
Efficient Construction of Approximate Call Graphs
for JavaScript IDE Services

Asger Feldthaus∗, Max Schäfer†∗∗, Manu Sridharan‡, Julian Dolby‡, and Frank Tip§∗∗

∗Aarhus University, Denmark †Nanyang Technological University, Singapore
asf@cs.au.dk schaefer@ntu.edu.sg

‡IBM T.J. Watson Research Center, USA §University of Waterloo, Canada
{msridhar,dolby}@us.ibm.com ftip@uwaterloo.ca

Abstract—The rapid rise of JavaScript as one of the most
popular programming languages of the present day has led
to a demand for sophisticated IDE support similar to what is
available for Java or C#. However, advanced tooling is hampered
by the dynamic nature of the language, which makes any form
of static analysis very difficult. We single out efficient call graph
construction as a key problem to be solved in order to improve
development tools for JavaScript. To address this problem, we
present a scalable field-based flow analysis for constructing call
graphs. Our evaluation on large real-world programs shows that
the analysis, while in principle unsound, produces highly accurate
call graphs in practice. Previous analyses do not scale to these
programs, but our analysis handles them in a matter of seconds,
thus proving its suitability for use in an interactive setting.

I. INTRODUCTION

Over the past decade, JavaScript has turned from a niche
language for animating HTML pages into an immensely pop-
ular language for application development in many different
domains. Besides being the enabling technology for Web 2.0
applications such as Google Mail, it is becoming a popular
choice for server-side programming with Node.js, for writing
cross-platform mobile apps with frameworks like PhoneGap,
and even for implementing desktop applications.

This increase in popularity has led to a demand for modern
integrated development environments (IDEs) for JavaScript
providing smart code editors, software maintenance tools such
as automated refactorings, and code analysis tools. While a
variety of mature IDEs exist for languages like Java and C#,
such tools have only just begun to appear for JavaScript:
existing IDEs such as Eclipse, Komodo IDE and NetBeans
are starting to support JavaScript, while new IDEs specifically
targeted at web programming such as WebStorm and Cloud9
are also gaining traction.

Compared with their Java counterparts, however, these IDEs
are fairly bare-bones. Code navigation and completion use
heuristics that sometimes fail unexpectedly, while refactoring
and analysis is all but unsupported. There has been some work
on more principled tools and analyses [7, 9, 11, 14], but these
approaches do not yet scale to real-world applications.

A key impediment to advanced tooling for JavaScript is
the difficulty of building call graphs, that is, determining

∗∗This paper was written while the authors were with IBM Research.

the functions that a given call may invoke at runtime. Such
reasoning is required in IDEs both for basic features like
“Jump to Declaration”, and also for refactoring or analysis
tools that need to reason interprocedurally.

To be useful in an IDE, a call graph construction algorithm
must be lightweight and scalable: modern programmers expect
IDE services to be constantly available, so it should be possible
to quickly compute call graph information on demand, even
for large, framework-based JavaScript applications.

Demands on precision and soundness may vary between
clients: for Jump to Declaration, listing many spurious call
targets is perhaps even worse than occasionally missing one,
while analysis tools may prefer a fairly conservative call graph.
Achieving absolute soundness is, however, almost impossible
in JavaScript due to widespread use of eval and dynamic
code loading through the DOM. A useful compromise could
be an unsound call graph construction algorithm that can, to
some extent, quantify its degree of unsoundness, for instance
by indicating call sites where some callees may be missing;
the IDE can then pass this information on to the programmer.

In Java, call graphs can be efficiently constructed using class
hierarchy analysis [6], which uses type information to build
a call graph. However, since JavaScript is dynamically typed
and uses prototype-based inheritance, neither class hierarchy
analysis nor its more refined variants that keep track of class
instantiations [5, 20] are directly applicable. Additionally,
these analyses cannot easily handle first-class functions.

An alternative are flow analyses such as CFA [17] or
Andersen’s points-to analysis [4] that statically approximate
the flow of data (including first-class functions) to reason about
function calls. While typically not fast enough for interactive
use, such analyses could still be used for non-interactive
clients like analysis tools. However, while state-of-the-art flow
analyses for JavaScript can handle small framework-based
applications [19], they do not yet scale to larger programs.

In this work, we present a lightweight flow analysis specifi-
cally designed to efficiently compute approximate call graphs
for real-world JavaScript programs. Its main properties are:

1) The analysis is field-based [13, 15], meaning that it uses
a single abstract location per property name. Thus, two

functions that are assigned to properties of the same
name will become indistinguishable as call targets.

2) It only tracks function objects and does not reason about
any non-functional values.

3) It ignores dynamic property accesses, i.e., property reads
and writes using JavaScript’s bracket syntax.

These design decisions significantly reduce the number of
abstract locations and objects, thus dramatically improving
scalability. While precision could, in principle, suffer, we show
in our evaluation that this does not happen in practice.

Clearly, ignoring dynamic property reads and writes makes
the analysis unsound, but this is a consequence of the first
two design decisions: since we only track function objects,
we cannot reason about the possible string values of p in
a dynamic property access e[p], and using a field-based
approach means that imprecision cannot be contained by
reasoning about aliasing. However, previous work has shown
that many dynamic property accesses are correlated [19], i.e.,
they copy the value from property p in one object to property
p of another. With a field-based approach, such a copy is a
no-op, since the analysis uses a single representation for all
p properties anyway. Our evaluation indicates that in practice,
very few call targets are missed due unsoundness.

Like any flow analysis, our analysis faces a chicken-and-egg
problem: to propagate (abstract) argument and return values
between caller and callee we need a call graph, yet a call graph
is what we are trying to compute. We explore two analysis
variants that tackle this problem in different ways.

The first is a standard optimistic analysis in the terminology
of Grove and Chambers [8] that starts out with an empty
call graph, which is gradually extended as new flows are
discovered until a fixpoint is reached.

The second variant is a pessimistic analysis that does not
reason about interprocedural flow at all and simply gives up on
call sites whose call target may depend on such flow, except
in cases where the callee can be determined purely locally.

