
J. Symbolic Computation (1993) 15, 523-545

Origin Tracking

A. VAN DEURSEN, P. KLINT, AND F. TIe
arie@cwi.nl, paulk~cwi.nl, tip~cwi.nl

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

We are interested in generating interactive programming environments from formal
language specifications and use term rewriting to execute these specifications. Func-
tions defined in a specification operate on the abstract syntax tree of programs and
the initial term for the rewriting process will consist of an application of some function
(e.g., a type checker, evaluator or translator) to the syntax tree of a program. Dur-
ing the term rewriting process, pieces of the program such as identifiers, expressions,
or statements, recur in intermediate terms. We want to formalize these recurrences
and use them, for example, for associating positional information with messages in
error reports, visualizing program execution, and constructing language-specific de-
buggers. Origins are relations between subterms of intermediate terms and subterms
of the initial term. Origin tracking is a method for incrementally computing origins
during rewriting. We give a formal definition of origins, and present a method for
implementing origin tracking.

1 I n t r o d u c t i o n

We are interested in generating interactive development tools from formal language defi-
nitions. Thus far, this has resulted in the design of an algebraic specification formalism,
called ASF+SDF [BHK89, HHKR89] supporting modularization, user-definable syntax,
associative lists, and conditional equations, and in the implementation of the ASF+SDF
Meta-environment [Hen91, Kli93].

Given a specification for a programming (or other) language, the Meta-environment
generates an interactive environment for the language in question. More precisely, the
Meta-environment is a tool generator which takes a specification in ASF+SDF and de-
rives a lexical analyzer, a parser, a syntax-directed editor and a rewrite engine from it.
The Meta-environment provides fully interactive support for writing, checking, and test-
ing specifications--all tools are generated in an incremental fashion and, when the input
specification is changed, they are updated incrementally rather than being regenerated

Partial support has been received from the European Communities under ESPRIT project 2177: Gen-
eration of Interactive Programming Environments - GIPE II, under ESPRIT project 5399: Compiler Gen-
eration for Parallel Machines - COMPAaE, and from the Netherlands Organization for Scientific Research
- Nwo, project Incremental Program Generators.

0747-7171/93/5-6523 + 23 $08.00/0 © 1993 Academic Press Limited

524 A. van Deursen, P. Klint and F. Tip

from scratch. A central objective in this research is to maximize the direct use t ha t is
made of the formal specification of a language when generating development tools for it.

We use Term Rewriting Systems (TRSs) [Klo9t] to execute our specifications. A typical
function (such as an evaluator, type checker, or translator) in a specification operates on
the abstract syntax tree of a program (which is part of the initial term). During the t e rm
rewriting process, pieces of the program such as identifiers, expressions, or s tatements ,
recur in intermediate terms. We want to formalize these recurrences and use them, for
example, for:

• associating positional information with messages in error reports;

• visualizing program execution;

• constructing language-specific debuggers.

Our approach to formalize recurrences of subterms consists of two stages. First, we
define relations for elementary reduction steps ti --* ti+l; these relations are described in
Section 1.3. Then, we extend these relations to complex reduction sequences to --* tl --*
. . . . t , . In particular, we are interested in relations between subterms of an intermediate
term tl, and subterms of the initial term to. We will call this the origin relation. Intuitively,
it formalizes from which parts of the initial term a part icular subterm originates. The
process of incrementally computing origins we will call origin tracking.

I.I APPLICATIONS OF ORIGIN TRACKING

In TRSs describing programming languages terms like

program(decls (decl (n , n a t u r a l)) , s t a t s (ass ign (n, 34)))

are used to represent abstract syntax trees of programs. A typical type check function
takes a program and computes a list of error messages. An example of the initial and final
term when type checking a simple program is shown in Figure 1.

tc ~ • • • ~ errorlist

i I

program undeclared-var

decls stats nl
w

| ! i
i

decl assign ~ ~ /

/ \ / ', , , "
/

n natural nl 34 t"

Figure 1: Type checking a simple program

• The program uses an undeclared variable nZ, and the result of the type checker is a
term representing this fact, i.e., a term with undec la red-var as function symbol and the
n a m e n l of the undeclared variable as argument. The dashed line represents an origin: it

Origin Tracking 525

"~:-:':Z':" ~ (

i:: i::':: ~)IF;~.:# '~ L e - ' i : :

T.'IEC' L.HP.F
:", : P - ~ L :
.i. ; .[~iIEC:,E:R:
F'Fh_-iI:IEDi_i.E'E L-',:-.::.~:"'< - " ~: : l i ~ T C - : ~ : ' :-

::-.!ECLAF, E , : PEqi...:
stIe}:. : LABEL BE::.-,IH

,. ; : :>:

s t e p : = -:,t .eF. * " . . ' . 0 1 :

N H i L E . . . ±.~- DO ~,~P[TE '." < : ' ;

C,O T 0 5t~:.-_.~p :
s t e p : ,.c..H~'
i : = r ; . v

NHiI. E ~. < 0

NF: ITE ~ 2 : : " : ' :
T t.~R.TL -: :. - .: :::

L.IRZTE :i '".:-," >:
s t e p : x : = >:: ÷ ~:tep EIiD.:

TcErrors : /usr/ err

E! IT" :
.D.:IU.~.,~2 .:" ... :,

E,N~J

Figure 2: Highlighting occurrences of errors.

relates the occurrence of nl in the result to the nl in the initial term. One can use this
to highlight the exact position in the source program where the error occurred. Figure 2
shows an application of this technique.

Similarly, program evaluators can be defined. Consider for example a rule which
evaluates a list of s tatements by evaluating the first s ta tement followed.by the remaining
statements:

[1] ev-l is t(cons(Stat ,S-l is t) ,Env) -> e v - l i s t (S-list, ev-s tat (Stat ,Env))

The variables (Star, S-list, and Ear) are used to pass information from the left to the
right-hand side. The origins of these variable occurrences in the right-hand side are shown
by dashed lines in Figure 3.

A natural application of origin tracking consists of the animat ion of program execution.
By this we mean t ha t - -du r ing execut ion-- the s ta tement currently being executed is indi-
cated in some distinctive way in the source text. In the above example this can be achieved
by matching every redex with the pat tern ev-s ta t (Stat , Env) and, whenever a match
occurs, highlighting the origin of the first argument of e v - s t a t in the initial program.
Applications of this technique can mainly be found in the areas of source-level debugging

526 A. van Deursen, P. Klint and F. Tip

ev-list ~ ev-list

/ \ / \
c o n s Env . S-list e v - s t a t

Star S-list ... - . . Star Env

-2(.-

Figure 3: One step in the evaluation of a simple program.

and tutoring. It allows us to animate program execution in a very fine-grained manner:
we can visualize the evaluation of any language construct (e.g., expressions, declarations).

