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Abstract

Program slicing is a useful technique for debugging, testing, and analyzing programs. A program
slice consists of the parts of a program that (potentially) affect the values computed at some point of
interest. With rare exceptions, program slices have hitherto been computed and defined in ad-hoc and
language-specific ways. The principal contribution of this paper is to show that general and semantically
well-founded notions of slicing and dependence can be derived in a simple, uniform way from term
rewriting systems (TRSs). Our slicing technique is applicable to any language whose semantics is
specified in TRS form. Moreover, we show that our method admits an efficient implementation.

Viewed more abstractly, our techniques yield a method for automatically deriving certain minimal
equational theorems on open terms as a consequence of deriving a single theorem about a closed term.
Our techniques can thus be used to augment the capabilities of equational theorem proving systems.

Key Words & Phrases: program slicing, term rewriting, dependence analysis, origin tracking.

1 Introduction

1.1 Overview

Program slicing is a useful technique for debugging, testing, and analyzing programs. A program slice
consists of the parts of a program which (potentially) affect the values computed at some point of interest,
referred to as the slicing criterion. As originally defined by Weiser [32], a slicing criterion was the value
of a variable at a particular program point and a slice consisted of an “executable” subset of the program’s
original statements. Numerous variations on the notion of slice have since been proposed, as well as
many different techniques to compute them [29], but all reduce to determining dependence relations among
program components. Unfortunately, with rare exceptions, the notion of “dependence” has been defined in
an ad-hoc and language-specific manner, resulting in algorithms for computing slices that are notoriously
difficult to understand, especially in the presence of pointers, procedures, and unstructured control flow.
The contributions of this paper are as follows:

�Some of the material in this paper appeared in preliminary form in [15] and [27].
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� We define a general notion of slice that applies to any unconditional term rewriting system (TRS).
Our definition uses a relation on contexts derived from the reduction relation on terms. This relation
makes precise the dynamic dependence of function symbols in terms in a reduction sequence on
symbols in previous terms in that sequence. Our notion of dependence does not require labeled
terms [6, 7, 22, 23], and is distinguished by its ability to treat (normally problematic) TRSs with
left-nonlinear rules.

� Our notion of slicing is more general than those defined in previous work. The distinction traditionally
made between “static” and “dynamic” slicing can be modeled by reduction of open or closed terms,
respectively. Partial instantiation of open terms yields a useful intermediate notion of constrained
slicing. Although Venkatesh defines a similar notion abstractly [30], he does not indicate how to
compute such slices.

� We describe the implementation of a practical algorithm to perform dynamic dependence tracking.
The algorithm operates by systematically transforming the original TRS to obtain an “instrumented”
version which gathers dependence information during the reduction process.

� Finally, for the case of left-linear systems, we present proofs that our definitions yield minimal and
sound slices.

In a companion paper [14], we show how extensions of the techniques discussed here can be used to
implement slicing in a standard programming language, and compare these techniques to other algorithms in
the literature. In [28], the dynamic dependence relation defined in this paper is used for providing dynamic
slicing facilities in generic source-level debugging tools. In this paper, we will concentrate primarily on
technical foundations.

1.2 Motivating Examples

Consider the program in Figure 1A. It is written in a tiny imperative programming language, P, whose
syntax is given in Figure 2. While extremely limited in its computational power, P contains constructs that
are representative of features found in real language:

� Expressions of the form x are atoms, and play the dual role of basic values and addresses which may
be assigned to using ‘��’. The distinguished atoms t and f represent boolean values.

� Addresses must be explicitly dereferenced using ‘�’ to yield the value associated with the address.

� A P do statement is executed by first evaluating its compound statement operand, which has the effect
of assigning values to one or more variables. Those values are then used to evaluate the in expression.
(Note that this is not a loop construct, but is executed only once.)

� Conditional (if) constructs come in two forms: one that operates on statements, and one that operates
on expressions.

We evaluate P programs by applying the rewriting rules of Figure 3 to the term consisting of the
program’s syntax tree until no further rules are applicable. This reduction process produces a sequence of
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program
do x �� a; w �� x; z �� b;

if w � � � x �
then y �� x �
else y �� b

in y � � x �

program
do x �� �; w �� x; z �� �;

if w � � � x �
then y �� x �
else �

in y � � x �

A: Original Program B: Minimal Slice

Figure 1: Example P Program.

terms ending with a normal form that denotes the result of the evaluation. The program in Figure 1A, for
instance, reduces to the normal form result t.

Figure 1B depicts the slice of the example program with respect to this normal form. The symbol ‘�’
represents subterms of the program that do not affect its result, a concept that we will formalize in the sequel.
It should be clear that a program slice is valuable for understanding which program components the slicing
criterion depends on to compute its value. Even in the small example of Figure 1, this is not immediately
obvious.

Slicing information can be used to determine what statements might have to be changed in order to
correct an error or to alter the value of the criterion. The techniques we describe also allow the programmer
the option of binding various inputs to values or leaving them undefined, allowing the effects of various
initial conditions to be precisely traced. This capability is unique to our approach, and derives from its
generality. In addition, by defining different (TRS-based) semantics for the same language, different sorts
of slices can be derived. For instance, by using variants of the semantics of Bergstra et al. [5], we can
compute both traditional “static” and “dynamic” [29] slices for the same language. Details of how this can
be done for a realistic language (a subset of C) may be found in [14].

In addition to applications in program development tools, we believe that our notion of a slice should
prove useful as an adjunct to theorem-proving systems, since it yields certain universally quantified equations
from derivations of equations on closed terms. Consider, for example, the simple TRS B in Figure 4, which
defines a few boolean identities (‘�’ denotes conjunction, ‘�’ exclusive-or). Figure 5 shows how B-term
ff� �tt� tt� can be reduced to ff. Observe that in deriving the theorem ff� �tt� tt� � ff, we actually derive
the more general theorem P � �tt � tt� � ff, for arbitrary P . From the point of view of slicing, the slice
with respect to the normal form ff is the subcontext �� �tt� tt� of the initial term (we will define the notion
of context precisely in the sequel). To determine such a slice, we must pay careful attention to the behavior
of nonlinear rules such as [B4] and [P1], which many authors on reduction-theoretic properties of TRSs do
not treat. In the sequel, we show how slices can be obtained by examining the manner in which rules create
new function symbols, and residuate, or “move around” old ones.

Note that the reduction of Figure 5 is not the only one which yields the normal form ff. In this case, the
same slice will be computed for any B-reduction starting with T�. Although in general slices may differ
depending on the particular reduction used, for the particularly well-behaved class of orthogonal TRSs [21],
it is easy to show that the slices computed are always the same regardless of the order in which rules are
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(atom tags) X ��� t
j f
j a
j b
...

...

(expressions) E ��� X
j E �
j E � E
j if E then E else E
j do S inE

(simple statements) L ��� E �� E
j if E then S else S

(compound statements) S ��� L
j S�L

(programs) P ��� program E

Figure 2: Syntax of P
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[P1] X � X � t

[P2] a � b � f for all constants a, b such that a �� b

[P3] if t then E� else E� � E�

[P4] if f then E� else E� � E�

[P5] if t then S� else S� � S�
[P6] if f then S� else S� � S�

[P7] do S in X � X
[P8] do S in E� � E� � �do S in E�� � �do S in E��
[P9] do S in if E� then E� else E� � if �do S in E�� then �do S in E�� else �do S in E��

[P10] do E� �� E� in �E� �� � if �do E� �� E� inE�� � E�

thenE�

else ��do E� �� E� in E�� ��
[P11] do S�E� �� E� in �E� �� � if �do S�E� �� E� in E�� � �do S in E��

then �do S in E��
else do S in ��do E� �� E� in E�� ��

[P12] do if E then S� else S� in E � if E then �do S� in E� else �do S� in E�
[P13] do S�� ifE� then S� else S� in E� � if �do S� in E��

then �do S��S� in E��
else �do S��S� in E��

[P14] program X � result X

Figure 3: Rewriting Semantics of P.

[B1] X � �Y � Z��� �X � Y �� �X � Z� [B3] X � ff�� ff
[B2] X � tt��X [B4] X �X �� ff

Figure 4: Boolean TRS B.
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ff � �tt� tt� � T�
[B1]
�� �ff � tt� � �ff � tt� � T�

[B2]
�� ff� �ff � tt� � T�

[B2]
�� �ff� ff� � T�

[B4]
�� ff � T�

Figure 5: A B-reduction; redexes are underlined.

applied.

1.3 Definition of a Slice

In general, we will define a slice as a certain context contained in the initial term of some reduction.
Intuitively, a context may be viewed as a connected (in the sense of a tree) subset of function symbols
taken from a term. For example, if f�g�a� b�� c� is a term, then one of several contexts contained in T is
g��� b�. The context contains an omitted subterm, or hole�, denoted by ‘�’. This hole results from deleting
the subterm a of T . We denote the fact that a context C is a subcontext of a term T by C v T ; naturally,
contexts as well as terms may contain subcontexts.

In a slice, holes denote subterms that are irrelevant to the computation of the criterion. Informally,
this means that replacing any hole in the slice would still allow the original criterion to be produced by a
“subreduction” derived from the original reduction. Definition 1.1 below (which is rendered pictorially in
Figure 6) makes these ideas precise.

Definition 1.1 (Slice) Let � � T ��� T � be a reduction. Then a slice with respect to a subcontext C � of T �

is a subcontext C of T with the property that there exists a reduction � � such that �� � C ���D� for some
D� w E�, E� �

� C �, and hC� ��� D�i 	 Project
�. Slice C is minimal if there is no slice with respect to
criterion C � that contains fewer function symbols.

Project
� denotes the set of subreductions derived from �. Such sets contain collections of triples of the
form hC� ��� C�i. Roughly, such a triple denotes the fact that contextC reduces to contextC � by a reduction
�� derived from rule applications that also occur in �. We will discuss Project
� further in Section 5. The
operator ‘ ��’ is used to indicate that two contexts are isomorphic (but may be “rooted” in different terms or
different subterms of the same term).

The notion of TRS-based slice we define in the sequel can be used for any language whose operational
semantics is defined by a TRS. Many languages whose semantics are traditionally defined via extended
lambda-calculi or using structuraloperational semantics also have correspondingrewriting semantics [2, 13].
Bergstra et al. [5] show how many traditional program constructs may be modeled equationally, and
implemented using a TRS.

2 Basic Definitions

In this section, we make precise the notion of a context introduced informally in the previous section. This
idea will be the cornerstone of our formalization of slicing and dependence. Instead of deriving contexts

�Some authors require that contexts contain exactly one hole; we will not.
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Figure 6: Depiction of the definition of a slice.

from terms, we view terms as a special class of contexts. Contexts will be defined as connected fragments
of trees decorated with function symbols and variables. We begin with a few preliminary definitions, most
of which are standard.

2.1 Signatures, Paths, Context Domains

A signature � is a finite set of function symbols; associated with each function symbol f 	 � is a natural
number arity�f�, its number of arguments. We will use a denumerable set of variablesV such that��V � �.
By convention, for each variable X 	 V, arity�X� � �. Lower-case letters of the form f� g� h� 
 
 
 will
denote function symbols and upper-case letters of the form X�Y� Z� 
 
 
will represent variables.

A path is a sequence of positive integers that designates a particular function symbol or subtree by
encoding a walk from the tree’s root. The empty path, ‘��’, designates the root of a tree; path �i� i� 
 
 
 im�
designates the ithm subtree (counted from left to right) of the subtree indicated by path �i � i� 
 
 
 i�m����. The
operation ‘
’ denotes path concatenation. Path p is a prefix of path q if there exists an r such that q � p 
 r;
this is notated p � q. If r �� �� then p � q. If p � q, then q �� p denotes the path r such that p 
 r � q. If
neither p � q nor q � p then p and q are disjoint, notated p j q.

