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Abstract—Previously, we developed a data-centric approach
to concurrency control in which programmers specify synchro-
nization constraints declaratively, by grouping shared locations
into atomic sets. We implemented our ideas in a Java extension
called AJ, using Java locks to implement synchronization. We
proved that atomicity violations are prevented by construction,
and demonstrated that realistic Java programs can be refactored
into AJ without significant loss of performance.

This paper presents an algorithm for detecting possible dead-
lock in AJ programs by ordering the locks associated with atomic
sets. In our approach, a type-based static analysis is extended
to handle recursive data structures by considering programmer-
supplied, compiler-verified lock ordering annotations. In an eval-
uation of the algorithm, all 10 AJ programs under consideration
were shown to be deadlock-free. One program needed 4 ordering
annotations and 2 others required minor refactorings. For the
remaining 7 programs, no programmer intervention of any kind
was required.

I. INTRODUCTION

Writing concurrent programs that operate on shared memory
is error-prone as it requires reasoning about the possible inter-
leavings of threads that access shared locations. If program-
mers make mistakes, two kinds of software faults may occur.
Data races and atomicity violations may arise when shared
locations are not consistently protected by locks. Deadlock
may occur as the result of undisciplined lock acquisition,
preventing an application from making progress. Previously
[1–3], we proposed a data-centric approach to synchronization
to raise the level of abstraction in concurrent object-oriented
programming and prevent concurrency-related errors.

In our approach, fields of classes are grouped into atomic
sets. Each atomic set has associated units of work, code
fragments that preserve the consistency of their atomic sets.
Our compiler inserts synchronization that is sufficient to
guarantee that, for each atomic set, the associated units of work
are serializable [4], thus preventing data races and atomicity
violations by construction. Our previous work reported on the
implementation of atomic sets as an extension of Java called
AJ: we demonstrated that atomic sets enjoy low annotation
overhead and that realistic Java programs can be refactored
into AJ without significant loss of performance [3].

However, our previous work did not address the problem of
deadlock, which may arise in AJ when two threads attempt

to execute the units of work associated with different atomic
sets in different orders. This paper presents a static analysis
for detecting possible deadlock in AJ programs. The analysis
is a variation on existing deadlock-prevention strategies [5, 6]
that impose a global order on locks and check that all locks are
acquired in accordance with that order. However, we benefit
from the declarative nature of data-centric synchronization in
AJ to infer the locks that threads may acquire: (i) all locks
are associated with atomic sets, and (ii) the memory locations
associated with different atomic sets will be disjoint unless
they are explicitly merged by the programmer. Our algorithm
computes a partial order on atomic sets which is consistent
with lock acquisition order. If such an order can be found,
a program is deadlock-free. For programs that use recursive
data structures, the approach is soundly extended to take into
account a programmer-specified ordering between different
instances of an atomic set.

We implemented this analysis and evaluated it on 10 AJ

programs. These programs were converted from Java as part
of our previous work [3], and cover a range of program-
ming styles. The analysis was able to prove all 10 programs
deadlock-free. Minor refactorings were needed in 2 cases, and
a total of 4 ordering annotations were needed, all in 1 program.

In summary, this paper makes the following contributions:
• We present a static analysis for detecting possible dead-

lock in AJ programs. It leverages the declarative nature of
atomic sets to check that locks are acquired in a consistent
order. If so, the program is guaranteed to be deadlock-
free. Otherwise, possible deadlock is reported.

• To handle recursive data structures, we extend AJ with or-
dering annotations that are enforced by a small extension
of AJ’s type system. We show how these annotations are
integrated with our analysis in a straightforward manner.

• We implement the analysis and evaluate it on a set of 10
AJ programs. The analysis establishes deadlock-freedom
of each of these, requiring minor refactorings in 2 cases.
Only 4 ordering annotations were needed, in 1 program.

II. DATA-CENTRIC SYNCHRONIZATION WITH AJ
AJ [2] extends Java with the syntax of Fig. 1. An AJ class

can have zero or more atomicset declarations. Each atomic set
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has a symbolic name and intuitively corresponds to a logical
lock protecting a set of memory locations. Each atomic set
has associated units of work, code fragments that preserve
the consistency of their associated atomic sets. These units
of work are the only code permitted to access the atomic set’s
fields, so only this code needs to be synchronized to ensure
its consistency. By default, the units of work for an atomic
set declared in a class C consist of all non-private methods
in C and its subclasses. Given data-centric synchronization
annotations, the AJ compiler inserts concurrency control op-
erations that are sufficient to guarantee that any execution is
atomic-set serializable [4], i.e., equivalent to one in which, for
each atomic set, its units of work occur in some serial order.
One may think of a unit of work as an atomic section [7]
that is only atomic with respect to a particular set of memory
locations. Accesses to locations not in the set are visible to
other threads. Methods that do not operate on locations within
atomic sets will not be synchronized.

We illustrate the discussion with a binary tree example.
Fig. 2 shows a class Tree with fields root and size; root points
to the Node that is the root of the tree. Each node has left

and right fields pointing to its children, as well as a value

and a weight. Class Tree has methods size(), which returns
the number of nodes in the tree, find(), for finding a node
with a given value, and insert() for inserting a value into the
tree. The latter two methods rely on methods Node.find() and
Node.insert(). Tree also has methods compute(), which returns
the weighted sum of its nodes’ values, and copyRoot(), which
inserts the root’s value into another tree passed as an argument.

We assume that the programmer wants to ensure that
concurrent calls to incWeight() and compute() on the same
tree never interleave, as this might trigger a race condition
that causes Tree.compute() to return a stale value. We now
discuss how this can be achieved in AJ.

