
Automated Repair of HTML Generation Errors in PHP Applications
Using String Constraint Solving

Hesam Samimi∗, Max Schäfer†, Shay Artzi†, Todd Millstein∗, Frank Tip†, and Laurie Hendren‡
∗Computer Science Department, University of California, Los Angeles, USA

{hesam, todd}@cs.ucla.edu
†IBM T.J. Watson Research Center, Hawthorne, NY, USA

{mschaefer, artzi, ftip}@us.ibm.com
‡School of Computer Science, McGill University, Montreal, Canada

hendren@cs.mcgill.ca

Abstract—PHP web applications routinely generate invalid
HTML. Modern browsers silently correct HTML errors,
but sometimes malformed pages render inconsistently, cause
browser crashes, or expose security vulnerabilities. Fixing
errors in generated pages is usually straightforward, but
repairing the generating PHP program can be much harder.
We observe that malformed HTML is often produced by
incorrect constant prints, i.e., statements that print string
literals, and present two tools for automatically repairing such
HTML generation errors. PHPQuickFix repairs simple bugs by
statically analyzing individual prints. PHPRepair handles more
general repairs using a dynamic approach. Based on a test suite,
the property that all tests should produce their expected output
is encoded as a string constraint over variables representing
constant prints. Solving this constraint describes how constant
prints must be modified to make all tests pass. Both tools
were implemented as an Eclipse plugin and evaluated on PHP
programs containing hundreds of HTML generation errors,
most of which our tools were able to repair automatically.

Keywords-PHP; automated repair; string constraints

I. INTRODUCTION

PHP is the most widely used server-side programming
language for implementing web applications, with a recent
survey finding that it is employed by about 77% of all
websites [1]. Typically, a PHP application generates HTML
pages based on user input and information retrieved from a
database. These HTML pages often contain JavaScript code
to enable interactive usage and links or forms referring to
additional PHP scripts to be executed.

One particularly common issue plaguing many PHP ap-
plications is generation of invalid HTML. Modern browsers
are quite tolerant of HTML errors and employ heuristics
to silently correct them, although pages may render more
slowly because of these error-correcting heuristics [2]. In
some cases, however, erroneous HTML will be displayed
differently depending on the browser, so the pages generated
by a PHP program may look fine to the developer, while they
would be unacceptable to a user with a different browser. In
extreme cases, invalid HTML may even cause browsers to

∗Supported in part by National Science Foundation award CCF-0545850.

become unresponsive or expose security vulnerabilities [2].
Finally, erroneous HTML can be an obstacle to screen
readers and other assistive technology. The World Wide Web
Consortium maintains a collection of anecdotes from Web
professionals about problems with malformed HTML1.

This paper presents an approach to help programmers
find and fix HTML generation errors in PHP programs. The
approach is based on the observation that malformed HTML
is most often generated due to errors in statements that print
string literals. This is not surprising because such constant
prints are the way in which a PHP program typically
generates the tag structure of an HTML page. While, for
example, the data in an HTML table might be generated via
a dynamic database lookup in the PHP program, the table’s
HTML tags would be produced by printing the appropriate
string literals (e.g., "<tr>" and "<td>") in the right places.

We describe two tools for fixing HTML generation errors,
which we have implemented in a plugin for the Eclipse PHP
Development Tools.2 The first tool, PHPQuickFix, targets
a common special case, whereby a single constant print
statement cannot possibly result in legal HTML. Examples
include uses of HTML special characters such as ‘&’ that
should be escaped, or mismatched start and end tags as
in "<i>Yes!". These problems are highlighted in the
IDE and a quick-fix is suggested which, if accepted by the
programmer, automatically repairs the affected code.

Our second tool, PHPRepair, targets the more general
problem of incorrect constant print statements in PHP pro-
grams, including bugs caused by the interactions among
multiple such statements and bugs that require adding,
changing, or removing such statements. Given a test suite for
a PHP program along with the expected HTML output for
each test, we encode the condition that actual and expected
output agree for each test case as a string constraint over
variables corresponding to constant prints in the program.
A string constraint solver automatically provides a solution

1See http://www.w3.org/QA/2009/01/valid sites work better.html.
2See http://www.eclipse.org/pdt/.

http://www.w3.org/QA/2009/01/valid_sites_work_better.html
http://www.eclipse.org/pdt/

to our constraint, which PHPRepair employs to modify the
program appropriately. The result is a repaired program that
passes all tests in the given suite.

PHPRepair only considers insertion, modification, and
deletion of constant prints in a program. Despite the limited
form of such repairs, they are still quite expressive, since the
constant prints can be arbitrary; for example, a constant print
may be inserted at any location in the program and there
is no bound on the length of the string that it prints. Our
focus on constant prints allows PHPRepair to perform an
exhaustive search over the space of possible repairs, ensuring
both completeness and minimality; prior work on automated
program repair typically lacks these properties [3], [4].

In principle, a purely static analysis could give stronger
guarantees than PHPRepair’s test-based approach. However,
in practice the dynamic nature of PHP would make such an
approach difficult to scale to real programs in a manner that
only detects actual errors and fixes those errors without in-
troducing new HTML generation bugs. In contrast, a testing
approach is practical and effective for two main reasons.
First, prior work has shown how to automatically generate
high-coverage tests for PHP programs [2]. Second, while
fixing a PHP program to correct HTML errors on all possible
execution paths is quite challenging, fixing an individual
broken HTML page is usually relatively straightforward,
often requiring nothing more than, e.g., inserting a missing
end tag. Indeed, such fixes are automatically suggested
by tools such as HTML Tidy,3 or they can be obtained
by querying the DOM representation of the page inside a
browser, which reflects the automatic corrections performed
by the browser’s HTML repair logic. Therefore, both a high-
quality test suite and the associated test oracles required by
our approach can be generated in a fully automatic manner.