A context domain P is a set of paths designating a connected fragment of a tree. This means that P
must (i) possess a unique root, root�P �� such that for all p 	 P , root�P � � p, and (ii) have no “gaps,” i.e.,
for all p� q� r such that p � q � r and p� r 	 P it must be the case that q 	 P .

2.2 Contexts

We can now define a context as a total mapping from a context domain to function symbols and variables:

Definition 2.1 (Context) Let � be a signature, V be a set of variables, and P be a context domain. Let �
be a total mapping from P to �� � V� and p be a path. Then a pair hp� �i is a �V-context if and only if:
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(i) For all q 	 P and s 	 � � V such that ��q� � s, q 
 i 	 P for some i implies that i � arity�s�.

(ii) If P �� �, then p � root�P�.

Clause (i) of Definition 2.1 ensures that a child of a function symbol f must have an ordinal number less
than or equal to the arity of f . Clause (ii) ensures that the root of the context is the same as the root of
its underlying domain, except when the domain is empty; in the latter case, we will say that the context
is empty. The definition is specifically designed to admit empty contexts, which will be important in the
sequel for describing the behavior of collapse rules, i.e., rewriting rules whose right hand sides are single
variables. Given context C � hp� �i, root�C� denotes the path p, and O�C� the domain of �. We will use
Cont���V� to denote the set of all �V-contexts.

Given a path p and context C, if either C is empty and p � root�C�, or if p �	 O�C� and there exists
path q 	 O�C� such that p � q 
 i, ��q� � f , and i � arity�f�, then we will refer to p as a hole occurrence
of C. A hole occurrence thus corresponds to a child “missing” from a context. The set of hole occurrences
in a context C will be denoted by O��C�.

We will use the operator ‘�’ to denote identity of contexts. For any context C and a path p, p � C
denotes an isomorphic context rooted at p obtained by rerooting C. This notation is useful for defining
contexts textually; e.g., p� f��� g�a���� represents a context rooted at p with two holes, binary function
symbols f and g and a constant a. p� � represents an empty context rooted at p. We will say that contexts
C and D are isomorphic, notated C �

� D, if �� � � C� � �� � � D�
A context C is a term if: (i) C has no hole occurrences, and (ii) root�C� � ��. Although the restriction

on the root of C is not strictly necessary, it results in a definition that agrees most closely with that used
by other authors. We will use Term���V� to denote the set of �V-terms. Letters C�D� 
 
 
will generally
denote arbitrary contexts, and S� T� 
 
 
 terms. Whenever convenient, we ignore the distinction between a
variable X and the term consisting of that variable. Some convenient operations on contexts are introduced
next.

For a context C, and S a subset of � � V, OS�C� denotes the set of paths to elements of S in C;
Ofsg�C� is abbreviated by Os�C�. The set of variable occurrences in a �V-context C, i.e., OV �C�, is
denoted vars�C�, and vars��C� is the set of variables which occur exactly once in C.

Two contexts are compatible if all paths common to both of their domains are mapped to the same
symbol. If C and D are compatible, C is a subcontext of D, notated C v D, if and only if one of the
following holds: (i) C and D are nonempty and O�C� � O�D�, (ii) C and D are empty and C � D, or
(iii) C is empty, D is nonempty, root�C� � q 
 i 	 O�D�, and q 	 O�D�. The third clause states that an
empty contextC is a subcontext of a nonempty context D only if its root is “sandwiched” between adjacent
nodes in D. This property will greatly simplify a number of definitions in the sequel. ContextsD and E are
disjoint if and only if there exists no context C such that C v D and C v E. If C and D are contexts such
that root�D� 	 �O�C��O��C��, C�D	 denotes the context C where the subcontext at root�D� is replaced
by D. A context C is elementary iff jO�C�j � 
.

A context forest is a set of mutually disjoint contexts. Forest S is a subforest of forest T , notated S v T ,
if and only if for all contexts C 	 S, there exists a context D 	 T such that C v D. Some convenient
set-like operations on context forests can be defined as follows: Let S and T be compatible context forests.
Then their union, notated S t T , is the smallest forest U such that S v U and T v U ; their difference,
notated S � T , is the smallest forest U such that U v S and S v �T t U�. If P is a set of paths, C �P
is the forest containing subcontexts of C rooted at paths in P. The notion of context replacement is easily
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generalized to a forest S. We will feel free to refer to a singleton forest fCg by its element C when no
confusion arises; e.g., “C tD”.

3 Term Rewriting and Related Relations

In this section, we formalize standard term rewriting-related notions using operations on contexts; we then
define the important related ideas of creation and residuation, which are derived from the rewriting relation.
We will first consider only left-linear TRSs; this restriction will be removed in in Section 7.

3.1 Substitutions and Term Rewriting Systems

A substitution is a finite partial map from V to Cont���V�, where � is a signature and V a set of variables.
Applying a substitution � to a context C corresponds to replacing each subcontext CX v C consisting
solely of a variable X by the context (root�CX � � ��X�), for all X on which � is defined. A term
rewriting system R over a signature � is any set of pairs hL�Ri such that L and R are terms over �, L
does not consist of a sole variable, and vars�R� � vars�L�; hL�Ri is called a rewrite rule and is commonly
notated L � R. For � � L � R 	 R we define L� � L and R� � R. A rewrite rule � is left-linear if
vars�L�� � vars��L��. If R is a TRS, then we define an R-contraction A to be a triple hp� �� �i, where p
is a path, � is a rule of R, and � is a substitution.

We use PA, �A, LA, RA, and �A to denote p, �, L��A�, R��A�, and �, respectively. Moreover, LA and
RA will denote the contexts �PA � LA� and �PA � RA�, respectively. TheR-contraction relation, ��R ,
is defined by requiring that T ��R T � if and only if a contraction A exists such that T � T ��A�LA�	 and
T � � T ��A�RA�	 The subcontext �A�LA� of C is an �A-redex, and the context �A�RA� is an �A-reduct;
these contexts are abbreviated respectively by RedexA and ReductA. As usual, ��� is the reflexive,
transitive closure of �� . A reduction � is a sequence of contractions A�A� � � �An such that if � is
nonempty, there exist terms T�� T�� � � � � Tn where:

T�
A��� T�

A��� T� 
 
 
Tn��
An�� Tn

This reduction is abbreviated by � � T���� Tn. A reduction � is a reduction of term T if there exists T �

such that � � T ��� T �. The reduction of length 0 is denoted by 	; for all terms T , we adopt the convention
that 	 � T ��� T .

Given the definitions above, the B-reduction depicted in Figure 5 may be described formally by the
following sequence of contractions:

h��� �B�	� �X �� ff� Y �� tt� Z �� tt	i� h�
�� �B�	� �X �� ff	i� h���� �B�	� �X �� ff	i� h��� �B�	� �X �� ff	i

Most of the new relations defined in the sequel are parameterized with a reduction �A, in which the final
contraction is highlighted. Several definitionsare concerned with the last contractionA only; however, when
our definitions are generalized in Section 7, the “history” contained in � will become relevant. Whenever
we define a truly inductive relation on �A, we will append a ‘
’ to the name of the relation.
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3.2 Context Rewriting

In order to generalize term rewriting to context rewriting, a few auxiliary definitions are needed. A variable
instantiation of a context C is a term T that can be obtained from C by replacing each hole with a variable
that does not occur inC. A variable instantiation is a linear instantiation if each hole is replaced by a distinct
variable. A context C rewrites to a context C �, notated C ���C�, if and only if T ��� T �, where T is a
linear instantiation ofC and T � is a variable instantiation ofC �. Note that context reduction is not defined as
the transitive closure of a single-step contraction relation on contexts; this is necessary to correctly account
for the way in which a reduction causes distinct holes to be moved and copied, particularly in the case of
left-nonlinear rules.

3.3 Residuation and Creation

In order to formalize our notion of slice, we must first reformulate the standard notion of residual and the
somewhat less standard notion of creation in terms of contexts. Each of these will use Definition 3.1, which
formalizes how an application of a contraction A has the effect of “copying,” “moving,” or “deleting”
contexts bound to variable instances in LA when RA is instantiated. The elements of the set VarPairs�A are
pairs hS��S�i of context forests, such that contexts C� 	 S� and C� 	 S� are corresponding subcontexts of
the context bound to some variable in �A.

Definition 3.1 (VarPairs) Let �A be a reduction. Then

VarPairs�A � f hS��S�i j X 	 V�
C v ��� � �A�X�� or C � ��� � ���
q � root�C��
S� � f�pL 
 q � C� j pL 	 OX �LA�g�
S� � f�pR 
 q � C� j pR 	 OX�RA�g g

An example of VarPairs will be presented in Section 4.1.
In left-linear systems, for any pair hS��S�i 	 VarPairs�A, S� is always a singleton. This will not,

however, be the case when we generalize the definition for left-nonlinear systems.
Definition 3.2 is the standard notion of residual, in relational form. For a contraction A � C��C �,

Resid associates each subcontext ofC not affected byAwith the corresponding subcontext ofC �. Moreover,
for each hS��S�i 	 VarPairs�A, C� 	 S�, and C� 	 S�, C� is related to C�. If S� is empty, this will have
the effect that no pairs are added to Resid�A.

Definition 3.2 (Resid) Let �A be a reduction. Then

Resid�A � f hD�� D�i j D� 	 S�� D� 	 S�� hS��S�i 	 VarPairs�A g �
f hD�Di j D and RedexA are disjoint g

The reflexive, transitive closure of Resid is defined by

Resid
� � f hC�Ci j C 	 Cont��� g
Resid
�A � Resid
� 
 Resid�A
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.

.

Resid pairsconnects components of

connects contexts to their progenitor

ff

tt tttttt ff ff

Creating Created

[B1]

typical CreateResid pair

ff

ff ff

Creating Created

[B4]

Figure 7: Illustration of selected relations and contexts derived from B-reduction of Figure 5.

Figure 7 depicts Resid and several other definitions we will encounter in the sequel, as they apply to
the initial and final contractions of the reduction in Figure 5, involving the left-linear rule [B1] and the
left-nonlinear rule [B4] of TRS B, respectively.

Definition 3.3 describes the creating and the created contexts associated with a contractionA. Intuitively,
if contraction A is applied to term T , the creating context is the minimal subcontext of T needed for the
left-hand side of A’s rule to match; the created context is the corresponding minimal context “constructed”
by the right-hand side of the rule. The former is defined as the context derived by subtracting from RedexA
all contexts D� 	 S� such that hS��S�i 	 VarPairs�A. The latter is the context derived by subtracting from
ReductA all contexts D� 	 S� such that hS��S�i 	 VarPairs�A.

Definition 3.3 (Creating and Created) Let �A be a reduction. Then

Creating�A �

�
RedexA �

F
fS� j hS��S�i 	 VarPairs�Ag when LA �	 V

PA � � otherwise

Created�A �

�
ReductA �

F
fS� j hS��S�i 	 VarPairs�Ag when RA �	 V

PA � � otherwise

While Creating�A and Created�A could have been defined in a more direct way from the structure of LA,
RA, and PA without using VarPairs�A at all, the approach we take here will be much easier to generalize
when we consider left-nonlinear systems.

Combining Definitions 3.2 and 3.3, we arrive at the relation CreateResid, formalized in Definition 3.4.
Every pair of terms hT� T �i 	 CreateResid has the property that T �� T �.

