state protected by l. Most Java code does not formally document
the relationship between locks and the corresponding protected
shared state.4 Hence, our algorithm checks for any modification of
potentially shared state while a lock is held, and it only introduces a
read lock when no such modifications are found.

4When such relationships are documented (e.g., through GuardedBy
annotations [8]), we can easily use the information in our analysis
to potentially infer more read locks.

Figure 4 gives pseudocode for the CONVERT TO READ-WRITE
LOCK refactoring. The refactoring takes a field f that must be of
type ReentrantLock. It changes the type of the field and adjusts any
assignments to f , including its initializer if it has one. This step of
the refactoring requires that f may only be assigned newly created
objects (line 5) in order to maintain a one-to-one correspondence
between reentrant locks in the original program and read-write locks
in the refactored program.

Now, every use of f is adjusted. To preserve type correctness, all
uses of f have to be invocations of its lock and unlock methods, and
we require that these appear in the standard try-finally pattern
seen in earlier examples. In practice, most developers seem to
follow this pattern, so this is not a serious restriction. Handling
more general cases would require some form of data flow analysis
to determine what code may execute while the lock is held.

The refactoring now invokes function canUseReadLock (defined
in lines 13–19) to determine whether the block b of code pro-
tected by the lock is free from non-local side effects, so that a
read lock can be introduced. This function, in turn, uses function
nonLocalSideEffects to determine whether any of the instructions
S in b modify non-local state.

Function nonLocalSideEffects (lines 20–30) takes as parame-
ters a set S of instructions in some method m and a set P of the
relevant parameters of m. As shown in the nonLocalWrite func-
tion (lines 31–37), a heap write instruction i is deemed non-local
iff (1) i writes a static field or (2) i writes an instance field or the
array contents of some object o, such that o is reachable (via some
sequence of dereferences) from non-local state, defined as a static
field or some parameter in P . The reachability check is performed
via the reachableFromNonLocalState call on line 35 and may be
implemented with any conservative may-alias analysis.

The parameter set P is used in nonLocalSideEffects to exploit
knowledge about purely local objects, which may be safely mutated
while a read lock is held. Initially, P contains all formal parameters
of the method m containing the protected block b (line 19), as mu-
tations to the state of any of m’s parameters may prevent the use
of a read lock. When analyzing some method (transitively) called
by m, however, we need only consider side effects to any formal
parameter f whose corresponding actual parameter a at the caller
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1: procedure CONVERT TO READ-WRITE LOCK (Field f ):
2: assert f has type ReentrantLock
3: change declared type of f to ReentrantReadWriteLock
4: for all assignments to f do
5: assert f is assigned a new ReentrantLock object
6: change to assignment of new ReentrantReadWriteLock
7: for all uses u of f do
8: assert u is call f.lock() or f.unlock()
9: if u in try-finally construction with body b

and canUseReadLock(b) then
10: replace use of f with f.readLock()
11: else
12: replace use of f with f.writeLock()

13: function canUseReadLock (Block b):
14: S ← instructions in b
15: if b is in a constructor or method m then
16: P ← parameters of m, including this if m is not static
17: else
18: P ← ∅
19: return ¬nonLocalSideEffects(S, P )

20: function nonLocalSideEffects (Set<Instr> S, Set<Param>
P ):

21: for all instructions i ∈ S do
22: if nonLocalWrite(i,P ) then
23: return true
24: else if i is a method call then
25: for all methods m′ possibly called by i do
26: S′ ← instructions of m′

27: P ′ ← {f : formals of m′ | a is actual for f ∧
(reachableFromNonLocalState(a, P )∨
canReachNonLocalStateVia(a, P ))}

28: if nonLocalSideEffects(S′,P ′) then
29: return true
30: return false

31: function nonLocalWrite (Instr i, Set<Param> P ):
32: if i writes a static field then
33: return true
34: else if i writes an instance field or array element then
35: return reachableFromNonLocalState(basePtr(i),P )
36: else
37: return false

Figure 4: Refactoring CONVERT TO READ-WRITE LOCK

public String toString() {
fLock.lock();
try {
StringBuilder result

= new StringBuilder(f1.toString());
result.append("\n");
result.append(f2.toString());
return result.toString();

} finally {
fLock.unlock();

}
}

Figure 5: Example of writes to local objects.

satisfies either: (1) a reachable via dereferences from non-local state
or (2) non-local state can be reached via dereferences from a. (We
need condition (2) since the callee may read the non-local state from
a and then mutate it.) Line 27 in the pseudocode determines the rel-
evant formals using procedures reachableFromNonLocalState and
canReachNonLocalStateVia (both implementable via may-alias
analysis). By ignoring writes to local objects via these relevant
parameter sets, our algorithm is able to infer more read locks than if
it treated all writes as suspect.