We have implemented both of our techniques and performed
an extensive empirical evaluation on ten large, real-world
JavaScript web applications, many of them based on popular
frameworks. To show the feasibility of using our analyses in
an IDE, the implementation operates on abstract syntax trees
(ASTs) as IDE-based tools normally do, rather than on an
intermediate code representation as is typical for flow analyses.

Both analyses scale very well and are able to build call
graphs for even fairly large programs in a few seconds. As
expected, the pessimistic analysis is faster than the optimistic
one, since it does not need to iterate to a fixpoint.

To evaluate precision and scalability, we compared our
analysis results to dynamic call graphs that we obtained
by manually exercising instrumented versions of our subject
programs. The optimistic analysis achieves high precision
(≥ 66%) and very high recall (≥ 85%) with respect to these
dynamic call graphs, but what is perhaps surprising is that the
pessimistic analysis does just as well.

This suggests that in many cases the pessimistic analysis
may be preferable: not only is it faster, but it also clearly

(a) (b)
Fig. 1. Test page before (a), and after (b) applying the plugin

indicates which call sites it cannot reason about precisely,
whereas the optimistic analysis gives a result for every call
site that may sometimes be very imprecise.

Finally, we evaluate several possible client applications of
our algorithms: we show that the call graphs they generate are
much more complete than what current IDEs offer and could
be used to significantly improve the “Jump to Declaration”
feature. Moreover, our call graphs also facilitate the imple-
mentation of bug finding and smell detection tools that check
for common programming mistakes.

Contributions: To the best of our knowledge, this paper
presents the first static analysis capable of computing useful
call graphs for large JavaScript applications. Specifically, we
make the following contributions:
• We propose two variants of a field-based flow analysis for

JavaScript that only tracks function objects and ignores
dynamic property reads and writes.

• We show that both scale to large, real-world programs.
• Comparing against dynamic call graphs, we find that the

analyses, while in principle unsound, produce accurate
call graphs in practice.

• We demonstrate several client applications to show the
usefulness of our approach.

The remainder of the paper is organized as follows. Sec-
tion II motivates our techniques on a simple but realistic
JavaScript program. Section III explains our analyses in detail,
and Section IV evaluates them on real-world applications.
Section V surveys related work, and Section VI concludes.

II. MOTIVATING EXAMPLE

As an example to introduce our techniques, we present
a simple plugin to the popular jQuery framework that can
be used to highlight alternating rows of HTML tables for
easier on-screen reading as shown in Fig. 1. We discuss
some challenges for call graph construction illustrated by this
example, and explain how our analysis handles them.

A. Example Walkthrough

The jQuery framework provides a wide variety of func-
tionality to simplify cross-browser application development.
Most of its features are exposed through the global jQuery
function, which can be used to register event handlers, parse
snippets of HTML, or perform CSS queries over the DOM.

1 (function() {
2 function jQuery(n) {
3 var res = Object.create(jQuery.fn);
4 var elts = document.getElementsByTagName(n);
5 for(var i=0;i<elts.length;++i)
6 res[i] = elts[i];
7 res.length = elts.length;
8 return res;
9 }

10
11 jQuery.fn = {
12 extend: function ext(obj) {
13 for(var p in obj)
14 jQuery.fn[p] = obj[p];
15 }
16 };
17
18 jQuery.fn.extend({
19 each: function(cb) {
20 for(var i=0;i<this.length;++i)
21 cb(this[i], i);
22 }
23 });
24
25 window.jQuery = jQuery;
26 })();

Fig. 2. A small subset of jQuery

The result of such a query is a special jQuery result object,
which provides array-like access to the result elements through
numerical indices and offers many utility methods, some of
them defined by jQuery itself, and others defined by plugins.

Our simplified version of jQuery, shown in Fig. 2, im-
plements a jQuery function as well. Following a common
pattern, it is first defined as a local function within a surround-
ing closure (lines 2–9), and later stored in a global variable
to make it accessible to client code (line 25). Our jQuery
function only provides a very simple form of querying: when
passed a string argument, it finds all DOM elements with this
tag name (line 4), stores them into the result object, sets its
length property to indicate how many elements were found,
and returns it. For instance, jQuery(’tbody’) returns all
table body elements in the document.

The result object itself is created on line 3 using the built-
in function Object.create, which takes as its argument an
object p and returns a new object o that has p as its prototype.
In this case, the prototype object will be jQuery.fn, which is
defined on line 11. Thus, any property defined on jQuery.fn
is available on all jQuery result objects via JavaScript’s
prototype-based inheritance mechanism.

Initially, the jQuery.fn object contains a single property:
a method extend that adds all property-value pairs of its
argument object obj to jQuery.fn. This is done through a
for-in loop (lines 13–14) that iterates over all properties p
of obj, and uses dynamic property reads and writes to copy
the value of property p on obj into a property of the same
name on jQuery.fn. If no such property exists yet, it will be
created; otherwise, its previous value will be overwritten.

27 (function($) {
28 $.fn.highlightAlt = function(c) {
29 this.each(function(elt) {
30 for(var i=1;i<elt.children.length;i+=2)
31 elt.children[i].style.backgroundColor = c;
32 });
33 };
34
35 window.highlightAltRows = function() {
36 $(’tbody’).highlightAlt(’#A9D0F5’);
37 };
38 })(jQuery);

Fig. 3. A jQuery plugin to highlight alternating children of DOM elements

On line 18, the extend method is used to add a method
each to jQuery.fn, which iterates over all elements con-
tained in a result object and invokes the given callback function
cb on it, passing both the element and its index as arguments.

The plugin, shown in Fig. 3, uses the each method, passing
it a callback that in turn iterates over all the children of every
result element, and sets the background color of every second
element to a given color c (line 31). This functionality is
exposed as a method highlightAlt added to the jQuery.fn
object, and hence available on every jQuery result object. The
plugin also defines a global function highlightAltRows that
clients can invoke to apply highlighting to all tables in the
document: it uses the jQuery function to find all table bodies,
and then invokes highlightAlt on each of them. Notice that
a closure is used to make the global jQuery variable available
as a local variable $.