Tree declares an atomic set t (line 2). The annotations on
lines 3–4 have the effect of including root and size in this
atomic set. At run time, each Tree object has an atomic-
set instance t containing the corresponding fields. The AJ

atomicset a Declaration of an atomic set in a class or interface.

atomic(a) Annotation on instance fields and classes. A field
can belong to at most one atomic set. Annotated fields can
only be accessed from the this reference.

unitfor(a) Annotation on method arguments. This declares the
method to be an additional unit of work for the specified
atomic set in the argument object.

notunitfor Annotation to indicate that a method is not a unit
of work for atomic sets in its declaring class.

|a=this.b| Annotation on variable declarations and constructor
calls. This unifies the atomic set a in the annotated variable
or constructed object with the current object’s atomic set b.

Fig. 1. Data-centric annotations.

1 class Tree {

2 atomicset(t);

3 private atomic(t) Node root|n=this.t|;

4 private atomic(t) int size = 1;

5 Tree(int v) { root=new Node|n=this.t|(v); }

6 int size () { return size; }

7 INode find( int v) { return root . find (v); }

8 void insert ( int v) { root . insert (v ); size++; }

9 int compute() { return root .compute(); }

10 void copyRoot(Tree tree) { tree. insert (root .getValue()); }

11 }

12
13 interface INode { void incWeight(int n); }

14
15 class Node implements INode {

16 atomicset(n);

17 private atomic(n) Node left|n=this.n| ;

18 private atomic(n) Node right|n=this.n|;

19 private atomic(n) int value, weight = 1;

20
21 Node(int v) { value = v; }

22 int getValue() { return value; }

23 void insert ( int v) {

24 if (value==v) weight++;

25 else if (v < value) {

26 if ( left ==null) left = new Node|n=this.n|(v);

27 else left . insert (v );

28 } else {

29 if ( right ==null) right = new Node|n=this.n|(v);

30 else right . insert (v );

31 }

32 }

33 public void incWeight(int n){ weight += n; }

34 INode find( int v) {

35 if (value == v) return this ;

36 else if (v<value) return left==null? null : left . find (v);

37 else return right==null? null : right . find (v);

38 }

39 int compute(){

40 int result = value ⇤ weight;

41 result += ( left == null)? 0 : left .compute();

42 return result + ( right == null)? 0 : right .compute();

43 }

44 }

Fig. 2. AJ Tree example.

compiler inserts locks to ensure that the units of work for
t execute atomically.

Preserving the consistency of complex data structures typi-
cally requires protecting multiple objects (e.g., all of a Tree’s
nodes) with a single lock. This can be achieved using aliasing
annotations, which unify the atomic sets of a Tree and the dif-
ferent Node objects into one larger atomic set. Aliasing anno-
tations are type qualifiers, so the declaration Node left|n=this.n|
on line 17 specifies that the atomic set instance n of the object
referenced by left is unified with that of the current object.
Likewise, atomic set instance n in the Node allocated on line 5
is unified with atomic set instance t in its enclosing Tree object.
AJ’s type system enforces the consistency of such aliasing
annotations to prevent synchronization errors.

Together, the aliasing annotations on Tree and Node ensure
that all locations in a Tree object are protected by the same
lock. Fig. 3(a) shows a client where two threads insert con-
currently into a tree. Such operations will execute correctly, as
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45 class T extends Thread {

46 T(Tree t0 , int v) { tree=t0; value=v; }

47 public void run() { tree . insert (value); }

48 Tree tree ; int value;

49 }

50
51 public static void main(String[] args) throws ... {

52 Tree tree = new Tree(10);

53 Thread T1 = new T(tree, 12);

54 Thread T2 = new T(tree, 5);

55 T1.start (); T2.start (); T1.join (); T2.join ();

56 }

57 class U extends Thread {

58 U(Tree t1, Tree t2) { tree1=t1; tree2=t2; }

59 public void run() { tree1.copyRoot(tree2); }

60 Tree tree1, tree2;

61 }

62
63 public static void main(String[] args) throws ... {

64 Tree tree1 = new Tree(1), tree2 = new Tree(2);

65 Thread T3 = new U(tree1, tree2);

66 Thread T4 = new U(tree2, tree1);

67 T3.start (); T4.start (); T3.join (); T4.join ();

68 }(a) (b)
Fig. 3. Two clients of the Tree class of Fig. 2.

AJ ensures mutual exclusion. Note that the client code does
not refer to atomic sets at all, as is typical in our approach.

III. DEADLOCK DETECTION IN AJ

A. Execution of the Example

Recall that for any object o created at runtime that is of a
type that declares an atomic set t, there will be an atomic set
instance o.t that protects the fields in o that are declared to
be in t. Atomic set instances can be thought of as resources
that are acquired when an associated unit of work is executed.
As we shall see shortly, deadlock may arise if two threads
concurrently attempt to acquire such resources out of order.

Consider the program of Fig. 3(a), which creates a tree and
two threads that work on it. Execution proceeds as follows:

1) When a Tree object is created and assigned to variable
tree on line 52, its corresponding atomic set instance,
tree.t, protects the root and size fields of the new object.

2) Tree’s constructor on line 5 creates a Node object. The
alias declaration on line 3 causes its left, right, value and
weight fields to be included in atomic set instance tree.t.

3) The object creations for T1 and T2 on lines 53–54 are
standard, with no special operations for atomic sets.

4) Once the workers start (line 55), both threads attempt to
invoke insert() on tree. Since insert() is a unit of work for
t and both threads operate on the same Tree object, AJ’s
runtime system enforces mutual exclusion, by taking a
lock upon calling insert() (see Sec. V). Thus, the two
operations execute serially.

5) The join() calls on line 55 wait for the workers to finish.
Now consider the code in Fig. 3(b), which is similar except

that two Tree objects are created and assigned to variables
tree1 and tree2 (line 64). Then, two worker threads, T3 and
T4, are created on lines 65–66. Note that each worker is passed
references to both tree1 and tree2 in the constructor calls,
but in a different order. Then, each worker calls copyRoot()

on one tree, which in turn calls insert() on the other. These
methods are both units of work for atomic set t, so T3 attempts
to acquire the lock for tree1.t upon calling copyRoot() and
then the lock for tree2.t when it calls insert(). T4 attempts
precisely the reverse: it acquires the lock for tree2.t when
calling copyRoot() and then the lock for tree1.t when calling

insert(). This is a classic situation where deadlock may arise
when threads acquire multiple locks in different orders.