11



Definition 3.4 (CreateResid) Let �A be a reduction. Then

CreateResid�A � f hC�� C�i j R � Resid�A�
hC�Di 	 R and hC�D�i 	 Resid�A imply hC�D�i 	 R�

C� � Creating�A t
F
fC j hC�C�i 	 R g�

C� � Created�A t
F
fC� j hC�C�i 	 R g g

Note that it is impossible to have both hC �� Di 	 Resid�A and hC�� Di 	 CreateResid�A, for any nonempty
C�� C�� D; these relations may, however, overlap on empty contexts.

4 A Dynamic Dependence Relation

In this section, we will derive our dynamic dependence relation, Slice
, using the concepts introduced
in Section 3. For the empty reduction, Slice
 is defined as the identity relation. For a criterion D, the
inductive case determines the minimal super-context D� w D for which there is a C such that hC�D�i 	
�Resid�A � CreateResid�A�; then the slice for this C in reduction � is determined. Operation ‘ 
’ in
Definition 4.1 denotes relational join.

Definition 4.1 (Slice
) Let �A be a reduction. Then

Slice
� � f hC�Ci j C 	 Cont��� g
Slice
�A � Slice
� 
 f hC�Di j there exists a minimalD� w D

such that hC�D�i 	 �Resid�A � CreateResid�A� g

Since Resid�A and hC�� Di 	 CreateResid�A only overlap for empty contexts, it is easy to see that the
slice with respect to any nonempty criterion is uniquely defined. Empty contexts may have multiple slices,
which arise from the application of collapse rules.

4.1 Example

In the example that follows, we will frequently use set comprehension to avoid unwieldy notation. We will
consider the following B-reduction � = A�A�A�:

S � �ff � �ff � tt�� � tt
A��� �ff � ff� � tt

A��� ff � tt
A��� ff � T

Note that for contractionA�, an application of rule B2, we have PA�
= (1 2), LA�

= �
 ��� X � tt, RA�
=

�
 ��� X, RedexA�
= �
 �� � ff � tt, and ReductA�

= �
 ��� ff. This results in the following relations
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for A�:

VarPairsA� � f hf �
 � 
�� ff g� f �
 �� � ff gi� hf �
 � 
�� � g� f �
 ��� � gi g
ResidA� � f h�
 � 
�� ff� �
 ��� ffi� h�
 � 
�� �� �
 ��� �i� h�� � �� ��� �i

h�
 ��� �� �
 ��� �i g � f hC�Ci j C v �� � �ff � �� � tt g

CreatingA� � �
 ��� �� � tt�
CreatedA� � �
 ��� �

CreateResidA� � f h�
 ��� �� � tt�� �
 �� � �i� h�
�� � � �ff � tt�� �
�� � � ffi�
h�
�� ff � �ff � tt�� �
�� ff � ffi�
h�� � �ff � �ff � tt�� � �� ��� �ff � ff� � �i�
h�� � �ff � �ff � tt�� � tt� ��� �ff � ff� � tti g

For contractionA�, which is an application of B3, we have PA�
= (1), LA�

= �
�� X � ff, RA�
= �
� � ff,

RedexA�
= �
� � ff � ff, and ReductA�

= �
� � ff. Therefore, we have:

VarPairsA�A� � f hf �
 
�� ff g� �i� hf �
 
� � � g� �i g
ResidA�A� � f h�� � �� ��� �i� h�
�� �� �
�� �i g � f hC�Ci j C v ��� � � ff g

CreatingA�A� � �
� � �� � ff�
CreatedA�A� � �
� � ff

CreateResidA�A� � f h�
� � �� � ff�� �
�� ffi� h�� � �� � ff� � �� ��� ff � �i�
h�� � �� � ff� � tt� ��� ff � tti g

For the third contraction, A�, an application of B2, we have PA�
= (), LA�

= �� � X � tt, RA�
= �� � X,

RedexA�
= �� � ff � tt, and ReductA�

= �� � ff. The following relations are computed for A�A�A�:

VarPairsA�A�A� � f hf �
� � ff g� f �� � ff gi� hf �
�� � g� f ��� � gi g
ResidA�A�A� � f h�
� � ff� �� � ffi� h�
� � �� ��� �i� h�� � �� ��� �i g

CreatingA�A�A� � �� � �� � tt�
CreatedA�A�A� � �� � �

CreateResidA�A�A� � f h�� � �� � tt�� �� � �i g

From the above and Definition 4.1 it follows that we have the following dynamic dependence relations
between subcontexts of S and T :

Slice
A�A�A� � f h�
� � � � �ff � tt�� ��� ffi� h�� � �� ��� �i g

Thus, the slice with respect to �� � ff v T is �
� � � � �ff � tt� v S. This is the minimal context for
which there exists a subreduction of � that yields the criterion. In this case, the subreduction consists of the
first two contractions. We will formalize the notion of a subreduction in Section 5.
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The above example also illustrates why Slice
 is defined on contexts rather than on context domains:
collapse rules require special treatment in order to produce minimal slices. Note that the example exhibits
two applications of collapse rule [B2]. Intuitively, the first one created the criterion, whereas the second
one merely affected its location. We achieve this differentiation by: (i) having a collapse rule create an
empty context PA � � instead of the context consisting of the function symbol at path P A (the approach of
[21]), and (ii) defining an empty context p� � to be a subcontext of a nonempty context only if the latter
“surrounds” the former.

5 Projections, Subreductions

In this section, we formalize the notion of a projection of some reduction on a subcontext of its initial
term. It will be convenient to define simultaneously the initial and final contexts to which a projection
corresponds along with the the projected “subreduction” itself. We therefore define the set of projection
triples as follows:

Definition 5.1 (Projection Triples) Let R be a TRS over signature �. Then the set of R projection triples
is inductively defined as follows:

Project
� � f hB� 	� Bi j B 	 Cont��� g
Project
�A � fhB� �A� D�i j hB� ��Ci 	 Project
�� hC�Di 	 CreateResid�A� D� v D g � (i)

fhB� ��D�i j hB� ��Ci 	 Project
�� hC�Di 	 Resid�A� D� v D g (ii)

The interesting cases in Definition 5.1 are numbered. Intuitively, these cases behave as follows:

� In case (i), the context D� that constitutes the third element of the triple is entirely contained in
a context D that is involved in a CreateResid�A–relation. In this case, contraction A is deemed
applicable to D�, and the construction continues recursively with the context C that contracted to D,
and reduction �.

� In case (ii), D� is a subcontext of some context D that residuated from a context C. In this case,
contraction A was not applicable to D �, and the construction continues recursively with the context
C from which D residuated, and reduction �.

Note that each residual D of a context C gives rise to the construction of a new projection triple. This
reflects the fact that different residuals of a context may be reduced differently, causing the construction of
different subreductions.

Informally, the occurrence of a triple hB� ��D�i in relation Project
� indicates that context B reduces
to a context D that “contains” D�. Moreover, it does so by a reduction � that is composed of a subset of
the contractions in the original reduction �. In Section 6, we will prove this property of projections. In
addition, we will show that Slice
� computes slices that correspond to minimal projections by effectively
selecting the minimal supercontext D of D � (in each construction step) for which there exists a pair hC�Di
in �Resid�A � CreateResid�A�.

As an example of the behavior of Project
, consider the B-reduction in Fig. 8. As usual, we have
underlined each redex. We use A[B1] and A[B3] to denote the contractions that use rules [B1] and [B3],
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T� � �ff � ff� � �tt� tt�
A[B1]
�� ��ff � ff� � tt�� ��ff � ff� � tt�

A[B3]
�� � ff � tt�� � �ff � ff� � tt� � T�

Figure 8: Example of projections.

respectively. Some typical, minimal elements of the set Project
A[B1]A[B3] are:

h �� � �ff � ff� � ��� �� � A[B1]A[B3] � �� � �ff � ��� ��ff � ff� � �� i
h �� � � � �� ��� � A[B1] � �� � �� ���� �� ��� i
h �
� � ff � ff � A[B3] � �
 
�� ff i
h �
� � ff � ff � 	 � �� 
� � ff � ff i

Observe that the last two of these projection triples ‘apply to’ the subcontext �
�� �ff � ff� of T �; this
subcontext is shown boxed in Fig. 8. The projections of the boxed subcontext of T � are also shown boxed
(in T�). Clearly, these triples correspond to the two different “paths through the reduction” taken by the
boxed subterm of T�. One residual is contracted in a subsequent step, the other is not.

6 Formal Properties of Slices

We can now state some theorems describing the most important properties of slices. We will prove these
theorems for left-linear TRSs only.

In order to prove that Slice
 is a many-to-one mapping for non-empty contexts (that is, each context has
a unique slice), we will first prove a few lemma’s.

Lemma 6.1 Let B
�

��� C
A
�� D be a reduction. Then for any non-empty D� v D there is at most one

C� v C such that hC �� D�i 	 Resid�A. Moreover, if it exists, this C � will be non-empty.

Proof. Let D� v D be a non-empty context such that hC �� D�i 	 Resid�A for some C� v C.
There are two cases:

1. (root�D�� � root�Created�A� or root�D�� j root�Created�A�) and D� and Created�A are disjoint.

Then it follows from Definition 3.2 that C � � D� is the unique subcontext of C such that hC �� D�i 	
Resid�A. This C� is non-empty because D� is non-empty.

2. D� � �pR 
 q � A� where pR 	 OX �RA�, A v ��� � �A�X��, and q � root�A� for some variable
X.

From left-linearity it follows that there is a unique path p L such that f pL g � OX �LA�. From
Definitions 3.1 and 3.2 it follows that C � � �pL 
 q � A� is the unique subcontext of C such that
hC�� D�i 	 Resid�

�A. Since rerooting a context does not affect its (non-)emptyness, C � will be a
non-empty context. �
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Lemma 6.2 Let B
�

��� C
A
�� D be a reduction. Then for any non-empty D� v D there is at most one

C� v C such that hC �� D�i 	 CreateResid�A. Moreover, if it exists, this C � will be non-empty.

Proof. Let D� v D be a non-empty context such that hC �� D�i 	 CreateResid�A for some C� v C.
From Definition 3.4 it follows that there exists a unique subset R of Resid �A such that:

D� � Created�A t
G
fE� j hE�E�i 	 R g

and also that there exists a unique context

C � � Creating�A t
G
fE j hE�E�i 	 R g

such that hC �� D�i 	 CreateResid�A. Since the left-hand side of a rewrite rule is not a single variable,
Creating�A is non-empty, causing this C � to be non-empty as well. �

Lemma 6.3 Let B
�

��� C
A
�� D be a reduction. It is impossible to have hC�� D

�i 	 Resid�A and
hC�� D

�i 	 CreateResid�A for any C�� C� v C and any non-empty D� v D.

Proof. Assume that hC�� D
�i 	 CreateResid�A for some C� v C, and some non-empty D� v D. From

Definition 3.4 it follows that Creating�A v C� and Created�A v D�.
From Definitions 3.2 and 3.3 it follows that for any pair hC �� D�i 	 Resid�A with C� v C, D� v D,

we have that C� and Creating�A are disjoint and D� and Created�A are disjoint.
From Creating�A v C� and Creating�A �v C� it follows that C� �� C�. A similar argument can be used

to demonstrate that D� �� D�. �

Lemma 6.4 Let � � B
��

��� C
A
�� D be a reduction, and let D�� be a non-empty subcontext of D. Then

there exists a unique minimal D � v D such that D� w D�� and hC �� D�i 	 �Resid� � CreateResid�� for
some non-empty C � v C. Moreover,

hB�� D��i 	 Slice
� � hB�� D�i 	 Slice
� � hB�� C�i 	 Slice
�
�

where B� v B.