A second usage of origin tracking in the area of debugging is the possibility to define
various notions of breakpoints. Source-level debuggers often have a completely fixed notion
of a breakpoint, based on line-numbers, procedure calls and machine addresses. The origin
relation can be used to define breakpoints in a much more uniform and generic way. For
instance, a positional breakpoint can be created when the user selects a certain point in
the source program. The path from the root to that point is recorded and the breakpoint
becomes effective when-- in this example the origin of the first argument of e v - s t a t equals
that path. Position-independent breakpoints can be defined by using patterns describing
statements of a certain form (e.g., an assignment with x as left-hand side). The breakpoint
becomes effective when the argument of ev - s t a t matches that pattern; its origin shows
the position in the original program.

1 .2 POINTS OF DEPARTURE

Before sketching the notion of origin relation (in the next subsection) we briefly summarize
our points of departure:

• No assumptions should be made regarding the choice of a particular reduction strat-
egy.

• No assumptions should be made concerning confluence or termination; origins can
be established for arbitrary reductions in any TRS.

• The origin relation should be obtained by a static analysis of the rewrite rules.

• Relations should be established between any intermediate term and the initial term.
This implies that relations can be established even if there is no normal form.

• Origins should satisfy the property tha t if t has an origin t', then t' can be rewritten
to t in zero or more steps.

• An efficient implementation should exist.

These requirements do not lead, however, to a unique solution. We will therefore only
present one of the possible definitions of origins but we can easily imagine alternative ones.

Origin Tracking 527

1. Common Variables
2. Common Subterms
3. Redex - Contractum
4. Contexts

Figure 4: Single-step origin relations.

f ~ g

I I

h ~ ~ h

/ \ / \

a b a b

Figure 5: Relations according to a variable occurrence in both sides of a rule.

1 . 3 O R I G I N R E L A T I O N S

As mentioned above, the origin relation is defined in terms of single-step origin relations
for elementary reductions. Put more precisely, the origin relation is based on the transitive
and reflexive closure of these single-step origin relations.

To summarize the single-step origin relations, consider Figure 4. Assume a rewrite rule
r : tl ---* t2 is applied in context C with substitution o, thus giving rise to the elementary
reduction C[t~] --*r C[t~]. We distinguish four relations:

C o m m o n v a r i a b l e s : if a variable X appears both in the left-hand side tl of the rule
and in the r ight-hand side t2, then relations are established between each function
symbol in the instantiat ion X ¢ of X in tl and tha t same function symbol in each
instant iated occurrence of X in t2.

Figure 5 illustrates how the variable X causes all function symbols in the instantia-
tion to be related when applying the rule f (X) -> g (X) . Rules may be non-linear,
i.e., some variable X may have multiple occurrences in its left-hand side like in
p l u s (X , X) -> mul(2, X). Since there is no obvious solution to which occurrence
of X in the left-hand side the X in the right-hand side should be related, we link
it to both occurrences. As a consequence, non-linearity in the left-hand side causes
one subterm to have several related subterms.

C o m m o n s u b t e r m s : if a term s is both a subterm of tl and of t2, then these occurrences

528 A. van Deursen, P. Klint and F. Tip

append ~ cons
/ \ / \

E empty-list E empty-list

Figure 6: Relations according to common subterms rule.

append ~ cons

I \ / \
E1 cons E2 append

/ \ I \
E~ L El L

Figure 7: Relations according to redex-contractum rule.

of s are related. Take for example the rule defining how to append an element to
the end of a list:

[al] append(E ,empty- l i s t) -> c o n s (E , e m p t y - l i s t)
[a2] append(E / , cons (E2 ,L)) -> cons(E$, append(E / ,L))

Using the common variables relation, several useful origin relations will be con-
structed. But the constant e m p t y - l i s t which occurs in both the left-hand side and
the right-hand side of [al] will not be related. This is done by the common subterms
relation. For equation [al] this is shown in Figure 6. A more elaborate example is
the conditional rule for evaluating while-statements:

[wl] ev-stat(while(Ezp,S-l ist) , Env) ->
e v - s t a t (while (Ezp, S-list), e v - l i s t (S-list, Env))

when ev-exp(Exp, Env) = t rue

When evaluation of Ezp yields true, the same while-statement is evaluated in a new
environment obtained by evaluating the body of the while-statement (S-list) in the
initial environment (Env). The common subterms relation links the while-symbols
at both sides of [w1].

R e d e x - c o n t r a c t u m : the top symbol of the redex t~ and the top symbol of its cont rac tum
t~ are related, as shown in Figure 7 for equation [a2]. An essential applicat ion of
this relation can be seen in

Jr1] r e a l - c o n s t (Char - l i s t) -> r e a l - t y p e

where a real constant containing a list of characters is rewrit ten to its type denotat ion
r ea l - t ype . Application of the redex-contractum relation may introduce more than
one element in an origin.

C o n t e x t s : relations are established between each function symbol in the context C of the
left-hand side and its counterpart in the context C of the right-hand side.

Origin Tracking 529

It is obvious how in a chain of elementary reductions, the chain of single-step origin
relations can be used to find the origins of any subterm in the reduction.

In an alternative, more implementation-oriented view, subterms are annotated with
their origins (as sets of paths to the original term). For each reduction, the origins of the
redex are propagated to the contractum in accordance with the single-step origin relations.

Origin tracking for conditional TRSs (CTRSs) is an extension of the origin function
for unconditional TRSs, but is slightly more complicated. The main complications arise
from the fact that we want to be able to determine origins of terms that appear in the
(sub)reductions necessary to evaluate conditions.

If evaluation of a condition involves a reduction of a term t, then the origins of the
redex are passed to tha t term t, according to the common-variables and common-subterms
rule. These origins are propagated to the normal form of t, by using the normal origin
relations. If a condition introduces variables, then these are matched against normal forms
that have already obtained an origin. These variables may be re-used in other conditions,
or in the right-hand side of the conclusion, thus giving the contractum its origins.

2 F o r m a l D e f i n i t i o n

In this section, we present a formal definition of origin tracking. A basic knowledge of term
rewriting systems (TRSs), and conditional term rewriting systems (CTRSs) is assumed.
For a detailed discussion of these, the reader is referred to [Klo91].

The remainder of this section is organized as follows. First, we introduce basic concepts
and rewriting histories for unconditional TRSs. Subsequently, the origin function for
unconditional TRSs is defined, and illustrated by way of an example. After discussing
basic concepts and rewriting histories for CTRSs, we consider the origin function for
CTRSs.

We have used the formal definition of the origin relation to obtain an executable
specification of origin tracking. The examples that will be given in this section have been
verified automatically using that specification.

2.1 BASIC CONCEPTS FOR UNCONDITIONAL TRSS

A notion which will frequently recur throughout this paper is that of a path (occurrence),
consisting of a sequence of natural numbers between brackets. Paths are used to indicate
subterms of a term by interpreting numbers as argument positions of function symbols.
For instance, (2 1) indicates subterm b of term f (a , g(b, c)) . This is indicated by the /
operator: f (a , g(b, c)) / (2 1) ---- b. The associative operator • concatenates paths, e.g.,
(2) • (1) = (2 1). The operators -% --<_, and [define the prefix ordering on paths. The fact
that p is a prefix of q is denoted p -< q; =< is the reflexive closure of -<. Two paths p and q
are disjoint (denoted by p I q) if neither one is a prefix of the other.