B. Preventing Deadlock

Deadlock can be prevented by totally ordering all possible
locks, and always acquiring locks in that order. Our algorithm
attempts to find a partial order < on atomic sets, where a < b

means that threads never attempt to acquire a lock on an a

while holding a lock on a b. That is, any thread that needs
both locks simultaneously must acquire a first. If no such
order can be found, deadlock is deemed possible. The ordering
< between atomic sets reflects transitive calling relationships
between their units of work. For each path in the call graph
from a method m that is a unit of work for atomic set a to
a method n that is a unit of work for atomic set b, we create
an ordering constraint a < b. However, if a = b and we can
determine that both methods are units of work on the same
atomic-set instance, then no ordering constraint needs to be
generated, as locks are reentrant. Possible deadlock is reported
if, after generating all such constraints, < is not a partial
order. While this algorithm is conceptually simple, some
complications arise in the presence of atomic set aliasing,
when multiple names may refer to the same atomic set. This
will be discussed further in Sec. IV.

For Fig. 3(a), the algorithm infers that atomic sets t and n

are unordered and declares the program deadlock-free, since
due to aliasing annotations it can show that all transitive calls
between units of work simply result in lock re-entry. For
Fig. 3(b), a constraint t < t is inferred, indicating that deadlock
may occur, as we have already seen.

C. Refactoring against Deadlocks

In our experience, many cases of deadlock can be avoided
by simple refactorings that order lock acquisition. This can be
accomplished using AJ’s unitfor construct, which declares a
method to be an additional unit of work for an atomic set in
one of its parameters. For example, deadlock can be prevented
in Fig. 3(b) by placing a unitfor annotation on the parameter
tree of the copyRoot() method as follows:

void copyRoot(unitfor(t) Tree tree){

tree . insert (root .getValue());

}
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This declares copyRoot() to be a unit of work for atomic set
instance tree.t, as well as this.t. When a method is a unit of
work for multiple atomic set instances, AJ’s semantics guaran-
tees that the corresponding resources are acquired atomically,
thus preventing deadlock in Fig. 3(b). Sometimes, deeper code
restructuring is needed before the unitfor construct can be used;
Sec. VI gives some examples.

D. Recursive Data Structures

The basic algorithm sketched above can fail to prove the
absence of deadlock in programs that use recursive data
structures. Fig. 4 illustrates this with a variant of our binary
tree that allows concurrent updates to the weight of different
nodes in the same tree. However, insert() should still ensure
mutual exclusion to avoid corruption of the tree’s structure.

This synchronization policy is implemented by keeping the
atomic sets of the tree and of its nodes distinct: the atomic
set instances of different Node objects must not be aliased
with each other as this would preclude concurrent access to
different nodes. In Fig. 4, once a thread has a reference to an
INode, it can invoke incWeight() on it. As Node.incWeight() is
a unit of work for the node’s atomic set n, no other thread can
concurrently access that node. However, since different nodes
no longer share the same atomic set instance, incWeight() can
be called concurrently on different nodes, as desired. Note that
invoking Tree.insert() involves acquiring the lock associated
with the tree’s atomic set instance t, thus ensuring the desired
mutual exclusion behavior.

E. Analyzing the Modified Tree Example

Now consider using the tree of Fig. 4 with the client
program of Fig. 5. The basic algorithm discussed above would
compute an ordering constraint n < n for this program,
because Node.insert() recursively invokes itself on the children
of the current node. Given the absence of aliasing annotations,
these nodes now have distinct atomic set instances, and the
basic algorithm concludes that deadlock is possible since
it cannot rule out that two threads may access the atomic
set instances of different Node objects in different orders.
However, it is easy to see that this particular program is

72 class Tree {

73 atomicset(t);

74 private atomic(t) Node root;

75 Tree(int v){ root = new Node(v); }

76 ...

77 }

78 class Node implements INode {

79 atomicset(n);

80 private atomic(n) Node left ;

81 private atomic(n) Node right;

82 ...

83 void insert ( int v){

84 ... left = new Node(v); ...

85 ... right = new Node(v); ...

86 }

87 }

Fig. 4. A tree that permits concurrent access to its nodes. Unmodified code
fragments have been elided.

88 class V extends Thread {

89 V(Tree t , int v){ tree=t ; val=v; }

90 public void run(){ tree . insert (val ); }

91 Tree tree ; int val ;

92 }

93 ...

94 public static void main(String[] args)

95 throws InterruptedException{

96 Tree tree = new Tree(10);

97 Thread T5 = new V(tree, 3);

98 Thread T6 = new V(tree, 4);

99 T5.start (); T6.start (); T5.join (); T6.join ();

100 }

Fig. 5. Client program for the example of Fig. 4.

|this.a<a| Annotation on variables and constructors. Specifies
the order between atomic set a in the annotated variable or
constructed object, and the atomic set a in the current object.

Fig. 6. Extending AJ with ordering annotations.

deadlock-free, as the recursive calls to insert() traverse the
tree in top-down order. Hence, the locks associated with the
instances of atomic set n in the traversed nodes are always
acquired in a consistent order, precluding deadlock.

F. Ordering Annotations

To handle recursive data structures, we extend AJ with or-
dering annotations as shown in Fig. 6. This lets programmers
specify an ordering between instances of the same atomic set.
The deadlock analysis can then avoid generating constraints
of the form a < a when the user-provided ordering indicates
that a call cannot contribute to deadlock. Fig. 7 shows how
to express an ordering between an atomic set n in a given
node, and in each of its children. Given these annotations, our
enhanced algorithm (see Sec. V) confirms that the program of
Fig. 5 is indeed deadlock-free. Note that programmer-provided
ordering annotations are not blindly trusted. The type-checker
ensures that the specified order is acyclic while the analysis
verifies that it is consistent with lock acquisition order.

