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Abstract

Program slicing is a useful technique for debugging, testing, and analyzing programs. A program
dlice consists of the parts of a program that (potentially) affect the values computed at some point of
interest. With rare exceptions, program slices have hitherto been computed and defined in ad-hoc and
language-specificways. The principal contribution of this paper isto show that general and semantically
well-founded notions of slicing and dependence can be derived in a simple, uniform way from term
rewriting systems (TRSs). Our dicing technique is applicable to any language whose semantics is
specifiedin TRS form. Moreover, we show that our method admits an efficient implementation.

Viewed more abstractly, our techniques yield a method for automatically deriving certain minimal
equational theorems on open terms as a consequence of deriving a single theorem about a closed term.
Our techniques can thus be used to augment the capabilities of equational theorem proving systems.

Key Words & Phrases: program slicing, term rewriting, dependenceanalysis, origin tracking.

1 Introduction

1.1 Overview

Program dlicing is a useful technique for debugging, testing, and analyzing programs. A program slice
consists of the parts of a program which (potentially) affect the values computed at some point of interest,
referred to as the dlicing criterion. As originally defined by Weiser [32], a dicing criterion was the value
of avariable at a particular program point and a slice consisted of an “executable” subset of the program’s
origina statements. Numerous variations on the notion of slice have since been proposed, as well as
many different techniques to compute them [29], but all reduce to determining dependence relations among
program components. Unfortunately, with rare exceptions, the notion of “ dependence” has been defined in
an ad-hoc and language-specific manner, resulting in algorithms for computing slices that are notoriously
difficult to understand, especialy in the presence of pointers, procedures, and unstructured control flow.
The contributions of this paper are as follows:

*Some of the material in this paper appearedin preliminary formin[15] and [27].



¢ We define a general notion of slice that applies to any unconditional term rewriting system (TRS).
Our definition uses a relation on contexts derived from the reduction relation on terms. Thisrelation
makes precise the dynamic dependence of function symbols in terms in a reduction sequence on
symbols in previous terms in that sequence. Our notion of dependence does not require labeled
terms [6, 7, 22, 23], and is distinguished by its ability to treat (normally problematic) TRSs with
left-nonlinear rules.

¢ Our notion of dlicingismore general than those defined in previouswork. Thedistinctiontraditionally
made between “static” and “dynamic” slicing can be modeled by reduction of open or closed terms,
respectively. Partial instantiation of open terms yields a useful intermediate notion of constrained
dicing. Although Venkatesh defines a similar notion abstractly [30], he does not indicate how to
compute such dlices.

¢ We describe the implementation of a practical algorithm to perform dynamic dependence tracking.
The algorithm operates by systematically transforming the original TRS to obtain an “instrumented”
version which gathers dependence information during the reduction process.

e Finaly, for the case of left-linear systems, we present proofs that our definitionsyield minimal and
sound dlices.

In a companion paper [14], we show how extensions of the techniques discussed here can be used to
implement slicing in astandard programming language, and compare these techniquesto other algorithmsin
theliterature. In [28], the dynamic dependence relation defined in this paper is used for providing dynamic
dicing facilities in generic source-level debugging tools. In this paper, we will concentrate primarily on
technical foundations.

1.2 Motivating Examples

Consider the program in Figure 1A. It is written in a tiny imperative programming language, P, whose
syntax is given in Figure 2. While extremely limited in its computational power, P contains constructs that
are representative of features found in real language:

e Expressions of the form z are atoms, and play the dual role of basic values and addresses which may
be assigned to using ‘:=’. The distinguished atoms ¢ and f represent boolean values.

e Addresses must be explicitly dereferenced using ‘ 1’ to yield the value associated with the address.

o A Pdo statement is executed by first eval uating its compound statement operand, which has the effect
of assigning values to one or more variables. Those valuesare then used to evaluate thein expression.
(Note that thisis not aloop construct, but is executed only once.)

e Conditional (if) constructs come in two forms: one that operates on statements, and one that operates
0On expressions.

We evaluate P programs by applying the rewriting rules of Figure 3 to the term consisting of the
program’s syntax tree until no further rules are applicable. This reduction process produces a sequence of



program program
doz:=a w:=7%, z:=b; doz:=® wW:=T;, Z:= @,
if w17 =217 if w11 =21
then :=% 1 then :=% 1
else 5:=b else®
inygl =217 inygt =217
A: Original Program B: Minimal Slice

Figure 1: Example P Program.

terms ending with a normal form that denotes the result of the evaluation. The program in Figure 1A, for
instance, reduces to the normal form result ¢.

Figure 1B depicts the slice of the example program with respect to this normal form. The symbol * @’
represents subterms of the program that do not affect itsresult, a concept that we will formalizein the sequel.
It should be clear that a program slice is valuable for understanding which program components the slicing
criterion depends on to compute its value. Even in the small example of Figure 1, thisis not immediately
ohvious.

Slicing information can be used to determine what statements might have to be changed in order to
correct an error or to alter the value of the criterion. The techniques we describe a so alow the programmer
the option of binding various inputs to values or leaving them undefined, allowing the effects of various
initial conditions to be precisely traced. This capability is unique to our approach, and derives from its
generality. In addition, by defining different (TRS-based) semantics for the same language, different sorts
of slices can be derived. For instance, by using variants of the semantics of Bergstra et a. [5], we can
compute both traditional “static” and “dynamic” [29] dlices for the same language. Details of how this can
be done for arealistic language (a subset of C) may be foundin [14].

In addition to applications in program development tools, we believe that our notion of a dlice should
prove useful asan adjunct to theorem-proving systems, sinceit yiel dscertain universally quantified equations
from derivations of equations on closed terms. Consider, for example, the simple TRS B in Figure 4, which
defines a few boolean identities (‘ A’ denotes conjunction, ‘@’ exclusive-or). Figure 5 shows how B-term
ff A (tt @ tt) can bereduced to ff. Observe that in deriving the theorem ff A (tt & tt) = ff, we actually derive
the more general theorem P A (tt @ tt) = ff, for arbitrary P. From the point of view of slicing, the slice
with respect to the normal form ff isthe subcontext @ A (tt& tt) of theinitial term (we will define the notion
of context precisely inthe sequel). To determine such adlice, we must pay careful attention to the behavior
of nonlinear rules such as [B4] and [P1], which many authors on reduction-theoretic properties of TRSs do
not treat. Inthe sequel, we show how dlices can be obtained by examining the manner in which rules create
new function symbols, and residuate, or “move around” old ones.

Note that the reduction of Figure 5 is not the only one which yieldsthe normal form ff. Inthiscase, the
same glice will be computed for any B-reduction starting with T'g.  Although in general slices may differ
depending on the particular reduction used, for the particularly well-behaved class of orthogonal TRSs[21],
it is easy to show that the slices computed are always the same regardless of the order in which rules are



(atom tags) X =t
| f
| a
| b
(expressions) E == X
| E1
| E=F
| if Ethen Edlse F
| doSinE
(simple statements) L == E:=F
| if Ethen Selse S
(compound statements) S = L
| S; L
(programs) P = program E

Figure2: Syntaxof P



[P1]
[P2]

[P3]
[P4]

[PS]
[Pé]

[P7]
[P8]
[P9]

[P10]

[P11]

[P12]
[P13]

[P14]

if £ then E, else B,
if fthen E, ese Es

doSinX
doSinE; = FE,
doSinif F;then E; else B3

doF;:= Esin (Eg T)

doS; Ey := Ezin(E3 1)

doif Ethen S; else S, in E
dOSl; if E then Sa eIseSa in Es

t
f  forall constantsa, b such that a # b

(doSin Eq) = (doSin E,)
if (doSin E;)then (doSin E;) else(do S in E3)

if (dO E, .= E, in Eg) =FE;

then F,

else ((do By := E3inE3) 1)

if (dO S, E, .= E, in Eg) = (dOS in El)
then (doSin E3)

elsedoSin((do Ey:= E;inE3) 1)

if Ethen (doS1in E) else(do S; in E)
if (dO S in El)

then (dO Sl; Sa in Eg)

else (do Sy; S5 in E3)

program X = result X
Figure 3: Rewriting Semanticsof P.
Bl XAYGZ)—(XAY)S(XAZ) [B3] X Aff—ff
[B2] XAtt— X B4 X&X——ff

Figure4: Boolean TRSB.



ffAftet)=T, =5 (FFAt)@(FAt)=T, 5 o (ffAt) =T,

B, (ffof)=Ts = =Ty

Figure5: A B-reduction; redexesare underlined.

applied.

1.3 Definition of a Slice

In genera, we will define a dice as a certain context contained in the initial term of some reduction.
Intuitively, a context may be viewed as a connected (in the sense of a tree) subset of function symbols
taken from aterm. For example, if f(g(a,b), ¢) isaterm, then one of several contexts contained in T is
g(®,b). The context contains an omitted subterm, or hole?, denoted by ‘ @'. This hole results from deleting
the subterm a of T'. We denote the fact that a context C' is a subcontext of aterm T" by C C T'; naturally,
contexts as well as terms may contain subcontexts.

In a slice, holes denote subterms that are irrelevant to the computation of the criterion. Informally,
this means that replacing any hole in the slice would still alow the original criterion to be produced by a
“subreduction” derived from the original reduction. Definition 1.1 below (which is rendered pictorially in
Figure 6) makes these ideas precise.

Definition 1.1 (Slice) Let p : T —* T” be areduction. Then a dlice with respect to a subcontext C'’ of T’
is a subcontext C of T with the property that there exists a reduction p’ such that p’ : ¢ —* D’ for some
D' JFE,E =, and{C,p,D') € Prgject«”. Sice C isminimal if there is no slice with respect to
criterion C’ that contains fewer function symbols.

Projectx” denotesthe set of subreductionsderived from p. Such sets contain collections of triplesof the
form (C, p’, C"}. Roughly, such atriple denotes the fact that context C' reduces to context C'/ by areduction
p’ derived from rule applications that also occur in p. We will discuss Project«* further in Section 5. The
operator ‘=" isused to indicate that two contexts are isomorphic (but may be “rooted” in different terms or
different subterms of the same term).

The notion of TRS-based dlice we define in the sequel can be used for any language whose operational
semantics is defined by a TRS. Many languages whose semantics are traditionally defined via extended
lambda-cal culi or using structural operational semantics also have corresponding rewriting semantics[2, 13].
Bergstra et a. [5] show how many traditional program constructs may be modeled equationally, and
implemented using a TRS.

2 Basic Definitions

In this section, we make precise the notion of a context introduced informally in the previous section. This
idea will be the cornerstone of our formalization of slicing and dependence. Instead of deriving contexts

! Some authors require that contexts contain exactly one hole; we will not.



Figure 6: Depiction of the definition of aslice.

from terms, we view terms as a specia class of contexts. Contextswill be defined as connected fragments
of trees decorated with function symbols and variables. We begin with a few preliminary definitions, most
of which are standard.

2.1 Signatures, Paths, Context Domains

A signature X is a finite set of function symbols; associated with each function symbol f € ¥ isanatura
number arity(f), itsnumber of arguments. Wewill useadenumerableset of variablesV suchthat Ny = 0.
By convention, for each variable X € V, arity(X) = 0. Lower-case letters of the form f, g, &, - - - will
denote function symbols and upper-case letters of theform X, Y, Z, - - - will represent variables.