Our example illustrates several important features of
JavaScript: variables have no static types and may, in general,
hold values of different types over the course of program
execution. Objects in JavaScript do not have a fixed set of
properties; instead, properties can be created simply by assign-
ing to them (e.g., the plugin adds a method highlightAlt
to jQuery.fn), and can even be deleted (not shown in the
example). Functions are first-class objects that can be passed
as arguments (as with the each function), stored in object
properties to serve as methods, and even have properties
themselves. Finally, dynamic property reads and writes allow
accessing properties by computed names.

B. Challenges for Call Graph Construction

As discussed in Section I, call graphs are widely useful
in IDEs, for example to implement “Jump to Declaration” or
to perform lightweight analysis tasks. Unfortunately, neither
standard coarse approaches nor more precise flow analyses
work well for building JavaScript call graphs, as we shall
explain using our running example.

Java IDEs take a type-based approach to call-graph con-
struction [6]: the possible targets of a method call are simply
those admitted by the program’s class hierarchy. Since vari-
ables and properties are not statically typed in JavaScript, type-
based call graph construction algorithms are not immediately
applicable. While prototype objects are superficially similar

to Java classes, properties can be dynamically added or over-
written. For instance, the jQuery.fn object in our example
starts out with only one property (extend) to which two
others (each and highlightAlt) are later added, defeating
any simple static type inference. Type inference algorithms
for JavaScript that can handle such complications have been
proposed [12, 14], but do not yet scale to real-world programs.

An very naïve way to construct call graphs would be to use
name matching, and resolve a call e.f(...) to all functions
named f. This approach, which is used by Eclipse JSDT,
fails when functions are passed as parameters or stored in
properties with a different name, like the extend function on
line 12. Consequently, JSDT is unable to resolve any of the call
sites in our example. Other IDEs employ more sophisticated
techniques, but we do not know of any current IDE that can
handle callbacks and discover targets for the call on line 21.

A more conservative approach suggesting any function with
the right number of parameters as a call target would likely
be too imprecise in practice, yet still fails to be sound, since
JavaScript allows arity mismatching: the call on line 21 passes
two parameters, while the callback only declares one.

A flow analysis, like an Andersen-style pointer analysis [19]
or an inter-procedural data flow analysis [14], can avoid
these issues. Such analyses work by tracing the flow of
abstract values through abstract memory locations based on
the relevant program statements (primarily assignments and
function calls). A call graph is then derived by determining
which function values flow to each invoked expression.

However, building a precise flow analysis that scales to large
JavaScript programs is an unsolved challenge. In the example
of Fig. 2, the flow of functions to invocations is non-trivial, due
to the use of the extend function to modify the jQuery.fn
object. Precise modeling of dynamic property accesses like
those in extend and other complex constructs is required to
obtain a useful flow analysis result, but this precise modeling
can compromise scalability; see [19] for a detailed discussion.
In particular, we know of no JavaScript flow analysis that can
analyze real-world jQuery-based application.1

C. Our Approach

In this paper, we show that a simple flow analysis suffices
to construct approximate call graphs that are, in practice,
sufficiently accurate for applications such as IDE services.
Our analysis only tracks the flow of function values, unlike
most previous flow analyses, which track the flow of all
objects. Ignoring general object flow implies that for a property
access e.f, the analysis cannot reason about which particular
(abstract) object’s f property is accessed. Instead, a field-based
approach is employed, in which e.f is modeled as accessing
a single global location f, ignoring the base expression e.

Our analysis uses a standard flow graph capturing assign-
ments of functions into variables and properties, and of one
variable into another. For instance, the function declaration on

1The analysis in [19] could only analyze a manually rewritten version of
jQuery with handling of certain JavaScript features disabled.

line 2 adds a flow graph edge from the declared function to the
local variable jQuery, while the assignment on line 25 adds an
edge from that variable to the abstract location Prop(jQuery)
representing all properties named jQuery. The function call
on line 38, in turn, establishes a flow from Prop(jQuery) into
the parameter $, leading the analysis to conclude that the call
on line 36 may indeed invoke the jQuery function. Details
of how to construct the flow graph and how to extract a call
graph from it are presented in the next section.

At first glance, dynamic property accesses present a
formidable obstacle to this approach: for a dynamic prop-
erty access e[p], the analysis cannot reason about which
names p can evaluate to, since string values are not tracked.
A conservative approximation would treat such accesses as
possibly reading or writing any possible property, leading to
hopelessly imprecise analysis results. However, we observe
that dynamic property accesses in practice often occur as
correlated accesses [19], where the read and the write refer
to the same property, as on line 14 in our example. A field-
based analysis can safely ignore correlated accesses, since
like-named properties are merged anyway. Our analysis goes
further and simply ignores all dynamic property accesses.

This choice compromises soundness, as seen in this example
(inspired by code in jQuery):

arr = ["Width","Height"];
for (var i=0;i<arr.length;++i)
$.fn["outer"+arr[i]] = function() { ... };

$.fn.outerWidth();

The dynamic property write inside the loop corresponds
to two static property writes to $.fn.outerWidth and
$.fn.outerHeight, which the analysis ignores; hence it is
unable to resolve the call to outerWidth.

But, as we shall show in our evaluation (Section IV), such
cases have little effect on soundness in practice. Furthermore,
unlike more precise flow analyses, our approach scales easily
to large programs, which makes it well suited for use in an
IDE, where a small degree of unsoundness can be tolerated.

III. ANALYSIS FORMULATION

We now present the details of our call graph construction
algorithm. We first explain the intraprocedural parts of the
analysis, and then present two contrasting approaches to han-
dling interprocedural flows, one pessimistic and one optimistic.

A. Intraprocedural Flow

Our algorithm operates over a flow graph, a representation
of the possible data flow induced by program statements.
The vertices of the flow graph represent functions, variables
and properties, while the edges represent assignments. To
emphasize the suitability of our techniques for an IDE, we
show how to construct the flow graph directly from an AST,
as is done in our implementation.