We have evaluated our tools on several real-world PHP
programs, showing that many HTML generation bugs can
be fixed by our approach. PHPQuickFix identified several
thousand shallow bugs that could be repaired by the sug-
gested quick-fixes. Of the remaining bugs in each program,
on average 86% were fixed by PHPRepair, which justifies
our focus on constant print statements. A repair is found
within seven seconds on average, so our tools are suitable
for interactive use.

The remainder of the paper is organized as follows. In
Section II we provide some background and introduce our
two tools in the context of a motivating example. Section
III precisely defines our notion of a repair and describes
how the test-based tool PHPRepair finds repairs. Section
IV provides implementation details for both tools. Section
V evaluates our tools on a set of PHP programs, Section VI
discusses related work and Section VII concludes.

3See http://tidy.sf.net.

1 <html>
2 <head>
3 <title>List capitals</title>
4 <style type="text/css">
5 .highlight { background-color: Aquamarine; }
6 </style>
7 </head>
8 <body>
9 <?php

10 $highlight = isset($_GET["hl"]);
11 $con = mysql_connect("localhost", "test", "test");
12 mysql_select_db("countries", $con);
13 $data = mysql_query("SELECT * FROM countries");
14 if(!mysql_num_rows($data))
15 echo "<h1>No data!</h1>\n";
16 else {
17 ?>
18 <table border="2">
19 <tr><th><h3>Country</th><th><h3>Capital</h3></tr>
20 <?php
21 while($row = mysql_fetch_array($data)) {
22 echo "<tr><td>";
23 if($highlight)
24 echo "<div class=’highlight’>";
25 echo $row[’country’];
26 if($highlight) echo "</div></tr>";
27 else echo "</td>";
28 echo "<td>" . $row[’capital’] . "</td>";
29 echo "</tr>\n";
30 }
31 }
32 ?>
33 </body>
34 </html>

Figure 1. A simple PHP script.

II. BACKGROUND AND OVERVIEW

A. An Example PHP Program

Figure 1 shows a small PHP script designed to illustrate
our approach. The program queries a database for a list
of countries and their capitals and renders this data as
an HTML table, optionally highlighting country names by
printing them in bold face on a light blue background.

A peculiar feature of PHP is that programs can contain
fragments of inline HTML code that are printed verbatim
when the program is executed. In the program of Fig. 1,
there are several such fragments; the first one (lines 1–8)
prints the page header including a CSS stylesheet, while the
last one (lines 33–34) prints the page footer.

Snippets of PHP code appear inside <?php . . . ?> directives.
The first snippet (lines 9–17) performs initialization and er-
ror checking: it uses the built-in function isset to determine
whether the script was passed an HTTP GET parameter hl,
setting flag $highlight accordingly; it then connects to a
MySQL database containing the information to be displayed
and sends a query to the database (lines 11–13).

If the query fails or returns no results, the body of the
generated HTML page consists of the error message printed
on line 15. Otherwise, another inline HTML fragment is
used to emit the start tag of the table to be displayed (line 18)

http://tidy.sf.net

Table I
TEST CASES FOR THE SCRIPT IN FIG. 1.

ID Database Parameters Output
t1 ∅ ∅ see Fig. 2
t2 countries = ∅ see Fig. 3

{(Canada, Ottawa),
(Netherlands, Amsterdam),
(USA, Washington)}

t3 same as for t2 {hl 7→ "1"} see text

35 <html>
36 <head>
37 <title>List capitals</title>
38 <style type="text/css">
39 .highlight { background-color: Aquamarine; }
40 </style>
41 </head>
42 <body>
43 <h1>No data!</h1>
44 </body>
45 </html>

Figure 2. Valid HTML generated by the script in Fig. 1 on test case t1.

and its first row containing the column headers.4

To build the table, the script iterates over the results
of the query using a while loop (lines 21–30). For every
query result, it prints a new row of the table, with two td

elements containing the name of the country and its capital,
respectively. If the script was passed the hl parameter,
the country name is additionally wrapped in a b element
to typeset it in bold font, and a div element with class
highlight, which the CSS style sheet on line 5 styles using
an aquamarine blue background.

B. HTML Generation Bugs

This example program contains several bugs similar to
issues encountered in real-world PHP applications, which
cause it to generate invalid HTML in certain situations. We
will consider three test cases as described in Table I: t1 runs
the script on an empty database without setting parameter hl;
t2 uses a non-empty database containing information about
the capitals of Canada, the Netherlands and the USA, but
again does not set any parameters; and t3 runs it on the same
database as t2 with parameter hl set to "1".

In test case t1, the program produces the HTML page in
Fig. 2, which is syntactically correct.

In test case t2, it produces the page in Fig. 3, which is
not valid HTML: the first h3 element on line 55 is missing
an end tag, as is the table element on line 54.5

These two problems are silently corrected by modern
browsers, allowing the page to display as intended. For

4Note that this HTML fragment is printed as part of the else branch of
the if statement on line 14, which is only closed on line 31 in another PHP
snippet: PHP code and HTML fragments can be freely mixed without regard
to syntactic nesting, and this is frequently done in real-world programs.

5Perhaps surprisingly, the missing end tag of the second th element on
line 55 is not a problem: th is self-closing, hence its end tag is optional.

46 <html>
47 <head>
48 <title>List capitals</title>
49 <style type="text/css">
50 .highlight { background-color: Aquamarine; }
51 </style>
52 </head>
53 <body>
54 <table border="2">
55 <tr><th><h3>Country</th><th><h3>Capital</h3></tr>
56 <tr><td>Canada</td><td>Ottawa</td></tr>
57 <tr><td>Netherlands</td><td>Amsterdam</td></tr>
58 <tr><td>USA</td><td>Washington</td></tr>
59 </body>
60 </html>

Figure 3. Invalid HTML generated by the script in Fig. 1 on test case t2.

instance, inspection of the DOM produced when this page
is displayed in Google Chrome 13.0 shows that it inserts the
missing end tags as expected: a </h3> tag before the </th> tag
on line 55, and </table> before the </body> tag on line 59.