The set of all valid paths in a term t is O(t). The set of variables occurring in t is
denoted Vats (t). We use t' C t to express that t ' appears as a subterm of t; the reflexive
closure of C is _C. The negations of C and C are ~ and ~Z, respectively. Finally, Lhs(r)
and Rhs(r) indicate the left-hand side and the right-hand side of a rewrite rule r.

530 A. van Deursen, P. Klint and F. Tip

2.2 A FORMALIZED NOTION OF A REWRITING HISTORY

A basic assumption in the subsequent definitions is that the complete history of the rewrit-
ing process is available. This is by no means essential to our definitions, but has the
following advantages:

• The origin function for CTRSs can be defined in a declarative, non-recursive man-
ner. We encountered ill-behaved forms of recursion in the definition itself when we
experimented with more operational definition methods.

• Uniformity of the origin functions for unconditional TRSs and for CTRSs. The la t ter
can be defined as an extension of the former.

In the case of unconditional TRSs, the rewriting history Tl is a single reduction sequence
S. This sequence consists of a list of sequence elements Si which contain all information
regarding the i th rewrite-step. Here, i ranges from 1 to ISI where IS[is the length of
sequence S.

Each sequence element is a 5-tuple (n, t, r, p, a) where n is the name of the sequence
element (consisting of a sequence name and a number), t denotes the i th term of sequence
S, r the i th rewrite rule applied, p the path to the redex in t, and a the subst i tut ion
used in the application of r. Access functions n(s), t(s), r(s), p(s), and a(s) are used to
obtain the components of s. The last element of a sequence is irregulax, because the t e rm
associated with this element is in normal form: the rule, pa th and subst i tut ion associated
with Sis I consist of the special value undefined.

Below, s, s ~, and s" denote sequence elements. Moreover, it will be useful to have a
notion 7{- denoting the history 7-I from which the last sequence element, SlSl, is excluded.
For our convenience, we introduce Lhs(s) and Rhs(s) to denote the left-hand side and
right-hand side of r(s) . Finally, Suec(7-l, s) denotes the successor of s, for s in 7-/-, and
Start(7-l) determines the first element of the reduction sequence in 7-(.

2.3 THE ORIGIN FUNCTION FOR UNCONDITIONAL T R S s

2.3.1 AUXILIARY NOTIONS

The auxiliary function Corn (Definition 2.1) is frequently used in the definitions of the
origin functions below, to compute positions of common variables and common subterms.
The arguments of Corn are a substitution a and two terms t and t'. The result computed
by Corn is a set containing pairs (p, p') such tha t either a variable X or a common subterm
t" occurs both at pa th p in t and at path p~ in t ~.

DEFINITION 2.1 (Corn)

Corn(a, t, t ') = { (p.q, p' . q) [t /p 6 Vats(t), t /p = tt/p', q e O(a(t /p)) } U
{ (p, p') I t /v ¢ Vans(t), t /v = t'/v' }

For one-step reductions, the basic origin relation LR (short for Left-hand side to Right-
hand side) relates common subterms of a redex and its contractum, which appear as a
result of the presence of a common variable or a common subterm in the applied rewrite
rule.

DEFINITION 2.9 (LR) For s in 7-/-: LR(s) - Com(a(s), Lhs(s), Rhs(s))

Origin Tracking 531

t(s~): . - - - - t (s 2) : . - - - ~(s31:

aDDend cons . - -_ cons

b c o n s . - " a2 - . a append _ak_ a cons

a empty-list b empty-list b empty-list

Figure 8: History "Happ for append(b, cons (a, empty- l i s t)) . Dashed lines indicate origin
relations.

2.3.2 DEFINITION OF ORG

The origin function ORG for unconditional TRSs is defined using LR. Relations are rep-
resented by relate clauses: a clause relate(Tl, s', if, s, p) indicates a relation between the
subterm at path p' in t(s') and the subterm at path p in t(s) in history 7-/. In (u l) , all
relations between symbols in the redex in t(s) and its contractum in t(Succ(7-(, s)) are
defined, excluding the top symbols of the redex and the contractum. The fact tha t all
symbols in the context of the redex remain unchanged is expressed in (u2). In addition,
the top symbols of the redex and the contractum are related by (u2) .

For s in 7~ and a path p in t(s), the set of related subterms (according to the transitive
and reflexive closure of relate) in the initial term, t(Start(?t)), is denoted ORG(7-I, s, p).

DEFINITION 2.3 (ORG) For s in 7-(- and s' in "]-(:

(u l) V(q , q') • LR(s) : relate(K, s, p(s) .q, Succ(Tl, s) , p(s) . q')
(. 2) Vp: (p ~ ~(s)) V (p I ~(s)) : relate(U, s, p, S~ce(U, s), p)

{ p } when s = Start(7-t)
ORG(7-I, s, p) - { p" [p" 60RG(7"I, s', if), relate(7-l, s', p', s, p) } when s 7~ Start(7-l)

In principle, the availability of all relate clauses allows us to determine relationships
between subterms of two arbitrary intermediate terms that occur during the rewriting
process. In this paper, we will focus on relations involving the initial term.

2.3.3 EXAMPLE

As an example, we consider the TRS consisting of the two rewrite rules [al l and [a2]
of section 1.3. Figure 8 shows a history 7 / ,~ , consisting of a sequence S, as obtained by
rewriting the term append(b, cons(a, empty)).

Below, we argue how the origin relations shown in Figure 8 are derived from Def-
inition 2.3. For the first sequence element, $1, we have p(S1) ---- 0 , r(,~l) = a2, and
or(S1) = { E1 ~-, b, E2 ~-* a, L ~-~ empty- l is t }. As all variable bindings are constants
here, we have: O(EI a(sO) = O(E~ ~(s')) = O(L ~(&)) = { () }. From this, we obtain:

LRCS1) = ComCc~(S1), Lhs(S1), Rhs(S1))= { ((1), (2 1)), ((21), (1)), ((22), (2 2))}

7
532 A. van Deursen, P. Klint and F. Tip

In a similar way, we compute:

LR(S2) = Com(a(S2), Lhs(S2), Rhs(S2)) = { ((1), (1)), ((2), (2)) }

From Definition 2.3 we now derive the following relate relationships. (Note that the last
three relationships are generated according to (u l) of Definition 2.3.)

relate(~pp, S~, (1), 82, (2 1))
relate(7-lapp, Sl, (2 2), $2, (2 2))
relate(~.pp, 82, (2 1), Ss, (2 1))
relate(~~app, ~2, (), 83, O)
relate(~,,~, s2, (2), ss, (2))

relate(?-lapp, 81, (2 1), $2, (1))
relate(nopp, Sl, 0, S2, 0)
relate(nopp, &, (2 2), $3, (2 2))
relate(no~, S2, (1), $3, (1))

As an example, we compute the subterms related to the constant a at path (1) in t(Sa):

ORO(~.n,, S3, (1)) = { P"IP" e ORO(~.n,, s', p'), relate(~.n,, s', p', 83, (1)) } =
{ P" I P" ~ ORG(~a~, &, (1)) } = ORG(~a~, S2, (1)) =

{ P"IP" e Ona(~o~, 8', p'), relate(~o~, ~', p', S2, (1)) } =
{ P"IP" e ORa(~a~, Sl, (2 1)) } = ORG(~o~, Sl, (2 1)) = { (2 1) }

Hence, the constant a at path (1) in t(S3) is related to the constant a at path (1 2) in the
initial term.