Abstracting from a concrete AST representation, we write
Π for the set of all AST positions, and use the notation tπ to
mean a program element t (such as an expression, a function
declaration, or a variable declaration) at position π ∈ Π.

node at π edges added when visiting π
(R1) l = r V (r) → V (l), V (r) → Exp(π)
(R2) l || r V (l) → Exp(π), V (r) → Exp(π)
(R3) t ? l : r V (l) → Exp(π), V (r) → Exp(π)
(R4) l && r V (r) → Exp(π)
(R5) {f: e} V (ei) → Prop(fi)
(R6) function expression Fun(π) → Exp(π),

if it has a name: Fun(π) → Var(π)
(R7) function declaration Fun(π) → Var(π)

Fig. 4. Intraprocedural flow graph edges generated for AST nodes

We assume a lookup function λ for local variables such that
λ(π, x) for a position π and a name x returns the position of
the local variable or parameter declaration (if any) that x binds
to at position π. For any position π, φ(π) denotes the position
of the innermost enclosing function (excluding π itself).

There are four basic types of vertices:

V ::= Exp(π) value of expression at π
| Var(π) variable declared at π
| Prop(f) property of name f
| Fun(π) function declaration/expression at π

We define a function V that maps expressions to corre-
sponding flow graph vertices:

V (tπ) =

Var(π′) if t ≡ x and λ(π, x) = π′

Prop(x) if t ≡ x and λ(π, x) undefined
Prop(f) if t ≡ e.f
Exp(π) otherwise

To build the flow graph, we traverse the AST and add
edges as specified by the rules in Fig. 4.2 For our example,
by rule (R7) the declaration of jQuery on line 2 yields an
edge Fun(2) → Var(jQuery), where we use line numbers as
positions and refer to local variables by name for readability.
Likewise, the function expression on line 12 yields two edges
Fun(12) → Var(ext) and Fun(12) → Exp(12) by (R6). Some
of the other edges generated for our example are shown as
solid arrows in the partial flow graph in Fig. 5.

B. Interprocedural Flow

To handle interprocedural flow, the set of vertices needs to
be extended as follows:

V ::= . . .
| Callee(π) callee of call at π
| Arg(π, i) ith argument of call at π
| Parm(π, i) ith parameter of function at π
| Ret(π) return value of function at π
| Res(π) result of call at π

The function V mapping expressions to vertices is likewise
extended: if λ(π, x) is the ith parameter of the function
declared at π′, then V (xπ) = Parm(π′, i), and V (thisπ) =
Parm(φ(π), 0), i.e., this is considered to be the 0th param-
eter. Rules for connecting Arg and Ret vertices with Exp
vertices are given in Fig. 6.

2(R4) is somewhat subtle: in JavaScript, the result of l && r can only be
l if l evaluates to a false value, but in this case it is not a function, and thus
does not have to be tracked.

Returning to our example, the function call on lines 27–38,
yields, by rule (R8), an edge Prop(jQuery)→ Arg(38,1). This
edge, and some of the other edges that are generated by the
rules of Fig. 6 are shown as dotted arrows in Fig. 5.

We now introduce two approaches for connecting Parm to
Arg and Ret to Res vertices to track interprocedural flow.

Algorithm 1 PESSIMISTIC CALL GRAPH CONSTRUCTION

Output: call graph C, escaping functions E, unresolved call
sites U

1: Ci := {(π, π′) | tπ is a one-shot call to a function fπ
′}

2: Ei := {π′ | ¬∃π.(π, π′) ∈ Ci}
3: Ui := {π | ¬∃π′.(π, π′) ∈ Ci}
4: G := ∅
5: ADD INTERPROCEDURAL EDGES(G,Ci, Ei, Ui)
6: add edges from Fig. 4 and 6
7: C := {(π, π′) | Fun(π′)

opt
 G Callee(π)}

8: E := {π | Fun(π) G Unknown}
9: U := {π | Unknown G Callee(π)}

C. Pessimistic Approach

The pessimistic call graph construction algorithm (Alg. 1)
only tracks interprocedural flow in the important special case
of one-shot calls, i.e., calls of the form

(function(x) { ... })(e)

where an anonymous function (the one-shot closure) is directly
applied to some arguments. In all other cases, interprocedural
flow is modeled using a special Unknown vertex.

We start call graph construction from an initial call graph
Ci that only contains edges from one-shot calls to one-shot

Fun(2)

Var(jQuery)

Prop(jQuery)

Arg(38,1)

Parm(27,1)

Callee(36)

Fun(12)

Var(ext) Exp(12)

Prop(extend)

Callee(18)

Fun(29)

Exp(29)

Arg(29,1)

Unknown

Parm(19,1)

Callee(21)

Parm(2,1)

Fig. 5. Partial flow graph for Fig. 2 and 3. Solid edges are added by the rules
of Fig. 4, dotted edges by the rules of Fig. 6, and dashed edges by Alg. 2.

node at π edges added when visiting π
(R8) f(e) or new f(e) V (f) → Callee(π),

V (ei) → Arg(π, i),
Res(π) → Exp(π)

(R9) r.p(e) as (R8), plus V (r) → Arg(π, 0)
(R10) return e V (e) → Ret(φ(π))

Fig. 6. Flow graph edges generated for calls and returns

closures. All other functions are considered escaping functions
(set Ei), and all other call unresolved call sites (set Ui). The
flow graph G is initially empty.

Algorithm 2 ADD INTERPROCEDURAL EDGES

Input: flow graph G, initial call graph C, escaping functions
E, unresolved call sites U

1: for all (π, π′) ∈ C do
2: add edges Arg(π, i)→ Parm(π′, i) to G
3: add edge Ret(π′)→ Res(π) to G
4: for all π ∈ U do
5: add edges Arg(π, i)→ Unknown to G
6: add edge Unknown→ Res(π) to G
7: for all π′ ∈ E do
8: add edges Unknown→ Parm(π′, i) to G
9: add edge Ret(π′)→ Unknown to G

Now we add interprocedural edges to G as described in
Alg. 2: Arg vertices are connected to Parm vertices along
the edges in Ci, and similar for Ret and Res, thus modeling
parameters and return values. Argument values at unresolved
call sites flow into Unknown, and from there into every
parameter of every escaping function. Conversely, the return
value of every escaping function flows into Unknown, and
from there into the result vertex of every unresolved call site.