IV. ALGORITHM

A. Auxiliary Definitions

Fig. 8 defines auxiliary concepts upon which our algorithm
relies. We assume that a call graph of the program has
been constructed and that ! denotes the calling relationship

101 class Node implements INode {

102 atomicset(n);

103 private atomic(n) Node left|this.n<n| ;

104 private atomic(n) Node right|this.n<n|;

105 ...

106 void insert ( int v){

107 ... left = new Node|this.n<n|(v); ...

108 ... right = new Node|this.n<n|(v); ...

109 }

110 }

Fig. 7. Adding ordering annotations to the example of Fig. 4. Unmodified
code fragments have been elided.
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M := set of methods in program
V := set of final method params plus a special ? symbol
A := set of atomic sets

N := {=, < }⇥ V ⇥A set of lock identifiers
L := 2

N set of atomic-set instances (i.e., locks)
D := 2

L set of locksets

uow : M ! D := returns the set of locks that a method grabs
padaptName : (M⇥ V ⇥M) ! V := renames a variable from the perspective of caller to callee
padaptLock : (M⇥ L⇥M) ! L := adapts all names identifying a lock from the perspective of caller to callee
addNames : (M⇥ L) ! L := consults annotations in scope to add other names for a lock to its representation.

uow(m) = { { v.A }| m is a unit-of-work for v.A }

addNames(m, l) = l [ { v.A | w.B 2 l and v.A is annotated to be an alias for w.B in m’s scope }

padaptName(ms, v,mt) =

8
<

:

this if ms contains the call v.mt(...)

w if ms passes v as the actual argument for the formal parameter w of mt

? otherwise

padaptLock(ms, l,mt) = { ⇤v.A| ⇤ w.A 2 addNames(ms, l) ^ padaptName(ms, w,mt) = v }

m is an entry point
; 2 LBE(m)

(LBE-ENTRY)
n ! m d 2 LBE(n)

{ padaptLock(n, l,m)| l 2 (d [ uow(n)) } 2 LBE(m)

(LBE-CALL)

Fig. 8. Auxiliary definitions.

between methods1. Function uow associates each method
with the atomic-set instances for which it is a unit of work,
including those due to unitfor constructs. Intuitively, uow(m)
identifies the set of locks that m acquires (or re-enters) in the
current AJ implementation. A lock is an element of L, and
is represented as a set of names since locks may have many
names due to aliasing annotations. Names (elements of N ) are
notated as ⇤v.A where ⇤ is either = or <, v is a final method
parameter or variable, and A is the name of an atomic set. If
neither = or < is specified, then = is assumed. Names of the
form < v.A are not considered until Sec. IV-C.

Fig. 8 also defines LBE(m) (locks before entry), denoting
the sets of locks that may be held just before entering method
m. In general, different sets of locks may be held when m

is invoked by different callers. It is important to keep these
sets of locks distinct, to avoid imprecision in the analysis that
could give rise to false positives. Our algorithm effectively
performs a context-sensitive analysis by computing a separate
set of locks (lockset) for each path in the call graph2, where
locksets are propagated from callers to callees and augmented
with locally acquired locks. When locks are passed from caller
to callee, names are adapted to the callee, to account for the
fact that different name(s) now represent the same lock (see
functions padaptName and padaptLock in Fig. 8). Note
that padaptName and padaptLock use a special symbol
‘?’ to handle cases where a lock cannot be named by a variable
in the scope of the callee, and that padaptLock relies on
function addNames to gather additional names that must refer

1 To simplify the presentation, we assume that a method m calls another
method n at most once, and that the same variable is not passed for multiple
parameters. Our implementation, of course, does not have these restrictions.

2 Note that LBE(m) could conservatively contain a lockset that is never
held before entering method m if the call graph contains infeasible paths.
However, because AJ inserts the necessary lock acquisitions and uow reflects
this knowledge, the locksets themselves are precise and represent exactly the
locks that are held if a particular path in the call graph is traversed.

to the same lock due to aliasing annotations.3 The definition
of LBE(m) consists of two rules:

• Rule LBE-ENTRY adds the empty lockset to LBE(m) if m
is an entry point, indicating that no locks are held before
the program begins.

• Rule LBE-CALL takes each lockset that may be held
before entering a caller, augments it with the locks that
the caller acquires, and then adapts the lockset to the
perspective of the callee using padaptLock.

These rules are iterated to a fixed point in order to determine
all of the locksets that may be held before entering a method.

B. Core Algorithm

Fig. 9 defines an ordering ‘<’ on atomic sets using LBE(m).
Intuitively, for atomic sets A and B we have A < B if a lock
associated with an instance of atomic set A may be acquired
before a lock that is associated with an instance of atomic set
B. Rule UOW states that this is the case if there is a method
m and some lockset d 2 LBE(m) that contains a lock named
v.A, and we have some w.B that names a lock in uow(m)
that is not already held in d.4

When atomic sets are aliased, we must account for the fact
that multiple names may refer to the same lock. In general,
generating an ordering constraint A < B can be avoided when
encountering a unit of work for atomic-set instance w.B if a
lock corresponding to atomic-set instance v.A is already held,
and if it can be determined that v.A and w.B must refer to the
same lock, (in that case the lock is simply re-entered). Two
key steps enable us to do this: (i) by keeping locksets separate

3 This is not necessary for soundness, but allows the algorithm to more
precisely identify lock re-entry.

4 Note that UOW subtly relies on the fact that uow never returns a lock
named using ?, since atomic-set instances for which a method is a unit-of-work
are always nameable from that method’s scope. Hence, there is no danger of
failing to generate an ordering constraint because we are re-entering ’?.B’.
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d 2 LBE(m) l1 2 d l2 2 uow(m)

v.A 2 l1 w.B 2 l2 l3 2 d ) w.B 62 l3

A < B

(UOW)

object creation with alias annotation
|b=this.a| is reachable in code

A B

(GIVES)

A B

A ⇠ B

(SHARE-LOCK-1)
A B A C

B ⇠ C

(SHARE-LOCK-2)
A ⇠ B

B ⇠ A

(SHARE-SYM)

A < B B < C

A < C

(TRANS)

A < B B ⇠ C

A < C

(SHARE-1)

A ⇠ B B < C

A < C

(SHARE-2)

A B B  C

A C

(GIVES-TRANS)
Fig. 9. Definition of the ordering relation ‘<’ between atomic sets.

for each path in the call graph, we can determine when locks
must be held, and (ii) the representation of a lock maintains
all its known names (i.e., must-aliases), allowing us to identify
situations where locks are re-entered.