A path is a sequence of positive integers that designates a particular function symbol or subtree by
encoding awalk from the tree’s root. The empty path, ‘()’, designates the root of atree; path (i1 2 - - - ¢,
designatesthe " subtree (counted from left to right) of the subtree indicated by path (i 1 4 - - “i(m-1)). The
operation ‘-’ denotes path concatenation. Path p isa prefix of path q if thereexistsanr suchthatq = p - r;
thisisnotatedp < ¢q. If r # () thenp < q. If p < ¢, then ¢ = p denotesthe pathr suchthat p - r = ¢. If
neither p < ¢ nor ¢ < p then p and g are digjoint, notated p | g.

A context domain P is a set of paths designating a connected fragment of atree. This means that P
must (i) possess a unique root, root( P), such that for al p € P, root( P) = p, and (ii) have no “gaps,” i.e,
foral p,q,rsuchthatp < ¢ < r andp,r € P it must bethecasethat g ¢ P.

2.2 Contexts
We can now define a context as a total mapping from a context domain to function symbols and variables:

Definition 2.1 (Context) Let X be a signature, V be a set of variables, and P be a context domain. Let 4
be a total mapping fromP to (X U V) and p be a path. Then a pair {p, ) isa ZV-context if and only if:



(i) ForalgePands € XUV suchthat u(q) = s, g - ¢ € P for some s impliesthat ¢ < arity(s).
(ii) 1f P # 0, then p = root(P).

Clause (i) of Definition 2.1 ensures that a child of a function symbol f must have an ordinal number less
than or equal to the arity of f. Clause (ii) ensures that the root of the context is the same as the root of
its underlying domain, except when the domain is empty; in the latter case, we will say that the context
is empty. The definition is specifically designed to admit empty contexts, which will be important in the
sequel for describing the behavior of collapse rules, i.e., rewriting rules whose right hand sides are single
variables. Given context C = (p, p), root(C') denotes the path p, and O(C) the domain of n. We will use
Cont(%, V) to denote the set of all XV'-contexts.

Given a path p and context C, if either C isempty and p = root(C), or if p ¢ O(C) and there exists
pathg € O(C) suchthatp = ¢ -4, u(g) = f, and ¢ < arity(f), then we will refer to p as a hole occurrence
of C. A hole occurrence thus correspondsto a child “missing” from a context. The set of hole occurrences
in acontext C will be denoted by O, (C).

We will use the operator ‘=" to denote identity of contexts. For any context C and apathp, p «— C
denotes an isomorphic context rooted at p obtained by rerooting C'. This notation is useful for defining
contextstextually; e.g., p — f(®, g(a, ®)) represents a context rooted at p with two holes, binary function
symbols f and g and aconstant a. p < @ represents an empty context rooted at p. We will say that contexts
C and D are isomorphic, notated C = D, if (( ) — C)=(( ) — D)

A context C isatermif: (i) C has no hole occurrences, and (ii) root(C') = (). Although the restriction
on the root of C is not strictly necessary, it results in a definition that agrees most closely with that used
by other authors. We will use Term(%, V) to denote the set of XV-terms. Letters C, D, - - - will generally
denote arbitrary contexts, and S, 7, - - - terms. Whenever convenient, we ignore the distinction between a
variable X and the term consisting of that variable. Some convenient operations on contexts are introduced
next.

For a context C, and S a subset of © UV, Os(C) denotes the set of paths to elements of S in C;
0¢:3(C) is abbreviated by O,(C). The set of variable occurrences in a ©V-context C, i.e., Oy(C), is
denoted vars(C), and vars; (C) isthe set of variables which occur exactly oncein C.

Two contexts are compatible if all paths common to both of their domains are mapped to the same
symbol. If C and D are compatible, C is a subcontext of D, notated C C D, if and only if one of the
following holds: (i) C and D are nonempty and O(C) C O(D), (ii) C and D are empty and C = D, or
(iii) C isempty, D is nonempty, root(C') = ¢ - € O(D), and ¢ € O(D). Thethird clause states that an
empty context C' isasubcontext of a nonempty context D only if itsroot is “ sandwiched” between adjacent
nodesin D. Thisproperty will greatly simplify anumber of definitionsin the sequel. Contexts D and E are
digointif and only if there existsno context C suchthat C C D and C C E. If C and D are contexts such
that root( D) € (O(C) U O, (C)), C[D] denotes the context C where the subcontext at root( D) is replaced
by D. A context C iselementary iff |O(C)| = 1.

A context forest isa set of mutually digjoint contexts. Forest S isasubforest of forest 7, notated S C 7,
if and only if for al contexts C € S, there exists a context D € 7 such that C C D. Some convenient
set-like operations on context forests can be defined asfollows: Let S and 7 be compatible context forests.
Then their union, notated S U 7, is the smallest forest ¢/ suchthat S T ¢ and 7 C U, their difference,
notated S — 7, isthe smallest forest ¢f suchthatf C S and S C (7 U U). If P isaset of paths, C/ P
is the forest containing subcontexts of C' rooted at pathsin 7. The notion of context replacement is easily



generalized to a forest S. We will feel free to refer to a singleton forest {C'} by its element C' when no
confusion arises; eg., “C U D",

3 Term Rewriting and Related Relations

In this section, we formalize standard term rewriting-related notions using operations on contexts; we then
define theimportant related ideas of creation and residuation, which are derived from the rewriting rel ation.
We will first consider only left-linear TRSs; thisrestriction will be removed inin Section 7.

3.1 Substitutionsand Term Rewriting Systems

A substitutionis afinite partial map from V' to Cont(3, 1), where ¥ isa signatureand V aset of variables.
Applying a substitution o to a context C corresponds to replacing each subcontext C x T C consisting
solely of a variable X by the context (rootf{Cx) — o(X)), for al X on which ¢ is defined. A term
rewriting system R over a signature X is any set of pairs (L, R) such that L and R are terms over &, L
does not consist of asolevariable, and vars(R) C vars(L); (L, R) iscalled arewrite ruleand iscommonly
notated L — R. Fora = L — R € R wedefineL, = L and R, = R. A rewriterule « is left-linear if
vars(Ly) = varsi(Ly). If R isaTRS, then we define an R-contraction .A to be atriple (p, &, o), where p
isapath, « isarule of R, and o isa substitution.

Weuse Py, @, La, R4, and o4 todenotep, o, L(a4), R(a), and o, respectively. Moreover, L 4 and
R4 will denotethe contexts(P4 « L 1) and (P4 «— R4), respectively. TheR-contractionrelation, —z ,
is defined by requiring that ' — z T if and only if a contraction A exists such that T = T[o 4(L 4)] and
T’ = T[oa(Ra4)] The subcontext o 4(L 4) of C isan a4-redex, and the context o4 (R4 ) isan a4 -reduct;
these contexts are abbreviated respectively by Redex,s and Reducts. As usual, —* is the reflexive,
transitive closure of — . A reduction p is a sequence of contractions 4145 ....4, such that if p is
nonempty, there exist terms 7o, 74, . . ., T, Where:

Ay As A

To > Ty =5 T T,o1 =B T,
This reduction is abbreviated by p : To —* T,,. A reduction p is areduction of term T if there exists 7"/
suchthat p : T —* T”. The reduction of length 0 isdenoted by ¢; for all terms 7", we adopt the convention
thate : T —* T

Given the definitions above, the B-reduction depicted in Figure 5 may be described formally by the
following sequence of contractions:

(0, [BL),[X :=11,Y :=tt, Z:=td); ((1),[B2],[X :=ffl); ((2),[B2], [X :=1M]); ((),[B,[X :=1f])

Most of the new relations defined in the sequel are parameterized with areduction p.A, in which thefinal
contractionishighlighted. Several definitionsare concerned with thelast contraction.4 only; however, when
our definitions are generalized in Section 7, the “history” contained in p will become relevant. Whenever
we define atruly inductiverelation on p.4, we will append a‘*’ to the name of the relation.



3.2 Context Rewriting

In order to generalize term rewriting to context rewriting, afew auxiliary definitionsare needed. A variable
instantiation of a context C isaterm 7' that can be obtained from C by replacing each hole with avariable

that doesnot occur inC'. A variableinstantiationisalinear instantiationif each holeisreplaced by adistinct

variable. A context C rewritesto a context C’, notated C —* C’, if and only if T —* 7", where T isa
linear instantiationof C and 7" isavariableinstantiationof C’. Notethat context reductionis not defined as
the transitive closure of a single-step contraction relation on contexts; thisis necessary to correctly account

for the way in which a reduction causes distinct holes to be moved and copied, particularly in the case of

left-nonlinear rules.

3.3 Residuation and Creation

In order to formalize our notion of slice, we must first reformulate the standard notion of residual and the
somewhat |ess standard notion of creation interms of contexts. Each of these will use Definition 3.1, which
formalizes how an application of a contraction .4 has the effect of “copying,” “moving,” or “deleting”
contexts bound to variableinstancesin L 4 when R4 isinstantiated. The elements of the set VarPairs’* are
pairs (S1, S2) of context forests, such that contexts C'; € §; and C; € S, are corresponding subcontexts of
the context bound to some variablein « 4.

Definition 3.1 (VarPairs) Let pA be areduction. Then

VarPairs* £ {(81,8:) | X €V,
CL(() —oa(X)) or C=(() — o),
q:fOOt(C),
S1={(pr -9+ C) | pr € Ox(La)},
Sz ={(pr-¢—C) | pr € Ox(R4)} }

An example of VarPairswill be presented in Section 4.1.

In left-linear systems, for any pair (S1,S,) € VarPairs’*, S; is aways a singleton. This will not,
however, be the case when we generalize the definition for |eft-nonlinear systems.

Definition 3.2 is the standard notion of residual, in relational form. For a contraction 4 : C — C’,
Residassociates each subcontext of C not affected by .A with the corresponding subcontext of C’. Moreover,
for each (81, Ss) € VarPairs’*, C; € 81, and Cy € S,, Cy isrelated to Cs. If Sy is empty, thiswill have
the effect that no pairs are added to Resid”™.

Definition 3.2 (Resid) Let p.4 be areduction. Then

ReSldp'A £ {<D1,D2> | Dy € 81, Dy €8s, <81,82> € VarPairs"A}U
{(D,D) | D and Redex, aredisoint}

The reflexive, transitive closure of Residis defined by

Residk*
Resid«"#

{(C,C) | C € Cont(x)}
Resid«® - Resid#

A
A

10



Creating ' Created
[B4] &
—_—

,,,,,,,,,, connects components of Resid pairs
,,,,,,,,,,,,,,,, connects contexts to their progenitor

Figure 7: Illustration of selected relations and contexts derived from B-reduction of Figure 5.

Figure 7 depicts Resid and several other definitions we will encounter in the sequel, as they apply to
the initial and final contractions of the reduction in Figure 5, involving the left-linear rule [B1] and the
left-nonlinear rule [B4] of TRS B, respectively.

Definition 3.3 describesthe creating and the created contextsassociated with acontraction A. Intuitively,
if contraction A is applied to term 7', the creating context is the minimal subcontext of 7' needed for the
left-hand side of .A’srule to match; the created context isthe corresponding minimal context “ constructed”
by the right-hand side of therule. The former is defined as the context derived by subtracting from Redex 4
all contexts D; € Sy such that (S1, S2) € VarPairs’*. Thelatter isthe context derived by subtracting from
Redluct 4 &l contexts D, € S, such that (S1, S;) € VarPairs’*.