Proof. The theorem holds trivially if hC �� D��i 	 �Resid� � CreateResid��, for some C� v C.
Assume that there exists noC � v C such that hC �� D��i 	 �Resid��CreateResid��. From Definitions 3.1

and 3.2, it follows that D �� and Created� are not disjoint—otherwise, D �� would be involved in a Resid�-
relation. From the fact that D�� is not involved in a CreateResid� relation either, it follows that:

� Created� �v D��, and/or

� D�� � Created� �
F
fE� j hE�E�i 	 R g, for some R � Resid� such that there exist hA�Bi 	 R,

hA�B�i 	 Resid� for which hA�B �i �	 R.
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Define:
R� � R � f hA�B�i j hA�Bi 	 R� hA�B�i 	 Resid� g
D� �D�� t Created� t fE� j hE�E�i 	 R� g

Clearly, D� is the minimal supercontext of D �� for which hC �� D�i 	 CreateResid�, where

C� � Creating� t
G
fE j hE�E�i 	 R� g v C

Since Creating� is always non-empty, C � is non-empty as well.
From Definition 4.1 it follows that

hB�� D��i 	 Slice
� � hB�� D�i 	 Slice
� � hB�� C�i 	 Slice
�
�

where B� v B. �

Theorem 6.5 (Uniqueness of Slices) Let � � B
�

��� D be a reduction, and let D� v D be non-empty.
Then there exists a unique non-empty B � v B such that hB �� D�i 	 Slice
�.

Proof. By induction on the length of the reduction �.
For � � 	, we have fB� j hB�� D�i 	 Slice
� g � fD� g according to Definition 4.1.

For the inductive case, assume that � � ��A such that B
��

��� C
A
�� D, and let D� v D be a

non-empty context. According to Lemma 6.4, we may assume without loss of generality that hC �� D�i 	

�Resid�
�A � CreateResid�

�A�, for some C� v C.
According to Lemma 6.3, we have either hC�� D�i 	 Resid�

�A or hC �� D�i 	 CreateResid�
�A.

Lemmas 6.1 and 6.2 state that both Resid and CreateResid map any non-empty context D � v D
to a unique non-empty C � v C. By induction, there exists a unique non-empty B � v B such that
hB�� C�i 	 Slice
�

�

.
From Definition 4.1 it follows that thisB � is the unique non-empty subcontext ofB such that hB �� D�i 	

Slice
�. �

Given Theorem 6.5, we will be able to writeC � Slice
��D� instead of hC�Di 	 Slice
�, for non-empty
D.

The following lemma states that slices may be computed by repeatedly determining a unique related
subcontext of the previous context in the reduction.

Lemma 6.6 Let � � B
��

��� C
A
�� D be a reduction, and letD�� v D be a non-empty context. Moreover,

let D� be the unique minimal super-context of D �� for which there exists a non-empty context C � v C such
that hC �� D��i 	 �Resid� � CreateResid��. Then

Slice
��D�� � Slice
��D��� � Slice
�
�

�C��

Proof. Follows immediately from Definition 4.1, Lemma 6.4, and Theorem 6.5. �

The next lemma and theorem demonstrate that slices effectively preserve the topology of their corre-
sponding criteria. This is important in showing that slices are minimal projections.
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Lemma 6.7 (Inclusion Lemma) Let �A be a reduction such that B
�

��� C
A
�� D, and let D�� v

D� v D be non-empty contexts such that there exist pairs hC �� D�i 	 �Resid�A � CreateResid�A�, and
hC��� D��i 	 �Resid�A � CreateResid�A�. Then C�� v C�.

Proof. There are three cases:

1. hC�� D�i 	 Resid�A and hC ��� D��i 	 Resid�A.

From Definition 3.2 it follows that there are two cases:

(a) (root�D�� � Created�A or root�D�� j Created�A), D� and Created�A are disjoint, root�D ��� �
Created�A, and D�� and Created�A are disjoint. Then C � � D� and C �� � D��, and therefore
C�� v C �.

(b) D� � �pR 
 q� � A��, D�� � �pR 
 q�� � A��� where pR 	 OX �RA�, A� v ��� � �A�X��,
A�� v ��� � �A�X��, q� � root�A��, q�� � root�A���, for some variable X.
From Definitions 3.1 and 3.2 and left-linearity, it follows that there exists a unique occurrence
pL of X in LA such that C � � �pL 
 q� � A��, C�� � �pL 
 q�� � A���.
D�� v D� implies q�� � q�, A�� v A� and therefore C �� v C�.

2. hC�� D�i 	 CreateResid�A and hC ��� D��i 	 CreateResid�A.

From Definition 3.4 it follows that

D� � Created�A t
F
fE� j hE�E�i 	 R� g

D�� � Created�A t
F
fE� j hE�E�i 	 R�� g

C� � Creating�A t
F
fE j hE�E�i 	 R� g

C�� � Creating�A t
F
fE j hE�E�i 	 R�� g

for R�� R�� � Resid�A such that for all hE�E �i 	 R�� R��, both E and E� are are elementary. From
D�� v D� it follows that R �� � R� and therefore that C �� v C�.

3. hC�� D�i 	 CreateResid�A and hC ��� D��i 	 Resid�A

According to Definition 3.4, we have that

D� � Created�A t
F
fE� j hE�E�i 	 R g

C� � Creating�A t
F
fE j hE�E�i 	 R g

for some R � Resid�A such that for all hE�E �i 	 R, bothE andE� are elementary. From D�� v D�,
and the disjointness of Created�A and D�� it follows that there exists a subset R � � R such that

D�� �
G
fE� j hE�E�i 	 R� g

Using an argument similar to that in case 1, it follows that

C�� �
G
fE j hE�E�i 	 R� g

Consequently C �� v C�.
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Note that the case where hC� � D�i 	 Resid�A and hC ��� D��i 	 CreateResid�A is impossible, givenD�� v D�.
�

Lemma 6.8 states that if D��SubContextD� E�� is the smallest supercontext of D�� involves in a Resid
or CreateResid-relationship, and E � is the smallest supercontext of D� involves in a Resid or CreateResid-
relationship, then E �� v E�.

Lemma 6.8 Let � � B
�

��� D be a reduction, let D�� v D� v D, and let D�� be non-empty. Furthermore,
let E�� be the unique minimal supercontext of D �� such that hC ��� E��i 	 �Resid� � CreateResid�� for some
C��, and let E� be the unique minimal supercontext of D � such that hC �� E�i 	 �Resid� �CreateResid�� for
some C�. Then E�� v E�.

Proof. The following cases can be distinguished:

1. E�� � D�� and E� w D�. Trivial.

2. E�� w D�� and E� � D�. From E�� �� D�� it follows that D �� and Created� are not disjoint, and that
hC��� E��i 	 CreateResid�. From D�� v D� and D� � E� it follows that Created� v D�. Define
R�� R�� � Resid� as follows:

R� � D� � Created�

R�� � D�� � Created�

From D�� v D� it follows that R �� � R�. From Definition 3.4 it follows that:

E�� � Created� t
G
f Y j hX�Y i 	 �R�� g

where
�R�� � f hX�Y �i j hX�Y i 	 R��� hX�Y �i 	 Resid� g

From hC �� D�i 	 CreateResid� it follows that �R�� � R�, and therefore that E�� v E�.

3. E�� A D�� and E� A D�. It follows that D �� and Created� are not disjoint, and that D � and Created�

are not disjoint. Define R�� R�� � Resid� as follows:

R� � D� � Created�

R�� � D�� � Created�

Then, D�� v D� implies that R�� � R�. Define:

�R� � f hX�Y �i j hX�Y i 	 R�� hX�Y �i 	 Resid� g
�R�� � f hX�Y �i j hX�Y i 	 R��� hX�Y �i 	 Resid� g

Then �R�� � �R�. From Definition 3.4, we have that:

E�� � Created� t
F
f Y j hX�Y i 	 �R�� g

E� � Created� t
F
f Y j hX�Y i 	 �R� g

Hence, E�� v E�.
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�

Theorem 6.9 (Inclusion Theorem) Let � � B
�

��� D be a reduction, let D�� v D� v D, and let D�� be
non-empty. Then Slice
��D��� v Slice
��D��.

Proof. Follows directly from Lemmas 6.7 and 6.8. �

Lemma 6.10 formally justifies the relationship between a reduction and the components of a projection
triple. Since the reduction component of a projection triple in Project
 � is derived by construction from the
contractions of �, it can justifiably be deemed a subreduction of �.

Lemma 6.10 Let � be a reduction, and let hB� ��D �i 	 Project
�. Then B
�

��� D such that there exists
an E� v D for which E � �� D�.

Proof. By induction on the length of �.
According to Definition 5.1, hB� ��D �i 	 Project
� implies that � � 	 and that B � D �. From this it

follows trivially that B
	

��� D, for D � D�.
For the inductive case, assume that � � ��A, and hB� ��D��i 	 Project
�. From Definition 5.1 it

follows that two cases can be distinguished:

1. D�� v D�, hC�� D�i 	 CreateResid�, and hB� ��� C�i 	 Project
�.

By induction, there exists a reduction B
��

��� C for some C w C�.

From Definition 3.4 it follows that C � A
�� D�. Therefore B

��A
��� C�E	 � D, where E �

�root�C �� � D��. Since D� and E are isomorphic, and D�� v D�, it follows that D �� �
� E� for some

E� v D.

2. D�� v D�, hC�� D�i 	 Resid�, and hB� ��� C�i 	 Project
�.

By induction, there exists a reduction B
��

��� C for some C w C�.

From Definition 3.2 it follows that C � �� D�. Hence, B�
��

��� C�E	 � D, where E � �root�C ���
D��. Since D� and E are isomorphic, and D�� v D�, it follows that D �� �� E� for some E� v D. �

The lemma below establishes a connection between the relations Slice
� and Project
�.

Lemma 6.11 Let � be a reduction such that B
�

��� D, and let B� � Slice
��D�� for some non-empty
D� v D. Then there exists a triple hB�� ��D�i 	 Project
�.

Proof. By induction on the length of reduction �.
Let � � 	. From Definition 4.1 it follows that B � � Slice
��D�� implies B� � D�. Moreover, from

Definition 5.1 it follows that hB �� 	�D�i 	 Project
� implies B� � D� as well, so that the lemma trivially
holds.
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For the inductive case, assume that � � ��A such that B
��

��� C
A
�� D, and let B� � Slice
��D���,

for some non-empty D�� v D. According to Lemmas 6.4 and 6.6 there exists a unique D� w D�� such that
hC�� D�i 	 �Resid� � CreateResid�� and Slice
��D��� � Slice
��D�� � Slice
�

�

�C�� � B�.
By induction there exists a triple hB �� ��� C�i 	 Project
�

�

. From Lemma 6.3, it follows that there are
two cases:

1. hC�� D�i 	 Resid�. Since D�� v D� it follows from Definition 5.1 that that hB �� ��� D�i 	 Project
�.

2. hC�� D�i 	 CreateResid�. Since D�� v D� it follows from Definition 5.1 that hB �� ��A� D�i 	
Project
�. �

The soundness theorem states that the Slice
 relation computes slices that comply with Definition 1.1.

Theorem 6.12 (Soundness) Let � be a reduction such that B
�

��� D. Moreover, let B� � Slice
��D���
for some non-empty D�� v D. Then there exists a reduction � such that:

1. hB�� ��D��i 	 Project
�, and

2. B�
�

��� D� such that there exists an E �� v D� for which E �� �� D��.

Proof. Follows immediately from Lemmas 6.10 and 6.11. �

Our final theorem states that a slice is the minimal initial component of some projection triple whose
final component contains the slicing criterion:

Theorem 6.13 (Minimality) Let � be a reduction such that B
�

��� D, and let B�
s � Slice
��D�

s� for
some non-empty D�

s. Then hB�
p� ��D

�
pi 	 Project
� and D�

p w D�
s together imply that B �

p w B�
s.