To be sound, when the analysis generates ordering con-
straints due to lock acquisition, it must do so for all atomic
sets that may be used to name the locks involved. Because
alias annotations can be cast away, we cannot rely on local
annotations to provide the analysis with all possible may-
aliases for a given lock. Therefore, rules SHARE-1 and SHARE-
2 conservatively generate additional orderings to account for
any annotated constructors in the whole program that could
cause instances of two atomic sets to be implemented using
the same lock. Rather than naively merging atomic sets
that have instances that may be aliased, our analysis uses a
transitive ’ ’ (gives) relation and a symmetric ’⇠’ (shares)
relation. This avoids generating spurious ordering constraints
and deadlock reports. The code in Fig. 10 demonstrates why
this is needed. Two classes C and D use a utility class List, and
each uses an alias annotation that causes the List’s atomic set
to be implemented using the lock for its own atomic set. The
result is that, although a List may share a lock with either
a C or a D, C objects never share locks with D objects.
By maintaining this level of precision, we avoid generating
a spurious deadlock report at line 127.

Lastly, rule TRANS defines ‘<’ to be transitive. Now, dead-
lock may occur if ‘<’ is not a valid partial order. Conversely,
if there is no atomic set A such that A < A, then the program
is deadlock-free: we have found a valid partial order on atomic
sets that is consistent with the order in which new locks are
acquired by transitively called units of work.

C. Accounting for Ordering Annotations
The basic algorithm is unable to infer a partial order among

atomic sets in some programs that manipulate recursive data
structures. For the program of Fig. 4, the rules of Fig. 9 infer
n < n, leading to the conclusion that deadlock might occur.
However, as discussed in Sec. III-E, deadlock is impossible in
this case because locks are always acquired in a consistent
order that reflects how trees are always traversed in the
same direction. Intuitively, tracking ordering constraints at
the atomic-set level is insufficient in cases where threads
recursively execute units of work associated with multiple
instances of the same atomic set.

111 class List{ atomicset(l );

112 ...

113 }

114
115 class C{ atomicset(c);

116 List x =

117 new List| l=this.c |();

118 ...

119 void foo (){...}

120 }

121 class D{ atomicset(d);

122 List y =

123 new List| l=this.d |();

124 C myC = new C();

125 ...

126 void bar() {

127 myC.foo();

128 ...

129 }

130 }

Fig. 10. Having a separate (transitive) gives relation and (symmetric) shares
relation allows us to correctly derive c⇠l, l⇠c, d⇠l and l⇠d, but not c⇠d or
d⇠c. This precision prevents generating a spurious deadlock report at line 127.

Our solution involves having programmers specify ordering
annotations that indicate a finer-grained partial order between
different instances of the same atomic set, as was illustrated
in Fig. 7. We extended the AJ type system to allow an atomic
set instance to be ordered relative to exactly one other atomic
set instance when it is constructed. The type system ensures
that the object to which the newly constructed object is being
related is already completely constructed, preventing objects
that are being constructed simultaneously from specifying
conflicting orders relative to one another.

Since the programmer is restricted to giving a single con-
straint at object creation time, with respect to a completely
constructed object, a cycle in the specified order is impossible.
The type system then ensures that this order is respected
by any dataflow that carries the ordering annotation. Finally,
the analysis verifies that the programmer-specified, acyclic
ordering is consistent with lock acquisition order, signaling
potential deadlock if units of work for different instances of
an atomic set may be entered out of the specified order.

addNames(m, l) = { l [
{ ⇤w.B | ⇤ v.A 2 l and w.B is annotated to be an

alias for v.A in m ’s scope } [
{< x.A | ⇤ v.A 2 l and x.A is annotated to be

greater than v.A in m ’s scope }}

d 2 LBE(m) l1 2 d l2 2 uow(m) v.A 2 l1

w.B 2 l2 l3 2 d ) w.B 62 l3 < w.B 62 l1

A < B

(UOW)
Fig. 11. Changes to the algorithm to support ordering annotations between
instances of an atomic set.
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Fact Derivation
A1) ; 2 LBE(T.run) LBE-ENTRY
A2) ; 2 LBE(Tree.insert) (A1), LBE-CALL
A3) { { this.n } } 2 LBE(Node.insert) (A2), LBE-CALL

Fact Derivation
B1) ; 2 LBE(U.run) LBE-ENTRY
B2) ; 2 LBE(Tree.copyRoot) (B1), LBE-CALL
B3) { { ?.t } } 2 LBE(Tree.insert) (B2), LBE-CALL
B4) t < t (B3), ORDER-UOW

(a) (b)
Fact Derivation

C1) ; 2 LBE(V.run) LBE-ENTRY
C2) ; 2 LBE(Tree.insert) (C1), LBE-CALL
C3) { { ?.t } } 2 LBE(Node.insert) (C2), LBE-CALL
C4) { { ?.t }, { ?.n } } 2 LBE(Node.insert) (C3), LBE-CALL
C5) t < n (C3) or (C4), ORDER-UOW
C6) n < n (C4), ORDER-UOW

Fact Derivation
D1) ; 2 LBE(V.run) LBE-ENTRY
D2) ; 2 LBE(Tree.insert) (D1), LBE-CALL
D3) { { ?.t } } 2 LBE(Node.insert) (D2), LBE-CALL
D4) { { ?.t }, { ?.n, < this.n } } 2 LBE(Node.insert) (D3), LBE-CALL
D5) t < n (D3) or (D4),

and ORDER-UOW

(c) (d)

Fig. 12. Functioning of the algorithm on binary tree example. Relevant facts that are derivable are shown for (a) client code in Fig. 3(a) which is deadlock-
free; (b) client code in Fig. 3(b) which may deadlock; (c) client code in Fig. 5, which the algorithm conservatively reports may deadlock; and (d) client code
in Fig. 5 after adding ordering annotations. Several derivable facts are not shown in the figure, including t  n, t ⇠ n, n ⇠ t for (a) and (b), and t < n,
n < n, and n < t for (b).