We conclude this example with a few brief remarks. First, some symbols in t(,S3) are
not related to any symbol of t (8 0 . For instance, symbol cons at pa th (2) in t(Ss) is only
related to symbol append in t(82); this symbol, in turn, is not related to any symbol in
t (S 0 . Second, we have chosen a trivial example where no origins occur that contain more
than one path. Such a situation may arise when a rewrite rule is not left-linear, or when
the right-hand side of a rewrite rule consists of a common variable or a common subterm.

2.4 BASIC CONCEPTS FOR. C T R S s

A conditional rewrite-rule takes the form:

lhs ---* rhs when l l = r l , - . . , l n = r n

We assume that CTRSs are executed as join systems [Klo91]: both sides of a condition
are instantiated and normalized. A condition succeeds if the resulting normal forms are
syntactically equal. It ig assumed that the conditions of a rule are evaluated in left-to-right
order. As an extension, we allow one side of a condition to introduce variables; we will refer
to such variables as new variables (as opposed to old variables which were bound during the
matching of the left-hand side, or during the evaluation of a previous condition). To avoid
complications in our definitions, we impose the non-essential restriction that no condition
side may contain old as well as new variables. New variables may occur in subsequent
conditions as well as in the right-hand side. Variable-introducing condition sides are not

normalized, but matched against the normal form of the non-variable-introducing side (for
details, see [Wai91]).

Let Irl be the number of conditions of r. For 1 _< j < Ir[, the left-hand side and the
right-hand side of the jth condition of r are denoted Side(r, j, left) and Side(r, j, right),

Origin Tracking 533

respectively. Moreover, let left = right and right = left. The function Varlntro (Defini-
t ion 2.4) indicates where new variables occur; tuples (h, side) are computed, indicating
tha t Side(r, h, side) is variable-introducing.

DEFINITION 2.4 (Varlntro)

VarIntro(r) =_ { (h, side) I X ~ Lhs(r), X C_ Side(r, h, side),
Vj (j < h) Vside' : X ~ Side(r, j, side') }

For convenience, we also define a function Non VarIntro (Definition 2.5) which computes
tuples (h, side) for all non-variable-introducing condition sides.

DEFINITION 2.5 (NonVarlntro)

NonVarlntro(r) = { (h, side) I 1 < h < Irl, side • { left, right }, (h, side) f[Varlntro(r) }

2.5 REWRITING HISTORIES FOR CTRSs

Conditional ter m rewriting can be regarded as the following cyclic 3-phase process:

1. Find a match between a subterm t and the left-hand side of a rule r.

2. Evaluate the conditions of r: instantiate and normalize non-variable-introducing

condition sides.

3. If all conditions of r succeed: replace t by the instantiated right-hand side of r.

In phase 2, each normalization of an instantiated condition side is a situation similar to
the normalization of the original term, involving the same 3-phase process. Thus, we

can model the rewriting of a term as a tree of reduction sequences. The initial reduction
sequence named S init starts with the initial term and contains sequence elements 8 i~it
t ha t describe successive transformations of the initial term. In addition, 7~ now contains a
sequence for every condition side that is normalized in the course of the rewriting process.
Two sequences appear for non-variable-introducing conditions, but for variable-introducing
conditions only one sequence occurs in 7-/(for the non-variable-introducing side).

Formally, we define the history as a flat representation of this tree of reduction se-
quences. A history now consists of two parts:

• A set of uniquely named reduction sequences. Besides the initial sequence, S/~/t,
there is a sequence S k (with k an integer) for every condition side that is normalized
in the course of the rewriting process.

As before, a sequence consists of one or more sequence elements, and each sequence
element is a 5-tuple (n, t, r, p, a) , denoting the name, term, rule, path, and subst i tu-
tion involved. As in the unconditional case, access functions are provided to obtain
the components of s. A name of a sequence element is composed of a sequence name
and a number, permit t ing us to find out to what sequence an element belongs.

• A mechanism indicating the connections between the various reduction sequences.
This mechanism takes the form of a relation which determines a sequence name given
a name of a sequence element s, a condition number j , and a condition side side,
for all (j, side) • Non Varlntro(s). E.g., a tuple (n(s), j, side, sn) indicates tha t a
sequence named sn occurred as a result of the normalization of Side(s, j, side).

534 A. van Deursen, P. Klint and F. Tip

Two functions First and Last are defined, both taking four arguments: the history 7/,
a sequence element s, a condition number j , and a condition side side. First(7~, s, j, side)
retrieves the name of s, determines the name of the sequence associated with side side
of condition j of r(s), looks up this sequence in 7-/, and returns the first element of this
sequence. Last(7-l, s, j, side) is similar: it determines the last element of the sequence
associated with side side of condition j of r(s).

Furthermore, 7 / - now denotes the history 7 / f rom which all last elements of sequences
are excluded, Succ(7/, s) now denotes the successor of s in the same sequence, for s
in 7 / - , and Start(T 0 determines the first element of the initial sequence in 7/. Fi-
nally, we introduce the shorthands Side(s, j, side), Varlntro(s), and NonVarlntro(s) for
Side(r(s), j, side), Varlntro(r(s)), and Non Varlntro(r(s)), respectively.

2.6 THE ORIGIN FUNCTION FOR CTRSs

2.6.1 BASIC ORIGIN RELATIONS

The basic origin relation LR (Definition 2.2) defines relations between consecutive elements
s and Succ(7/, s) of the same sequence. The basic origin relations LC, C.It, and CC define

relations between elements of different sequences. Each of these relations reflects the
following principle: common subterms are only related when a common variable or a

common subterm appears at corresponding places in the left-hand side, right-hand side
and condition side of the rewrite rule involved.

Definition 2.6, LC (Left-hand side to Condition side), defines relations which result
from common variables and common subterms of the left-hand side and a condition side

of a rule. An LC-relation connects a sequence element s to the first element s ~ of a sequence
for the normalization of a condition side of r(s). The relation consists of triples (q, q~, s ~)

indicating a relation between the subterm at path q in the redex and the subterm at path
ql in t(sl).

We do not establish LC-relations for variable-introducing condition sides, because such
relations are always redundant. To understand this, consider the fact that we disallow
instantiated variables in variable-introducing condition sides. Thus, LC relations would
always correspond to a common subterm t of the left-hand side and a variable-introducing
condition side. Then, only if t also occurs in a subsequent condition side, or in the right-
hand side of the rule can the relation be relevant for the remainder of the rewriting history.
But if this is the case, this other occurrence of t will be involved in an LC-relation anyway.