Translating these fixes for the generated HTML page into
fixes for the generating PHP program can be much more
difficult, however. It is clear that the first h3 element in the
inline HTML on line 19 must be closed by adding </h3> on
that same line between Country and </th>. However, there are
many possible options for inserting the missing statement
echo "</table>" to close the start tag on line 18, and it is
easy to do so improperly. If it is inserted as part of that same
block of inline HTML, then the table will be closed before
all of its rows have been output. If it is inserted inside the
body of the while loop, the result on test t2 will be to emit
three </table> tags. Inserting it after line 31 would repair test
t2 but would break test t1. Inserting it after line 30 leads to
valid HTML being produced in both cases.

Finally, consider test t3, where the script is run on the
same database as in t2, but now with the parameter hl set
to "1". This produces essentially the same page as in Fig. 3,
but the table rows are now of the following form:

<tr><td><div class=’highlight’>Canada</div></tr>
<td>Ottawa</td></tr>

This is not valid HTML: the b element is missing an end
tag, and a </tr> tag occurs where a </td> tag is expected.

Different browsers display this invalid HTML page in
different ways, as shown in Fig. 4. While they all insert
the missing tag before the </div> tag, the unexpected
</tr> tag is not handled uniformly. Internet Explorer decides
to treat it as a </td> tag, which is arguably the best fix from
a user’s perspective; Google Chrome and Firefox, on the
other hand, silently insert a </td> tag before the </tr> and
another <tr> tag after it, thus splitting one row into two
and upsetting the table layout considerably. These kinds of
inconsistencies, which can occur across different browsers
as well as different versions of the same browser, are very
easy for developers to miss during testing.

As before, propagating the desired HTML fixes (in this
case, those performed by Internet Explorer) back to the gen-

Figure 4. Different renderings of our invalid HTML page in Google Chrome 13.0 (left), Internet Explorer 9.0 (middle) and Firefox 6.0 (right).

63 <html>
64 <head>
65 <style type="text/css">
66 #test-div { margin:0 10px 10px; }
67 #test-form { width:100%; }
68 </style>
69 </head>
70 <body>
71 <table>
72 <tr><th>Test:</th></tr>
73 <tr><td><div id="test-div">
74 <form id="test-form" method="post">
75 <input type="text" name="test"/>
76 </div></td></tr>
77 </table>
78 </body>
79 </html>

Figure 5. An invalid HTML page that causes Internet Explorer to hang.

erating PHP program is non-trivial. Of the various options
for places to insert the missing tag, the right place is
on line 26 in the “then” branch of the if statement. Emitting
it before the if statement would be acceptable for this test
case but would break t2. Propagating the other fix requires
modifying the </tr> tag on the same line to </td>.

Problems such as incorrect or missing end tags may seem
trivial, but they by no means always are: the HTML page in
Fig. 5, adapted from http://crashie8.com, causes even very
recent versions of Internet Explorer to hang while displaying
without problems in other browsers. The problem here is a
missing end tag for the form element starting on line 74
which, in a somewhat subtle combination with a table and a
CSS stylesheet, triggers a bug in the browser’s HTML repair
logic. In some cases, invalid HTML can also impact browser
performance, or lead to security vulnerabilities [2].

C. Automated PHP Program Repair

While repairing a PHP program can in principle require
arbitrary modifications to its statements and structure, we

observe that repairing HTML generation bugs often requires
only additions, modifications, and removals of statements
that print string literals (e.g., inline HTML or an echo or
print statement whose argument is a string literal), which
we collectively dub constant prints. This is the case because,
as illustrated in Fig. 1, constant prints are the mechanism by
which the tag structure of an HTML page is generated. By
focusing on this common class of repair actions, we have
devised a two-pronged approach to automatically repairing
PHP programs that is simple yet effective, and have im-
plemented the approach as a plugin for the Eclipse PHP
Development Tools.

First, the fragile nature of PHP results in many shallow
HTML generation bugs, whereby a single constant print is
erroneous in the sense that it cannot possibly result in legal
HTML, no matter what context it is executed under. For
instance, line 19 of the program in Fig. 1 can be seen to be
erroneous in isolation, since it contains improperly nested
HTML start and end tags. We have developed PHPQuickFix,
a static checker that catches these kinds of local HTML
generation bugs. PHPQuickFix attempts to parse each string
constant and inline HTML fragment in the program in
isolation. While parsing a string, PHPQuickFix maintains
a stack of currently open elements; whenever it detects
an end tag that does not match the most recently opened
tag, it generates a quick-fix proposal to insert the expected
end tag at the current location. The tool also identifies and
generates a quick-fix for two simple but common errors,
namely ampersand characters that are not part of a character
reference (and hence should be escaped as "&"), and non-
alphanumeric attribute values that are not quoted.

Since PHPQuickFix considers each constant print in iso-
lation, it cannot detect or repair HTML errors involving
multiple program points, such as the missing </table> tag in
our running example. Generalizing PHPQuickFix to perform

http://crashie8.com

static analysis over an entire program would be quite difficult
due to the many highly dynamic features of the language and
the need to precisely model the effect of varying databases
and parameter settings on control and data flow.

Instead, we propose a test-based approach to repairing
complex HTML generation bugs. Our approach assumes that
a test suite for the program is available. Each test in this
suite is described by: (i) the input data on which to run
the program (such as HTTP parameters and databases), and
(ii) the expected output the program is supposed to produce.
Such a test suite can be produced without user interaction by
employing a high-coverage test generation tool for PHP such
as Apollo [2] and an HTML repair tool such as HTML Tidy,
or it can be created manually. Our second tool, PHPRepair,
automatically adds, modifies, and removes constant prints in
the given PHP program in order to produce a program that
passes all tests in the given suite.

PHPRepair is based on the idea that we can characterize
a given test’s execution by the sequence of strings output by
individual print statements that are executed in the program,
say s1, . . . , sn. If s1 . · · · . sn = e, where “.” represents string
concatenation and e is the expected output, then the test case
passes, otherwise it fails. Replacing each si that results from
a constant print with a constraint variable vi in the above
equation encodes a string constraint whose solution tells us
how to repair the program to satisfy the test case. A solution
to all the constraints generated from a test suite leads to a
repair that makes the whole suite pass.