In Fig. 5, this step adds the dashed edges. Note that
Arg(38, 1) is connected to Parm(27, 1), precisely modeling
the one-shot call at line 38, whereas Arg(29, 1) is conserva-
tively connected to Unknown, since this call site is unresolved.

Intraprocedural edges are now added as per Fig. 4 and 6.

To extract the final call graph, we need to compute the
transitive closure of G to determine all function vertices
Fun(π) from which a call site π′ is reachable. However, if we
consider flows through Unknown, the resulting call graph will
be very imprecise. Instead, we want to produce a call graph
that gives reasonably precise call targets for many call sites,
and marks sites for which no precise information is available.

Writing G for the transitive closure of G, and
opt
 G for

the optimistic transitive closure which does not consider paths
through Unknown, we define the call graph C, the set E of
escaping functions, and the set U of unresolved call sites: a
call may invoke any function that directly flows into its callee
vertex without going through Unknown; if Unknown flows
into a site, then that site is unresolved and the information in C
may not be complete; and if a function flows into Unknown,
it may be invoked at call sites not mentioned in C.

In the partial flow graph in Fig. 5, we can see that
Fun(12)

opt
 G Callee(18), so the call at line 18 may invoke

the function at line 12, and likewise Fun(2)
opt
 G Callee(36).

However, Fun(29) 6opt G Callee(21), and since there are no
other flows into Callee(21), the pessimistic call graph does
not provide a call target for this call.

D. Optimistic Approach

The pessimistic approach produces a call graph triple
(C,E,U) from an initial triple (Ci, Ei, Ui), which could be
done repeatedly. This is what the optimistic approach does,
but instead of starting from a conservative triple that considers
all calls unresolved and all functions escaped unless they are
one-shot, the optimistic approach starts with the empty triple
(∅, ∅, ∅). The flow graph is built using the same rules as for
the pessimistic approach and a new triple is extracted in the
same way, but then the whole procedure is repeated until a
fixpoint is reached.

For our example, this leads to a more complete call graph;
in particular, the optimistic approach can show that the call
on line 21 may invoke the function passed on line 29.

E. Discussion

One would expect the pessimistic approach to be more
efficient but less precise than the optimistic approach, and past
work on call graph construction for other languages supports
this conclusion [8]. As we will show in our evaluation,
however, the loss in precision is actually fairly minor in
practice, hence the pessimistic approach may be preferable
for some applications.

Many call graph algorithms only produce call graphs for
code that is deemed reachable from a given set of entry points,
which can improve precision, particularly for optimistic call
graph construction. We choose not to do so for two main
reasons. Firstly, we want our algorithms to be usable in an
IDE while developing a program; at this point, some code
may not yet have been integrated with the rest of the program
and hence appear to be dead, but a programmer would still
expect IDE services to be available for this code.

Secondly, reasoning about reachability requires a fairly
elaborate model of the JavaScript standard library and the
DOM: for instance, event handlers should always be con-
sidered reachable, and reflective invocations using call and
apply must also be accounted for. By analyzing all code
instead, we can make do with a very coarse model that
simply lists all known methods defined in the standard li-
brary and the DOM. For a standard library function such as
Array.prototype.sort, we then simply introduce a new
vertex Builtin(Array_sort) with an edge to Prop(sort).

IV. EVALUATION

We have implemented both the pessimistic and the op-
timistic call graph algorithm in CoffeeScript,3 a dialect of
JavaScript. In this section, we evaluate our implementation
with respect to the following three evaluation criteria:

(EC1) How scalable are our techniques?
(EC2) How accurate are the computed call graphs?
(EC3) Are our techniques suitable for building IDE ser-

vices?
To evaluate these criteria, we run both our algorithms on ten

real-world subject programs and measure their performance.

3http://coffeescript.org/

TABLE I
SUBJECT PROGRAMS

Program Underlying LOC Num. of Num. of Dyn. CG
Framework Functions Calls Coverage

3dmodel none 4880 29 109 55.17%
beslimed MooTools 4750 703 2017 86.05%
coolclock jQuery 6899 548 1747 81.25%
flotr Prototype 4946 743 2671 68.98%
fullcalendar jQuery 12265 1089 4083 70.83%
htmledit jQuery 3606 389 1253 62.00%
markitup jQuery 6471 557 1849 71.43%
pacman none 3513 152 485 79.61%
pdfjs none 31694 965 3570 67.77%
pong jQuery 3646 375 1324 75.00%

To measure accuracy, we compare the resulting static call
graphs against dynamic call graphs obtained by manually
exercising the programs. Finally, we informally compare our
analyses with existing IDEs, and report on experiments with
two client analyses implemented on top of our call graphs.4

A. Subject Programs

Table I lists our subjects, which are ten medium to large
browser-based JavaScript applications covering a number of
different domains, including games (beslimed, pacman, pong),
visualizations (3dmodel, coolclock), editors (htmledit, mark-
itup), a presentation library (flotr), a calendar app (fullcalen-
dar), and a PDF viewer (pdfjs). As shown in the table, all but
three of them rely on frameworks; these frameworks are the
three most widely-used ones according to a recent survey [22],
which found that 56% of all surveyed websites used jQuery,
5% used MooTools, and 4% used Prototype.

In many cases, the framework libraries included in the
subject programs were in minified form. To aid debugging,
we replaced these by their unminified development versions,
which also more closely matches the development setting in
which we envision our techniques to be used. Since minifiers
typically do not rename properties, however, our analyses
should not be significantly less precise for minified code.