Fig. 11 updates our analysis to soundly accommodate un-
trusted, user-specified orderings between atomic set instances.
Function addNames now consults the ordering annotations
available within a method and its enclosing class. Any atomic-
set instance specified to be greater than a given instance is
added to the lock’s representation and prefixed with a ’<’ to
indicate that it is not a must-alias, but rather a lock that is
safe to enter after the represented lock. Rule UOW now avoids
generating an ordering constraint due to one lock being held
when another is acquired if the former is “less” than the latter.

If the analysis indicates deadlock-freedom, then it has found
a valid partial order on all atomic set instances in the program
that is consistent with the order in which threads acquire
them. The ordering is made up of a coarse-grained ordering
on atomic sets that indicate ordering between all instances of
two atomic sets, and a fine-grained ordering among instances
of a single atomic set as indicated by the user’s annotations.
An informal correctness argument can be found in [8].

D. Example
Let us consider the behavior of our analysis on the example

program in Fig. 2 and its client in Fig. 3(a). The relevant
facts discovered by our analysis are shown in Fig. 12(a)
along with an indication of the rules and facts used to derive
them. Note that the facts shown in the figure incorporate an
optimization where names of form ?.a are dropped from a
lock’s set representation if it also contains a must-alias not
involving ?. See Sec. V for why this is safe.

From LBE-ENTRY, we know that LBE(T.run) contains the
empty lockset. Using this fact in the premise of LBE-CALL,
we derive ; 2 LBE(Tree.insert). For the call from Tree.insert()

to Node.insert(), LBE-CALL makes the following calculations:
• ; 2 LBE(Tree.insert), uow(Node.insert) = { { this.t } }
• { this.t } 2 ; [ { { this.t } }
• addNames(Tree.insert, { this.t }) = { this.t, root.n }
• padaptName(Tree.insert, this,Node.insert) = ?
• padaptName(Tree.insert, root,Node.insert) = this

• padaptLock(Tree.insert, { this.t },Node.insert) =
{ ?.t, this.n }

After removing the unnecessary name involving ?, we
get { { this.n } } 2 LBE(Node.insert). Note that ?.t can be

dropped because the must-alias this.n is a more exact name
for the lock in this context. The recursive calls to Node.insert()

result in the same lockset, so no additional facts are derived
using LBE-CALL. Furthermore, no ordering facts can be de-
rived: the only method with a non-empty lockset upon entry
is Node.insert(), and that lockset already contains the lock for
which the method is a unit of work, preventing rule UOW from
generating an ordering constraint. Since the empty ordering
relation is a valid partial order, the program is declared
deadlock-free. The remainder of Fig. 12 shows the relevant
facts derived for the other examples from Figs. 3(b) and 5.

V. IMPLEMENTATION

We implemented the deadlock analysis as an extension of
our existing proof-of-concept AJ-to-Java compiler [3], which
is an Eclipse plugin project. In this implementation, data-
centric synchronization annotations are given as special Java
comments. These comments are parsed and given to the type
checker and deadlock analysis. Type errors such as the use of
inconsistent ordering annotations are reported using markers in
the Eclipse editor. If type-checking and the deadlock analysis
succeed, the AJ source is translated to Java, and written into a
new project that holds the transformed code. This project can
then be compiled to bytecode, and executed using a standard
JVM. More details on the implementation can be found in [3].

The deadlock analysis relies on the WALA program analysis
framework5 for the construction of a call graph. The analysis
first determines all entry points to the program (e.g., main()

methods and the run() methods of threads), and then builds
a conservative approximation of the program’s call graph.6
The propagation of atomic sets in our analysis is essentially
a distributive data flow problem, so we are able to leverage
WALA’s efficient Interprocedural Finite Distributive Subset
solver [9]. Our actual implementation works slightly harder
than the formal rules of Sec. IV in gathering and propagating
information gleaned from aliasing and ordering annotations,
allowing, e.g., final fields of method parameters to be included
in lock names. As mentioned, lock identifiers involving ? are

5See wala.sourceforge.net.
6Reflection must be approximated as with most static program analyses.
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TABLE I
AJ SUBJECT PROGRAMS. THE TABLE SHOWS, FOR EACH SUBJECT PROGRAM, THE NUMBER OF LINES OF SOURCE CODE (INCLUDING WHITE SPACE AND

COMMENTS), FILES AND DATA-CENTRIC ANNOTATIONS (ONE SUB-COLUMN FOR EACH TYPE OF ANNOTATION).

benchmark LOC files data-centric annotations
program collections atomic- atomic atomic unitfor alias notunitfor total

set (class) (field)
collections 0 10846 63 5 0 53 40 330 0 428
elevator 609 yes 6 1 1 0 0 6 0 8
tsp 754 no 6 2 2 0 0 0 0 4
weblech 1971 no 14 2 0 4 0 0 0 6
jcurzez1 6639 no 49 5 2 7 15 24 0 53
jcurzez2 6633 no 49 4 3 2 6 4 0 19
tuplesoup 7217 yes 40 7 5 11 12 0 46 81
cewolf 14002 yes 129 6 6 0 0 2 0 14
mailpuccino 14519 yes 135 14 13 1 0 0 0 28
jphonelite 16484 yes 105 14 10 26 0 8 0 58
specjbb 17730 yes 64 18 15 34 1 24 4 80

discarded if an exact name for the lock is known (i.e., one not
including < or ?). This allows the analysis to converge more
quickly, and is sound since the algorithm conservatively gener-
ates additional ordering constraints from existing ones for any
atomic sets that globally may have instances implemented by
the same lock (see rules SHARE-1, SHARE-2).