In the next section, we develop this basic idea in more
detail on the basis of the examples in this section.

III. INPUT-OUTPUT BASED REPAIR

A. Test Cases and Repairs

A program p is a collection of PHP scripts. A test case
t = (ρ, σ) consists of a configuration ρ to run the subject
program under and an expected output σ. For the purposes
of this discussion, the precise structure of ρ is irrelevant; it
could, for instance, specify an initial database configuration,
a sequence of scripts to execute, and the values of HTTP
parameters to pass to the scripts. The actual output p
produces on t is the HTML page generated by the last script
invoked when running p under ρ.6 The program is said to
pass test case t if the actual output of p on t equals the
expected output σ.

We refer to an inline HTML fragment or a print or echo

statement as a print. A print whose argument is a string
literal is called a constant print, or cprint for short. Any
other print is called a variable print or vprint.

Programs p and p′ are called repair convertible if one can
be obtained from the other by repeatedly performing any of
the following repair actions: (i) adding a new cprint, (ii)

6While earlier scripts do not directly contribute to the actual output, they
may alter the database or session state, and hence indirectly influence it.

80 <html>
81 <head>
82 <title>List capitals</title>
83 <style type="text/css">
84 .highlight { background-color: Aquamarine; }
85 </style>
86 </head>
87 <body>
88 <table border="2">
89 <tr><th><h3>Country</h3></th><th><h3>Capital</h3></tr>
90 <tr><td>Canada</td><td>Ottawa</td></tr>
91 <tr><td>Netherlands</td><td>Amsterdam</td></tr>
92 <tr><td>USA</td><td>Washington</td></tr>
93 </table>
94 </body>
95 </html>

Figure 6. Expected output for test t2 (non-empty database, no parameters).

96 <html>
97 <head>
98 <title>List capitals</title>
99 <style type="text/css">

100 .highlight { background-color: Aquamarine; }
101 </style>
102 </head>
103 <body>
104 <table border="2">
105 <tr><th><h3>Country</h3></th><th><h3>Capital</h3></tr>
106 <tr><td><div class=’highlight’>Canada</div>
107 </td><td>Ottawa</td></tr>
108 <tr><td><div class=’highlight’>Netherlands</div>
109 </td><td>Amsterdam</td></tr>
110 <tr><td><div class=’highlight’>USA</div>
111 </td><td>Washington</td></tr>
112 </table>
113 </body>
114 </html>

Figure 7. Expected output for test case t3 (non-empty database, parameter
hl = "1").

removing a cprint, or (iii) modifying an existing cprint (by
changing the string constant that it prints). A repair problem
consists of a program p and a set T of tests. A solution of
the repair problem is a program p′ such that p and p′ are
repair convertible and p′ passes all tests in T .

Note that we only consider repair actions involving
cprints. In particular, we do not consider adding, deleting
or modifying vprints, or changing the program’s control
structure. Our evaluation in Sec. V suggests that most real-
world HTML generation bugs can be repaired in this way.

As an example of a repair problem, consider the program
of Fig. 1 and the test suite T = {t1, t2, t3} consisting of the
test cases described in Table I, which each only invoke a
single script (the one shown in Fig. 1). The expected output
for t1 is the same as the actual output, shown in Fig. 2; the
expected outputs for t2 and t3 are given in Fig. 6 and Fig. 7.

Fig. 8 shows the repairs to be performed to solve this re-
pair problem, where changes are highlighted and unchanged
portions of the program are omitted: two existing cprints are
modified, and one new cprint is added.

. . .
19 <tr><th><h3>Country </h3> </th><th><h3>Capital</h3></tr>

. . .
26 echo " </div></t d >";

. . .
31 echo "</table>"; }

. . .

Figure 8. Repair for the PHP script in Fig. 1.

B. Properties

We have designed an approach that sets up a constraint
system to capture the semantics of the repair problem as
defined above, with solutions representing repairs. Before
discussing it in detail, let us consider what properties we
desire from such an approach.

1) Soundness: If the constraint system has a solution,
it should represent a valid repair, i.e., the repaired
program should pass every test in the suite.

2) Completeness: If a valid repair exists, the constraint
system should have a solution.

3) Minimality: For usability, we would like to find a
repair that is minimal in the sense that it modifies
the original program as little as possible.

Our approach makes two assumptions about the given
program and its test suite. Firstly, the program may not
inspect or modify its own source code; this is needed
since we rely on source-level instrumentation to dynamically
collect information about program executions. Secondly, all
tests must be deterministic, i.e., the program must execute
in the same way (and in particular produce the same output)
every time it runs a given test. Since individual PHP scripts
are not usually interactive this is not a severe restriction.

C. Finding a Sound Repair

Let a program p and a test suite T be given. If we assign
a unique label to every print in p, we can characterize an
execution of p on a test t ∈ T by its print trace, which
is the sequence of prints encountered during the execution
together with the string values they printed.

Figure 9 shows a possible labeling of the script from
Fig. 1, where we have labeled the cprints as c1 to c14, and
the vprints as v1 and v2. Multi-line HTML fragments are
counted as a single cprint and only get a single label. Ad-
ditional empty cprints have been inserted on lines 131, 133,
and 141; these are necessary for the completeness of our
approach and are explained in more detail below.

Using this labeling, the print trace of running the program
on test t1 is

[(c1, "<html> . . . "), (c2, "<h1> . . . "), (c14, "</body> . . . ")]

reflecting the fact that the program executed the cprints on
lines 115 - 117, 121, and 144 - 145 (in this order), but no
vprints.