For each program, we list three size measures: the number
of non-blank, non-comment lines of code as determined by
the cloc utility, as well as the number of functions and of
call sites. The coverage number in the last column will be ex-
plained below. For the framework-based subjects, framework
code contributes between 66% and 94% of code size.

B. Scalability (EC1)

To evaluate scalability, we measured the time it takes to
build call graphs for our subject programs using both of
our algorithms. As JavaScript’s built-in time measurement
functions turned out to be unreliable, we used the standard
UNIX time command, measuring user time. This includes
both time for parsing and for the analysis, so we separately
measured the time it takes just to parse every program.

The results of these measurements are given in Fig. 7. All
experiments were performed on a Lenovo ThinkPad W520
with an Intel Core i7-2720QM CPU and 8GB RAM, using
version 3.1.8.22 of the V8 JavaScript engine running on

4Our experimental data is available online at http://tinyurl.com/jscallgraphs.

5s

10s

15s

20s

3dm
odel

beslim
ed

coolclock

flotr
fullcalendar

pacm
an

htm
ledit

m
arkitup

pdfjs
pong

parsing
pessimistic
optimistic

Fig. 7. Time measurements for parsing and analysis; averaged over ten runs,
error bars indicate standard deviation

Linux 3.0.0-24 (64-bit version). Timings are averaged over
ten runs, with error bars indicating standard deviation.

Both analyses scale very well, with even the largest program
analyzed in less than 18 seconds using the optimistic, and less
than nine seconds using the pessimistic approach (including
about three seconds of parsing time in both cases). The
pessimistic analysis in particular already seems fast enough
for use in an IDE, where an AST would already be available.

C. Call Graph Accuracy (EC2)

Measuring the accuracy of our call graphs is not easy, since
there is no existing analysis that can handle all our subject
programs against which to compare our results. Instead we
compare against dynamic call graphs and measure precision
and recall with respect to dynamically observed call targets.

To obtain dynamic call graphs, we instrumented our sub-
ject programs to record the observed call targets for every
call that is encountered at runtime, and manually exercised
these instrumented versions. Additionally, we measured the
function coverage achieved this way, i.e., the percentage of
non-framework functions that were executed while recording
the call graphs, which is shown in the last column of Table I.
In all cases but one, coverage is above 60%, indicating that
the dynamic call graphs are based on a reasonable portion of
the code and hence likely to be fairly complete. We manually
investigated the low coverage on 3dmodel and found that most
of the uncovered code does in fact seem to be dead.

Next, we used our two analyses to generate call graphs for
all our subject programs, and computed precision and recall
for every call site that is covered by the dynamic call graph.
Writing D for the set of targets of a given call site in the
dynamic call graph, and S for the set of targets determined
by the analysis, the precision is computed as |D∩S||S| (i.e., the
percentage of “true” call targets among all targets), while
recall is |D∩S||D| (i.e., the percentage of correctly identified true
targets). Averaging over all call sites for a given program, we
obtain the results in Fig. 8.

Both analyses achieve almost the same precision on most
programs, with the pessimistic analysis performing slightly

60%

70%

80%

90%

100%

3dm
odel

beslim
ed

coolclock

flotr
fullcalendar

pacm
an

htm
ledit

m
arkitup

pdfjs
pong

Precision

pessimistic
optimistic

60%

70%

80%

90%

100%

3dm
odel

beslim
ed

coolclock

flotr
fullcalendar

pacm
an

htm
ledit

m
arkitup

pdfjs
pong

Recall

Fig. 8. Precision and recall measurements for optimistic and pessimistic call graphs compared to dynamic call graphs

better. Only on beslimed and flotr, the two non-jQuery pro-
grams, is the difference more marked, and we only achieve a
relatively modest precision of between 65% and 75%, while
on the others the precision is at least 80%.

For both approaches, the main sources of imprecision are
functions that are stored in properties of the same name,
which a field-based analysis cannot distinguish as call targets.
Additionally, the optimistic approach may resolve callback
invocations imprecisely. The pessimistic approach would give
up on such call sites, returning zero call targets, which
accounts for its better precision measure.

Both analyses achieve very high recall: in every case,
more than 80% of dynamically observed call targets are also
found by the analysis, with recall above 90% for the jQuery-
based programs and close to 100% for the framework-less
programs. Missing call targets are due to the unsoundness of
our approach with respect to dynamic property writes. These
are often used in frameworks to define a group of closely
related functions or to do metaprogramming, which is rare in
non-framework code. On flotr, the optimistic analysis does
significantly better than the pessimistic one; this seems to
be due to a liberal use of callback functions, which are not
handled by the pessimistic analysis.

D. Suitability for IDE Services (EC3)

We now evaluate the suitability of our analyses for three
typical client applications.

Jump to Declaration: Java IDEs typically offer a “Jump
to Declaration” feature for navigating from a field or method
reference to its declaration. In JavaScript, there are no method
declarations as such, but several JavaScript IDEs offer a similar
feature to navigate from a function call to the function (or, in
general, functions) that may be invoked at this place.

Our call graph algorithms could be used to implement such
a feature. The pessimistic algorithm seems to be particularly
well-suited, since it gives a small set of targets for most call
sites. While no call target may be available for unresolved call
sites, this is arguably better than listing many spurious targets.

To test this hypothesis, we measure the percentage of call
sites with a single target, excluding native functions. The
results, along with the percentage of call sites with zero, two,

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

3dm
odel

beslim
ed

coolclock

flotr
fullcalendar

pacm
an

htm
ledit

m
arkitup

pdfjs
pong

0 Callees
1 Callee

2 Callees
3 Callees

>3 Callees

Fig. 9. Number of non-native call targets per site with pessimistic analysis

three, and more than three targets, are given in Fig. 9: on all
benchmarks, more than 70% of call sites have at most one
target, 80% have at most two and 90% at most three targets.
This suggests that the pessimistic algorithm could be useful
for implementing Jump to Declaration.

The relatively large percentage of call sites without targets
is due to excluding native call targets. If they are included,
the pessimistic analysis is on average able to find at least one
callee for more than 95% of calls. The maximum number of
non-native call targets is 20 callees for a small number of sites
on beslimed ; if native targets are considered, several call sites
can have up to 124 callees: these are calls to toString, with
120 of the suggested callees being DOM methods.