Figure 5 gives an example toString() method that illustrates
the benefits of ignoring writes to local state. The method ap-
pends fields f1 and f2 to a StringBuilder and returns the re-
sulting String while holding the fLock lock. The calls to
StringBuilder.append() mutate the state of the StringBuilder.
If the analysis did not distinguish writes to local state, this mutation
would prevent the use of a read lock. However, our analysis is
able to show that the StringBuilder pointed to by result is purely
local. Hence, when the append method is analyzed for side effects,
the receiver argument is not considered, enabling the analysis to
prove that using a read lock is safe. Note that cases like that of
Figure 5 arise very frequently in real code, as String concatenation
in Java is performed via allocating local StringBuilder objects and
appending to them. Hence, reasoning about local state is essential
to our read-write lock refactoring, as failing to infer a read lock in

cases like Figure 5 would greatly frustrate users.
For performance, we bound the call depth to which our analysis

searches for side-effecting statements (not shown in Figure 4 for
clarity). If the call depth exceeds the bound, the analysis conserva-
tively assumes that unanalyzed calls may write to non-local state.
Potential targets at virtual calls are computed based solely on the
program’s class hierarchy; more precise reasoning typically requires
computing what code is reachable given certain entrypoints, which
is unsuitable for refactoring tools (e.g., when refactoring a library
with no client code available).

In our implementation, we use a custom demand-driven may-
alias analysis to implement the reachableFromNonLocalState and
canReachNonLocalStateVia procedures. Whole-program pointer
analyses often cannot be used in a refactoring tool, due to excessive
runtime and their reliance on knowing program entrypoints. Instead,
we determine potential aliasing by following interprocedural defs
and uses as needed. Again, we set a maximum call depth bound
for performance and make pessimistic assumptions about method
behavior beyond the bound for soundness.

5. EVALUATION
We have implemented the two refactorings introduced in the

previous sections as a plugin for the Eclipse IDE.5 In this section,
we report on an experimental evaluation of these refactorings on
real-world benchmarks.

5.1 Implementation Issues
Our implementation of CONVERT TO REENTRANT LOCK closely

follows the pseudocode given in Section 3. To determine whether a
field f is unshared, it checks the following three conditions:

1. any assignment to f assigns it either null or a new object;

2. the value of f is never assigned to a field, passed as an argu-
ment to a method or constructor, or returned as a result;

3. no method invoked on f can cause its value to become shared.
5The plugin is available for download from http://progtools.
comlab.ox.ac.uk/projects/refactoring/relocker.
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Benchmark number of FM CM TM involves ambiguous unmodifiable refactorable
mon. actions library mon. action type

hsqldb 746 10 22 714 2 25 23 696 (93.3%)
xalan 90 7 4 79 4 6 8 72 (80.0%)
hadoop-core 412 10 40 362 0 61 22 329 (79.9%)
jgroups 440 110 6 324 76 38 59 267 (60.7%)
cassandra 62 0 13 49 1 0 0 61 (98.4%)
total 1750 137 85 1528 83 130 112 1425 (81.4%)

Table 2: Evaluation of CONVERT TO REENTRANT LOCK.

To check the third condition, we make sure that any method that
is invoked on f is discreet, meaning it does not synchronize on this,
nor assigns this to a field, nor passes it as an argument or returns it
as a result, and only invokes discreet methods on this.

Clearly these conditions are sufficient for f to be unshared. While
it might be possible to analyze methods for discreetness during the
refactoring, it turns out that in real-world code only a few methods,
mostly from the collection classes in the standard library, are usually
invoked on unshared fields. We hence decided to hardcode in our
implementation a list of methods that we manually checked to be
discreet, and consider every other method to be indiscreet.