DEFINITION 2.6 (LC) For s in 7/ - :

LC(7/, s) = { (q, q', s') I s' = First(7"l, s, j, side), (j, side) • NonVarlntro(s),
(q, q') • Com(a(s), Lhs(s), Side(s, j, side)) }

In Definition 2.7 and Definition 2.8 below, the final two basic origin relations, CR (Con-
dition side to Right-hand side) and CC (Condition side to Condit ion side) are presented.
These relations are concerned with common variables and common subterms in variable-
introducing condition sides. In addition to a variable-introducing condition side, these
relations involve the right-hand side, and a non-variable-introducing condition side, re-
spectively. The following technical issues arise here:

Origin Tracking 535

• There are no CR and CC relations for non-variable-introducing conditions, because
both condition sides are normalized in this case, and no obvious correspondence with
the syntactical form of the rewrite rule remains.

• As mentioned earlier, no reduction sequence appears in 7-/for a variable-introducing
condition side. To deal with this issue, the variable-introducing side Side(s, j, side)
is used to indicate relations with the term t(Last(Tl, s, j, side)) it is matched against.

CR-relations are triples (q, q', s') indicating that the subterm at path q in t(s') is related
to the subterm at path q' in the contractum; CC.-relations are quadruples (q, q', s', s t')
which express a relation between the subterm at path q in t(s') and the subterm at path
q' in t(s").

DEFINITION 2.7 (CR) For s in 7~-:

cn(7-l, s) = {(q, q', s') I (j, side) • Varlntro(s), s' = Last(7-t, s, j, side),
(q, q') • Com(a(s), Side(s, j, side), Rhs(s)) }

DEFINITION 2.8 (CC) For s in T/-:

CC(~ , s) - {(q, q', s', s") I (j, side) • VarIntro(s), (h, side') • NonVarlntro(s),
j < h, s' = Last(7-l, s, j, side), s" = First(7-l, s, h, side'),

(q, q') ~ Com(a(s), Side(s, j, side), Side(s, h, side')) }

2.6.2 DEFINITION OF CORG

The origin function CORG for CTRSs (Definition 2.9) is basically an extension of ORG.
Using the basic origin relations LC, CR, and CC, relations between elements of different
reduction sequences are established in (c l) , (c2), and (c3). Again, the origin function
computes a set of paths in the initial term according to the transitive and reflexive closure
of relate. For any sequence element s in 7-/, and any path p in t(s), CORG computes a set
of paths to related subterms in t(Start(7-l)).

DEFINITION 2.9 (CORG) For s in 7-/- and s' in 7-/:

(ul)
(us)
(cl)
(¢2)
(ca)

V(q, q') • LR(s) :
Vp : (p -~ p(s)) V (PIP(S)):
V(q, q', s') • L C (~ , s) :
V(q, q', s') • CR(7"[, s) :
V(q, q', s', s") • CC(7"l, s) :

relate(7"[, s, p(s) .q , Succ(7"[, s), p(s). q')
relate(7"l, s, p, Suce(7"l, s), p)
relate(~, s, p(s) .q , s', q')
relate(7-l, s', q, Succ(7-l, s), p(s) . q')
relate(7"l, s', q, s", q')

{ p } when s' = sta~(u)
CORG(:H, s, p) - { P" I P" E CORG(TI, s', p'), relate(7-l, s', p', s, p) } when s' ~ Start(Tl)

2.6.3 EXAMPLE

We extend the example of section 2.3.3 with the following conditional rewrite rules for a
function rev to reverse lists.

536 A. van Deursen, P. Klint and F. Tip

sequence S 1:

sequence ~init:

t(s~): t(s~):

rev rl empty-list

empty-}}st_-"
1

/
!

!

(S~) ,' ,l~i.it~. j(Si. i t) t n i t : 2 \ ~ 2] ' ~ 3 :

rev [r2 append ' al cons
!

cons~.-- b empty-list b empty-list

b empty-list

Figure 9: History 7~ev for rev(cons(b, empty-list)). Dashed lines indicate origin rela-
tions.

[rl] rev(empty-list) -> empty-list
[r2] rev(cons(E, LI)) -> append(E, L2) when L2 = rev(Ll)

In rule r2, a variable L2 is introduced in the left-hand side of the condition. Actually, the
use of a new variable is not necessary in this case: we may alternatively write append(E,
rev(L1)) for the right-hand side of r2. The new variable is used solely for the sake of illus-
tration. Figure 9 shows the rewriting history 7/,e~ for the term rev (cons (b, empty - l i s t)) .
Note that besides the initial sequence, S init, only one sequence, S 1, appears for the nor-
malization of the condition of r2, because it is variable-introducing.

For sequence element S~ "/t we have p(S~ "it) -- 0 , a(S~ '~it) --- { E H b, L1 ~ empty-
list, L~ ~-* empty-list }. It follows that O(E~(S~ "")) = O(LIa(S~ "'')) = O(L2#(s~ ""))
-- { () }. Moreover, VarIntro(S~ all) -- { (i, left) }. Consequently, we obtain:

LR(8~ "it) = { ((1 1), (1)) }, LC(7-lre,, S~ "/t) = { ((1 2), (1), 311) }
CR(~.o., S~") = { (0, (1), S~) }, CC(U.~, S~"") = 0

As a result, the following relationships are generated for S~"it:

relate(7-l~., S{ '~it, O, Si~ '~it, O) relate(7-l~., S~ "it, (1 1), S~ "it, (1))
relate(U.o~, S~ "~', (1 2), S~, (1)) retat~(U.o., S~, 0, s i# ', (2))

In a similar way, the following relate relationships are computed for ,S~ nit and S~:

relate(7-[,e,, Si9 "it, O, '9~ '•it, 0) relate(7-l~e,,, ,9~ '~i', (1), 8~ nlt, (1))
,elate(U,o~, S~"", (2), S~"", (2)) relate(7~,,~, Sl, (), S~, O)
rel.te(7~..~, s;, (1), s~, O)

Finally, we compute the subterms related to empty- l i s t at path (2) in t(3~nit):

CORG(U.oo, S~% (2)) = { P"IP" 6 CORG(U.~, s', p'), relate(U.oo, s', p', S~ "~', (2)) } --
{ P" I P" 6 CORG(7-I.~., S~ "it, (2)) } = CORG(?-I..., S~ "it, (2)) { (1 2) }

Origin Tracking 537

Consequently, the constant empty-list in t(S~ nit) is related to the constant empty-list in

3 P r o p e r t i e s

The origins defined by CORG have the following property: whenever an intermediate term
tmid has a path to initial subterm to~ in its origin, then to,~ can be rewritten to t,~id in
zero or more reduction steps. This property gives a good intuition of the origin relations
which are established in applications such as error handling or debugging.

To see why this property holds, we first consider one reduction step:

PROPERTY 3.1 Let 7 / b e a rewriting history, s, s ~ arbitrary sequence elements in 7-/, and
p, p' paths. For any relate(7-l, s, p, s ' ,p ~) we have t(s) =_ t(s') or t(s) ---* t(s').