We now compare our approach against three current
JavaScript IDEs: Eclipse JSDT, Komodo IDE, and WebStorm.

The Eclipse JSDT plugin (we tested version 1.4.0 on Eclipse
4.2.0) provides a Jump to Declaration feature, which does not
seem to handle method calls, severely limiting its practical
usefulness: across all our subject programs, it can only find
targets for about 130 call sites (less than 1%).

Komodo IDE (version 7.0.2) uses fairly intricate heuristics
to resolve function and method calls that works well on our
smaller subject programs such as 3dmodel. However, it seems
unable to handle larger, framework-based programs, where its
Jump to Declaration feature usually fails.

WebStorm (version 4.0.2) is closed-source, precluding ex-
amination of its implementation. It seems to maintain a
representation of variable and property assignments similar to
our flow graph. No transitive closure is computed, hence Jump
to Declaration only jumps to the most recent definition and it
may take several jumps to find the actual callee. WebStorm
has built-in support for the most popular frameworks, so it can
understand commonly used metaprogramming patterns that
foil our analyses. However, it performs no interprocedural
reasoning at all (not even for one-shot closures), so it is
impossible to jump to the declaration of a callback function.

Smell detection: As an example of a more complicated
client, we implemented a simple tool for detecting global
variables that are used like local variables, suggesting a
missing var declaration. While this may not necessarily be a
bug, it is considered bad practice and makes code less robust.

We check whether all functions using a global variable x
definitely assign to x before reading it. Additionally, call graph
information is used to check whether one function using x can
call another. If so, the functions might see each others’ updates
to x, indicating that it may not be possible to turn x into a
local variable without changing program behavior.

With pessimistic call graphs, the tool suggests 37 missing
var declarations on our subject programs. One of these is a
false positive due to unsoundness, but in all 36 other cases
the global variable could indeed be turned into a local. With
optimistic call graphs, there are only 24 true positives and
the same false positive. Without interprocedural analysis, the
number of false positives rises to nine: in all eight new cases,
the global variable is a flag that is indeed modified by a callee
and hence cannot be made local, highlighting the importance
of interprocedural reasoning for this analysis.

Bug finding: We implemented a tool that looks for
functions that are sometimes called using new, but as normal
functions at other times. While there are functions that can be
used either way, this is often indicative of a bug.

Using pessimistic call graphs, the tool reports 14 such
functions. One of these is a true positive indicating a bug in
flotr, four are true but harmless positives in jQuery, and nine
are false positives due to imprecise call graph information.
Using optimistic call graphs, the number of false positives
increases to 16, with no additional true positives.

E. Summary and Threats to Validity

Our evaluation shows that both call graph construction
algorithms scale very well. Even though our current imple-
mentation is written in CoffeeScript and does not use highly
optimized data structures, it is able to build call graphs for sub-
stantial applications in a few seconds. The faster pessimistic
algorithm may be more suitable for IDE use, but further
optimizations to the optimistic algorithm are certainly possible.

Comparing against dynamic call graphs, we found that
the vast majority of dynamically observed call targets are
predicted correctly by our analyses, and on average the number
of spurious call targets is low. Our analyses resolve most call
sites to at most one callee (up to 90% on some programs),

and compute no more than three possible targets for almost all
sites. The only extreme outliers are calls to toString, which
have more than 100 callees due to our field-based approach.

An informal comparison of our analyses with existing IDEs
suggests that the pessimistic analysis outperforms most of
them, while the optimistic analysis can handle cases that
exceed the capabilities of all surveyed tools. We also discussed
two examples of analysis tools that need call graphs. While
these tools could be useful for developers, they did not find
many bugs on our subject programs, which seem quite mature.

Finally, we discuss threats to the validity of our evaluation.
First, our subject programs may not be representative of

other JavaScript code. We only consider browser-based appli-
cations, so it is possible that our results do not carry over
to other kinds of JavaScript programs. Most of our subject
programs use jQuery, with only two programs using other
frameworks. We have shown that our approaches perform
particularly well on jQuery-based and framework-less applica-
tions, and slightly less so on other frameworks. On the other
hand, recent data [22] suggests that less than 20% of websites
use a framework other than jQuery, so our approach should be
applicable to most real-world, browser-based JavaScript code.

Second, our accuracy measurements are relative to an in-
complete dynamic call graph, not a sound static call graph.
Hence the recall should be understood as an upper bound (i.e.,
recall on a more complete call graph could be lower), whereas
precision is a lower bound (i.e., precision could be higher).
Given the difficulty of scaling sound call graph algorithms to
realistic programs, dynamic call graphs are the best data we
can compare ourselves against at the moment. Moreover, the
relatively high function coverage of the dynamic call graphs
suggests that they are representative of the entire programs.

V. RELATED WORK

Existing flow analyses for JavaScript [7, 9, 10, 14, 19, 21]
generally do not scale to framework-based programs. Some of
them, such as Gatekeeper [9], do not reason statically about
dynamic property accesses, just like our analysis. Gatekeeper
recovers soundness, however, by performing additional run-
time instrumentation. All these systems track general object
flow and use a more precise heap model than we do.

Recently, Madsen et al. presented an analysis that side-
steps the problem of analyzing complex framework code and
modeling native APIs by inferring their behavior from uses in
client code [16]. Our approach is scalable enough to directly
analyze frameworks, and since we only track functions and do
not reason about reachability, no elaborate models for native
code seem to be necessary. We could, however, adopt their
approach in cases where such modeling becomes important.

Wei and Ryder [23] propose a combined static-dynamic
taint analysis of JavaScript programs. In their work, a number
of traces is collected that contain information about method
calls and object creation. This information is used to assist a
static taint analysis with the construction of a call graph that
includes code that is executed as the result of calls to eval,
and excludes code in uncovered branches. In addition, the

number of arguments supplied to methods calls is captured and
used to counter some of the loss of precision due to function
variadicity, by creating multiple distinct nodes in the call graph
for certain methods. Like ours, their analysis is unsound, but it
is likely to be less scalable than ours because of its reliance on
a traditional static pointer analysis. An in-depth comparison of
cost and accuracy of the two approaches is future work.