Another pragmatic issue that arises when implementing CON-
VERT TO REENTRANT LOCK is concerned with the presence of
monitor actions in compiled code. For performance reasons, it is
infeasible to compute the abstract monitor of every such monitor
action (which in particular involves local type inference on bytecode
methods). Instead, we decided to only consider the monitor actions
arising from compiled synchronized methods, ignoring compiled
synchronized blocks and calls to wait and notify.

In principle, this might lead to unsoundness in situations where a
library synchronizes on an object created in application code that
is passed to it as an explicit method parameter (i.e., a parameter
other than this). However, such coding practices would give rise to
extremely fragile code that could deadlock unexpectedly. We thus
felt justified to ignore this potential source of unsoundness, all the
more so because a conservative approach based on static analysis
would likely be very imprecise and disallow the refactoring in many
cases where it is perfectly safe. To the best of our knowledge, our
benchmarks do not exhibit this kind of behavior.

Our implementation of CONVERT TO READ-WRITE LOCK
closely follows the pseudocode presented earlier (see Figure 4 in
Section 4). The side-effect and alias analyses are implemented using
WALA [32]. In our experiments, we bound the call depth explored
by the main refactoring to 10 and the alias analysis depth for 3;
larger bounds yielded little benefit in our experiments.

The implementation relies on specifications of the heap-
updating side-effects of certain frequently used methods from
the standard Java library, e.g., equals() and hashCode()
from java.lang.Object, some methods of class String and
StringBuffer, and several methods from the standard collection
classes. These specifications significantly improve the effectiveness
of the refactoring, enabling it to skip analysis of common library
methods and well-understood methods from the application (e.g.,
implementations of equals()), improving performance and preci-
sion. While strictly speaking unsound, pragmatic assumptions like
this are common in the literature on static analysis (see, e.g., [24]).
We believe that the remote chance of unsoundness is outweighed by
the significantly improved effectiveness of the refactoring.

5.2 Evaluation of CONVERT TO REENTRANT LOCK

For the CONVERT TO REENTRANT LOCK refactoring, we mea-
sured its applicability on several real-world Java programs by ex-

haustively applying the refactoring to all built-in monitors, trying to
refactor as many of them as possible. Our evaluation aims to answer
two basic questions:

• How useful is the proposed classification of abstract monitors,
and how many monitors of each kind occur in real-world
code?

• How effective is the refactoring, i.e., what percentage of uses
of built-in monitors is it able to refactor, and why does it fail
in the other cases?

Table 2 shows the results of our evaluation. We ran our refac-
toring on five benchmarks: two fairly large programs, with the
database engine hsqldb at about 140 thousand lines of source code
(KSLOC6) and the XSLT processor xalan at 110 KSLOC; and three
medium size programs, with the hadoop-core component of the
Apache Hadoop framework at 74 KSLOC, the jgroups toolkit at
62 KSLOC and the distributed database system Apache cassandra
at 36 KSLOC. Our untuned implementation took no longer than 2
minutes to refactor a particular monitor.

The first data column gives the total number of source-level mon-
itor actions in the program; the next three columns show their clas-
sification: “FM” indicates the number of actions whose abstract
monitor is an F-monitor, “CM” of those with C-monitors, and “TM”
of those with T-monitors.

As it turns out, many monitor actions in real code have nothing
to do either with unshared fields or with class objects, the latter
two categories often forming a small minority. Nevertheless, it is
essential to give unshared fields a special treatment: many unshared
fields are of type Object; if they were classified as T-monitors, they
would effectively prevent us from refactoring any other T-monitor,
since our type-based analysis would not be able to exclude the
possibility of aliasing.

The next three columns of the table account for those monitor
actions that could not be refactored, categorizing them according to
the source of failure: the first column gives the number of monitor
actions that could not be refactored because this would necessitate
refactoring another monitor action which is not from source; the
second tallies those monitor actions where another monitor action
was encountered that might operate on the same monitor, but does
not definitely do so; and the final column shows the number of
monitor actions that could not be refactored because the refactoring
would have entailed modifying an unmodifiable type declaration.