Definition 3.3 (Creating and Created) Let p.A be a reduction. Then

Creating® 2 { Redexs — | {81 | (81,S:) € VarPairs*}  when L4 ¢V

Py — @ otherwise
Cregted® 2 Reducty — | [{Sz | (S1,S82) € VarPairs*}  when Ry ¢V
= Pi—® otherwise

While Creating®* and Createc?” could have been defined in a more direct way from the structure of L 4,
R4, and P, without using VarPairs** at all, the approach we take here will be much easier to generalize
when we consider |eft-nonlinear systems.

Combining Definitions 3.2 and 3.3, we arrive at the relation CreateResid, formalized in Definition 3.4.
Every pair of terms (T, T") € CreateResid has the property that T — T".

11



Definition 3.4 (CreateResid) Let p.A be areduction. Then

CreateResic?* 2 {(Cy,C;) | R C Resid™,
(C,D) € R and (C,D') € Resic’* imply (C, D') € R,
Cy = Creating* U| [{C | (C,C"Y e R},
C, = Created* U | |{C' | (C,C"Y e R} }

Notethatit isimpossibleto have both (C'1, D) € ResicP* and (Ca, D) € CreateResicP, for any nonempty
C1, C2, D; theserelations may, however, overlap on empty contexts.

4 A Dynamic Dependence Relation

In this section, we will derive our dynamic dependence relation, Slicex, using the concepts introduced
in Section 3. For the empty reduction, Slicex is defined as the identity relation. For a criterion D, the
inductive case determines the minimal super-context D’ J D for which thereisa C such that {(C, D'} €
(Resic* U CreateResid**); then the slice for this C in reduction p is determined. Operation * - in
Definition 4.1 denotes relationa join.

Definition 4.1 (Slicex) Let p.A be a reduction. Then

Slicex*
Slicex”*

{(C,C) | C € Cont(x)}
Slicex” - {{(C,D) | thereexistsaminimal D' J D
suchthat (C, D'} € (Resicd* U CreateResid®*) }

A
A

Since ResicP* and (Cs, D) € CreateResid’* only overlap for empty contexts, it is easy to see that the
dlice with respect to any nonempty criterion is uniquely defined. Empty contexts may have multipledlices,
which arise from the application of collapse rules.

4.1 Example

In the example that follows, we will frequently use set comprehension to avoid unwieldy notation. We will
consider the following B-reduction p = A 1.42.A45:

S=(fAMAD) ALt 2 FATH AL 22 At DS fioT

Note that for contraction .4, an application of rule B2, we have P4, = (12), L4, =(12) «+ X Att, R4, =
(12) « X, Redexa, = (12) — ff Att, and Reduct4, = (1 2) — ff. Thisresultsin thefollowing relations

12



for Aq:

VarPairs*: = {{@21)—f}{12) —f}, {121 —0}{(12)—0}}
Resict: = {<(121)Hff( 2) 1), (121) — @,(12) — @), () — @,() — @)
(12) —o0,(12) — @) } U {(C,C) | CE() — (ffA@) ALt}
Creating** = (12) — (o At)
Created** = (12)—e
CreateResid** = { ((12) — (0/\tt),(12) o), (1) — @ A(ffAtt), (1) — @ Aff),
(1) — ff A (FEALL), (1) — ff A ff),
() — (FFAFEAL)) A @,() — (FEAT A @),
() = FEAFEA)) AL () — (FEATF) ALY }

For contraction A5, whichisan application of B3, wehave P4, = (1), La, = (1) « X Aff, R4, = (1) « ff,
Redex4, = (1) — ff A ff, and Reduct4, = (1) < ff. Therefore, we have:

VarPairs*+42 = {{@11) L0, {(11)—e},0)}

Resic+4 = {{0—0,()—e), (1) -0 (l)—e)}U{(CC)[CC()—eonff}
Creating”** = (1) — (o Aff)

Created*:+#> = (1) —ff

CreateResid**#z = { ((1) — (@ Aff),(1) —ff), () — (@ AfE)A @, () —ffA @),

1
() — (@ AT AL () — FEAL }

For the third contraction, .43, an application of B2, we have Pa, = (), La, = () « X Att, R4, =() < X,
Redexs, = () — ff A tt, and Reduct 4, = () < ff. The following relations are computed for A;.4;5.43:

VarPairs 424 = {({(1) 3, {() —ff}), <{ (1) —e}h{()—e}h}
Resigt"+#=42 = ) =0 (1) — 0, —0), () -0, —e}
Creating*+#242 = () —(eAtl)

Createt' /24 = ()—eo

CreateResid*#>4s = {{(() — (@ Att),() — @)}

From the above and Definition 4.1 it follows that we have the following dynamic dependence relations
between subcontextsof .S and T":

Slicex14242 = {((1) — @ A (A1), () —ff), () — @,() — @)}

Thus, the dicewithrespect to () «— ff C T'is(1) — @ A (ff Att) C S. Thisisthe minimal context for
which there exists a subreduction of p that yields the criterion. Inthis case, the subreduction consists of the
first two contractions. We will formalize the notion of a subreductionin Section 5.
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The above example aso illustrates why Slicex is defined on contexts rather than on context domains:
collapse rules require special treatment in order to produce minimal slices. Note that the example exhibits
two applications of collapse rule [B2]. Intuitively, the first one created the criterion, whereas the second
one merely affected its location. We achieve this differentiation by: (i) having a collapse rule create an
empty context P4 — @ instead of the context consisting of the function symbol at path P 4 (the approach of
[21]), and (ii) defining an empty context p <+ @ to be a subcontext of a nonempty context only if the latter
“surrounds” the former.

5 Projections, Subreductions

In this section, we formalize the notion of a projection of some reduction on a subcontext of its initial
term. It will be convenient to define simultaneously the initial and final contexts to which a projection
corresponds along with the the projected “ subreduction” itself. We therefore define the set of projection
triples as follows:

Definition 5.1 (Projection Triples) Let R bea TRSover signature X. Then the set of R projection triples
isinductively defined as follows:

Projectx*
Project«**

{(B,e,B) | B € Cont(XZ)}
{(B,0 A, D) | (B,o,C) € Projects, (C, D) € CreateResic”*, D'C D} U (i)
{(B,s,D") | (B,0,C) € Projects*, (C, D) € Resid’*, D'C D} (ii)

A
A

The interesting cases in Definition 5.1 are numbered. Intuitively, these cases behave as follows:

e In case (i), the context D’ that constitutes the third element of the triple is entirely contained in
a context D that is involved in a CreateResid”* —relation. In this case, contraction A is deemed
applicableto D’, and the construction continues recursively with the context C that contracted to D,
and reduction p.

e Incase (ii), D’ is a subcontext of some context D that residuated from a context C. In this case,
contraction .4 was not applicable to D’, and the construction continues recursively with the context
C from which D residuated, and reduction p.

Note that each residual D of a context C gives rise to the construction of a new projection triple. This
reflects the fact that different residuals of a context may be reduced differently, causing the construction of
different subreductions.

Informally, the occurrence of atriple (B, ¢, D') in relation Project+* indicates that context B reduces
to a context D that “contains’ D’. Moreover, it does so by a reduction o that is composed of a subset of
the contractions in the original reduction p. In Section 6, we will prove this property of projections. In
addition, we will show that Slicex” computes slices that correspond to minimal projections by effectively
selecting the minimal supercontext D of D’ (in each construction step) for which there existsa pair (C, D)
in (Resid”™* U CreateResidP™).

As an example of the behavior of Project«, consider the B-reduction in Fig. 8. As usua, we have
underlined each redex. We use A, and Ag, to denote the contractions that use rules [B1] and [B3],
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To = | (ff A TF) [A (Tt ) oy ((Ff A ) A tt) @ ((FF AFF) A L) g (fEAt) @ ((FFATE) [At) = T,

Figure8: Exampleof projections.

AsyA(sy

respectively. Some typical, minimal elements of the set Project are:

)= FAIA (@D @), ApgyApy, () — (ffA@®)D ((ffAfH)A@))
()—or(00), Agy, () —(0r®)S (0N0))
(1) —fEATE, Apg, (11) —ff)
(1) — ffAff, €, (21) — ff AF)

s i

Observe that the last two of these projection triples ‘apply to’ the subcontext (1) «— (ff A ff) of T'g; this
subcontext is shown boxed in Fig. 8. The projections of the boxed subcontext of Ty are aso shown boxed
(in T3). Clearly, these triples correspond to the two different “paths through the reduction” taken by the
boxed subterm of T,. Oneresidual is contracted in a subsequent step, the other is not.

6 Formal Propertiesof Slices

We can now state some theorems describing the most important properties of slices. We will prove these
theorems for left-linear TRSs only.
In order to provethat Slicex isamany-to-one mapping for non-empty contexts (that is, each context has
aunigue slice), we will first prove afew lemma'’s.
P A , .
Lemma6.l Let B —* C — D beareduction. Then for any non-empty D’ C D thereisat most one
C' C C suchthat (C', D') € Resic®*. Moreover, if it exists, this C” will be non-empty.

Proof. Let D' C D beanon-empty context such that (C', D’} € Resic®* for some C' C C.
There are two cases.

1. (root(D') < roof( Created”*) or root(D') | root( Created®*)) and D’ and Created*”* are disjoint.
Then it followsfrom Definition 3.2 that C’ = D' is the unique subcontext of C such that (C’, D') €
Resic?*. ThisC” is non-empty because D’ is non-empty.

2. D' =(pr-q+— A)wherepr € Ox(R4), AC (() «— c4(X)), and g = root( A) for some variable
X.

From left-linearity it follows that there is a unique path p 1, such that { pz, } = Ox(L4). From
Definitions 3.1 and 3.2 it followsthat C’' = (pr - ¢ — A) is the unique subcontext of C such that
(C', D"y € Resic?’ 4. Since rerooting a context does not affect its (non-)emptyness, C’ will be a
non-empty context. O
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P
Lemma6.2 Lee B —* C A D be areduction. Then for any non-empty D’ C D thereis at most one

C’' C C suchthat (C, D) € CreateResid’*. Moreover, if it exists, thisC” will be non-empty.

Proof. Let D' C D beanon-empty context such that (C’, D’} € CreateResicP* for some C' C C.
From Definition 3.4 it fol lows that there exists a unique subset R of Resid?* such that:

D' = Created* u| {E' | (E,E') € R}
and also that there exists a unique context
¢’ = Creating* U| |{E | (E,E') € R}

such that (C’, D) € CreateResid™*. Since the left-hand side of a rewrite rule is not a single variable,
Creating’”* is non-empty, causing thisC’ to be non-empty as well. O

P
Lemma6.3 Let B —* C A, D be a reduction. It is impossible to have (C;, D') € Resid®* and

(Cy, D'y € CreateResid™* for any C;, C, C C and any non-empty D’ C D.

Proof. Assume that (C3, D) € CreateResicf* for some C; C C, and some non-empty D’ C D. From
Definition 3.4 it followsthat Creating”* = C, and Created®* C D'

From Definitions 3.2 and 3.3 it follows that for any pair (C'1, D1) € ResicP* withCy C C, D, C D,
we have that C; and Creating’* are disioint and D, and Created®* are disjoint.

From Creating’” T C, and Creating’* iz C; it followsthat C; # C. A similar argument can be used
to demonstrate that D’ # D;. O

/

o
Lemma64 Letp: B —* C A, D be areduction, and let D" be a non-empty subcontext of D. Then

there exists a unique minimal D’ C D such that D' O D" and (C’, D') € (Resid® U CreateResid’) for
some non-empty C’ C C. Moreover,

(B',D") € Slice* < (B', D) € Slicex* = (B',C") € Slicex”’
where B’ C B.