115 <html>
116 ...
117 <body>c1

118 <?php
119 ...
120 if(!mysql_num_rows($data))
121 echo "<h1>No data!</h1>\n"c2;
122 else {
123 ?>
124 <table border="2">
125 <tr><th><h3>Country</th><th><h3>Capital</h3></tr>c3

126 <?php
127 while($row = mysql_fetch_array($data)) {
128 echo "<tr><td>"c4;
129 if($highlight)
130 echo "<div class=’highlight’>"c5;
131 echo ""c6;
132 echo $row[’country’]v1;
133 echo ""c7;
134 if($highlight) echo "</div></tr>"c8;
135 else echo "</td>"c9;
136 echo "<td>"c10;
137 echo $row[’capital’]v2;
138 echo "</td>"c11;
139 echo "</tr>\n"c12;
140 }
141 echo ""c13;
142 }
143 ?>
144 </body>
145 </html>c14

Figure 9. Labeled version of the script from Fig. 1.

Since a cprint will print the same string every time it
is executed, we can abbreviate print traces by omitting the
output of cprints. Using this convention, the print trace of
test t2 is as follows (and is similar for t3).

[c1, c3,
c4, c6, (v1, "Canada"), c7, c9, c10, (v2, "Ottawa"), c11, c12,
c4, c6, (v1, "Ne..."), c7, c9, c10, (v2, "Amsterdam"), c11, c12,
c4, c6, (v1, "USA"), c7, c9, c10, (v2, "Washington"), c11, c12,
c13, c14]

Clearly, the program passes a test case if the concatenation
of all the output strings in the associated print trace equals
the expected output. If we interpret the labels of cprints as
constraint variables, we can express the condition that actual
output and expected output on a test case must agree as a
string constraint: the left hand side of the constraint is the
concatenation of all labels in the print trace, while the right
hand side is simply the expected output. We will call this
constraint the repair constraint.

The repair constraint for test case t1, for instance, is

c1 . c2 . c14 = σ1

where σ1 is the HTML document of Fig. 2. One solution
to the constraint has c1, c2, and c14 take on their original
values, i.e., the string literals printed by the corresponding
cprints in the original program.

Since our approach to program repair only attempts to
modify constant prints, we do not represent vprints as
constraint variables. Indeed, using a constraint variable for a

Table II
A SOLUTION FOR THE REPAIR CONSTRAINTS ENCODING t1 , t2 AND t3 .

Var Old value Repair value
c3 ". . .Country</th>. . ." ". . .Country</h3></th>. . ."
c8 "</div></tr>" "</div></td>"
c13 "" "</table>"

vprint would in general lead to unsolvable constraints, since
a single vprint may produce a different output each time it
is executed (e.g., v1 in Fig. 9). Instead, we represent each
occurrence of a vprint by the (constant) output it produced
in the execution in question. For test case t2, we then obtain
the repair constraint

c1 . c3 .
c4 . c6 . "Canada" . c7 . c9 . c10 . "Ottawa" . c11 . c12 .
c4 . c6 . "Netherlands" . c7 . c9 . c10 . "Amsterdam" . c11 . c12 .
c4 . c6 . "USA" . c7 . c9 . c10 . "Washington" . c11 . c12 .
c13 . c14 = σ2

where σ2 is the HTML page in Fig. 6. This constraint,
as well as the one above for test t1, is solved by setting
c3 := " . . . Country</h3></th> . . . ", c13 := "</table>",
and all other variables to their original values.

A satisfying assignment for a set of repair constraints
directly corresponds to a repair in which every cprint is
modified to print the string assigned to its constraint variable.
The repaired program will then by construction pass the
test cases encoded by the constraints. Therefore, a solution
to the repair constraints for a given test suite corresponds
to a repair that makes the program pass every test in the
suite. Table II shows a solution for the repair constraints
encoding tests t1, t2 and t3 (omitting unchanged variables),
corresponding to the repair in Fig. 8.

D. Ensuring Completeness and Minimality

While the approach outlined so far is sound if the under-
lying constraint solver is, it can only find repairs involving
modifications of existing cprints (including setting the string
of a cprint to the empty string, which is tantamount to
deletion). There is no support for adding new cprints, hence
the approach is not yet complete.

Note that it is never necessary to add a new cprint c′

right before or after an existing cprint c: instead of adding
c′ we can just as well modify c. For the same reason, it is
unnecessary to add c′ if it is in the same block of straight-
line code as c and there are no vprints in between. Thus,
our approach is complete if the program to be repaired has
a cprint at the beginning of every code block, after every
vprint, and after every nested code block.

We can easily bring any program into this form by
padding it with trivial cprints of the form echo "", and
PHPRepair performs this simple modification. For instance,
in the program of Fig. 9, cprints are inserted on lines 131
and 141 after nested blocks, and on line 133 after a vprint.

On the other hand, there is no need to insert a cprint after
line 127 at the beginning of the loop body, as there already
is a cprint on the next line.7

To achieve minimality, we use a cost metric to character-
ize the number of changes required by a repair. Let M be a
solution for the set of repair constraints under consideration.
Then we can define cost(M) as the number of variables to
which M assigns a different value than its original value,
meaning that M is considered more expensive the more
cprints it modifies. In order to find a minimal repair for
the program, we then simply look for a solution with the
minimum cost. While this cost metric assigns the same cost
to every modification, it is easy to substitute a different
metric that, for instance, penalizes adding a cprint more
heavily than modifying an existing one, or takes the amount
of change to each print statement into consideration.

IV. IMPLEMENTATION

In this section, we discuss implementation details of our
two repair tools. The tools are part of a plugin that we have
built for the Eclipse PHP Development Tools (PDT).

A. PHPQuickFix

PHPQuickFix integrates into the PDT as a build par-
ticipant and is run every time a source file is processed.
Warnings are displayed as annotations in the IDE and come
with a proposed quick-fix that, if the user accepts it, modifies
the program directly in the editor to repair the problem.

As described in Section II-C, PHPQuickFix checks each
string literal in the program in isolation for common HTML
generation errors. This is unsound in general, since some
strings do not represent HTML or undergo further processing
before being printed. Hence PHPQuickFix sometimes emits
spurious warnings, and the programmer has to exercise cau-
tion in applying the suggested fixes. Since it only considers
one string literal at a time, PHPQuickFix is of course also
not complete. Nevertheless, our experiments in Section V
indicate that PHPQuickFix is a valuable tool for quickly
detecting and eliminating common HTML generation bugs.