Monitor actions of the first category are often synchro-
nized methods in user-defined subclasses of the library class
java.lang.Thread: that class has some synchronized methods
which cannot be changed, so neither can the methods in any of
its subclasses. For many of the monitor actions in the second cat-
egory, a more precise analysis would presumably be able to prove
that no monitor aliasing is possible and hence allow the refactoring
6As determined by David A. Wheeler’s ’SLOCCount’.
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Benchmark read-write uses of corr. inf.
locks read lock write lock read locks

hsqldb 5 20 51 5 (25.0%)
hadoop-core 1 8 2 8 (100%)
jgroups 1 5 7 5 (100%)
mina 2 5 6 5 (100%)
cassandra 2 13 7 8 (61.5%)
seraph 2 4 5 4 (100%)
total 13 55 78 35 (63.6%)

Table 3: Evaluation of CONVERT TO READ-WRITE LOCK.

to go ahead; nevertheless it is encouraging to see that even a very
simple type-based analysis can handle most cases well enough.

The final column gives the number and percentage of monitor
actions that could be successfully refactored. Generally, our tool
is able to refactor upwards of 80% of all monitor actions, in some
cases significantly more. We do not suggest that all these monitor
actions should be replaced by corresponding uses of reentrant locks:
that is not for a refactoring tool to decide. Rather, our tool pro-
vides the possibility for the programmer to perform this refactoring
successfully in the vast majority of cases at the push of a button.

5.3 Evaluation of CONVERT TO READ-WRITE LOCK

To evaluate the CONVERT TO READ-WRITE LOCK refactoring,
we looked at six major applications that already use read-write locks.
We then manually refactored them back to reentrant locks, and used
our tool to attempt to “re-infer” the original read-write lock usage.
Our measure of success for this refactoring is simply how many uses
of read locks the refactoring is able to infer correctly. (Inferring
write locks is, of course, trivial.)

The results of this experiment are given in Table 3. We use
mostly the same benchmarks as above, except for xalan, which
does not use read-write locks at all; instead, we consider the Apache
mina network application framework, a medium-sized program of 51
KSLOC, and the J2EE web application security framework Atlassian
seraph, which consists of only about 5000 lines of source code.
Refactoring a reentrant lock to a read-write lock took no more than
one minute for any benchmark.

For each benchmark, we give the total number of read-write lock
fields in the program. Next, we list the number of uses of the read
and write locks, respectively, and finally the number and percentage
of correctly inferred read locks. In all cases with write locks, our
analysis soundly determined that use of a read lock was unsafe.
We were able to infer all read locks for mina, hadoop, jgroups and
seraph and more than half for cassandra, but only 25% for hsqldb.

Having inspected the cases where we fail to infer read locks in
hsqldb and cassandra more closely, we believe handling them is
beyond any practical analysis for a refactoring. In all of the failing
cases, writes to non-local state can actually occur while the read
lock is held, assuming the corresponding call targets in our class-
hierarchy-based call graph are feasible. Building a more precise call
graph via flow analysis is quite difficult since in many cases, client
code for library methods using read locks is missing.

hsqldb in particular makes fairly sophisticated use of read locks,
as fields in certain caches are updated in a racy manner while read
locks are held. We consulted the hsqldb developers by email about
this issue, and they confirmed that such races can in fact occur, but
are harmless since the cached data is not mutated at the same time,
and hence the result will always be consistent. The kind of global
reasoning required to prove the safety of read locks in such cases is
clearly beyond the capabilities of our analyses, and it seems likely
that any analysis powerful enough to handle this kind of situation
would be too heavyweight for use in a refactoring tool.

In contrast to CONVERT TO REENTRANT LOCK, the CONVERT
TO READ-WRITE LOCK refactoring hardly ever fails, since it can
always just replace uses of the reentrant lock with uses of the write
lock. We envision its use as a first step in converting a reentrant
lock to a read-write lock: it will consistently update the declaration
and all uses, and directly introduce read locks for the simple cases,
staying on the safe side and introducing write locks for the trickier
ones. It is then up to the programmer to convert those remaining
locks to read locks if needed, based on their understanding of the
semantics of the program.