Proof. The theorem holdstrivialy if (C’, D"”) € (Resid® U CreateResid’), for some C' C C.

Assumethat thereexistsnoC’ C C suchthat (C’, D"} € (Resid® U CreateResid’). From Definitions3.1
and 3.2, it followsthat D" and Created’® are not disjoint—otherwise, D"’ would be involved in a Resid’-
relation. From the fact that D isnot involved in a CreateResid’ relation either, it follows that:

e Created® [Z D", and/or

e D" — Created = | |{E' | (E,E’) € R}, forsome R C Resid® such that there exist (4, B) € R,
(A, B') € Residl’ for which (4, B') ¢ R.
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Define:
R2RU{(4,B) | (A,B)ER, (A, B') € Resid }
D' £ D" U Create U{ E' | (E,E'YEc R'}

Clearly, D' isthe minimal supercontext of D" for which (C’, D') € CreateResid’, where
C' = Creating u| {E | (E,E')eR'}CC

Since Creating’ is dways non-empty, C’ is non-empty as well.
From Definition 4.1 it follows that

(B',D") € Slice* < (B', D) € Slicex” = (B',C") € Slicex”’

where B’ C B. O

P
Theorem 6.5 (Uniqueness of Slices) Let p : B —* D be areduction, and let D’ C D be non-empty.
Then there exists a unique non-empty B’ C B such that {B’, D’) € Slicex”.

Proof. By induction on the length of the reduction p.
Forp =¢,wehave{ B’ | (B, D') € Slicex* } = { D’ } according to Definition 4.1.
,0/

For the inductive case, assume that p = p’A such that B —* C A, D,andlet D' C D bea
non-empty context. According to Lemma 6.4, we may assume without loss of generality that (C’, D) €
(Resic”’* U CreateResic?’*), for some C' C C.

According to Lemma 6.3, we have either (C’, D') € Resic’'* or (C', D) € CreateResid’ .

Lemmas 6.1 and 6.2 state that both Resid and CreateResid map any non-empty context D’ T D
to a unique non-empty C’ C C. By induction, there exists a unique non-empty B’ = B such that
(B',C") € Slicex” .

From Definition4.1it followsthat this B isthe unique non-empty subcontext of B suchthat (B, D’) €
Slicex”. O

Given Theorem 6.5, wewill beabletowriteC = Slicex” (D) instead of (C, D) € Slicex*, for non-empty
D.

The following lemma states that slices may be computed by repeatedly determining a unique related
subcontext of the previous context in the reduction.

I
Lemma6.6 Letp: B —* C A D beareduction, andlet D” C D bea non-empty context. Moreover,

let D’ be the unique minimal super-context of D’ for which there exists a non-empty context C’ C C such
that (C’, D"} € (Resid® U CreateResid’). Then
Slices”(D') = Slicex*(D") = Slicex”' (C")

Proof. Followsimmediately from Definition 4.1, Lemma 6.4, and Theorem 6.5. O
The next lemma and theorem demonstrate that slices effectively preserve the topology of their corre-
sponding criteria. Thisisimportant in showing that slices are minimal projections.
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Lemma 6.7 (Inclusion Lemma) Let p.4 be a reduction such that B —* C — D, andlet D" C
D' C D be non-empty contexts such that there exist pairs (C’, D') € (Resid®™* U CreateResid**), and
(C”,D") € (Resid®* U CreateResid®*). ThenC" C C.

Proof. There are three cases:

1. (C', D) € Resid®* and (C"', D"') € Resid**.
From Definition 3.2 it follows that there are two cases:

(a) (root(D') < Createc?” or root(D') | Created’*), D' and Created®* are dijoint, root( D"') <
Created®”, and D" and Created?* are disjoint. Then ¢’ = D’ and ¢” = D", and therefore

c'C e

(b) D' = (pr-q « A"), D" = (pr-¢" — A") where pr € Ox(R4), A’ C (() « o4(X)),
A"C(() —oa(X)), ¢ =root(A"), ¢" = root( A"), for some variable X
From Definitions 3.1 and 3.2 and left-linearity, it follows that there exists a unique occurrence
pr of X inL 4 suchthat C' = (pL ¢ — A’), c" = (pL ¢ — A”).
D" C D'impliesqg’ < ¢', A’ C A’ andtherefore C” C (.

2. (C', D'} € CreateResicP* and (C"', D"} € CreateResid’™.

From Definition 3.4 it follows that

D/
D//
C/
C//

Created* U| [{ E' | (E,E') € R'}
Created* U| |{ E' | (E,E') € R"}
Creating®* U| |[{ E | (E,E'Y € R’}
Creating* U| |[{ E | (E,E') € R"}

for R/, R" C Resic* such that for all (E,E'y € R, R, both E and E’ are are elementary. From
D" C D' itfollowsthat R” C R’ and thereforethat C"” C C'.

3. (C’, D') € CreateResic’* and (C"', D"y € Resid"*
According to Definition 3.4, we have that

D/
C/

Created®* U| |{ E' | (E,E') € R}
Creating* U| |[{ E | (E,E'Y€ R}

for some R C Resid®* such that for all (E,E'Y € R,both E and E' are elementary. From D' C D',
and the disjointnessof Created”” and D" it follows that there existsa subset R’ C R such that

D'=| {E | (B,E)ER'}

Using an argument similar to that in case 1, it follows that

Consequently C" C C".

c'=| {E | (B, B)eR)
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Notethat thecasewhere (C’, D'} € ResidP* and (C", D"’} € CreateResid** isimpossible, given D" C D'.

(I

Lemma 6.8 states that if D" SubContextD’ E" isthe smallest supercontext of D" involvesina Resid

or CreateResid-relationship, and E’ is the smallest supercontext of D’ involvesin a Resid or CreateResid-
relationship, then E” C E'.

Lemma6.8 Letp: B i* D beareduction, let D" C D' C D, andlet D" be non-empty. Furthermore,
let E” be the unique minimal supercontext of D such that (C”, E"') € (Resid’ U CreateResid’) for some
C", andlet E’ be the unique minimal supercontext of D' such that (C’, E’) € (Resid’ U CreateResidf’) for
someC’. ThenE”" C F'.

Proof. The following cases can be distinguished:
1. B =D"and F' J D'. Trivia.

2. E"JID"and E' = D'. From E" # D" itfollowsthat D" and Created® are not disjoint, and that
(C",E") € CreateResid. From D” C D' and D’ = E’ it follows that Created” C D’. Define
R', R" C Residf asfollows:

R' = D' — Created?
R" = D" — Created?

From D" C D’ itfollowsthat R” C R’. From Definition 3.4 it followsthat:
E" = Createct U| {Y | (X,Y)€R"}

where R
R'={(X,Y") | (X,Y)eR' (X,Y') € Resid’ }

From (C’, D'} € CreateResicf it followsthat k" C R’, and therefore that B C E'.

3. E" O D"and E' 7 D'. Itfollowsthat D" and Created® are not disjoint, and that D’ and Created®
are not digoint. Define R/, R C Resid’ asfollows:

R = D' — Created®
R" = D" — Created!

Then, D’ C D’ impliesthat R’ C R’. Define:

R={{X,Y") | (X,Y)€R, (X,Y') € Resic* }
R'={(X,Y") | (X,¥) € R", (X,Y') € Resic’ }

Then R C R'. From Definition 3.4, we have that:

E" = Createc? U| {Y | (X,Y) € R"}
E' = Created U [{Y | (X,Y)€E R'}

Hence, E' C E'.
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Theorem 6.9 (Inclusion Theorem) Letp: B —* D beareduction, let D" © D’ C D, and let D" be
non-empty. Then Slicex”(D") C Slicex”(D").

Proof. Followsdirectly from Lemmas 6.7 and 6.8. O

Lemma 6.10 formally justifies the rel ationship between a reduction and the components of a projection
triple. Since the reduction component of a projection triplein Projects * is derived by construction from the
contractions of p, it can justifiably be deemed a subreduction of p.

g
Lemma6.10 Let p beareduction, and let (B, o, D'} € Project«”. Then B —* D such that there exists
an E'C D for which ' = D'.

Proof. By induction on the length of p.
According to Definition 5.1, (B, o, D’) € Project+® impliesthat o = e and that B = D’. From thisit

€
followstrividly that B —* D,for D = D'.
For the inductive case, assume that p = p'A, and (B, o, D) € Project«”. From Definition 5.1 it
followsthat two cases can be distinguished:

1. D"C D', {(C',D') € CreateResic’, and (B, ¢', C") € Project«”.
O./
By induction, there existsareduction B —* C for some C O C".
O./
From Definition 3.4 it follows that C’ A, D'. Therefore B —* C[E] = D, where E =
(root(C") — D"). Since D’ and E are isomorphic, and D" C D', it followsthat D" = E’ for some
E'C D.

2. D"CD,(C',D') € Resd’, and (B, o', C') € Project:”.
O./
By induction, there existsareduction B —* C for some C O C".
/
From Definition 3.2 it followsthat C’ = D'. Hence, B —* C[E]| = D, where E = (root(C") —
D"). Since D' and E areisomorphic, and D" C I, itfollowsthat D" = E' forsome E' C D. O

The lemma bel ow establishes a connection between the relations Slicex” and Projects” .
. P .
Lemma6.11 Let p be a reduction such that B —* D, and let B’ = Slicex”(D’) for some non-empty
D' C D. Thenthereexistsatriple (B’, o, D') € Project”.

Proof. By induction on the length of reduction p.

Let p = e. From Definition 4.1 it followsthat B’ = Slicex*(D’) implies B’ = D’. Moreover, from
Definition 5.1 it followsthat (B, e, D'} € Projectx® implies B’ = D' as well, so that the lemma trivially
holds.
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o
For the inductive case, assume that p = p' A suchthat B —* C A, D, and let B’ = Slicex’(D"),

for some non-empty D” C D. According to Lemmas 6.4 and 6.6 there exists aunique D’ J D" such that
(C', D"y € (Resid® U CreateResid’) and Slicex”(D") = Slicex”(D') = Slicex” (C') = B'.

By induction there exists atriple (B’, o/, C’) € Project«” . From Lemma 6.3, it follows that there are
two cases:

1. (C',D') € ResicdP. Since D' C D' it followsfrom Definition 5.1 that that (B', o/, D') € Project«’.

2. {(C',D'") € CreateResid’. Since D" C D’ it follows from Definition 5.1 that (B',o' A, D') €
Projects”. O

The soundness theorem states that the Slicex relation computes slices that comply with Definition 1.1.

P
Theorem 6.12 (Soundness) Let p be a reduction such that B —* D. Moreover, let B’ = Slicex?(D")
for some non-empty D" C D. Then there exists a reduction ¢ such that:

1. (B',0,D") € Project«”, and

g
2. B —* D’ suchthatthere existsan E” C D’ for which B = D",

Proof. Followsimmediately from Lemmas 6.10 and 6.11. O
Our final theorem states that a dice is the minimal initial component of some projection triple whose
final component contains the dicing criterion:

P
Theorem 6.13 (Minimality) Let p be a reduction such that B —* D, and let B, = Slicex”(D.) for
some non-empty Dy. Then (B, o, D) € Projects” and D,, J Dy together imply that B,, J B.

Proof. By induction on the length of reduction p.

For p = ¢, Definition 5.1 states that (B,,, o, D;,) € Project«* implieso = ¢ and B, = D,,. Moreover,
according to Definition 4.1 we have that B; = Slicex*(D;) implies B; = D;. Therefore D, J D; implies
that B, O B;.