Soundness of the analysis relies on AJ’s type checker to
verify that ordering annotations reflect a valid partial order.
This involves checking that ordering annotations are preserved
by assignment, parameter passing, and redeclaration. Casts
may discard annotations but cannot manufacture them from
unannotated types. A newly constructed object can be ordered
with respect to at most one existing object by annotating the
instance creation or a constructor parameter. Details about the
changes to AJ’s type system and compiler can be found in [8].

VI. EVALUATION

We analyzed a collection of AJ programs with our imple-
mentation in order to answer the following research questions:
RQ1 How successful is the analysis in demonstrating the

absence of deadlock in AJ programs?
RQ2 How often are program transformations and ordering

annotations necessary to prove the absence of deadlock?
RQ3 What is the running time of the analysis?

A. Subject Programs
The subject AJ programs used in this evaluation are shown

in Table I. These programs were created in the context of
a previous project that focused on evaluating the annotation
overhead and performance of AJ [3], by manually converting
a number of existing multi-threaded Java programs into AJ.
Details about this conversion effort are discussed in [3].

The programs were obtained from several different sources
and reflect a variety of programming styles. Elevator and tsp

have been used by several other researchers (e.g., [10]) in
projects related to data race detection. Weblech is a web
crawler that recursively downloads all pages from a web site.
Jcurzez allows building text-based user interfaces for simple
terminals. The original jcurzez code did not support for multi-
threading, and we created two versions with well-defined

behavior in the presence of concurrency: jcurzez1 achieves
this behavior in a coarse-grained fashion while jcurzez2

does so using more fine-grained synchronization. Cewolf is
a framework for creating graphical charts. Jphonelite is a Java
SIP voice over IP SoftPhone for computers. Tuplesoup is a
small Java-based framework for storing and retrieving simple
hashes. Mailpuccino is a Java email client. Finally, specjbb

is a widely used multi-threaded performance benchmark.All
subject programs except tsp, weblech, and jcurzez rely on AJ

versions of Java collections (e.g, TreeMap, ArrayList), which
therefore must be analyzed as well in those cases.

Table I shows some key characteristics of the subject
programs, including the number of lines of source code, the
number of files, and the number of data-centric synchroniza-
tion constructs. The row labeled “collections” is not a stand-
alone subject program but rather displays the characteristics
of the collection classes from the java.util package that we
converted to AJ. The actual subject programs report only “yes”
or “no” in this LOC column for collections to indicate whether
they use these classes or not and thus whether the collection
code was examined by the analysis.

As is apparent from the data, the number of atomic sets in
the subject programs is small, ranging from 1 to 18. specjbb

includes the largest number of fields in atomic sets (34 fields,
and 15 entire classes). This is the case because a complex web
of data structures is accessed and updated by multiple threads
in this benchmark. unitfor annotations and aliasing are limited
in application code but plentiful in the library classes.

B. Deadlock Analysis
In the absence of ordering annotations, our analysis guar-

antees the absence of deadlock in all but one of the subject
programs (jcurzez2). Demonstrating the absence of deadlock
in that program required 4 ordering annotations. Table II also
shows the number of locksets that the algorithm generates
during its analysis (i.e., the size of set D in Fig. 8) as well
as the running time of the analysis on each subject program.
Experiments were run on a MacBook Air with a 1.8 GHz
Intel Core i5 processor and 4GB of RAM. Even in its current
unoptimized state, the analysis takes at most 75 seconds.
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TABLE II
ANALYSIS RESULTS. THE TABLE SHOWS, FOR EACH SUBJECT PROGRAM,

THE NUMBER OF ORDERING ANNOTATIONS REQUIRED TO GUARANTEE
THE ABSENCE OF DEADLOCK, AND THE RUNNING TIME OF OUR ANALYSIS.

Ordering |locksets| Time [s]
annotations

elevator 0 39 1.0
tsp 0 33 1.4
weblech 0 39 4.6
jcurzez1 0 409 10.3
jcurzez2 4 541 9.4
tuplesoup 0 785 8.8
cewolf 0 25 19.7
mailpuccino 0 205 48.2
jphonelite 0 34 7.2
specjbb 0 414 75.1

1 public abstract class AbstractWindow {

2 atomicset b;

3 protected final AbstractWindow parent|this.b<b|;

4 protected

5 AbstractWindow(AbstractWindow|this.b<b| parent, ...) {

6 this .parent = parent;

7 }

8 public |this.b<b| AbstractWindow getParent() {

9 return parent;

10 }

11 }

Fig. 13. Excerpt from jcurzez2 requiring ordering annotations.

For the majority of our subject programs (7 out of 10),
deadlock-freedom could be demonstrated without any pro-
grammer intervention. Both specjbb and tuplesoup required
some slight refactoring in order to eliminate spurious deadlock
reports. In both cases, component objects of a parent object
kept a reference to their parent object in a field. Later, the
analysis was unable to infer the equality of the parent that
called a method in a child object and the object stored in
the child’s parent field. We refactored the problematic calls
to pass an instance of the parent as a parameter to the child’s
method. Cewolf is a J2EE servlet that does not provide a main

method; its methods are invoked by an application server that
we modeled with mock classes from WALA’s J2EE package.

Only one subject program, jcurzez2, required ordering
annotations to be proven deadlock-free. Fig. 13 shows an
excerpt of the problematic methods. Class AbstractWindow

contains a recursive reference to a parent window on which
it sometimes makes calls. The annotation on the constructor’s
parent parameter causes the atomic-set instance b of a newly
constructed AbstractWindow to be placed in the lock order
before parent.b. The type system allows this ordering infor-
mation to be propagated to the field the parameter is stored in
and the return value of this field’s getter method. After adding
ordering annotations, our analysis can rule out deadlock.