Proof. By induction on the length of reduction �.
For � � 	, Definition 5.1 states that hB �

p� ��D
�
pi 	 Project
� implies � � 	 and B�

p � D�
p. Moreover,

according to Definition 4.1 we have that B �
s � Slice
��D�

s� implies B�
s � D�

s. Therefore D�
p w D�

s implies
that B�

p w B�
s.

For the inductive case, assume that � � ��A, let B�
s � Slice
��D�

s� for some non-empty D�
s, and let

hB�
p� ��D

�
pi 	 Project
� such that D�

p w D�
s. Then by Definition 5.1, there exists a Dp w D�

p such that

hCp� Dpi 	 �Resid� � CreateResid�
�A�, and hB�

p� �
�� Cpi 	 Project
�

�

.
According to Lemmas 6.4 and 6.6, there exists a unique minimal super-context Ds of D�

s such that
hCs� Dsi 	 �Resid� � CreateResid�� and:

Slice
��D�
s� � Slice
��Ds� � Slice
�

�

�Cs� � Bs

By induction, hB �
p� �

�� Cpi 	 Project
�
�

and Cp w Cs together imply that Bp w Bs. Consequently it
suffices to show that Cp w Cs.

From (i) the fact that Ds is the minimal super-context of D �
s that is related in a CreateResid�-relation,

(ii) the fact that Dp is some supercontext of D�
s that is involved in a CreateResid�-relation, and (iii)

Definition 3.4, it follows that Dp w Ds. According to Lemma 6.7, we therefore have Cp w Cs. This
concludes the proof of the minimality theorem. �

Together, Theorems 6.12 and 6.13 imply that our construction of slices agrees with Definition 1.1.
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7 Nonlinear Rewriting Systems


Unfortunately, our previous definitions do not extend trivially to left-nonlinear TRSs, because they do not
account for the fact that nonlinearities in the left-hand side of a rule constrain the set of contexts for which
the rule is applicable. For example, when rule [B4] of TRS B of Figure 4 is applied to ff� ff, this results in
a contraction A � T � ff � ff�� ff � T �. Our previous definitions yield C � �� � �� � �� v T as the
slice with respect to criterion D � �� � ff v T �. This is not a valid slice, because some ‘instantiations’ of
C do not reduce to a context containing D, e.g., �� � tt� ff does not. A related problem is that multiple
contexts may be related to a criterion in the presence of left-nonlinear rules; this conflicts with our objective
that a slice with respect to a context consist of a single context.

A simple solution for nonlinear TRSs would be to restrict VarPairs to variables which occur at most
once in the left-hand side of a rule. However, this would yield larger slices than necessary. For instance, for
the reduction of Figure 5 the non-minimal slice ff � �tt� tt� would be computed. The immediate cause for
this inaccuracy is the fact that the subcontexts �
� � ff and ��� � ff of T� are deemed responsible for the
creation of term T�. However, they are residuals of the same subcontext C � �
� � ff v T�. This being
the case, C may be replaced by an arbitrary context without affecting the applicability of the left-nonlinear
rule.

We can account for this fact by modifying the VarPairs relation as follows: If, for a rule�, all occurrences
of a variable X in L� are matched against a set of “equivalent” contexts S that are residuals of a common
context (one that occurs earlier in the reduction sequence), then the contexts inS are deemed to be residuated
by � (assuming X occurs in R��. All other cases cause creation: those subcontexts matched against X that
are not residuals of a common context are deemed creating, and the corresponding subcontexts matched
against X in R� are created.

7.1 Formal Definitions for Nonlinear Systems

If a context D is created at some point in a reduction, and D has a residual C which occurs later in the
reduction, we will say that D is a progenitor of C. This concept will be useful for formulating an adequate
notion of slice for nonlinear TRSs. Formally, we have:

Definition 7.1 (Progenitor) Let T be a term, � and 
 be reductions such that �
 � U ��� T for some
term U , and D be a subcontext of T . Then we will say that a context C is a �� 
 -progenitor of D if
hC�Di 	 Resid
� , and either C v Created� or � � 	.

We will say that a context forest S has common �� 
–progenitorC if for all D 	 S, D has �� 
–progenitor
C. Note that an empty context may have more than one progenitor, due to collapse rules, which have the
effect of combining existing empty contexts as well as creating new ones. Also note that the progenitor of
a context C created by the last step of reduction � has �� 	–progenitorC.

We can now revise Definition 3.1 to account for common residuals in subterms matched nonlinearly:

�The definition of the Slice� relation for nonlinear systems in [15] contained an error. The definitions in this section therefore
supersede the earlier ones.
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Definition 7.2 (VarPairs for nonlinear TRSs) Let �A be a reduction. Then

VarPairs�A � f hS��S�i j X 	 V�
C v ��� � �A�X�� or C � ��� � ���
q � root�C��
S� � f�pL 
 q � C� j pL 	 OX �LA�g�
S� � f�pR 
 q� C� j pR 	 OX�RA�g�
S� has a common �� 
–progenitor�
�
 � � g

For linear TRSs, Definition 7.2 reduces to Definition 3.1, since S� is always a singleton and thus has a trivial
common progenitor.

In nonlinear TRSs, certain empty contexts at the “edge” of Creating and Resid have a creating effect that
does not occur in the linear case; the definition of Slice
 for nonlinear systems must therefore be modified
accordingly. More specifically, in the linear case, the empty contexts between Creating and Resid are
irrelevant to the applicability of the redex. However, in the nonlinear case, they are indeed relevant, since
if these “glue” contexts were not empty, the nonlinear match would not occur (unless, as with all contexts
matched nonlinearly, the edge contexts have a common progenitor).

The following definition computes the union of the slices with respect to relevant edge empty contexts:

Definition 7.3 (EdgeSlices) Let �A be a reduction. Then

EdgeSlices�A �
F
f C j hS��S�i 	 VarPairs�A�

�p� �� 	 �S� �O��Creating�A���
D is a �� 
–progenitor of �p� ���
D is not a common �� 
–progenitor of S��
hC�Di 	 CreatedSlice
��
�
 � � g

(The relation CreatedSlice
, defined formally below, is a subrelation of Slice
 in which the second elements
are created by the last step of the reduction; this yields a slice specific to the progenitor in the definition
when more than one progenitor exists). Definition 7.3 yields the union of slices with respect to empty
context criteria at the “edge” between Creating and Resid that are not derived from a progenitor common to
all the contexts associated with a given variable. Note that EdgeSlices�A is always empty for linear TRSs,
since for such systems, the forest S� in the definition is always a singleton.

Our definition of Slice
 in the nonlinear case is essentially the same as that for the linear case, except
that we must add the information in EdgeSlices where appropriate:

Definition 7.4 (Slice
 for nonlinear TRSs) Let �A be a reduction. Then

Slice
� � f hC�Ci j C 	 Cont��� g
Slice
�A � ResidSlice
�A �CreatedSlice
�A
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where

ResidSlice
�A � Slice
� 
Resid�A

CreatedSlice
�A � f hC�Ei j hC�� Di 	 Slice
��
there exists a minimal E � w E such that hD�E �i 	 CreateResid�A�
E and Created�A are not disjoint�
C � C� t EdgeSlices�A g

Definition 7.4 is complicated by the necessity of splitting the pure residuation case from the creation case—
the two cases both apply only when created and residuated information overlap exactly; i.e., when A is a
collapse rule application.

While Definition 7.4, along with the auxiliary definitions, may appear rather complicated, testing
whether two contexts have a common progenitor can be performed cheaply in practice if reduction is
implemented using term graph rewriting techniques [4, 20]. Graph rewriting causes terms that are created
by contraction of sets of residuals of previous reductions to be shared in a graphical data structure. If such
an implementation is used, testing whether two contexts have a common progenitor reduces to determining
whether the contexts are represented by a common shared subgraph.

7.2 Example: Slicing in a nonlinear system

Recall the reduction used in the example of Fig. 5:

ff � �tt� tt� � T�
A��� �ff � tt� � �ff � tt� � T�

A��� ff� �ff � tt� � T�
A��� �ff� ff� � T�

A��� ff � T�

We have denoted the contractions in the reduction above by A�, A�, A�, and A�.
Applying the definitions of the previous section to this example, we find that the most interesting step is

the contractionA�, which uses nonlinear rule [B4]. In Figure 7, the two ‘ff’ subterms in the term matched
by contractionA� have the same progenitor in the initial term, indicated by dotted lines. Definition 7.2 thus
implies that the ‘ff’ subterms are components of VarPairs. Consequently, the Creating context for the [B4]
contraction does not include the ‘ff’ subterms. Taken together, these facts allow us to conclude that the final
term of the reduction of Figure 7 does not depend on the ‘ff’ subterm of the initial term of the reduction.

It is instructive to observe the effect of the formal definitions of Section 7.1 with respect to contraction
A�. In order to determine whether the contexts bound to the nonlinearly matched variable X are derived
from a common source, we must first consider the common progenitors of the contexts in VarPairsA�A�A�A� ,
which are:

f �
� � ff� ��� � ff g v T� has common 	�A�A�A�–progenitor �
�� ff v T�

f �
� � �� ���� � g v T� has common 	�A�A�A�–progenitor �
�� � v T�

Since the contexts bound to the nonlinearly matched variable X (namely, �
� � ff, ���� ff, �
� � �,
and ���� �) have a common progenitor, they are included in VarPairs:

VarPairsA�A�A�A� � f hf�
�� ff� ���� ffg� �i� hf�
� � �� ���� �g� �i g
ResidA�A�A�A� � h�� � �� ��� �i
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Using VarPairs, we can eliminate the nonlinearly matched contexts from Creating and Created:

CreatingA�A�A�A� � �� � �� �
CreatedA�A�A�A� � �� � ff

However, before we can compute the Slice
 relation, we must consider slices with respect to the “edge”
empty contexts �
� � � and ��� � � which separate Creating from elements of Resid. Their progenitor
information is as follows:

�
� � � v T�

��
�

has A�A��A�–progenitor
has A��A�A�–progenitor
has 	�A�A�A�–progenitor

�
�� � v T�
�
�� � v T�
�
�� � v T�

��� � � v T�

��
�

has A�A�A�� 	–progenitor
has A��A�A�–progenitor
has 	�A�A�A�–progenitor

���� � v T�
���� � v T�
�
�� � v T�

�
� � � and ��� � � each have three progenitors because the collapse rule [B2] (applied in contractions
A� and A�) has the effect of combining the empty contexts above and below the matched part of the redex,
as well as creating a “new” empty context.

For the purpose of computing EdgeSlicesA�A�A�A� , we need consider only those progenitors not
common to both �
� � � v T� and ��� � � v T�. These are: �
� � � v T�, �
� � � v T�,
��� � � v T�, and ��� � � v T�. The CreatedSlice
 subrelations relevant to the latter contexts are as
follows:

f h�� � � � ��� ��� �
�� �i� h�� � � � �� ���� ���� �i g � CreatedSlice
A�

h�� � � � �tt� ��� �
�� �i � CreatedSlice
A�A�

h�� � � � ��� tt�� ���� �i � CreatedSlice
A�A�A�

Taking the context union of the CreatedSlice
 information above, we get:

EdgeSlicesA�A�A�A� � �� � � � ��� �� t �� � � � �tt� �� t �� � � � ��� tt�
� �� � � � �tt� tt�

Combining the information computed above and using Definition 7.4, we finally have:

Slice
A�A�A�A� � f h�� � �� ��� �i� h�� � � � �tt� tt�� ��� ffi g

Consequently, the slice � � �tt� tt� v T� is computed for criterion �� � ff v T�.