For the inductive case, assume that p = p' A, let B, = Slicex”(D") for some non-empty D/, and let
(By,0,Dy) € Projects” suchthat D, J D;. Then by Definition 5.1, there exists a D, I D,, such that
(Cy, Dy) € (Resic U CreateResic’ ™), and (B, o', Cy) € Projects*".

According to Lemmas 6.4 and 6.6, there exists a unique minimal super-context D, of D’ such that
(Cs, D) € (Resid® U CreateResid’) and:

Slices”(D.,) = Slicex*(D,) = Slicex” (C,) = B,

By induction, (B, o', Cp) € Project*"' and C, O C, together imply that B, O B,. Consequently it
suffices to show that C, J C,.
From (i) the fact that D, isthe minimal super-context of D', that is related in a CreateResid’ -relation,
(ii) the fact that D, is some supercontext of D that is involved in a CreateResid’-relation, and (iii)
Definition 3.4, it follows that D, 1 D,. According to Lemma 6.7, we therefore have C, J C;. This
concludes the proof of the minimality theorem. O
Together, Theorems 6.12 and 6.13 imply that our construction of slices agrees with Definition 1.1.

21



7 Nonlinear Rewriting Systems!

Unfortunately, our previous definitions do not extend trivialy to left-nonlinear TRSs, because they do not
account for the fact that nonlinearitiesin the left-hand side of a rule constrain the set of contexts for which
theruleis applicable. For example, when rule [B4] of TRS B of Figure 4 isapplied to ff ¢ ff, thisresultsin
acontraction A : T = ff ¢ ff — ff = T”. Our previous definitionsyieldC = () — (@ & @) C T asthe
slice with respect to criterion D = () « ff C 7. Thisisnot avalid slice, because some ‘instantiations’ of
C do not reduce to a context containing D, e.g., () < tt® ff does not. A related problem is that multiple
contexts may be related to a criterion in the presence of |eft-nonlinear rules; this conflictswith our objective
that a slice with respect to a context consist of a single context.

A simple solution for nonlinear TRSs would be to restrict VarPairs to variables which occur at most
once intheleft-hand side of arule. However, thiswould yield larger slices than necessary. For instance, for
the reduction of Figure 5 the non-minimal slice ff A (tt & tt) would be computed. The immediate cause for
thisinaccuracy isthe fact that the subcontexts (1) « ff and (2) « ff of T's are deemed responsible for the
creation of term T. However, they are residuals of the same subcontext C' = (1) « ff C T,. Thisbeing
the case, C may be replaced by an arbitrary context without affecting the applicability of the left-nonlinear
rule.

We can account for thisfact by modifyingthe VarPairsrelationasfollows: If, for arulec, al occurrences
of avariable X in L, are matched against a set of “equivalent” contexts S that are residuals of a common
context (onethat occurs earlier in the reduction sequence), then the contextsin § are deemed to be residuated
by « (assuming X occursin R,,). All other cases cause creation: those subcontexts matched against X that
are not residuals of a common context are deemed creating, and the corresponding subcontexts matched
against X in R, are created.

7.1 Formal Definitionsfor Nonlinear Systems

If acontext D is created at some point in a reduction, and D has a residual C which occurs later in the
reduction, we will say that D isa progenitor of C'. This concept will be useful for formulating an adeguate
notion of slice for nonlinear TRSs. Formally, we have:

Definition 7.1 (Progenitor) Let 7' be a term, o and 7 be reductions such that o7 : U —* T for some
term U, and D be a subcontext of 7. Then we will say that a context C is a o, 7-progenitor of D if
(C, D) € Residk", and either C C Created” or o = .

We will say that a context forest S has common o, —progenitor C if for adl D € S, D has o, 7—progenitor
C. Note that an empty context may have more than one progenitor, due to collapse rules, which have the
effect of combining existing empty contexts as well as creating new ones. Also note that the progenitor of
acontext C created by the last step of reduction p has p, e—progenitor C.

We can now revise Definition 3.1 to account for common residualsin subterms matched nonlinearly:

1 The definition of the Slicex relation for nonlinear systemsin [15] contained an error. The definitions in this section therefore
supersedethe earlier ones.
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Definition 7.2 (VarPairsfor nonlinear TRSs) Let p.A be a reduction. Then

VarPairs’* 2 {(81,8) | X €V,
CC(() —oa(X)) or C=(() — @),
q= fOOt(C), _
S1=A{(pr-¢—C) | pr € Ox(La)},
S2 ={(pr-q C) | pr € Ox(R4)},
S1 hasa common o, 7—progenitor,

oT=p }

For linear TRSs, Definition 7.2 reduces to Definition 3.1, since §; isawaysasingleton and thushas atrivia
common progenitor.

Innonlinear TRSs, certain empty contextsat the“edge” of Creatingand Resid have a creating effect that
does not occur in the linear case; the definition of Slicex for nonlinear systems must therefore be modified
accordingly. More specifically, in the linear case, the empty contexts between Creating and Resid are
irrelevant to the applicability of the redex. However, in the nonlinear case, they are indeed relevant, since
if these “glue” contexts were not empty, the nonlinear match would not occur (unless, as with all contexts
matched nonlinearly, the edge contexts have a common progenitor).

The following definition computes the union of the slices with respect to relevant edge empty contexts:

Definition 7.3 (EdgeSlices) Let p.A bea reduction. Then

EdgeSlices* 2 | [{C | (81,82) € VarPairs’,
(p — @) € (81N Oy (Creating™)),
D isao, 7—progenitor of (p — @),
D isnot a common o, T—progenitor of Sq,
(C, D) € CreatedSlicex*,
oT=p }

(Therelation CreatedSlicex, defined formally below, isasubrelation of Slicex in which the second elements
are created by the last step of the reduction; this yields a dice specific to the progenitor in the definition
when more than one progenitor exists). Definition 7.3 yields the union of slices with respect to empty
context criteriaat the“edge” between Creating and Resid that are not derived from a progenitor common to
all the contexts associated with a given variable. Note that EdgeSlices* is always empty for linear TRSs,
since for such systems, the forest Sy inthe definition is aways a singleton.

Our definition of Slicex in the nonlinear case is essentially the same as that for the linear case, except
that we must add the information in EdgeSlices where appropriate:

Definition 7.4 (Slicex for nonlinear TRSs) Let p.A be areduction. Then

Sices* £ {(C,C) | C € Cont(%)}
Slicex** 2 ResidSlicex** U CreatedSlicex”*
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where

ResidSlicex**
CreatedSlicex*

Slicex” - Resid*

{(C,E) | (C',D)e Slicex”,
there existsa minimal E/ J E suchthat (D, E') € CreateResid®™,
E and Created”” are not disjoint,
C = C' U EdgeSlices* '}

Definition 7.4 is complicated by the necessity of splitting the pure residuation case from the creation case—
the two cases both apply only when created and residuated information overlap exactly; i.e., when A isa
collapse rule application.

While Definition 7.4, along with the auxiliary definitions, may appear rather complicated, testing
whether two contexts have a common progenitor can be performed cheaply in practice if reduction is
implemented using term graph rewriting techniques [4, 20]. Graph rewriting causes terms that are created
by contraction of sets of residuals of previous reductions to be shared in a graphical data structure. If such
an implementation is used, testing whether two contexts have a common progenitor reduces to determining
whether the contexts are represented by a common shared subgraph.

7.2 Example: Slicingin anonlinear system
Recall the reduction used in the example of Fig. 5:

A, 4

(ffAt)yp(ffAat) =Ty =5 ffo (fiAt) =T

A e =1 M =1

ffA(ttot) = To

We have denoted the contractionsin the reduction above by A4, A, A3, and Aj,.

Applying the definitions of the previous section to this example, we find that the most interesting step is
the contraction .44, which uses nonlinear rule [B4]. In Figure 7, the two ‘ff’ subterms in the term matched
by contraction .44 have the same progenitor in theinitial term, indicated by dotted lines. Definition 7.2 thus
impliesthat the ‘ff’ subterms are components of VarPairs. Consequently, the Creating context for the [B4]
contraction does not include the ‘ff’ subterms. Taken together, these facts allow usto conclude that the final
term of the reduction of Figure 7 does not depend on the ‘ff* subterm of theinitial term of the reduction.

It isinstructiveto observe the effect of the formal definitions of Section 7.1 with respect to contraction
Ajs. Inorder to determine whether the contexts bound to the nonlinearly matched variable X are derived
from acommon source, we must first consider the common progenitorsof the contextsin VarPairs*:424s A4
which are:

{(1) —ff, (2) —ff} T T3 hascommone,.4;.A4;.43—progenitor (1) —ff T T
{(1)—e,(2)—@®} C 75 hascommone, A;A;A;—progenitor (1) — e C Tp

Since the contexts bound to the nonlinearly matched variable X (namely, (1) « ff, (2) — ff, (1) — @,
and (2) — @) have acommon progenitor, they are included in VarPairs.

Varpars' A s = {({(1)  f1,(2) — 11,0), (1) — 0,(2) — 0},0)}
ResgA4s = ()~ o,() o)
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Using VarPairs, we can eliminate the nonlinearly matched contextsfrom Creating and Created.

Creating*424:4: = () —eoq ®
Creategr#2A=As = () — ff

However, before we can compute the Slicex relation, we must consider slices with respect to the “ edge”
empty contexts (1) — @ and (2) — @ which separate Creating from elements of Resid. Their progenitor
information is as follows:

has.41.A,, As—progenitor ()—e C T3
() — e C T3 has A1, A;.A3—progenitor ()—eo C T
hase, .4;.4;.As—progenitor ()—e C Tp
has .41.4,.43, efprogenitor (2)—e C T3
(2)—e C T3 has A1, A;.A3—progenitor 2)—e C T
hase, .4;.42.As—progenitor ()—e C Tp

(1) — @ and (2) — @ each have three progenitors because the collapse rule [B2] (applied in contractions
Az and A3) has the effect of combining the empty contexts above and below the matched part of the redex,
aswell as creating a“new” empty context.

For the purpose of computing EdgeSlices*#2424+ e need consider only those progenitors not
common to both (1) — @ C Ts and (2) — @ C T5. Theseare: (1) — @ C T3, (1) — @ C T3,
(2) — @ C T3, and (2) — @ C Ty. The CreatedSlicex subrelations relevant to the latter contexts are as
follows:

{{()—onr(0ce)(1)—e) ()—oAr(0ce)(2)—e)} C CreaedSices:
() — oAt @),(1) — @) C CreatedSlices” 2
() — oA (®D L), (2) — @) C CreatedSlicex”+42>4>
Taking the context union of the CreatedSlicex information above, we get:

EdgeSlices* 42444 V—oA(0p®) U ()—eA(ttae) U ()—eA(eat)

() — @ A(ttath)

Combining the information computed above and using Definition 7.4, we finally have:
SlicestrAzAsde = {(() —@,() — @), () — @A (@ tt), () — ) }

Consequently, theslice ® A (tt @ tt) C T iscomputed for criterion () «— ff C Ty.