In summary, the research questions posed at the beginning
of this section can be answered as follows:
RQ1: The analysis was able to prove the absence of deadlock

in all 10 of the subject programs that we considered.
RQ2: Two programs required minor refactorings before the

absence of deadlock could be demonstrated. One program

relied on recursive data structures that necessitated the
introduction of 4 ordering annotations. For the remaining
7 programs, no programmer intervention was needed.

RQ3: The running time of the analysis is at most 75 seconds
in all cases.

C. Threats to Validity
A critical reader might argue that the subject programs are

small, and that they do not adequately represent concurrent
programming styles that occur in practice. Obtaining suitable
subject programs is a challenge for us, because AJ is a research
language without real users. The AJ programs used in this
evaluation were converted from Java as part of our previous
work on evaluating the annotation overhead and performance
of AJ [3]. Their construction predates this work on deadlock
analysis and we used all AJ programs that were available.
The analyzed code includes AJ versions of collections such
as TreeMap and ArrayList and all of their associated auxiliary
data structures (e.g., map entries and iterators), which are quite
complex. Furthermore, our subject programs include specjbb,
a widely-used performance benchmark, and several programs
that other researchers used in research on concurrency errors.
Therefore, based on the current results, we are optimistic that
the proposed deadlock analysis will scale to bigger programs.

VII. RELATED WORK

Deadlock detection, prevention and avoidance is well trod-
den ground. In this section, we focus on static techniques.

Static analysis. At heart, all static analysis techniques
attempt to detect cyclic waits-on relationships between tasks.
To this end, they construct abstractions of the program’s
control flow, tasking and synchronization behavior. Cycles in
these graphs correspond to possible deadlock. The precision of
the analysis depends on ruling out cycles that cannot happen
in practice. Masticola’s work [5] is one example, and includes
an extensive discussion of prior work.

To prove the absence of deadlocks caused by resource acqui-
sition, a common approach is to statically look for an order
on resources such that no task ever holds a resource while
requesting a lesser one. Saxena [11] explored this approach
in the context of concurrent Pascal code where all shared
resources can be enumerated. Engler and Ashcraft [6] apply
this approach to the analysis of large C programs, but abstract
any non-global lock resource by the name of the type in which
it is stored. Williams et al. [12] propose a lock-ordering based
deadlock analysis for Java, focusing on analyzing libraries in
the absence of client code. Our analysis follows this traditional
approach of finding an order for resources, leveraging the
declarative nature of AJ by using atomic set instances as a
sound and effective abstraction for locks.

Generating deadlock-free code. Golan-Gueta et al. [13]
demonstrate a technique for generating fine-grained, deadlock-
free locking code for tree- and forest-based data structures.
They introduce a strategy called domination locking to achieve
this. AJ cannot support domination locking, but it provides
a declarative way to write deadlock- and race-free code for
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general-purpose programs. Emmi et al. [14] use integer linear
programming (ILP) to infer a locking strategy for programs
written with atomic blocks in versions of C and Java. They
impose ordering constraints on lock acquisition in order to
avoid generating programs that can deadlock. AJ provides
more programmer control over the level of concurrency and
the desired behavior than this approach.

Type systems. Type-based approaches that address deadlock
typically rely on an underlying type and effect system that
exposes the locking behavior in type signatures and provides
some mechanism to control aliasing. Boudol’s work is a
good example [15]: It defines a deadlock-free semantics for
an imperative language and a type and effect system for
deadlock avoidance. In his work, singleton reference types
allow reasoning about precise aliasing relationships between
pointers and their locks. Geriakos et al. [16] extend this
approach to unstructured locking and report low runtime
overhead. Boyapati et al. [17] describe another such system
where the notion of ownership [18] is used to restrict aliasing.
In their work, a Java-like language is extended with ownership
annotations and lock levels. Each lock has an associated lock
level, and methods are annotated with the keyword locks

to indicate they acquire locks at a given level. The type
system ensures that locks are acquired in descending order.
Gordon et al. [19] focus on fine-grained locking scenarios that
involve concurrent data structures such as circular lists and
mutable trees, where it is difficult to impose a strict total order
on the locks held simultaneously by a thread. The approach
relies on a notion of lock capabilities: Associated with each
lock is a set of capabilities to acquire further locks, and
deadlock-freedom is demonstrated by proving acyclicity of the
capability-granting relation. Inference algorithms have been
proposed to reduce the annotation burden. Agarwal et al. [20]
present a type inference algorithm that infers locks-clauses for
Boyapati’s type system. In programs that cannot be typed, a
generalization of GoodLock [21] is used for runtime detection.
Vasconcelos et al. [22] define a type inference system for
a typed assembly language that defines a partial order in
which locks have to be acquired. Their system supports non-
structured locks in a cooperative multi-threading environment
where threads may be suspended while holding locks.

Our approach relies on a static analysis that leverages
the declarative nature of synchronization in AJ to prove
deadlock-freedom. Programmer-supplied ordering annotations
are required only in relatively rare cases when a recursive
data structure with fine-grained synchronization is manipulated
concurrently. Our results suggest that this hybrid approach
successfully avoids common pitfalls, such as the false positives
reported by some static analyses, and the heavy notational
burden of some type-based approaches.

VIII. CONCLUSIONS

We presented an analysis for detecting possible deadlock in
AJ programs. The analysis is a variation on existing deadlock-
prevention strategies [5, 6] that impose a global order on locks

and check that locks are always acquired in accordance with
that order. The declarative nature of synchronization in AJ

enables us to compute an analogous ordering on atomic sets
that reflects the invocations from units of work on one atomic
to units of work on another. For recursive data structures, this
coarse-grained ordering sometimes does not suffice. Therefore,
we added ordering annotations to AJ that enable program-
mers to specify an order between different instances of an
atomic set, and we extend our analysis to soundly take these
untrusted ordering annotations into account. We extended our
AJ implementation to type-check ordering annotations, and
incorporated the deadlock analysis in the type checker.

In an evaluation of the algorithm, all 10 AJ programs under
consideration were shown to be deadlock-free. One program
needed 4 ordering annotations and 2 others required minor
refactorings. For the remaining 7 programs, no programmer
intervention of any kind was required.
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