5.4 Assumptions and Threats to Validity
Our implementation make two pragmatic, but strictly speaking

unsound assumptions. First, we assume that synchronized blocks
and invocations of wait and notify in compiled methods can be
disregarded for analysis purposes.7 Second, we provide specifica-
tions of the non-local side effects of several well-known standard
library methods, and assume that all overriding methods conform to
these specifications.

These assumptions, motivated and justified in greater detail in
Section 5.1, are the only two sources of potential unsoundness.
For performance reasons we use imprecise approximations in two
other places: we use a built-in table of known discreet methods,
and when analyzing code for potential non-local side effects, we
bound both the call graph exploration depth and the interprocedural
alias analysis depth. In both cases, however, we make conservative
assumptions in cases where the approximation fails, which cannot
introduce unsoundness.

Perhaps the main threat to the validity of our results is that the
benchmark programs may not be representative of all programs;
however, we have chosen a set of programs that represents heavily
used examples of several major application domains: databases,
XML processing, column stores and map-reduce frameworks. Thus,
while it may be that other classes of applications could exhibit very
different attributes, it seems very likely that, even if that were to be,
our results should still apply across a wide range of applications.

6. RELATED WORK
Most previous work on refactoring has concentrated only on

sequential programs without considering the implications of con-
currency. Early refactoring research studied the mechanics of ex-
pressing behavior-preserving transformations for sequential pro-
grams using pre- and post-conditions [20, 23] and program depen-
dence graphs [9, 10]. Later work considered various features of
sequential programs such as class hierarchies [12, 28, 29], generics
[5, 6, 14, 31], design patterns [13], and access modifiers [27]. Other
research has focused on refactoring support to adapt programs to
evolving libraries [3], combining refactorings with other programs
transformations [22], empirical studies [18, 19], and domain-specific
languages for specifying refactorings [30].

Schäfer et al. [26] proposed to formulate refactorings in terms of
their effect on static semantic dependencies, such as name binding
or def-use dependencies. The present authors then showed how
this approach can be extended to a concurrent setting by using
dependencies to statically capture concurrent behavior [25].

Recently, there has been a lot of interest in refactoring programs
to enhance their concurrent behavior. The CONCURRENCER tool of
Dig et al. [2] refactors code to make use of ConcurrentHashMaps and
AtomicIntegers, also provided by the j.u.c library. Use of such
types is another technique for improving scalability by reducing

7Recall, however, that compiled synchronized methods are handled
soundly.
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lock contention. Dig et al.’s RELOOPER tool [4] refactors loops to
execute in parallel via the proposed ParallelArray class. Recently,
the same group have also proposed a technique and a tool for making
classes immutable, thereby ensuring their thread safety [15].

Balaban et al. [1] considered the issue of migration from legacy
classes (e.g., Vector) to functionally equivalent classes that replace
them (e.g., ArrayList). While this work was primarily concerned
with handling incompatibilities in the APIs, some support was
provided to ensure that synchronization behavior was preserved,
by inserting synchronization wrappers where needed. The REEN-
TRANCER tool transforms sequential programs to be reentrant, en-
abling safe parallel execution [33]. Finally, several researchers have
tackled the problem of implementing refactorings for X10, a Java-
based language with sophisticated concurrency support, and have
reported promising first results [7, 16].

7. CONCLUSIONS AND FUTURE WORK
The Java class libraries now provide flexible locking constructs

that can improve performance by reducing lock contention. How-
ever, experimenting with these locks has been difficult as it re-
quires non-trivial code transformations. We have presented algo-
rithms for determining how programs can be refactored to use
ReentrantLocks and ReadWriteLocks instead of built-in monitor
locks, and implemented these algorithms in an automated refactor-
ing tool called Relocker. In an evaluation on a collection of Java
programs, Relocker was able to convert over 80% of the monitor
locks in these programs into ReentrantLocks. Moreover, Relocker
was able to infer read-locks in most cases where programmers had
previously introduced them manually.

Future work includes the design of refactorings for shrinking the
regions of code protected by locks, possibly by taking advantage
of the ability of ReentrantLocks to protect non-block-structured
regions. In the same spirit, a future tool could help developers
safely downgrade write locks to read locks (a feature supported by
ReadWriteLock) to further decrease lock contention.
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