7.3 Nonlinear systems and Optimal Slices

Although the approach to nonlinear slicing developed in the previous section is sound, it does not always
yieldminimal dlices. To seethis, consider the B reductionsin Fig. 9. Although both p; and p, start and end
at the same term, using the definitionsof Section 7.1, theslice with respect to criterion T's is (@ A ff) At tt,
whereas the slice with respect to criterion Ty is (ff A ff) Att & tt, i.e, theentireinitial term.
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pr: (A At =T B3 fia(tat)y=1 — ffafi=T, B =1y

pa: (FEAF)A (e tt) =To BY ((Ff AT Att) @ ((fFATH) AtE) = T}

—(fiafhe (A =1, B e gath=1 B fien=1 Bl ii=1y

Figure9: Sensitivity of nonlinear dlicing to reduction strategy

The differencein the slices resultsfrom the order in which redexes were contracted in the two reductions.
In p1, the (ff A ff) = So subterm of Ty is contracted immediately, and two residuals of its contractum,
ff, subsequently appear in term T4. In p3, however, Sy is not immediately contracted. Instead, the
reduction produces an intermediate term T containing two residuals of So. These residuals are contracted
in subsequent steps, ultimately yielding the term T';. However, unlike T4, the two ‘ff’ subterms of T; are
not residuals of any previousterm. Since the ‘ff’ subtermsof T'y have a common progenitor, the definitions
of Section 7.1 allow information common to the slices of the ff subterms of 7'y to be omitted when the
nonlinear rule [B4] is applied. In the case of T;, however, the ‘ff’ subterms have no common progenitor,
and thus no information can be omitted.

It should be clear from the example of Fig. 9 that the notion of progenitor is dependent upon reduction
order. One way to avoidthe problemsillustrated by Fig. 9 isto use an innermost reduction strategy, in which
all redexes are contracted before they are residuated. However, if we do not wish to impose restrictionson
allowable reduction strategies, we must take into account the behavior of reductions such as p2, in which
terms that have no common progenitor could have had a common progenitor if the redexes were contracted
in adifferent order.

Put another way, we must treat sets of termsthat are all “derived inthe same way” from aset of residuals
with acommon progenitor as equival ent to sets of terms with atrue common progenitor. Maranget [22, 23]
defines a notion of equivalence modulo permutation of redexes that could be used for determining when
classes of terms are or could have been residuals of a common term. However, if reductionisimplemented
using term graph rewriting techniques, terms that have common progenitors and terms that could have
common progenitors are indistinguishable. In the case of the example in Fig. 9, both term Ty and term T
would be represented by identical graphsin which the ‘ff’ subterms would be shared.

Unfortunately, even graph rewriting does not eliminate the possibility of computing suboptimal slices
for nonlinear systems. Consider, for instance, the following TRS E:

[E1]  f(X) — eq(g(X), h(X)) [E4] k(@)

[E2]  h(X)— k(X) [E5]  eq(X, X)
[E3]  g(X) — k(X)

—
—

b
c

Note in particular that rule [E5] is nonlinear. Now consider the following E-reduction:

p: f@) B eqo@), h@) 2 egke@), @) 2 eqka), k@)
B e k@) e, py=7 B

In principle, we ought to be able to determine that the slice with respect to the final term ‘¢’ of p isf( @),
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since we can attain the same final term by omitting the fourth and fifth reduction steps entirely. However
it is difficult to see how any information short of maintaining the entire reduction history could be used
to determine that thisis the case. In particular, note that the ‘b’ subterms of the intermediateterm T"in p
do not have a common progenitor, nor are they derived in an “equivalent” way from the sets of residuals.
Therefore, we cannot use information about the derivations of the ‘b’ subterms in isolation as a means for
allowing common slice information to be omitted when rule [E5] is applied.

We are led to conclude that short of maintaining information about an entire reduction history, the only
systematic way to treat nonlinear rules is to eliminate information associated with nonlinearly-matched
subterms possessing a common progenitor (generalized using graph reduction techniques to account for
“potential progenitors’). Itisconceivable, however, that arestricted class of reduction systems or reduction
strategies could eliminate the problems exhibited in the example of Fig. 9. We leave it to future work to
explore these possibilities further.

8 Implementation

8.1 Overview

In principle, one could implement slicing by storing information about every step of a reduction p, then
computing Slicex? based on this information. In practice, such an approach is infeasible since it would
require space and time proportional to the length of p for each choice of criterion. We will instead describe
an alternate method that allows slicesto be produced as a“ side-effect” of the reduction process, inaway that
efficiently computes slices with respect to any chosen criterion. Thistechnique has been implemented in the
SML language [24] for aclass of conditional term rewriting systems; this class subsumes the unconditional
linear and nonlinear systems discussed in this paper.

Our technique will use a variant of the term graph representation [4, 20]. In such a representation,
every function symbol in a term corresponds to a unique graph node. However, since shared subgraphs
(corresponding to sets of residuals) may be created during the reduction process, a graph node may represent
several function symbolsin the corresponding term.

Our graph representation will use two distinct node types, as follows:

elementary nodes: These correspond to the usual term graph nodes. Each such node will contain informa-
tion used to compute dlices for the elementary contexts (i.e., function symbols—contexts of the form
f(e, ---, @) represented by the node.

empty context nodes: These represent empty contexts in the term denoted by the graph. Each empty
context node will contain information used to compute the union of al slices for the empty contexts
that the node represents (recall that Slicex” is not necessarily single-valued on empty contexts).
Empty context nodeswith non-null sliceinformationare created as a result of applying collapserules.
Such rules are implemented using specia indirection elementary nodes [26], which are subsequently
transformed into empty context nodes.

A dlice with respect to any hon-empty context D isdetermined by computing the union of the sliceswith
respect to all elementary and empty contexts that are a subcontext of D. These dices are in turn obtained
using information from the elementary and context nodes in the graph representing the term. Slices for
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OriginSet m= Path set

Path m= int list

Operator i:: v

EmptyContextinfo  ::= OriginSet

EmptyContextNode ::= C{( ElementaryNode ref, EmptyContextinfo )
ElementaryNode u= JF(Operator, TermGraph list, OriginSet)
TermGraph 1= EmptyContextNode ref

Figure 10: Type definitionsfor data structuresimplementing termsin linear TRSs.

the elementary and empty contexts are represented by sets of paths in the initial term; these sets can be
represented by bit vectors to allow unionsto be computed efficiently.

Given a TRS, our technique “compiles’ each rewriting rule into a fragment of executable code that
carries out a corresponding transformation on a term graph representation. This code makes use of several
auxiliary functionsto perform unions of the sets of paths used to represent dlices, to process indirectionand
context nodes, and to implement equality tests for nonlinear rules. The set of rewriting rules can then be
applied and ordered according to a variety of user-specified strategies; however, here we will focus solely
on the implementation of individual rules.

In the next section, we provide details on the implementation of dlicing for linear TRSs. We will then
extend those ideas to nonlinear TRSs. Rather than providing a full algorithm for compiling, rewriting, and
extracting slices (most aspects of which amount to tedious inductive application of simple trandation rules
to terms, rewriting rules, and rewriting strategies), we will instead illustrate its key pointsby example.

8.2 Implementing Linear Systems

In describing our implementation technique, we will use a simplified dialect of SML in which basic data
typesmay taketheform of fixed-arity constructors, positiveintegers, lists, sets, and references (i.e., pointers)
to the other data types. A reference is mutable, i.e., the value to which it refers may be updated in place.
If the value to which a reference pointsis updated, all other instances of the same reference will “see” the
update; thusreferences can beregarded as edgesinadirected graph. All the other basic typesare immutable;
once instantiated, they cannot be altered. For linear systems, our data structures will be constructed from
the recursively-defined types given in Figure 10.

An OriginSet is a set of Path data structures, the contents of which denote a context of the initial term
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which comprises a dice. A Path will be represented by a list of integers, as defined in Section 2. An
EmptyContextNode is represented by the C{ -, - ) constructor; such a node is comprised of a reference
to an elementary node and auxiliary information about the empty context node (EmptyContextlnfo). For
linear systems, EmptyContextInfo is simply an OriginSet representing the union of al slices for the empty
contexts represented by the empty context node (the definition for EmptyContextlnfo will become dightly
more complex when we consider nonlinear systems in the next section). An ElementaryNodeis represented
by the 7 (-, -, - ) constructor; such a node is comprised of an Operator, a list of TermGraph children, and
an OriginSet containing the slice information for the elementary contexts represented by the elementary
node. Operators are represented by nullary constructors, which we will depict without argument delimiters
(‘¢ and*)") for brevity. In addition to the signature-specific operators determined by the TRS, thereisaso
a distinguished indirection operator, V, which will be used in conjunction with collapse rules. Findly, a
TermGraph is simply a reference to an empty context node.

8.2.1 Compiling Reduction Rules

Figure 11 depictsthe compiled code corresponding to thefirst three rules (i.e., the linear rules) of the system
B of Figure 4.

In the code depicted in Figure 11 and in other code in the sequel, et expressions extract component
values from composite data structures through the use of patterns containing free variables. The wildcard
pattern, * _’, is used when a component’svalue is not of interest. Theref keyword is used in expressions or
patterns respectively to build or extract mutable values. An expression may be matched against a sequence
of patterns using a case expression; values bound to variables on the left-hand side of the ‘=" symbol in a
clause of the case expression may be used in the expression returned by theright-hand side. References are
updated using ‘:=". Sets are manipulated using ordinary set notation. skip represents the null statement.
Each instance of a constructor, list, or set isa newly allocated instance distinct from other instances.

The function oneStepRewrite(termGraph) uses one of the three rewriting rules of termGraph, if ap-
plicable, to transform the root of the graph in place. If none of the rules are applicable, the graph is left
untransformed. It should not be difficult to see that the computations performed on path sets in Figure 11
correspond to the components of Definition 4.1.

Note in Figure 11 that rule [B2] is a collapse rule. As a result, an indirection node is “ created” when
the rule is applied. The function compressOnelndirection(termGraph) depicted in Figure 12 is used to
“compress’ indirections by merging the origin sets for the indirection elementary context into the origin
sets for the empty context nodes “above” and “below” theindirection.

8.2.2 Reducing the Graph

Figure 13 depicts the reduction of the B-term T' = ff A (tt & tt) to theterm T/ = ff & ff using our graph
representation. At each step, the subgraph delimited by a dashed line istransformed by the oneStepRewrite
function. In the graph representing 7', each path set annotating an elementary or empty context node is
initialized to the singleton set containing the path of the corresponding function symbol or empty context in
T'. Inthe second graph of the reduction depicted in Figure 13, note that two references to the same subgraph
are created. This shared subgraph corresponds to the two residuas of the ff subterm in 7'. Finally, note
that the last two steps apply rule [B2], a collapse rule. This causes two indirection elementary nodesto be
created.
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fun oneStepRewrite(termGraph) =
let ref C( elemRef, _ ) = termGraph
and ref elemNode = elemRef in
case elemNode of
FIA, [ X ref C{ref F{(®, [Y, Z],01), 02)], 03) = (* Rule
let 0 =0, U0, U0z iN
demRef := F( &,

[ ref C{ref F(A, [X, Y], d), 0),
ref C{ref F(A, [X, Z],d), 0 )],
o)
end
| F(A, [ X ref C{ref F{tt,[ ], 00), 02)], 03) = (* Rule
let 0 =0, U0, U0z iN
eemRef := F(V, [X],0)
end
| F(A, [ X ref C{ref F(ff,[],00), 02)], 03) = (* Rule

let =0, U0, U0z iN
elemRef := F(ff,[], o)
end

| - = skip
end

[B1] *)
[B2] *)
[B3] *)

Figure 11: Compiled single-step reduction function for the linear TRS comprised of thefirst three rules of

B.
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fun compressOnelndirection(termGraph) =
let ref contNode = termGraph
and C( elemRef, 0; ) = contRef in
case elemRef of
ref F7{V, [ref C{childElemNode, 0, )], 03) =
let 0 =0, U0, U0z 1IN
contNode := C€{ childElemNode, o’ )

end

| - = skip
end

Figure 12: Compression function for indirection nodesin linear TRSs.