Agesen et al. presented a number of type inference tech-
niques [1–3] for Self, a language with many similarities to
JavaScript. They essentially compute highly context-sensitive
flow graphs (from which call graphs could be extracted) to
statically prove the absence of “message not understood”
errors, where a method is not found on the receiver object or
its prototypes. Our technique cannot do such reasoning, since
it does not track the flow of most objects. Tracking general
object flow for JavaScript leads to scalability and precision
issues due to heavy usage of reflective idioms that seem not
to be as frequently used in Self.

Grove and Chambers [8] present a general framework for
call-graph construction algorithms. Our analysis does not fit
directly in their framework since they do not discuss prototype-
based languages, but roughly speaking, our analysis can be
viewed as a variant of 0-CFA [17] where (1) only function
values are tracked, (2) field accesses are treated as accesses
to correspondingly-named global variables, and (3) all code is
assumed to be reachable. Our key contribution is in showing
that such an analysis works well for JavaScript in practice.
Previous work has studied the effectiveness of field-based flow
analysis for C [13] and Java [15, 18]. They exploit static type
information to distinguish identically named fields of different
struct/class types, which is impossible in JavaScript.

VI. CONCLUSIONS

We have presented a fast, practical flow analysis-based ap-
proach to call graph construction for JavaScript. Our analysis
(i) is field-based, i.e., identically named properties of different
objects are not distinguished; (ii) only tracks function values,
ignoring the flow of other objects; and (iii) ignores dynamic
property reads and writes. We have proposed two variants of
this analysis: a pessimistic variant that makes conservative
assumptions about interprocedural flow, and an optimistic
variant that iteratively builds an interprocedural flow graph.

Both analyses scale extremely well and can handle far larger
programs than any other static analysis for JavaScript that we
are aware of. While unsound in theory, they produce fairly
complete call graphs in practice. These properties make our
approach well-suited for use in an IDE.

In such a setting, it would be wasteful to build a call graph
from scratch every time it is needed, since large parts of
the program typically remain unchanged. Instead, flow graphs
could be precomputed and cached on a per-file basis, and then
combined into a graph for the whole program when needed.

As future work, we plan to apply our approach in other
settings besides IDEs, such as taint analysis [11]. Here, sound-
ness is much more important, so we need to handle dynamic
property accesses. Conservatively treating them as potentially

accessing all properties will in general result in too much
imprecision, so some form of string analysis for reasoning
about property names is likely needed. Introducing this and
other features (such as tracking of non-function objects) into
our analysis while still keeping it scalable is an interesting
challenge, which could provide valuable insights into the cost
and benefit of different analysis features for JavaScript.

REFERENCES

[1] O. Agesen. Constraint-Based Type Inference and Parametric
Polymorphism. In SAS, pages 78–100, 1994.

[2] O. Agesen. The Cartesian Product Algorithm: Simple and Pre-
cise Type Inference of Parametric Polymorphism. In ECOOP,
1995.

[3] O. Agesen and D. Ungar. Sifting out the Gold: Delivering
Compact Applications from an Exploratory Object-Oriented
Programming Environment. In OOPSLA, 1994.

[4] L. O. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, University of Copenhagen,
DIKU, 1994.

[5] D. Bacon and P. Sweeney. Fast Static Analysis of C++ Virtual
Function Calls. In OOPSLA, 1996.

[6] J. Dean, D. Grove, and C. Chambers. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In
ECOOP, August 1995.

[7] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip.
Tool-supported Refactoring for JavaScript. In OOPSLA, 2011.

[8] D. Grove and C. Chambers. A Framework for Call Graph
Construction Algorithms. TOPLAS, 23(6), 2001.

[9] S. Guarnieri and V. B. Livshits. GATEKEEPER: Mostly Static
Enforcement of Security and Reliability Policies for JavaScript
Code. In USENIX Security Symposium, 2009.

[10] S. Guarnieri and V. B. Livshits. Gulfstream: Incremental Static
Analysis for Streaming JavaScript Applications. In WebApps,
2010.

[11] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and
R. Berg. Saving the World Wide Web from Vulnerable
JavaScript. In ISSTA, 2011.

[12] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing Local
Control and State Using Flow Analysis. In ESOP, 2011.

[13] N. Heintze and O. Tardieu. Ultra-fast Aliasing Analysis Using
CLA: A Million Lines of C Code in a Second. In PLDI, 2001.

[14] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis for
JavaScript. In SAS, 2009.

[15] O. Lhoták and L. Hendren. Scaling Java Points-to Analysis
Using Spark. In CC, April 2003.

[16] M. Madsen, B. Livshits, and M. Fanning. Practical Static Anal-
ysis of JavaScript Applications in the Presence of Frameworks
and Libraries. MSR TR 2012-66, Microsoft Research, 2012.

[17] O. Shivers. Control Flow Analysis in Scheme. In PLDI, 1988.
[18] M. Sridharan, D. Gopan, L. Shan, and R. Bodík. Demand-

Driven Points-To Analysis for Java. In OOPSLA, 2005.
[19] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip.

Correlation Tracking for Points-To Analysis of JavaScript. In
ECOOP, 2012.

[20] F. Tip and J. Palsberg. Scalable Propagation-Based Call Graph
Construction Algorithms. In OOPSLA, pages 281–293, 2000.

[21] D. Vardoulakis and O. Shivers. CFA2: A Context-Free Ap-
proach to Control-Flow Analysis. In ESOP, 2010.

[22] W3 Techs. Usage of JavaScript Libraries for Websites.
http://w3techs.com/technologies/overview/javascript_library/all,
February 2013.

[23] S. Wei and B. G. Ryder. Practical Blended Taint Analysis for
JavaScript. Technical report, Virginia Tech, 2013.