Informally stated, directly related terms are either syntactically equal or one can be re-
duced to the other in exactly one step. This holds because the context, common-variables,
and common-subterm relations all relate identical terms. Only the redex-contractum rela-
tion links non-identical terms, but these can be rewritten in one step. Because the origin
relation CORG is defined as the transitive and reflexive closure of relate, we now have the
desired property:

PROPERTY 3.2 Let 7~ be a history. For every term t(s) occurring in some sequence
element s in history 7/, and for every path p E O(t(s)), we have:

q E CORG(7"I, s,p) =~ t(Start(7~))/q --** t (s) /p

When using origins, one may be interested in the number of paths in an origin. To
that end, we introduce:

DEFINITION 3.1 Let o be an origin, and let [o[denote the number of paths in o. Then:
o is empty iff [o[-- 0, non-empty iff [o[> 1, precise iff [o[_< 1, and unitary iff [o[= 1.

For some applications, unitary origins are desirable. In animators for sequential pro-
gram execution, one wants origins which refer to exactly one statement. On the other
hand, when error-positioning is the application, it can be desirable to have non-unitary
origins, as for instance in errors dealing with multiple declarations of the same variable
(see, e.g., the label declaration in Figure 2).

The properties below indicate how non-empty, precise and uni tary origins can be de-
tected through static analysis of the CTRS. In the sequel r denotes an arbitrary rule, j is
a number of some condition in r, and side E {left, right} denotes an arbitrary side.

PROPERTY 3.3 (Non-empty origins) Terms with top symbol f have non-empty origins if
for all open terms u with top function symbol f :

(1) u C Rhs(r) =v u C_ Lhs(r)
(2) u C_ Side(r, j , side) ::~ u C_ Lhs(r)

This can be proved by induction over all relate clauses, after introducing an ordering on
all sequence elements. Informally, all terms with top symbol f will have non-empty origins

538 A. van Deursen, P. Klint and F. Tip

if no f is introduced that is not related to a "previous" f . Note that relations according
to variables have no effect on origins being (non-)empty.

To characterize sufficient conditions for precise and unitary origins, we first need some
definitions:

DEFINITION 3.2 Let r be a conditional rewrite rule and u an open term. Then r is an
u-collapse rule if Rhs(r) - u, and u C_C_ Lhs(r) .

DEFINITION 3.3 For open terms t and u, t is linear in u if u occurs at most once in t.

DEFINITION 3.4 The predicate LinearIntro(u,r) holds if u has at most one occur-
rence in either the left-hand side or any variable-introducing condition side. Formally:
Linearlntro(u, r) ¢* there is (1) a t most one t e {Lhs (r) } U {Side(r, h, side) l (h , side) E
VarIntro(r)} such tha t u C t, and (2) this t, if it exists, is linear in u.

PROPERTY 3.4 (Precise origins) Terms with top symbol f have precise origins if the
following holds for all open terms u having either f as top symbol or solely consisting of
a variable:

(1) The CTRS does not contain u-collapse rules
(2) u C_ Rhs(r) ~ L inear ln tro(u , r)
(3) u C_ Side(r, j, side) =~ LinearIntro(u, r)

Again, this proper ty can be proved by induction over all relates. The crux is tha t no te rm
with top function symbol f is introduced in a way that it is related to more than one
"previous" term.

PROPERTY 3.5 (Unitary origins) Since "non-empty" and "precise" implies "uni tary" ,
combining the premises of Properties 3.3 and 3.4 yields sufficient conditions for uni ta ry
origins

For many-sorted CTRSs, some special properties hold. We assume CTRSs to be sort-
preserving, i.e., the redex and the contractum belong to the same sort. Hence, C O R G
is sort-preserving. Thus, we have the following property (which in the implementat ion
allows for an opt imizat ion--Sect ion 4):

PROPERTY 3.6 relate can be parti t ioned into subrelations for each sort.
One may be interested whether all terms of some particular sort S have non-empty,

precise, or uni tary origins. This happens under circumstances very similar to those for-
mulated for the single-sorted case (Properties 3.3 to 3.5). For precise and unitary origins,
however, it is not sufficient to consider only terms of sort S; one also needs to consider sorts
T which can have subterms of sort S (since duplication of T-terms may imply duplication
of S-terms). Hence, we define:

DEFINITION 3.5 For two sorts S and T, we write S E T if terms of sort T can contain
subterms of sort S.

Using this, we can formulate when terms of sort S have precise or unitary origins. This
is similar to the single-sorted case (see Proper ty 3.4), but in (1) u must be of sort S, and
(2) and (3) must hold for all u of sort T such tha t S E T. Unitary origins of sort S are
obtained by combining the premises for the non-empty origins and precise origins.

We refer to [DKT92] for more elaborate discussions of the above results.

Origin Tracking 539

4 I m p l e m e n t a t i o n A s p e c t s

An efficient implementation of origin tracking has been completed, and is currently being
integrated in the ASF+SDF system. In this section, we briefly address the principal
aspects of implementing origin tracking.

4.1 THE BASIC ALGORITHM

In our implementation, each symbol is annotated with its origin, during rewriting. Two
issues had to be resolved:

• annotation of the initial term

• propagation of origins during rewriting

The first issue is a trivial mat ter because by defini t ion-- the origin of the symbol at path p
is { p }. The second issue is addressed by copying origins from the redex to the contractum
according to the basic origin relation LR. In a similar way, propagations occur for the
basic origin relations LC, CC, and CR. Observe that no propagations are necessary for
the origins in the context of the redex, as the origins of these symbols remain unaltered.

4.2 OPTIMIZATIONS

Several optimizations of the basic algorithm have been implemented:

• All positional information (i.e., the positions of common variables and common sub-
terms) is computed in advance, and stored as annotations of rewrite rules.

The rewriting engine of the ASF+SDF system explicitly constructs a list of variable
bindings. Origin propagations which are the result of common variables can be
implemented as propagations to these bindings. When a right-hand side or condition
side is instantiated, all common variable propagations are handled as a result of the
instantiation. The advantage of this approach is tha t the number of propagations
decreases, because we always propagate to only one subterm for each variable.

Origins are implemented as a set of pointers to function symbols of the initial term.
The advantages are twofold: less space is needed to represent origins, and set union
becomes a much cheaper operation.

4.3 ASSOCIATIVE LISTS

In order to implement origin tracking in the ASF+SDF system, provisions had to be made
for associative lists [Hen91, Wal91]. Associative lists can be regarded as functions with a
variable arity. Allowing list functions in CTRSs introduces two minor complications:

• A variable tha t matches a sublist causes relations between arrays of adjacent sub-
terms. In the implementation, we distinguish between ordinary variables and list
variables, and perform propagations accordingly.

540 A. van Deursen, P. Klint and F. Tip

Argument positions below list functions depend on the actual bindings. Therefore,
when computing the positions of common variables and common subterms, posi-
tions below lists are marked as relative. The corresPonding absolute positions are
determined during rewriting.