7.3 Nonlinear systems and Optimal Slices

Although the approach to nonlinear slicing developed in the previous section is sound, it does not always
yield minimal slices. To see this, consider the B reductions in Fig. 9. Although both � � and �� start and end
at the same term, using the definitions of Section 7.1, the slice with respect to criterionT� is ��� ff�� tt� tt,
whereas the slice with respect to criterion T �

� is �ff � ff� � tt� tt, i.e., the entire initial term.
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�� � �ff � ff� � �tt� tt� � T�
[B3]
�� ff � �tt� tt� � T� ��� ff� ff � T�

[B4]
�� ff � T�

�� � �ff � ff� � �tt� tt� � T�
[B1]
�� ��ff � ff� � tt�� ��ff � ff� � tt� � T �

�

��� �ff � ff�� �ff � ff� � T �
�

[B3]
�� ff� �ff � ff� � T �

�
[B3]
�� ff� ff � T ��

[B4]
�� ff � T ��

Figure 9: Sensitivity of nonlinear slicing to reduction strategy

The difference in the slices results from the order in which redexes were contracted in the two reductions.
In ��, the �ff � ff� � S� subterm of T� is contracted immediately, and two residuals of its contractum,
ff, subsequently appear in term T�. In ��, however, S� is not immediately contracted. Instead, the
reduction produces an intermediate term T �

� containing two residuals of S�. These residuals are contracted
in subsequent steps, ultimately yielding the term T �

�. However, unlike T�, the two ‘ff’ subterms of T �
� are

not residuals of any previous term. Since the ‘ff’ subterms of T� have a common progenitor, the definitions
of Section 7.1 allow information common to the slices of the ff subterms of T � to be omitted when the
nonlinear rule [B4] is applied. In the case of T �

�, however, the ‘ff’ subterms have no common progenitor,
and thus no information can be omitted.

It should be clear from the example of Fig. 9 that the notion of progenitor is dependent upon reduction
order. One way to avoid the problems illustrated by Fig. 9 is to use an innermost reduction strategy, in which
all redexes are contracted before they are residuated. However, if we do not wish to impose restrictions on
allowable reduction strategies, we must take into account the behavior of reductions such as ��, in which
terms that have no common progenitor could have had a common progenitor if the redexes were contracted
in a different order.

Put another way, we must treat sets of terms that are all “derived in the same way” from a set of residuals
with a common progenitor as equivalent to sets of terms with a true common progenitor. Maranget [22, 23]
defines a notion of equivalence modulo permutation of redexes that could be used for determining when
classes of terms are or could have been residuals of a common term. However, if reduction is implemented
using term graph rewriting techniques, terms that have common progenitors and terms that could have
common progenitors are indistinguishable. In the case of the example in Fig. 9, both term T � and term T ��
would be represented by identical graphs in which the ‘ff’ subterms would be shared.

Unfortunately, even graph rewriting does not eliminate the possibility of computing suboptimal slices
for nonlinear systems. Consider, for instance, the following TRS E:

[E1] f�X��� eq�g�X�� h�X�� [E4] k�a��� b
[E2] h�X��� k�X� [E5] eq�X�X��� c
[E3] g�X��� k�X�

Note in particular that rule [E5] is nonlinear. Now consider the followingE-reduction:

� � f�a�
[E1]
�� eq�g�a�� h�a��

[E2]
�� eq�k�a�� h�a��

[E3]
�� eq�k�a�� k�a��

[E4]
�� eq�b� k�a��

[E4]
�� eq�b� b� � T

[E5]
�� c

In principle, we ought to be able to determine that the slice with respect to the final term ‘c’ of � is f���,
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since we can attain the same final term by omitting the fourth and fifth reduction steps entirely. However
it is difficult to see how any information short of maintaining the entire reduction history could be used
to determine that this is the case. In particular, note that the ‘b’ subterms of the intermediate term T in �
do not have a common progenitor, nor are they derived in an “equivalent” way from the sets of residuals.
Therefore, we cannot use information about the derivations of the ‘b’ subterms in isolation as a means for
allowing common slice information to be omitted when rule [E5] is applied.

We are led to conclude that short of maintaining information about an entire reduction history, the only
systematic way to treat nonlinear rules is to eliminate information associated with nonlinearly-matched
subterms possessing a common progenitor (generalized using graph reduction techniques to account for
“potential progenitors”). It is conceivable, however, that a restricted class of reduction systems or reduction
strategies could eliminate the problems exhibited in the example of Fig. 9. We leave it to future work to
explore these possibilities further.

8 Implementation

8.1 Overview

In principle, one could implement slicing by storing information about every step of a reduction �, then
computing Slice
� based on this information. In practice, such an approach is infeasible since it would
require space and time proportional to the length of � for each choice of criterion. We will instead describe
an alternate method that allows slices to be produced as a “side-effect” of the reduction process, in a way that
efficiently computes slices with respect to any chosen criterion. This technique has been implemented in the
SML language [24] for a class of conditional term rewriting systems; this class subsumes the unconditional
linear and nonlinear systems discussed in this paper.

Our technique will use a variant of the term graph representation [4, 20]. In such a representation,
every function symbol in a term corresponds to a unique graph node. However, since shared subgraphs
(corresponding to sets of residuals) may be created during the reduction process, a graph node may represent
several function symbols in the corresponding term.

Our graph representation will use two distinct node types, as follows:

elementary nodes: These correspond to the usual term graph nodes. Each such node will contain informa-
tion used to compute slices for the elementary contexts (i.e., function symbols—contexts of the form
f��� 
 
 
 � ��) represented by the node.

empty context nodes: These represent empty contexts in the term denoted by the graph. Each empty
context node will contain information used to compute the union of all slices for the empty contexts
that the node represents (recall that Slice
� is not necessarily single-valued on empty contexts).
Empty context nodes with non-null slice information are created as a result of applying collapse rules.
Such rules are implemented using special indirection elementary nodes [26], which are subsequently
transformed into empty context nodes.

A slice with respect to any non-empty contextD is determined by computing the union of the slices with
respect to all elementary and empty contexts that are a subcontext of D. These slices are in turn obtained
using information from the elementary and context nodes in the graph representing the term. Slices for
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OriginSet ��� Path set

Path ��� int list

Operator ��� r
j 
 
 

...

EmptyContextInfo ��� OriginSet

EmptyContextNode ��� Ch ElementaryNode ref� EmptyContextInfo i

ElementaryNode ��� Fh Operator� TermGraph list� OriginSet i

TermGraph ��� EmptyContextNode ref

Figure 10: Type definitions for data structures implementing terms in linear TRSs.

the elementary and empty contexts are represented by sets of paths in the initial term; these sets can be
represented by bit vectors to allow unions to be computed efficiently.

Given a TRS, our technique “compiles” each rewriting rule into a fragment of executable code that
carries out a corresponding transformation on a term graph representation. This code makes use of several
auxiliary functions to perform unions of the sets of paths used to represent slices, to process indirection and
context nodes, and to implement equality tests for nonlinear rules. The set of rewriting rules can then be
applied and ordered according to a variety of user-specified strategies; however, here we will focus solely
on the implementation of individual rules.

In the next section, we provide details on the implementation of slicing for linear TRSs. We will then
extend those ideas to nonlinear TRSs. Rather than providing a full algorithm for compiling, rewriting, and
extracting slices (most aspects of which amount to tedious inductive application of simple translation rules
to terms, rewriting rules, and rewriting strategies), we will instead illustrate its key points by example.

8.2 Implementing Linear Systems

In describing our implementation technique, we will use a simplified dialect of SML in which basic data
types may take the form of fixed-arity constructors, positive integers, lists, sets, and references (i.e., pointers)
to the other data types. A reference is mutable, i.e., the value to which it refers may be updated in place.
If the value to which a reference points is updated, all other instances of the same reference will “see” the
update; thus references can be regarded as edges in a directed graph. All the other basic types are immutable;
once instantiated, they cannot be altered. For linear systems, our data structures will be constructed from
the recursively-defined types given in Figure 10.

An OriginSet is a set of Path data structures, the contents of which denote a context of the initial term
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which comprises a slice. A Path will be represented by a list of integers, as defined in Section 2. An
EmptyContextNode is represented by the Ch 
� 
 i constructor; such a node is comprised of a reference
to an elementary node and auxiliary information about the empty context node (EmptyContextInfo). For
linear systems, EmptyContextInfo is simply an OriginSet representing the union of all slices for the empty
contexts represented by the empty context node (the definition for EmptyContextInfo will become slightly
more complex when we consider nonlinear systems in the next section). An ElementaryNode is represented
by the Fh 
� 
� 
 i constructor; such a node is comprised of an Operator, a list of TermGraph children, and
an OriginSet containing the slice information for the elementary contexts represented by the elementary
node. Operators are represented by nullary constructors, which we will depict without argument delimiters
(‘h’ and ‘i’) for brevity. In addition to the signature-specific operators determined by the TRS, there is also
a distinguished indirection operator, r, which will be used in conjunction with collapse rules. Finally, a
TermGraph is simply a reference to an empty context node.

8.2.1 Compiling Reduction Rules

Figure 11 depicts the compiled code corresponding to the first three rules (i.e., the linear rules) of the system
B of Figure 4.

In the code depicted in Figure 11 and in other code in the sequel, let expressions extract component
values from composite data structures through the use of patterns containing free variables. The wildcard
pattern, ‘ ’, is used when a component’s value is not of interest. The ref keyword is used in expressions or
patterns respectively to build or extract mutable values. An expression may be matched against a sequence
of patterns using a case expression; values bound to variables on the left-hand side of the ‘�’ symbol in a
clause of the case expression may be used in the expression returned by the right-hand side. References are
updated using ‘��’. Sets are manipulated using ordinary set notation. skip represents the null statement.
Each instance of a constructor, list, or set is a newly allocated instance distinct from other instances.

The function oneStepRewrite�termGraph� uses one of the three rewriting rules of termGraph, if ap-
plicable, to transform the root of the graph in place. If none of the rules are applicable, the graph is left
untransformed. It should not be difficult to see that the computations performed on path sets in Figure 11
correspond to the components of Definition 4.1.

Note in Figure 11 that rule [B2] is a collapse rule. As a result, an indirection node is “created” when
the rule is applied. The function compressOneIndirection�termGraph� depicted in Figure 12 is used to
“compress” indirections by merging the origin sets for the indirection elementary context into the origin
sets for the empty context nodes “above” and “below” the indirection.

8.2.2 Reducing the Graph

Figure 13 depicts the reduction of the B-term T � ff � �tt � tt� to the term T � � ff � ff using our graph
representation. At each step, the subgraph delimited by a dashed line is transformed by the oneStepRewrite
function. In the graph representing T , each path set annotating an elementary or empty context node is
initialized to the singleton set containing the path of the corresponding function symbol or empty context in
T . In the second graph of the reduction depicted in Figure 13, note that two references to the same subgraph
are created. This shared subgraph corresponds to the two residuals of the ff subterm in T . Finally, note
that the last two steps apply rule [B2], a collapse rule. This causes two indirection elementary nodes to be
created.
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fun oneStepRewrite�termGraph� �
let ref Ch elemRef� i � termGraph
and ref elemNode � elemRef in

case elemNode of
Fh �� � X� ref Ch ref Fh �� � Y� Z 	� o� i� o� i 	� o� i � (* Rule [B1] *)

let o� � o� � o� � o� in
elemRef �� Fh ��

� ref Ch ref Fh �� � X� Y 	� o� i� o� i�
ref Ch ref Fh �� � X� Z 	� o� i� o� i 	�

o� i
end

| Fh �� � X� ref Ch ref Fh tt� � 	� o� i� o� i 	� o� i � (* Rule [B2] *)
let o� � o� � o� � o� in

elemRef �� Fh r� � X 	� o� i
end

| Fh �� � X� ref Ch ref Fh ff� � 	� o� i� o� i 	� o� i � (* Rule [B3] *)
let o� � o� � o� � o� in

elemRef �� Fh ff� � 	� o� i
end

| � skip
end

Figure 11: Compiled single-step reduction function for the linear TRS comprised of the first three rules of
B.
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fun compressOneIndirection�termGraph� �
let ref contNode � termGraph
and Ch elemRef� o� i � contRef in

case elemRef of
ref Fh r� � ref Ch childElemNode� o� i 	� o� i �

let o� � o� � o� � o� in
contNode �� Ch childElemNode� o� i

end

| � skip
end

Figure 12: Compression function for indirection nodes in linear TRSs.