B. PHPRepair

PHPRepair can be invoked via a menu item added to the
PDT. The option requires the developer to specify an XML
file which contains an encoding of the test suite.

PHPRepair first uses source-level instrumentation to gen-
erate the repair constraints. From the original program p
it creates an instrumented program pI that is identical to
p except that trivial cprints are inserted as described in
Sec. III-D and all prints are replaced by calls to a logging
function, which performs the normal print and logs both the
label of the print and the output it produces. Running pI

7An inserted cprint will not actually appear in the repaired program
unless the solution to the repair constraints requires it.

Table III
DIFF REGIONS FOR THE EXAMPLE TEST SUITE.

Tests Actual Output Expected Output Diff variables
t2, t3 . . .Country </t.Country </h3> </t. . . c3

t2, t3 . . .</tr> </b . . .</tr> </table> </b. . . c13

t3 . . .ada </div></tr> <td.ada </div></td> <td. . . c7, c8

t3 . . .nds </div></tr> <td.nds </div></td> <td. . . c7, c8

t3 . . .USA </div></tr> <td.USA </div></td> <td. . . c7, c8

on a test case produces a log containing the associated print
trace, from which the repair constraint is constructed.

PHPRepair then solves the set of repair constraints by
encoding them in the input language of Kodkod [5], an
efficient SAT-based constraint solver. We considered using
an off-the-shelf string constraint solver such as Hampi [6]
or Kaluza [7] instead, but neither solver supports cost
optimization, which we need in order to find a minimal
repair. In contrast, Kodkod can be easily used with any
underlying SAT solver, including a cost-optimizing one.

Another advantage of Kodkod is that it provides a simple
way to bound the allowed solutions to each variable, which
we use to drastically reduce the search space. Such bounds
are easy to obtain due to the simple form of our repair
constraints, where the right-hand sides are constant. For
example, the string value of a variable v appearing in
a constraint C must be entirely composed of characters
appearing on the right-hand side of C, and its maximum
length is bounded by the length of the right-hand side.

We further optimize the constraints passed to the solver
by employing a simple localization heuristic, based on the
observation that the differences between the actual and ex-
pected outputs for failing test cases are generally small. We
first compute diff regions for each test case, i.e., substrings
of the actual output that do not agree with the expected
output. Using the logged print traces, we can then identify
all cprints that produce output in a diff region. We call the
variables corresponding to these cprints diff variables. In the
example of Sec. II, the actual and expected output on tests
t2 and t3 yield five diff regions shown in Table III. The last
column lists the diff variables for every region; overall, the
diff variables for this test suite are c3, c7, c8, c13.

Given this information, our heuristic forces all non-diff
variables to retain their original values, since they do not
contribute to any of the diff regions and hence likely already
have their correct values. We do this by canceling out each
non-diff variable from the left-hand side of each repair con-
straint, along with its corresponding expected output on the
right-hand side (which by definition matches the variable’s
actual output). The result is a set of localized constraints
in place of each original repair constraint. From the repair

constraint for test t2 we get three localized constraints

c3 = " . . . Country</h3></th> . . . "
c7 = ""

c13 = "</table>"

whereas t3 contributes only one new constraint:

c7 . c8 = "</div></td>"

These four constraints can be solved by Kodkod, leading to
the solution shown in Table II.

Localization is sound and critical in practice for reducing
repair time, but it can sometimes lose solutions since it does
not allow a cprint outside of a diff region to be modified.
For example, consider a repair that requires hoisting a
cprint from within an if block to occur just before the
conditional. If the block is only executed on passing tests,
our heuristic will not allow that cprint to be modified,
causing the localized constraints to become unsatisfiable. We
regain completeness through a simple back-off procedure: if
the localized constraints are unsatisfiable, we expand each
diff region by a fixed amount and try again. In the limit,
each test output becomes a single diff region, causing the
original repair constraints to be solved.

Finally, we observe that constraints that do not have any
variables in common can be solved independently. We can
hence improve constraint solving time by partitioning the
repair constraints according to their variables and solving
each partition separately. This optimization is particularly
effective after localization, which tends to produce many
constraints that each refer to a small number of variables.

V. EVALUATION

We present an evaluation of our repair techniques on a set
of PHP applications, focusing on three evaluation criteria:

EC1 How many HTML generation errors can PHPQuickFix
fix? How many spurious warnings does it produce?

EC2 How successful is PHPRepair in repairing the remain-
ing HTML generation errors?

EC3 When PHPRepair fails, how often is this due to the
restriction to modify only cprints and how often due to
limitations of the constraint solver?

Table IV
SUBJECT PROGRAMS.

program version # files LOC # tests coverage
faqforge 1.3.2 19 734 536 89.2%
webchess 0.9.0 24 2,226 979 40.6%
schoolmate 1.5.4 63 4,263 676 65.5%
hgb 4.0 20 541 1359 97.2%
timeclock 1.0.3 62 13,879 958 26.8%
dnscript N/A 60 1,156 1,167 75.9%

A. Experimental Setup and Methodology

Table IV describes our subject programs and their test
suites. The LOC column lists the number of lines containing
an executable PHP statement, and the last two columns give
the size of the test suite and its line coverage. The tests were
generated automatically using Apollo [2] on a time budget
of 20 minutes. Coverage for timeclock is low since it makes
heavy use of client-side JavaScript, which is not very well
supported by Apollo. Note that each test typically triggers
multiple HTML generation errors, and a single error may
be triggered by multiple tests, so the number of failing tests
tends to be correlated only loosely with the number of bugs.

PHPRepair additionally requires the expected output for
each test. We used the W3C Markup Validation Service8 to
identify validity violations and HTML Tidy to automatically
fix simple HTML errors. More complex errors that exceed
the capabilities of HTML Tidy were fixed by hand. To ad-
dress criterion EC3, we also manually constructed “golden”
versions of the subject programs that produce the expected
output on all tests. This required significant effort on the
order of several days of work for the larger benchmarks.