Consider the following example, where 1 is a list function, and X* is a list variable which
matches sublists of any length:

[r l] f (l (X * , a)) --~ g (l (X* , a))

When we rewrite the redex f (l (b , c, a)) according to r l , the contractum is g (l (b , c,
a)) . Variable X* gives rise to both a relation between the constants b in the redex and
the contractum, and a relation between the constants c in the redex and the contractum.
Moreover, constant a appears at path (1 2) in the left-hand side of r l , but at path (1 3)
in the redex.

4 .4 SHARING OF SUBTERMS

For reasons of efficiency, implementations of CTRSs allow sharing of subtrees, thus giving
rise to DAGs (Directed Acyclic Graphs) instead of trees. The initial term is represented as
a tree, and sharing is introduced by instantiating non-linear right-hand sides and condition
sides. For every variable, the list of bindings contains a pointer to one of the subterms it
was matched against. Instantiating a right-hand side or condition side is done by copying
these pointers (instead of copying the terms in the list of bindings). Sharing has the
following repercussions for origin tracking:

No propagations are needed for variables which occur exactly once in the left-hand
side (and for new variables which occur exactly once in the introducing condition).
This results in a radical reduction of the number of propagations.

Variables which occur non-linearly in the left-hand side of a rule (and new variables
which occur non-linearly in the introducing condition) present a problem. When
sharing is allowed in this case, inconsistent origins with respect to the definition
may arise. A solution to this problem consists of using a pointer to a copy of the
term matched against such a variable in the list of bindings. This corresponds to
disallowing sharing in a limited number of situations.

4.5 RESTRICTING ORIGIN TRACKING TO SELECTED SORTS

Often, one is only interested in the origins of subterms of a particular sort. A straight-
forward result of Property 3.6 is the following: to compute the origins of subterms of sort
S, only propagations for common subterms of sort S, and for common variables of sorts T
such that S E T are necessary.

Origin Tracking 541

4.6 TIME AND SPACE OVERHEAD OF OR[GIN TRACKING

Origins are represented by sets of pointers to symbols of the initial term, and associated
with every symbol is exactly one such set. The size of these sets is bounded by the number
of function symbols in the initial term because, in the worst case, a set contains a pointer
to every symbol in the initial term. Thus, the space overhead of origin tracking is linear
in the size of the initial term. In practice, only small sets arise, resulting in little space
overhead. The use of efficient set representations would reduce this overhead even further.

We have measured the time overhead caused by origin tracking. In all measurements,
the run-time overhead lies between 10% and 100%, excluding the costs of pre-computing
positional information.

5 R e l a t e d W o r k

In TRS theory, .the notion of descendant [Klo91] (or residual [O'D77, HL79]) is used to
study properties like confluence or termination, and to find optimal orders for contracting
redexes (see [Mar92] for some recent results). For a reduction t ~ t' contracting a redex
s C_ t, a different redex s' C_ t may reappear in the resulting term t'. The occurrences of
this s r in t' are called the descendants of s'.

Descendants are similar to origins, but more restricted. Only relations according to
contexts and common variables are established (Bergstra and Klop [BK86] also use quasi-
descendants linking the redex and contractum as well). Moreover, descendants are defined
for a smaller class of TRSs; only orthogonal (left-linear and non-overlapping) TRSs without
conditional equations are allowed.

Bertot [Ber91c, Ber91b] studies residuals in TRSs and A-calculus, and introduces mark-
ing functions to represent the residual relation. He provides a formal language to describe
computations on these marking functions, and shows how the marking functions can be
integrated in formalisms for the specification of programming language semantics (viz.
term rewriting systems and collections of inference rules). Bertot works in the realm of
left-linear, unconditional TRSs and only considers precise origins.

The ideas of Bertot concerning origins in inference rules have been used in the frame-
work of TYPOL IDes88], a formalism to specify programming languages, based on natural
semantics [Kah87]. For compositional definitions of evaluators or type checkers (in which
the meaning of a language construct is expressed in terms of its substructures), the im-
plementation of TYPOL keeps track of the construct currently processed (the subject).
A pointer to the subject is available in tools derived from the specification, particularly
debuggers or error handlers. In addition to automatic subject tracking, TYPOL has been
equipped with special language constructs to manipulate origins explicitly. This contrasts
with our approach, where origin tracking is invisible at the specification level.

Berry [Ber91a] aims at deriving animators from relational rules (similar to operational
semantics). He defines a focus which is either equal to the subject (as in TYPOL) or to the
result of the evaluation of some subexpression. The theory he develops uses the concept
of an inference tree, a notion similar to our rewriting histories.

In the context of the PSG system [BMS87], a generator for language-specific debuggers
was described. Debuggers are generated from a specification of the denotational semantics
of a language and some additional debugging functions. Bahlke et al. insist that programs

542 A. van Deursen, P. Klint and F. Tip

are explicitly annotated with their position in the initial syntactic structure before running
their semantic tool.

6 C o n c l u d i n g R e m a r k s

6.1 ACHIEVEMENTS

Summarizing the results described in this paper, we have:

A definition of origins that does not depend on a particular rewrite strategy, nor on
the confluence or strong-normalization of the underlying CTRS. It establishes only
relations which can be derived from the syntactic structure of the rewrite rules.

• The property tha t whenever a term t,~id has a subterm tom in the initial t e rm as
origin, this term to,~ can be rewritten to t,~ia.

Sufficient criteria tha t a specification should satisfy to guarantee that an origin
consisting of at least one, or exactly one pa th is associated with each subterm of a
given sort.

• An efficient implementat ion method for origin tracking.

• A notion of sort-dependent "filtering" of origins, when only the origins of terms of
certain sorts are needed.

A prospect of applying origin tracking to the generation of interactive language-based
environments from formal language definitions. In particular, generic techniques for
debugging and error reporting have been discussed.

6.2 LIMITATIONS

The current method for origin tracking has limitations, most of which are related to the
introduction of new function symbols. Some typical problem cases are:

• In the context of t ranslat ing ari thmetic expressions to a sequence of stack machine
instructions, one may encounter an equation of the form

t r ans (p lus (E1 ,E2)) -> s e q (t r a n s (E l) , s eq (t r ans (E2) , add))

The p l u s of the expression language is t ranslated to the add stack-instruction. I t
seems intuitive to relate both seq function symbols to the p l u s symbol at the left-
hand side. However, the current origin mechanism do not establish this relation.

In specifications of evaluators it frequently occurs tha t the evaluation of one construct
is defined by reducing it to another construct, like in

eval(repeat(S, Exp), Env) -> eval(seq(S, while(not(Ezp), S)) , Env)

Origin Tracking 543

where the evaluation of the repeat-statement is defined in terms of the while-
statement. In this example, seq is a constructor for statement sequences. Here
again, the while-statement on the right-hand side does not get an origin but the
repeat-statement on the left-hand side would be a good candidate for this.