8.2.3 Compressing Indirections

The indirection nodes created during the reduction depicted in Figure 13 inhibit the application of further
reduction rules. As a result, the administrative function compressOneIndirection, depicted in 12, is used
where necessary to “compress” away the the indirections to yield a new graph to which further reduction
rules can be applied. An indirectionnode can be thoughtof as a “proto” empty context node; each application
of compressOneIndirection thus merges path sets for adjacent contexts during compression to compute the
union of slices with respect to the single empty context node that exists after compression.

Figure 14 depicts the compression of the two indirectionnodes in the last graph of Figure 13 (representing
the term T � � ff� ff) using function compressOneIndirection. In practice, indirections can be compressed
on demand as required by the rule matching process, which avoids traversing the entire graph between
each reduction step. However, to ensure that shared chains of indirections are not repeatedly compressed,
function compressOneIndirection must be applied “bottom-up”, that is in reverse topological sort order
relative to the root of the subgraph being reduced.

8.2.4 Computing the Slice

To compute the slice with respect to any context represented by the final term of a reduction, one merely
takes the union of path sets in the subgraph of the final graph that represents the slicing criterion. Thus, for
example, the path sets corresponding to elementary or empty contexts in the subterm ff� � of the final term
of the reduction represented by the last graph in Figure 14 are

f� �� � � �g
f� �� � 
 �� � � �� � �� 
 �g
f� 
 �g

Their union is
f� �� � 
 �� � � �� � �� 
 �g

31



C ,{ 2, 1 }

F , ,tt { 2, 1 } F , ,tt { }2, 2

{ 1 }F ff, ,

{ 1C , }

,

{ }2

{ }2

, { }

C { },

C ,{ }2, 2

F , ,

C ,

F , ,

{ 1 }F ff, ,

{ 1C , }

,

,

2{ , } 2{ , }

2{ , }2 2, 1 },

[B2]

[B1]

{ 1 }F ff, ,

{ 1C , }

,

,

,

2{ , }

2{ , }

2{ , }

2{ , }

,

2{ , }

2{ , }

{ 1 }F ff, ,

{ 1C , }

, 2{ , }

2{ , }

2 2, 1 },{ , 2

C ,

C ,

{ }

F , ,

F , ,, , { , }, 2, 2[B2]

2 }

C ,

C C

C ,{ }

F , ,tt { }2, 2

2, 2

{ }

F , ,

F , ,

F , ,

, ,

{ ,

,

C { }

C , C ,

C ,{ 2, 1 } C ,{ }

F , ,tt { }2, 2F , ,tt { }2, 1

2, 2

F , ,

F , ,

F , ,

C

F

{

Figure 13: Graph reduction corresponding to the first three steps of the B-reduction of Figure 5. The
subgraph transformed at each step by oneStepRewrite is delimited by a dashed line.
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OriginSet ��� Path set

Path ��� int list

Operator ��� r
j 
 
 

...

EmptyContextInfo ��� Oh OriginSet� IndirectionList i

IndirectionList ��� �ElementaryNode ref� list

EmptyContextNode ��� Ch ElementaryNode ref� EmptyContextInfo i

ElementaryNode ��� Fh Operator� TermGraph list� OriginSet i

TermGraph ��� EmptyContextNode ref

Figure 15: Type definitions for data structures implementing terms in nonlinear TRSs.

which represents the context
ff � tt� �

in the initial term.

8.3 Implementing Nonlinear Systems

8.3.1 Additional Data Structures

The type definitions for the data structures used to implement nonlinear systems are depicted in Figure 15.
These definitions are almost identical to those used for linear systems. The only difference in this case is that
EmptyContextInfo is now defined as a pair, built with the constructorOh
� 
i. The first component of the pair
is an OriginSet, and represents the same information as the OriginSet used to represent EmptyContextInfo
data in the linear case. The second component of the pair is an IndirectionList containing a list of references
to indirection ElementaryNodes. The indirections in the list are those that are “compressed away” in
compression operations performed on the empty context with which the list is associated.

8.3.2 Reducing the Graph

Figure 16 depicts the updated single step rewriting function, oneStepRewrite � used for the full system B.
Note that the code for first three (nonlinear) rules is essentially unchanged from the linear version; the
contents of the indirection list components of the EmptyContextInfo structures are ignored.
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However, the code implementing the nonlinear rule

[B4] X �X �� ff

is more interesting. First, note that the two instances of the nonlinear variable X have been replaced by
distinct instances X� and X�. The function termsEqual is used to check whether the term representation of its
term graph arguments are the same (we will not supply the details of termsEqual , which in its simplest form
can be implemented as a recursive traversal over the “flattened” tree images of its term graph arguments).
If the nonlinearly-matched term graphs are not equal, then the rule is not applied. If, however, the terms
are equal, then another auxiliary function, originsOfEqualTerms, is used to compute the origin sets to be
associated with the created contexts on the rule’s right-hand side. We will discuss this function further in
Section 8.3.4.

8.3.3 Compressing Indirections

The indirection compression function for nonlinear systems, compressOneIndirection �, is depicted in Fig-
ure 17. This function performs the same operation on origin sets as its linear counterpart in Figure 12.
However, the nonlinear version also creates a new indirection list by first appending a reference to the
compressed indirection node to the indirection list for the parent empty context node, then concatenating
the indirection list for the child empty context node to the result (the list concatenation operation is denoted
by ‘@’). The indirection list in the EmptyContextInfo structure thus contains all of the indirection nodes
involved in any contiguous chain of applications of the compression function.

Figure 18 depicts the nonlinear analogue of the linear indirection compression operations depicted in
Figure 14.

8.3.4 Computing the Origin Sets for Equal Terms

The code for originsOfEqualTerms and several related auxiliary functions are depicted in Figure 19. This
function computes the union of origin sets representing pairs of equal elementary or empty contexts that do
not have a common progenitor (see Section 7.1. Such subcontexts are treated as part of the creating context
for a nonlinear rule.

Those elementary or empty contexts with a common progenitor are represented in term graph rewriting
systems by the same graph node. In our implementation, the identity of two nodes can be determined by
testing the references that point to them for equality.

originsOfEqualTerms compares its empty context reference arguments for equality. If the references
are identical, then the origin set computed by the function is empty (i.e., the contexts are not part of the
creating context since they have a common progenitor). If the references are not identical, then the func-
tions originsOfEqualElemRefs and originsOfReversedIndLists are invoked to process the corresponding
elementary nodes and the indirection lists. The indirection lists are reversed before being processed by
originsOfReversedIndLists, since the lists do not necessarily have the same length, and any indirections
shared by both lists must be part of a common list tail.

originsOfEqualElemRefs compares two references to elementary nodes. As in the empty context case,
the empty origin set is returned if the references point to the same node. Otherwise, the argument lists are
processed recursively using originsOfEqualTermLists (we will not depict its implementation here), and the
result combined with the origin sets for the two elementary nodes.
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fun oneStepRewrite��termGraph� �
let ref Ch elemRef� i � termGraph
and ref elemNode � elemRef in

case elemNode of
Fh �� � X� ref Ch ref Fh �� � Y� Z 	� o� i� Oh o�� i i 	� o� i � (* Rule [B1] *)

let o� � o� � o� � o� in
elemRef �� Fh ��

� ref Ch ref Fh �� � X� Y 	� o� i� Oh o�� � 	 i i�
ref Ch ref Fh �� � X� Z 	� o� i� Oh o�� � 	 i i 	�

o� i
end

| Fh �� � X� ref Ch ref Fh tt� � 	� o� i� Oh o�� i i 	� o� i � (* Rule [B2] *)
let o� � o� � o� � o� in

elemRef �� Fh r� � X 	� o� i
end

| Fh �� � X� ref Ch ref Fh ff� � 	� o� i� Oh o�� i i 	� o� i � (* Rule [B3] *)
let o� � o� � o� � o� in

elemRef �� Fh ff� � 	� o� i
end

| Fh �� � X�� X� 	� o� i � (* Rule [B4] *)
if termsEqual�X��X��

then
let o� � o� � originsOfEqualTerms�X��X�� in

elemRef �� Fh ff� � 	� o� i
end

else skip

| � skip
end

Figure 16: Compiled single-step reduction function for the nonlinear full nonlinear TRS B.
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fun compressOneIndirection��termGraph� �
let ref contNode � termGraph
and Ch elemRef� Oh o�� indList� i i � contRef in

case elemRef of
ref Fh r� � ref Ch childElemNode� o� i 	� Oh o�� indList� i i �

let o� � o� � o� � o� in
contNode �� Ch childElemNode� Oh o�� indList� @ � elemRef 	 @ indList� i i

end

| � skip
end

Figure 17: Compression function for indirection nodes in nonlinear TRSs.

Finally, originsOfReversedIndLists processes reversed indirection lists by comparing their head elements
(each of which is a reference to an indirection node) and ignoring the origins for those nodes whose references
point to the same node. The auxiliary function originsOfAllInds, not depicted here, simply returns the union
of the origin sets associated with all the indirection nodes in its argument list. Note that the operator ‘ �� ’ is
the list constructor.

8.3.5 Computing the Slice

Figure 20 depicts the result of applying rule [B4] to the compressed graph depicted in Figure 18. Note
that the two indirections depicted, which are traversed by originsOfEqualTerms when computing the origin
information for the nonlinearly-matched subgraphs, are not shared. Thus their origin information is merged
into the created subgraph representing the final term, ff.

The slice with respect to the final term of the reduction, ff, is represented by the origin set associated
with the single elementary node representing the term. This set is

f� �� � � �� � �� 
 �� � �� � �g

and represents the context
� � tt� tt

in the initial term.

8.3.6 Nonlinear Variables on Rule Right-Hand Sides

Our prototypical TRS B lacks a nonlinear rule in which the nonlinear variable appears on the term’s right-
hand side. In such cases, Definition 7.4 requires that the graph representing the term bound to the nonlinear
variable on the right-hand side of the rule be constructed from two distinct classes of subgraphs:
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compressOneIndirection� is delimited by a dashed line.
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fun originsOfEqualTerms�termGraph�� termGraph�� �
if termGraph� � termGraph�

then �
else

let ref Ch elemRef�� indList� i � termGraph�
and ref Ch elemRef�� indList� i � termGraph� in

originsOfEqualElemRefs�elemRef�� elemRef��
� originsOfIndLists�reverse�indList��� reverse�indList���

end

fun originsOfEqualElemRefs�elemRef�� elemRef�� �
if elemRef� � elemRef�

then �
else

let ref Fh � operandList�� o� i � elemRef�
and ref Fh � operandList�� o� i � elemRef� in

o� � o� � originsOfEqualTermLists�operandList�� operandList��
end

fun originsOfReversedIndLists�� 	� � 	� �
�

j originsOfReversedIndLists�indListHd� �� indListTl�� � 	� �
originsOfAllInds�elemRef� �� indListTl��

j originsOfReversedIndLists�� 	� indListHd� �� indListTl�� �
originsOfAllInds�elemRef� �� indListTl��

j originsOfReversedIndLists�elemRef� �� indListTl�� elemRef� �� indListTl�� �
if elemRef� � elemRef�

then originsOfReversedIndLists�indListTl�� indListTl��
else

let ref Fh � � o� i � elemRef�
and ref Fh � � o� i � elemRef� in

o� � o� � originsOfReversedIndLists�indListTl�� indListTl��

Figure 19: Functions for computing origin sets for pairs of equal terms.
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� Shared residuated subgraphs, each of which represents a set of corresponding contexts in the equal
terms, all of the latter of which have a common progenitor.