On each benchmark, we first used PHPQuickFix to fix all
the simple HTML generation errors and then applied PHP-
Repair to the modified program and its test suite to repair
more complex errors. We believe this approach reflects the
way in which our tools would be used by programmers.

To simulate a developer interacting with PHPRepair to
repair all failing tests in a test suite t1, . . . , tn, we used
the following iterative process. Let tf be the first failing
test case. We first run PHPRepair on tests t1, . . . , tf , with
a timeout of three minutes for the solver. Recall from the
end of Sec. IV that we partition the repair constraints into
independent sets. We automatically apply to tf the repairs
corresponding to each constraint set for which PHPRepair
provides a solution. If all sets have solutions, then test tf has
been fully repaired so we move on to the next failing test
case. Otherwise we manually apply as many fixes from the
“golden” version as required to make tf pass before moving
on. We repeat these steps until all tests pass.

To measure the effectiveness of our approach we count
the total number of patches (i.e., positions where a contigu-
ous program fragment was inserted, modified, or removed)
required to fully repair each program, and compute what
percentage of patches were applied automatically by PHP-

8See http://validator.w3.org/.

Table V
NUMBER OF ERRORS FOUND AND REPAIRED BY PHPQuickFix.

name # errors reported # false positives
faqforge 92 0
webchess 4 0
schoolmate 44 0
hgb 189 139
timeclock 2733 5
dnscript 22 1

Table VI
NUMBER OF ERRORS FOUND AND REPAIRED BY PHPRepair.

name # tool # all manual # non-cprint % tool
patches patches manual patches patches

faqforge 33 3 3 92%
webchess 4 0 0 100%
schoolmate 11 0 0 100%
hgb 88 40 6 69%
timeclock 315 64 55 83%
dnscript 74 25 6 75%

Repair. This is a more objective metric than the number of
fixed test cases, which depends heavily on the test suite.
Using the number of validator error messages is also prob-
lematic, since a single error may lead to several messages.

B. Results

EC1: Table V shows the number of HTML generation
errors reported by PHPQuickFix on each of the subject
programs in the middle column. As can be seen from these
results, the simple kinds of errors detected by PHPQuickFix
are quite common. As mentioned in Sec. IV, PHPQuickFix
can incur false positives, but on most of our benchmarks this
is very rare. The sole exception is hgb, which uses custom
HTML templates with un-escaped ampersand characters
as field separators. These characters are substituted away
when producing actual HTML output, but the local analysis
performed by PHPQuickFix cannot recognize this.

EC2: Table VI reports on our evaluation of PHPRepair,
listing for every benchmark the number of patches auto-
matically applied by PHPRepair and the number of patches
applied manually; the fourth column shows how many of
the latter involved fixing statements other than cprints and
hence exceeded the capabilities of our tool. Across all
benchmarks, PHPRepair on average performs 86% of all
patches automatically. On these benchmarks, our iterative
process went through a total of 125 iterations. On 42 itera-
tions, PHPRepair timed out without finding a solution; the
remaining iterations completed in an average of 7 seconds.9

The relatively low percentage of automated repairs on
hgb is largely an artifact of our evaluation strategy: most
manual patches could have been found automatically, but
they occurred in the same test case (and constraint) as a
more complicated repair and so had to be applied by hand.

9Measured on a 2.4GHz Core 2 Duo Macbook Pro with 2 GB of RAM.

http://validator.w3.org/

EC3: The fourth column in Table VI shows that on
average only about 6% of the necessary repairs were out
of scope for our approach. Examples of such repairs are
missing include statements and faulty vprints. The high
number of non-cprint patches in timeclock is due to a single
patch involving a vprint that is required in every script.

While most of the invalid HTML generated by our bench-
marks would be silently corrected by a browser, we found
three errors that resulted in visible layout problems, two of
which were automatically fixed by PHPRepair.

C. Threats to Validity

The subject programs used in our evaluation may not be
representative of other PHP programs. We did not specifi-
cally select the benchmarks to suit our approach; many of
them have been used in our previous research [2]. Some
PHP programs (such as phpBB2 [2]) use custom templating
mechanisms to generate their output, whereby a template of
the page to generate is read from a file and subjected to
some string processing to generate the actual output page.
Our approach does not work well on such programs, which
typically contain few cprints.

The bugs we detected and fixed may not be representative
since the test suites we use do not cover all of a program’s
behavior. However, the test suites achieve high coverage
and were generated using algorithms that are completely
unrelated to the repair techniques studied in this paper.

Finally, there is often more than one way to fix a given
HTML generation error, but in our evaluation we had to
pick a single fix. When constructing the corrected HTML
output and the golden versions of our subject programs, we
have attempted to choose “sensible” repairs that disturb the
original structure as little as possible.

VI. RELATED WORK

Static analysis of strings in web applications has been
used to validate HTML output from web applications [8],
[9], to ensure that only XML documents meeting a given
DTD are generated [10], and to detect security vulnerabili-
ties [11], [12], [13]. Our PHPQuickFix tool also performs a
static analysis, but only handles the special case of HTML
errors within an individual string literal. Since PHPQuick-
Fix is neither sound nor complete it cannot guarantee the
absence of all errors; similarly, PHPRepair is only sound
up to the given test suite. However, our tools can automat-
ically repair HTML generation errors, rather than simply
identifying them. Due to its dynamic approach, PHPRepair
does not incur false positives as a static tool might.

Nguyen et al. [4] tackle the same problem of repairing
HTML generation errors in PHP code, but in a very different
way. They use a heuristic algorithm to map HTML output
back to the program, while we use instrumentation to get
a precise mapping. Like us they focus on constant prints,
but their heuristic repair algorithm does not appear to

ensure soundness, completeness or minimality. Finally, their
evaluation only considers fixes found by HTML Tidy; we
also consider more complicated manual fixes.