8.2.3 Compressing Indirections

The indirection nodes created during the reduction depicted in Figure 13 inhibit the application of further
reduction rules. As a result, the administrative function compressOnelndirection, depicted in 12, is used
where necessary to “compress’ away the the indirections to yield a new graph to which further reduction
rulescan beapplied. Anindirectionnode can bethought of asa“ proto” empty context node; each application
of compressOnel ndirection thus merges path sets for adjacent contexts during compression to compute the
union of slices with respect to the single empty context node that exists after compression.

Figure 14 depi ctsthe compression of thetwoindirection nodesinthelast graph of Figure 13 (representing
theterm T" = ff & ff) using function compressOnelndirection. In practice, indirections can be compressed
on demand as required by the rule matching process, which avoids traversing the entire graph between
each reduction step. However, to ensure that shared chains of indirections are not repeatedly compressed,
function compressOnelndirection must be applied “bottom-up”, that is in reverse topological sort order
relative to the root of the subgraph being reduced.

8.2.4 Computingthe Slice

To compute the slice with respect to any context represented by the final term of a reduction, one merely
takes the union of path sets in the subgraph of the final graph that represents the slicing criterion. Thus, for
exampl e, the path sets corresponding to elementary or empty contextsin the subterm ff & @ of thefinal term
of the reduction represented by the last graph in Figure 14 are

10),(2)}
10),(1),(2),(2,1)}
()}

Their unionis

10),(1),(2),(2,1)}
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Figure 13: Graph reduction corresponding to the first three steps of the B-reduction of Figure 5. The
subgraph transformed at each step by oneStepRewrite is delimited by a dashed line.
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OriginSet m= Path set

Path 2= int list
Operator =V

|
EmptyContextinfo  ::= (O{( OriginSet, IndirectionList )
IndirectionList = (ElementaryNode ref) list
EmptyContextNode ::= C( ElementaryNode ref, EmptyContextinfo)

ElementaryNode F{ Operator, TermGraph list, OriginSet)

TermGraph

EmptyContextNode ref
Figure 15: Type definitions for data structures implementing termsin nonlinear TRSs.

which represents the context
ffAtte @

intheinitial term.

8.3 Implementing Nonlinear Systems
8.3.1 Additional Data Structures

The type definitions for the data structures used to implement nonlinear systems are depicted in Figure 15.
These definitionsare amost identical tothose used for linear systems. The only difference inthiscase isthat
EmptyContextlnfois now defined as apair, built with theconstructor O{-, -). Thefirst component of thepair
is an OriginSet, and represents the same information as the OriginSet used to represent EmptyContextl nfo
datain thelinear case. The second component of the pair isan IndirectionList containing alist of references
to indirection ElementaryNodes. The indirections in the list are those that are “compressed away” in
compression operations performed on the empty context with which the list is associated.

8.3.2 Reducing the Graph

Figure 16 depicts the updated single step rewriting function, oneStepRewrite’ used for the full system B.
Note that the code for first three (nonlinear) rules is essentially unchanged from the linear version; the
contents of the indirection list components of the EmptyContextlnfo structures are ignored.
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However, the code implementing the nonlinear rule
[B4 XpX—ff

is more interesting. First, note that the two instances of the nonlinear variable X have been replaced by
distinctinstances X; and X,. Thefunction termsEqual is used to check whether theterm representation of its
term graph arguments are the same (we will not supply the details of termsEqual, whichinitssimplest form
can be implemented as a recursive traversal over the “flattened” tree images of its term graph arguments).
If the nonlinearly-matched term graphs are not equal, then the rule is not applied. If, however, the terms
are equal, then another auxiliary function, originsOfEqual Terms, is used to compute the origin sets to be
associated with the created contexts on the rule’s right-hand side. We will discuss this function further in
Section 8.3.4.

8.3.3 Compressing Indirections

The indirection compression function for nonlinear systems, compressOnelndirection’, is depicted in Fig-
ure 17. This function performs the same operation on origin sets as its linear counterpart in Figure 12.
However, the nonlinear version also creates a new indirection list by first appending a reference to the
compressed indirection node to the indirection list for the parent empty context node, then concatenating
theindirection list for the child empty context node to the result (thelist concatenation operationis denoted
by ‘@’). The indirection list in the EmptyContextInfo structure thus contains all of the indirection nodes
involved in any contiguous chain of applications of the compression function.

Figure 18 depicts the nonlinear analogue of the linear indirection compression operations depicted in
Figure 14.

8.3.4 Computingthe Origin Setsfor Equal Terms

The code for originsOfEqual Terms and severa related auxiliary functions are depicted in Figure 19. This
function computes the union of origin sets representing pairs of equal elementary or empty contextsthat do
not have a common progenitor (see Section 7.1. Such subcontextsare treated as part of the creating context
for anonlinear rule.

Those elementary or empty contexts with acommon progenitor are represented in term graph rewriting
systems by the same graph node. In our implementation, the identity of two nodes can be determined by
testing the references that point to them for equality.

originsOfEqual Terms compares its empty context reference arguments for equality. If the references
are identical, then the origin set computed by the function is empty (i.e., the contexts are not part of the
creating context since they have a common progenitor). If the references are not identical, then the func-
tions originsOfEqual ElemRefs and originsOfReversedindL ists are invoked to process the corresponding
elementary nodes and the indirection lists. The indirection lists are reversed before being processed by
originsOfReversedindL ists, since the lists do not necessarily have the same length, and any indirections
shared by both lists must be part of a common list tail.

originsOf Equal ElemRefs compares two references to elementary nodes. Asin the empty context case,
the empty origin set isreturned if the references point to the same node. Otherwise, the argument lists are
processed recursively using originsOfEqual TermL ists (we will not depict its implementation here), and the
result combined with the origin sets for the two elementary nodes.
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fun oneStepRewrite (termGraph) =
let ref C{ elemRef, _ ) = termGraph
and ref elemNode = elemRef in
case elemNode of
f</\7 [X7 refC(rdf(@, [Ya Z]v 01>7 O<027 —>>]7 03> = (*
letd =0, U0, U0z iN
eemRef := F( &,
[ ref C(ref F(A, [X, Y], d), O(d, [])),
ref C{ref F(A, [X, Z 0
o)
end

| f</\a[erefc<reff<tta[]701>70<027—>>]703>:> (*
let 0 =0 U0 UOziN
demRef = F(V, [X], o)
end

| f<A7[XarefC<reff<ff7[]701>70<027—>>]703>:> (*
let 0 =0 U0 UOziN
demRef := F(ff, [], )
end

| f<@,[X1,X2],01>I> (*
if termSEqual(Xl, Xg)
then
let o' = 0, U originsOfEqual Terms( Xy, Xz) in
elemRef := F(ff, [ ], 0)
end
else skip

| - = skip
end

Rule

Rule

Rule

Rule

[B2]

Figure 16: Compiled single-step reduction function for the nonlinear full nonlinear TRS B.
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fun compressOnelndirection’ (termGraph) =
let ref contNode = termGraph
and C{ elemRef, O( 04, indList; ) ) = contRef in
case elemRef of
ref F(V, [ref C{ childElemNode, o; )], O{ 03, indList; ) ) =
let 0 =0, U0, U0z 1IN
contNode := C{ childElemNode, O( o/, indList; @[ elemRef ] @ indList; ) )

end

| - = skip
end

Figure 17: Compression function for indirection nodes in nonlinear TRSs.

Finally, originsOf ReversedIndL istsprocessesreversedindirectionlistsby comparing their head elements
(each of whichisareferenceto anindirection node) and ignoring the originsfor those nodeswhosereferences
point to the same node. The auxiliary function originsOfAlllnds not depicted here, simply returnsthe union
of the origin sets associated with all the indirection nodes in itsargument list. Note that the operator * ::" is
thelist constructor.

8.3.5 Computingthe Slice

Figure 20 depicts the result of applying rule [B4] to the compressed graph depicted in Figure 18. Note
that the two indirectionsdepicted, which are traversed by originsOfEqual Terms when computing the origin
information for the nonlinearly-matched subgraphs, are not shared. Thustheir origininformationis merged
into the created subgraph representing the final term, ff.

The slice with respect to the final term of the reduction, ff, is represented by the origin set associated
with the single elementary node representing theterm. Thisset is

10),(2),(2,1),(2,2)}

and represents the context
o Nttt

intheinitial term.

8.3.6 Nonlinear Variableson Rule Right-Hand Sides

Our prototypical TRS B lacks a nonlinear rule in which the nonlinear variable appears on the term’s right-
hand side. In such cases, Definition 7.4 requires that the graph representing the term bound to the nonlinear
variable on the right-hand side of the rule be constructed from two distinct classes of subgraphs:
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Figure 18: Compression of indirection nodes, nonlinear case. The subgraph transformed at each step by
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fun originsOfEqual Terms(termGraph,, termGraph,) =
if termGraph, = termGraph,
then 0
else
let ref C{ elemRef,, indList; } = termGraph,
and ref C{ elemRef,, indList; ) = termGraph, in
originsOfEqualElemRefs(elemRef,, elemRef,)
U originsOfindLists reverse(indList; ), reverse(indListz))
end

fun originsOfEqualElemRefs(elemRef;, elemRef,) =
if elemRef; = elemRef,

then 0

else
let ref F( _, operandList,, 0; ) = elemRef;
and ref F( _, operandList,, 0; )} = elemRef, in

01 U 02 U originsOfEqual TermL ists(operandList,, operandList,)

end

fun originsOfReversedindListd[ ], [ ]) =
0

| originsOfReversedindListsindListHd; ::indListTly, [ ]) =
originsOfAllInds elemRef, :: indListTl;)

| originsOfReversedindListy[ ], indListHdy :: indListTl;) =
originsOfAllInds elemRef , :: indListTl)

| originsOfReversedindLists elemRef, :: indListTl,, elemRef, ::indListTly) =
if elemRef; = elemRef,
then originsOfReversedindLists(indListTl, indListTl;)
else
letref 7{ _, _, 01 ) = elemRef,
andref 7{ _, _, 0o ) = elemRef, in
0; U 0z U originsOfReversedindListgindListTl 1, indListTl;)

Figure 19: Functionsfor computing origin sets for pairs of equal terms.

39



clp ot {{I 1100 IR
AR SR (BRI

o({[1[1].[2).[22} [3))) /
F7. Lyl A0 (2 L))

‘\c< o({[1[0[2 20k [3])) N
S| PO L AL [2) (20D

/'-0<{[1]}v BpY)
FOELT AT

[B4]

c{po({[J}L[1))
F(LL1AL] (2. [21).[22]})

Figure 20: Graph reduction corresponding to the last step of the B-reduction of Figure 5. The “creating”
context for this step is delimited by a dashed line.
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¢ Shared residuated subgraphs, each of which represents a set of corresponding contexts in the equal
terms, al of the latter of which have a common progenitor.

e A created subgraph corresponding to the remaining (non-residuated) context common to the equal
terms.