� A created subgraph corresponding to the remaining (non-residuated) context common to the equal
terms.

8.3.7 Improving the Implementation of Equality Functions

As described in Figure 19, the function originsOfEqualTerm effectively traverses the “flattened” tree image
of the graph. Unfortunately, it is easy to construct examples in which the size of the tree image of a
term graph is exponentially larger than its graph representation. To avoid the possibility of incurring severe
efficiency penalties when performing equality tests on such graphs, a variant of the Hopcroft/Karp algorithm
for determining equivalence of finite automata [18] (described in [3, pp. 143–145]) can be used to partition
the graph nodes representing equal terms into equivalence classes. The recursive traversal required by the
origin set processing functions for equal subterms can then be carried out on a data structure representing
the induced graph of equivalence classes (whose size is bounded by the sum of the sizes of the graphs
representing the equal terms), rather than on the tree images of the term’s graphs.

8.4 Complexity Issues

If path sets are implemented by bitmaps, the extra administrative steps required to track dynamic dependence
information during each reduction step can be implemented in time proportional to the size of the initial
term. The number of unions per reduction step is bounded by the number of function symbols that need to
be matched. Consequently, the overhead per reduction step of performing path set unions is linear in the
size of the initial term.

If indirections are compressed in reverse topological order relative to the root of any subgraph to be
transformed by a reduction step, then the number of compression steps necessary to eliminate all indirection
nodes in any graph is proportional to the number of graph edges linking empty context nodes to indirection
nodes. In any reduction sequence, the number of such edges generated is proportional to the sum of the size
of the initial graph and the number of reduction steps in the sequence. Thus the overhead of indirection
compression per reduction step is constant when amortized over any reduction sequence longer than the
size of the initial term; otherwise the overhead is bounded by the size of the initial term.

In nonlinear systems, it is in principle possible to create chains of indirection nodes whose length is
proportional to the length of the entire reduction. Traversing the indirection lists for such chains when
processing the origin sets for equal terms could thus incur an overhead per reduction step linear in the size
of the entire reduction. In practice (e.g., modeling C semantics in [14]), this phenomenon has not proved
to be a problem. Long chains of indirections are rarely constructed, and it is even more unusual for such
chains to be subsequently traversed during equality tests. If this phenomenon were to occur in practice,
slices for nonlinear systems could be computed without the overhead of indirection traversal by using the
EmptyContextInfo representation for nonlinear systems, albeit at the cost of computing larger than necessary
slices in some cases.
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Figure 21: Overview of the parametric slicing approach of [14].

9 Applications

Dynamic dependence tracking has been applied successfully to a number of different application domains.

9.1 Parametric Program Slicing

In [14], dynamic dependence tracking is applied to Pim, [5], an intermediate program representation whose
behavior is defined by an equational logic. A subsystem of the full Pim system can be used not only to
execute programs, but also to perform various kinds of analysis and optimizations by simplification of a
program’s Pim representation.

To compute the slice of a program with respect to the final value of a variable x, a term is constructed
that “encodes” (i) the abstract syntax tree (AST) of the program possibly containing meta-variables denoting
unknown values or inputs, (ii) the variable x that represents the slicing criterion, and (iii) a (possibly empty)
set of additional constraints on meta-variables. Next, the AST is translated to a graph comprising its
Pim representation. This translation is assumed to be defined by a rewriting system (although it need not
necessarily be implemented that way). The resulting graph is then simplified by repeated application of sets
of rewriting rules derived from the Pim logic. The graph that results from the reduction process represents
the final value of variable x (in terms of the unconstrained meta-variables). Tracing back the dynamic
dependence relations from this graph to the AST of the program yields the desired slice, as a subcontext of
the AST. If this slice is required to be a parseable representation of the program, an optional post-processing
step is performed. The approach is illustrated in Figure 21.

The approach of [14] is distinguished by the fact that changes to the behavior of the slicing algorithm
can be accomplished through simple changes in the rewriting rules that define the semantics of the program
representation. Thus, e.g., different notions of dependence may be specified, properties of language-specific
datatypes can be exploited, and various time, space, and precision tradeoffs may be made. This flexibility
enables the generalization of the traditional notions of static and dynamic slices to that of a constrained
slice, where any subset of the inputs of a program may be supplied.
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9.2 Dynamic Program Slicing

In [28], dependence tracking is applied to the algebraic specification of an interpreter for the language ClaX,
a Pascal subset. This specification consists of a set of conditional rewriting rules, which can be executed
by conditional term rewriting. The specification starts with a term representing the program’s AST, and
constructs a term that represents the stack of activation records containing the current value for each variable.
Execution of a statement is modeled by rewriting the activation stack appropriately. A dynamic slices with
respect to the current value of a variable v is computed by tracing back the dynamic dependence relations
from the subterm representing v’s value. The resulting slices can be postprocessed (i.e., �-subterms are
transformed away) for the sake of enhancing readability.

9.3 Locating Type Errors

Dinesh and Tip [11] present an approach where the behavior of a type checker is algebraically specified by
way of a set of conditional equations. This type checker specification is executed by way of conditional
term rewriting. The rewriting rules of this system express the type checking process by transforming a
program’s abstract syntax tree (AST) into a list of error messages. Dynamic dependence tracking is used
to associate a slice Pe with each type error e that occurs when type-checking program P . This slice serves
as the positional information associated with an error message, but it has an interesting semantic property:
type-checking Pe is guaranteed to produce the same type error e.

The approach of [11] has been implemented for the language ClaX, a significant subset of Pascal.
Figure 22 shows a snapshot of the generated error reporting tool. A discussion of the engineering issues
that came up during the implementation of the ClaX environment can be found in [10].

9.4 Tracing the Origins of Verification Conditions

In his Ph.D. thesis [17], Fraer presents a variation of dynamic dependence tracking for systems based on
inference rules instead of rewrite rules. Fraer uses dependence tracking for tracing the origins of verification
conditions generated by a Verification ConditionGenerator (VCG) [16]. A VCG takes as input an imperative
program annotated with Hoare logic assertions (pre/postconditions and loop invariants) and outputs a list
of verification conditions that are submitted as input to a theorem prover. Dependence tracking is used
in situations where the proof of some verification condition fails, in order to determine what program
components or verification conditions need to be modified. Fraer implements dependence tracking by
instrumenting the inference rules and terms to propagate dependence information.

10 Related Work

The term “slice” was first coined by Weiser [32], and defined for imperative programming languages using
dataflow analysis. Subsequent work, beginning with that of Ottenstein and Ottenstein [25], has focused on
use of program dependence graphs [12] for computing slices. Cartwright and Felleisen [8] and Venkatesh
[30] discuss the denotational foundations of dependence and slicing, respectively for similar classes of
languages; however, they do not provide an operational means to compute slices. [29] provides a survey of
current work on program slicing.
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Figure 22: The ClaX environment. The top window is a program editor with two buttons attached to it for invoking
a type checker and an interpreter, respectively. The middle window shows a list of four type errors reported by the type
checker, in which the error message “in-call expected-arg VAR INTEGER found-arg REAL” is selected, indicating a
mismatch between formal and actual parameter types in a procedure call. The bottom window shows the slice computed
for this error message, containing all program components that contributed to the selected type error. The ‘<?>’ symbols
in the slice denote placeholders for program constructs not contributing to the error message.
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A number of authors have considered various “labeling” or “tracking” schemes which propagate auxiliary
information in conjunction with reduction systems; these schemes are similar in some respects to the method
we will use to implement slicing. Bertot [6, 7] defines an origin function, which is a generalization of the
classic notions of residual and descendant in the lambda-calculus and TRSs. He applies this idea to the
implementation of source-level program debuggers for languages implemented using natural semantics
[19]. Van Deursen, Klint and Tip [9], addressing similar problems, define a slightly expanded class of
“origin” information for the larger class of conditional TRSs. However, slicing is not considered in these
papers, nor do these “tracking” algorithms propagate information appropriate for computing slices.

In [21] (page 85), Klop presents a “tracing relation” which is very similar to our dynamic dependence
notion, and observes that it can be used to distinguish the needed prefix and the non-needed part of a term.
In our terminology, the needed part is the slice with respect to the entire normal form, and the non-needed
parts correspond to the “holes” in this slice. In other words, replacing the non-needed parts by arbitrary
subterms will result in the same normal form. There are two main differences with our work. First, Klop’s
tracing relation is only defined for orthogonal TRSs. This ensures that the normal form resulting from
replacing non-needed parts is exactly the same as the normal form of the original term. Second, for collapse
rules the top symbol of the reduct is considered to be “created”. As we discussed earlier, this gives rise to
slices being non-minimal. Finally, Klop does not study the use of tracing relations for program slicing, nor
does he give an algorithm to compute his relation efficiently in practice.

In certain respects, our technique is the dual of strictness analysis in lazy functional programming
languages, particularly the work of Wadler and Hughes [31] using projections. Strictness analysis is used
to characterize those subcomponents of a function’s input domain that are always needed to compute a
result; we instead determine subcomponents of a particular input that are not needed. However, there are
significant differences: strictness analysis is concerned with domain-theoretic approximations of values,
usually requires computation by fixpoint iteration, and rarely addresses more than a few core functional
primitives. By contrast, we perform exact analysis on a particular input (although we can effectively perform
some approximate analyses by reduction of open terms), compute our results algebraically, and can address
any construct expressible in TRS form.

Maranget [22, 23] provides a comprehensive study of lazy and optimal reductions in orthogonal TRSs
using labeled terms. Although Maranget’s label information could in principle be used to compute slices,
he does not discuss such an application, nor does he provide any means by which such labels could be used
to implement slicing. Like Klop, Maranget also only considers orthogonal TRSs. Our approach covers a
larger class of TRSs, and provides a purely relational definition of slice which does not require labeling.

Abadi et al. independently developed a technique similar to dependence tracking for several variations
of the �-calculus [1]. The motivation of their work is incremental evaluation: their work is stated as a
technique for “caching” results of rewriting �-terms in order to avoid the subsequent rewriting of similar
terms. In the approach of [1], some or all of the function symbols in a �-term are labeled with a unique
label, and additional rules are introduced for pushing labels outward so that the “standard” reductions can
take place. After normalizing a �-term, the labels that remain in the normal form are precisely those of the
context (prefix, using their terminology) that was needed to perform the reduction (i.e., the term slice). The
approach by Abadi et al. is more limited than ours in a number of respects:

� The approach of [1] heavily relies on an outermost reduction strategy. If an innermost rewriting
strategy were to be used, all labels would be pushed outward before they could be eliminated, and the
computed slice would consist of the entire term. Our approach is not limited in this respect.
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� Abadi et al. only consider a number of variations on the �-calculus, which are particularly well-
behaved TRSs. Although their approach could easily be extended to other TRSs that are orthogonal
[21], its practical applications are severely limited by the inability to deal with nonlinear rewriting
rules and collapse rules.

11 Future Work

An important question for future work is to define classes of TRSs for which slices are independent of the
reduction actually used. While orthogonal systems certainly have this property, we believe it should be
possible to characterize non-orthogonal systems for which this property also holds.

We have begun efforts to extend our techniques to conditional rewriting systems and lambda calculi
(i.e., systems with variable-binding constructs). A preliminary implementation of these ideas has proved
promising, but a formal study remains to be done.
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