Weimer et al. [3] use genetic programming to repair C
programs, whereby repairs are found by adapting statements
from other locations in a program. Like ours, their approach
requires a test suite, uses instrumentation to record execution
paths, and guarantees correctness up to that suite. Our focus
on constant prints allows us to perform exhaustive search for
repairs, ensuring both completeness and minimality. Genetic
programming approaches support more complex repairs but
rely on heuristics and hence lack these important properties.

There has also been work on synthesizing programs
that meet a given specification. Closest to our work are
approaches that require the user to provide an initial program
template with “holes” to be filled in [14], [15]. PHPRepair
implicitly allows any cprint as a “hole” and uses tests to
identify which ones to modify along with cost minimiza-
tion to avoid unnecessary patches. Finally, Gulwani [16]
described a tool to synthesize Excel spreadsheet macros.
Like PHPRepair, that approach is based on input-output
examples and synthesizes a program that generates strings.
However, programs are synthesized in a specialized domain-
specific language, while we repair arbitrary PHP programs.

Angelic debugging [17], like our approach, uses constraint
solving over a test suite to identify erroneous expressions.
While it can handle more general errors, angelic debugging
is in general not able to suggest source-level repairs.

Several projects use constraint solving for automatic pro-
gram transformations, often in the form of refactorings, as
in type-related refactorings [18], refactoring for inferring
generic types in Java [19], and refactorings that manipulate
access modifiers [20].

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach to automatically
repair HTML generation errors in PHP programs, targeting
a common class of repairs based on adding, modifying,
and removing statements that print string literals. We have
developed a simple static tool, PHPQuickFix, for repairing
errors local to a single print statement, and a test-based tool,
PHPRepair, for repairing more complex errors by solving a
system of string constraints. Our experiments show that these
tools are able to efficiently repair most HTML generation
bugs in a variety of open-source benchmark programs.

There are several avenues for further research. We would
like to experiment with different cost metrics incorporating
knowledge of the program’s structure (e.g., to encourage
solutions where all fixes are localized in the same script). To
improve performance, we may be able to leverage the highly
structured form of our constraints to aggressively optimize
our SAT-based encoding, rather than relying on Kodkod’s
built-in encoding. Finally, we would like to generalize our
approach to handle more complex repairs.

REFERENCES

[1] W3Techs, “Usage Statistics and Market Share of PHP for
Websites,” http://w3techs.com.

[2] S. Artzi, A. Kieżun, J. Dolby, F. Tip, D. Dig, A. M. Paradkar,
and M. D. Ernst, “Finding Bugs in Web Applications Using
Dynamic Test Generation and Explicit-State Model Check-
ing,” IEEE TSE, vol. 36, no. 4, pp. 474–494, 2010.

[3] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest, “Auto-
matically Finding Patches Using Genetic Programming,” in
ICSE, 2009, pp. 364–374.

[4] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N.
Nguyen, “Auto-Locating and Fix-Propagating for HTML
Validation Errors to PHP Server-Side Code,” in ASE, 2011,
pp. 13–22.

[5] E. Torlak, “A constraint solver for software engineering:
Finding models and cores of large relational specifications,”
Ph.D. dissertation, MIT, 2009.

[6] V. Ganesh, A. Kieżun, S. Artzi, P. J. Guo, P. Hooimeijer, and
M. D. Ernst, “HAMPI: A String Solver for Testing, Analysis
and Vulnerability Detection,” in CAV, 2011, pp. 1–19.

[7] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song, “A Symbolic Execution Framework for JavaScript,”
in IEEE Symp. on Security and Privacy, 2010, pp. 513–528.

[8] Y. Minamide, “Static Approximation of Dynamically Gener-
ated Web Pages,” in WWW, 2005, pp. 432–441.

[9] A. Møller and M. Schwarz, “HTML Validation of Context-
Free Languages,” in FOSSACS, 2011, pp. 426–440.

[10] Y. Minamide and A. Tozawa, “XML Validation for Context-
Free Grammars,” in APLAS, 2006, pp. 357–373.

[11] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static
Checking of Dynamically Generated Queries in Database
Applications,” ACM TOSEM, vol. 16, September 2007.

[12] G. Wassermann and Z. Su, “Static Detection of Cross-Site
Scripting Vulnerabilities,” in ICSE, 2008, pp. 171–180.

[13] F. Yu, M. Alkhalaf, and T. Bultan, “Patching Vulnerabilities
with Sanitization Synthesis,” in ICSE, 2011, pp. 251–260.

[14] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. Seshia, and
V. Saraswat, “Combinatorial Sketching for Finite Programs,”
in ASPLOS, 2006, pp. 404–415.

[15] A. Solar-Lezama, C. G. Jones, and R. Bodı́k, “Sketching
Concurrent Data Structures,” in PLDI, 2008, pp. 136–148.

[16] S. Gulwani, “Automating String Processing in Spreadsheets
Using Input-Output Examples,” in POPL, 2011, pp. 317–330.

[17] S. Chandra, E. Torlak, S. Barman, and R. Bodı́k, “Angelic
Debugging,” in ICSE, 2011, pp. 121–130.

[18] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban,
and B. D. Sutter, “Refactoring Using Type Constraints,” ACM
TOPLAS, vol. 33, no. 3, 2011.

[19] A. Donovan, A. Kieżun, M. S. Tschantz, and M. D. Ernst,
“Converting Java Programs to Use Generic Libraries,” in
OOPSLA, 2004, pp. 15–34.

[20] F. Steimann and A. Thies, “From Public to Private to Absent:
Refactoring Java Programs under Constrained Accessibility,”
in ECOOP, 2009, pp. 419–443.

http://w3techs.com

	Introduction
	Background and Overview
	An Example PHP Program
	HTML Generation Bugs
	Automated PHP Program Repair

	Input-Output Based Repair
	Test Cases and Repairs
	Properties
	Finding a Sound Repair
	Ensuring Completeness and Minimality

	Implementation
	PHPQuickFix
	PHPRepair

	Evaluation
	Experimental Setup and Methodology
	Results
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