8.3.7 Improving the Implementation of Equality Functions

Asdescribed in Figure 19, the function originsOfEqual Term effectively traverses the “flattened” tree image
of the graph. Unfortunately, it is easy to construct examples in which the size of the tree image of a
term graph is exponentially larger than its graph representation. To avoid the possibility of incurring severe
efficiency penaltieswhen performing equality testson such graphs, avariant of the Hopcroft/Karp algorithm
for determining equivalence of finite automata [18] (described in[3, pp. 143-145]) can be used to partition
the graph nodes representing equal terms into equivalence classes. The recursive traversal required by the
origin set processing functions for equal subterms can then be carried out on a data structure representing
the induced graph of equivalence classes (whose size is bounded by the sum of the sizes of the graphs
representing the equal terms), rather than on the tree images of the term’s graphs.

8.4 Complexity Issues

If path sets areimplemented by bitmaps, the extraadministrative steps requiredto track dynamic dependence
information during each reduction step can be implemented in time proportiona to the size of the initial
term. The number of unions per reduction step is bounded by the number of function symbolsthat need to
be matched. Consequently, the overhead per reduction step of performing path set unionsis linear in the
size of theinitia term.

If indirections are compressed in reverse topological order relative to the root of any subgraph to be
transformed by areduction step, then the number of compression steps necessary to eliminate all indirection
nodesin any graph is proportional to the number of graph edges linking empty context nodes to indirection
nodes. In any reduction sequence, the number of such edges generated is proportional to the sum of the size
of theinitia graph and the number of reduction steps in the sequence. Thus the overhead of indirection
compression per reduction step is constant when amortized over any reduction sequence longer than the
size of theinitial term; otherwise the overhead is bounded by the size of the initial term.

In nonlinear systems, it is in principle possible to create chains of indirection nodes whose length is
proportional to the length of the entire reduction. Traversing the indirection lists for such chains when
processing the origin sets for equal terms could thusincur an overhead per reduction step linear in the size
of the entire reduction. In practice (e.g., modeling C semantics in [14]), this phenomenon has not proved
to be a problem. Long chains of indirections are rarely constructed, and it is even more unusua for such
chains to be subsequently traversed during equality tests. If this phenomenon were to occur in practice,
slices for nonlinear systems could be computed without the overhead of indirection traversal by using the
EmptyContextlnfo representation for nonlinear systems, albeit at the cost of computing larger than necessary
slices in some cases.
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Figure 21: Overview of the parametric slicing approach of [14].

9 Applications

Dynamic dependence tracking has been applied successfully to a number of different application domains.

9.1 Parametric Program Slicing

In [14], dynamic dependence tracking is applied to Pim, [5], an intermediate program representation whose
behavior is defined by an equational logic. A subsystem of the full Pim system can be used not only to
execute programs, but also to perform various kinds of analysis and optimizations by simplification of a
program’s Pim representation.

To compute the dlice of a program with respect to the final value of avariable z, aterm is constructed
that “encodes’ (i) the abstract syntax tree (AST) of the program possibly containing meta-variables denoting
unknown values or inputs, (ii) the variable z that representsthe dlicing criterion, and (iii) a (possibly empty)
set of additional constraints on meta-variables. Next, the AST is trandated to a graph comprising its
Pim representation. This trandation is assumed to be defined by a rewriting system (although it need not
necessarily beimplemented that way). The resulting graph isthen simplified by repeated application of sets
of rewriting rules derived from the Pim logic. The graph that results from the reduction process represents
the fina value of variable z (in terms of the unconstrained meta-variables). Tracing back the dynamic
dependence relations from this graph to the AST of the program yields the desired dlice, as a subcontext of
the AST. If thissliceisrequired to be a parseable representation of the program, an optional post-processing
step is performed. The approach isillustrated in Figure 21.

The approach of [14] is distinguished by the fact that changes to the behavior of the dlicing algorithm
can be accomplished through simple changes in the rewriting rules that define the semantics of the program
representation. Thus, e.g., different notionsof dependence may be specified, properties of language-specific
datatypes can be exploited, and various time, space, and precision tradeoffs may be made. This flexibility
enables the generalization of the traditional notions of static and dynamic slices to that of a constrained
slice, where any subset of the inputsof a program may be supplied.
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9.2 Dynamic Program Slicing

In[28], dependence tracking is applied to the al gebrai ¢ specification of an interpreter for the language ClaX,
a Pascal subset. This specification consists of a set of conditional rewriting rules, which can be executed
by conditional term rewriting. The specification starts with a term representing the program’s AST, and
constructsaterm that represents the stack of activation records containing the current valuefor each variable.
Execution of a statement is modeled by rewriting the activation stack appropriately. A dynamic sliceswith
respect to the current value of a variable v is computed by tracing back the dynamic dependence relations
from the subterm representing v's value. The resulting slices can be postprocessed (i.e., ®@-subterms are
transformed away) for the sake of enhancing readability.

9.3 Locating TypeErrors

Dinesh and Tip [11] present an approach where the behavior of a type checker isalgebraically specified by
way of a set of conditional equations. This type checker specification is executed by way of conditional
term rewriting. The rewriting rules of this system express the type checking process by transforming a
program’s abstract syntax tree (AST) into a list of error messages. Dynamic dependence tracking is used
to associate a slice P. with each type error e that occurs when type-checking program P. This slice serves
as the positional information associated with an error message, but it has an interesting semantic property:
type-checking P, is guaranteed to produce the same type error e.

The approach of [11] has been implemented for the language ClaX, a significant subset of Pascal.
Figure 22 shows a snapshot of the generated error reporting tool. A discussion of the engineering issues
that came up during the implementation of the ClaX environment can be found in [10].

9.4 Tracing the Originsof Verification Conditions

In his Ph.D. thesis [17], Fraer presents a variation of dynamic dependence tracking for systems based on
inferencerulesinstead of rewriterules. Fraer uses dependence tracking for tracing the origins of verification
conditionsgenerated by a Verification Condition Generator (VCG) [16]. A VCG takesasinput animperative
program annotated with Hoare logic assertions (pre/postconditions and loop invariants) and outputs a list
of verification conditions that are submitted as input to a theorem prover. Dependence tracking is used
in situations where the proof of some verification condition fails, in order to determine what program
components or verification conditions need to be modified. Fraer implements dependence tracking by
instrumenting the inference rules and terms to propagate dependence information.

10 Related Work

The term “dlice” wasfirst coined by Weiser [32], and defined for imperative programming languages using
dataflow analysis. Subsequent work, beginning with that of Ottenstein and Ottenstein [25], has focused on
use of program dependence graphs [12] for computing slices. Cartwright and Felleisen [8] and Venkatesh
[30] discuss the denotational foundations of dependence and dlicing, respectively for similar classes of
languages; however, they do not provide an operational means to compute slices. [29] provides a survey of
current work on program slicing.



PROCEDURE square (VAR n :
DECLARE

INTEGER) ;

END;
BEGIN (*Dmain program *}
i:=10;
WHILE 1 < 0 D0
WRITE("Enter number greater than 0");
READ(1);
END; 1

text expand help
undefined-label i;
miltiple-declaration-in-same-scope n;
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Figure 22: The ClaX environment. Thetop window is aprogram editor with two buttons attached to it for invoking
atype checker and an interpreter, respectively. The middle window showsalist of four type errors reported by the type
checker, in which the error message “in-call expected-arg VAR INTEGER found-arg REAL” is selected, indicating a
mismatch betweenformal and actual parameter typesin a procedurecall. Thebottom window showsthe slice computed
for thiserror message, containing all program componentsthat contributed to the selectedtypeerror. The‘<?>" symbols
in the slice denote placeholdersfor program constructs not contributing to the error message.



A number of authorshave considered various* labeling” or “tracking” schemeswhich propagateauxiliary
informationin conjunctionwith reduction systems; these schemes are similar in some respects to the method
we will use to implement slicing. Bertot [6, 7] defines an origin function, which is a generalization of the
classic notions of residual and descendant in the lambda-calculus and TRSs. He applies this idea to the
implementation of source-level program debuggers for languages implemented using natural semantics
[19]. Van Deursen, Klint and Tip [9], addressing similar problems, define a dlightly expanded class of
“origin” information for the larger class of conditional TRSs. However, dlicing is not considered in these
papers, nor do these “tracking” algorithms propagate information appropriate for computing slices.

In[21] (page 85), Klop presents a “tracing relation” which is very similar to our dynamic dependence
notion, and observes that it can be used to distinguish the needed prefix and the non-needed part of a term.
In our terminology, the needed part is the slice with respect to the entire normal form, and the non-needed
parts correspond to the “holes” in this slice. In other words, replacing the non-needed parts by arbitrary
subterms will result in the same normal form. There are two main differences with our work. First, Klop's
tracing relation is only defined for orthogonal TRSs. This ensures that the normal form resulting from
replacing non-needed partsis exactly the same as the normal form of the original term. Second, for collapse
rules the top symbol of the reduct is considered to be “created”. As we discussed earlier, thisgivesrise to
slices being non-minimal. Finally, Klop does not study the use of tracing relationsfor program slicing, nor
does he give an algorithm to compute hisrelation efficiently in practice.

In certain respects, our technique is the dua of strictness analysis in lazy functional programming
languages, particularly the work of Wadler and Hughes [31] using projections. Strictness analysisis used
to characterize those subcomponents of a function’s input domain that are always needed to compute a
result; we instead determine subcomponents of a particular input that are not needed. However, there are
significant differences. strictness analysis is concerned with domain-theoretic approximations of values,
usually requires computation by fixpoint iteration, and rarely addresses more than a few core functional
primitives. By contrast, we perform exact analysison a particular input (although we can effectively perform
some approximate analyses by reduction of open terms), compute our results algebraically, and can address
any construct expressiblein TRS form.

Maranget [22, 23] provides a comprehensive study of lazy and optimal reductionsin orthogonal TRSs
using labeled terms. Although Maranget’s label information could in principle be used to compute slices,
he does not discuss such an application, nor does he provide any means by which such labels could be used
to implement dlicing. Like Klop, Maranget aso only considers orthogonal TRSs. Our approach covers a
larger class of TRSs, and provides a purely relational definition of slice which does not require labeling.

Abadi et a. independently devel oped a technique similar to dependence tracking for several variations
of the A-calculus [1]. The motivation of their work is incremental evaluation: their work is stated as a
technique for “caching” results of rewriting A-terms in order to avoid the subsequent rewriting of similar
terms. In the approach of [1], some or all of the function symbols in a A-term are labeled with a unique
label, and additional rules are introduced for pushing labels outward so that the “standard” reductions can
take place. After normalizing a A-term, the labels that remain in the normal form are precisely those of the
context (prefix, using their terminology) that was needed to perform the reduction (i.e., theterm slice). The
approach by Abadi et al. ismore limited than oursin a number of respects:

e The approach of [1] heavily relies on an outermost reduction strategy. If an innermost rewriting
strategy were to be used, all labelswould be pushed outward before they could be eliminated, and the
computed slice would consist of the entireterm. Our approach is not limited in this respect.
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e Abadi et a. only consider a number of variations on the A-calculus, which are particularly well-
behaved TRSs. Although their approach could easily be extended to other TRSs that are orthogonal
[21], its practical applications are severely limited by the inability to deal with nonlinear rewriting
rules and collapse rules.

11 FutureWork

An important question for future work is to define classes of TRSs for which slices are independent of the
reduction actually used. While orthogonal systems certainly have this property, we believe it should be
possible to characterize non-orthogonal systems for which this property also holds.

We have begun efforts to extend our techniques to conditional rewriting systems and lambda calculi
(i.e., systems with variable-binding constructs). A preliminary implementation of these ideas has proved
promising, but aformal study remains to be done.
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