These examples have the flavor of translating terms from one representation to another
and they illustrate that more origin relations between both sides of the equations have to
be established. But which? We have already started exploring several extensions. These
include linking equal fu action symbols, distinguishing constructor functions and defined
functions, using the additional structure of primitive recursive schemes (as in [Meu90])
to detect origins of interest, looking at father or child nodes to obtain additional origins,
allowing user-provided annotations in specifications describing additional origin informa-
tion, detection of the minimal set of symbols in the initial term to obtain a particular
function symbol, and so on. Some of these options are more promising than others; more
research is needed to find out which solution meets our needs best.

6.3 FUTURE WORK

Directions in which the current results can be extended or applied are:

G e n e r i c d e b u g g i n g t e c h n i q u e s and animat ion . Although we have promising expe-
rience with the use of origin tracking for animation [DT92], more work is needed to
generate language-specific debuggers that are smoothly integrated in the ASF+SDF
Meta-environment. We intend to develop generic methods to specify the desired
behavior and features of animators and debuggers.

E r r o r r e p o r t i n g . Further work is needed to determine whether and how our current
notion of origins has to be extended for the benefit of error reports containing precise
error locations. In addition to origin tracking, a way is needed to compose an error
message. A first result in this direction is discussed in [DT92].

T r a n s l a t i o n , C o d e O p t i m i z a t i o n . We intend to study if an extended notion of origins
can be used for the automatic construction of bi-directional mappings between source
programs and generated code. This is useful for code-level debugging, where links
are required between assembly instructions and statements in the source program.

This is of particular importance when debugging highly optimized code. We expect
tha t the origin information attached to individual assembly instructions will largely
survive the complex reorderings involved in the optimization.

P r o g r a m slicing. A recently introduced notion in the area of debugging and testing is
tha t of a dynamic program slice [AH90, KSF92]. A dynamic program slice is tha t
part of the program that actually determines the value of a variable at a particu-
lar moment during execution. Origins describe a similar notion. We will examine
whether it is possible to achieve dynamic slicing by means of an (extended) version
of origin tracking.

I n c r e m e n t a l c o m p u t a t i o n . Continuing in the same spirit, origins resemble the infor-
mation needed to reduce the amount of recomputat ion necessary for incremental

544 A. van Deursen, P. Klint and F. Tip

computations on programs like type checking and translation [Meu90, Fie93]. We
will investigate the commonalities and differences between these two forms of infor-
mation.

ACKNOWLEDGEMENTS

We thank Y. Bertot, J. Field, J. Heering, and J.W. Klop for their comments on drafts of
this paper.

References

[AH90]

[Ber91a]

[Ber91b]

[Ber91c]

[BHK89]

[BK86]

[BMS87]

[DesS8]

[DKT92]

[DT92]

[Fie931

H. Agrawal and J.R. Horgan. Dynamic program slicing. In Proceedings of the
A CM SIGPLAN'90 Conference on Programming Language Design and Imple-
mentation, pages 246-256, 1990. Appeared as SIGPLAN Notices 25(6).

D. Berry. Generating Program Animators from Programming Language Se-
mantics. PhD thesis, University of Edinburgh, 1991.

Y. Bertot. Occurrences in debugger specifications. In Proceedings of the A CM
SIGPLAN'91 Conference on Programming Language Design and Implementa-
tion, pages 327-337, 1991. Appeared as SIGPLAN Notices 26(6).

Y. Bertot. Une Automatisation du Calcul des Rdsidus en Sgmantique Na-
turelle. PhD thesis, INRIA, Sophia-Antipolis, 1991. In French.

J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM
Press Frontier Series. The ACM Press in co-operation with Addison-Wesley,
1989.

J.A. Bergstra and J.W. Klop. Conditional rewrite rules: confluence and ter-
mination. Journal of Computer and System Sciences, 32(3):323-362, 1986.

R. Bahlke, B. Moritz, and G. Snelting. A generator of language-specific de-
bugging systems. In Proceedings of the ACM SIGPLAN'87 Symposium on
Interpreters and Interpretive Techniques, pages 92-101, 1987. Appeared as
SIGPLAN Notices 22(7).

T. Despeyroux. Typol: a formalism to implement natural semantics. Technical
Report 94, INRIA, 1988.

A. van Deursen, P. Klint, and F. Tip. Origin tracking. Report CS-R9230,
Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1992.

T.B. Dinesh and F. Tip. Animators and error reporters for generated pro-
gramming environments. Report CS-R9253, Centrum voor Wiskunde en In-
formatica (CWI), Amsterdam, 1992.

J. Field. A graph reduction approach to incremental term rewriting. Technical
report, IBM T.J. Watson Center, 1993. To appear.

Origin Tracking 545

[Hen91]

[HHKR89]

[HL791

[Kah87]

[Kli931

[Klo91]

[KSF92]

[Mar92]

P.R.H. Hendriks. Implementation of Modular Algebraic Specifications. PhD
thesis, University of Amsterdam, 1991.

J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF - reference manual. SIGPLAN Notices, 24(11):43-75, 1989.

G. Huet and J.-J. L~vy. Call by need computations in non-ambiguous linear
term rewriting systems. Rapports de Recherche 359, INRIA, 1979. To appear
as: Computations in Orthogonal Rewriting Systems, Part I and II, in J.L.
Lassez and G. Plotkin, editors, Computational Logic, essays in honour of Alan
Robinson, MIT Press, 1991.

G. Kahn. Natural semantics. In F.J. Brandenburg, G. Vidal-Naquet, and
M. Wirsing, editors, Fourth Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 247 of Lecture Notes in Computer Science, pages 22-39.
Springer-Verlag, 1987.

P. Klint. A meta-environment for generating programming environments.
ACM Transactions on Software Engineering Methodology, 1993. To appear.
Preliminary version in J.A. Bergstra and L.M.G. Feijs, editors, Proceedings
of the METEOR workshop on Methods Based on Formal Specification, LNCS
490, 1991.

J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, Vol II. Ox-
ford University Press, 1991. Also CWI report CS-R9073.

M. Kamkar, N. Shahmehri, and P. Fritzson. Interprocedural dynamic slicing
and its application to generalized algorithmic debugging. In Proceedings of
the International Conference on Programming Language Implementation and
Logic Programming, PLILP '92, 1992.

L. Maranget. La strategie paresseuse. PhD thesis, INRIA Rocquencourt, 1992.
In French.

[Meu90]

[O'D77]

[Wal91]

E.A. van der Meulen. Deriving incremental implementations from algebraic
specifications. Report CS-R9072, Centrum voor Wiskunde en Informatica
(CWI), Amsterdam, 1990. Extended abstract to appear in AMAST'91: Pro-
ceedings of the Second International Conference on Algebraic Methodology and
Software Technology, Workshops in Computing, Springer-Verlag.

M.J. O'Donnell. Computing in Systems Described by Equations, volume 58 of
Lecture Notes in Computer Science. Springer-Verlag, 1977.

H.R. Waiters. On Equal Terms, Implementing Algebraic Specifications. PhD
thesis, University of Amsterdam, 1991.

