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Abstract

This paper describes an algorithm for slicing class hier-
archies in C++ programs. Given a C++ class hierarchy
(a collection of C++ classes and inheritance relations
among them) and a program P that uses the hierarchy,
the algorithm eliminates from the hierarchy those data
members, member functions, classes, and inheritance
relations that are unnecessary for ensuring that the se-
mantics of P is maintained.

Class slicing is especially useful when the program
P is generated from a larger program P � by a statement
slicing algorithm. Such an algorithm eliminates state-
ments that are irrelevant to a set of slicing criteria—
program points of particular interest. There has been
considerable previous work on statement slicing, and
it will not be the concern of this paper. However, the
combination of statement slicing and class slicing for
C++ has two principal applications: First, class slicing
can enhance statement slicing’s utility in program de-
bugging and understanding applications, by eliminating
both executable anddeclarative program components ir-
relevant to the slicing criteria. Second, the combination
of the two slicing algorithms can be used to decrease
the space requirements of programs that do not use all
the components of a class hierarchy. Such a situation
is particularly common in programs that use class li-
braries.

Appeared in the Proceedings of the 11th An-
nual Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOP-
SLA’96), San Jose, October 1996. ACM SIG-
PLAN Notices 30 (10), pp. 179–197.

1 Introduction

1.1 Overview

Program slicing is a technique for isolating computa-
tional threads in programs [30]. A program slice is
generally defined as the set of statements that either
contribute to, or are affected by, the values computed at
some designated point of interest in the program. The
combination of a program point and a set of variables of
interest at that point is referred to as the slicingcriterion.

Almost all previous work on slicing has addressed the
question of determining which executable statements
shouldbe included in a slice, i.e., obtainingwhat we will
call a statement slice. By contrast, we are concerned
in this paper with eliminating unnecessary components
from the declarative parts of C++ programs. In abstract
form, our algorithm takes as input a C++ class hierar-
chy (a collection of C++ classes and and the inheritance
relations among them) and a program that uses the hi-
erarchy. It then eliminates from the hierarchy those
data members, member functions, classes, and inheri-
tance relations that are unnecessary for ensuring that the
semantics of the program is maintained.

Our algorithm is specifically designed to accommo-
date the inheritance mechanism of C++. Due to the
complexity of the semantics of multiple and virtual (i.e.,
shared) inheritance in C++, the task of obtaining class
slices that are correct (in the sense that they do not
alter the behavior of the criteria), yet not excessively
conservative (in the sense that they do not include un-
necessary class components), is far from trivial. Sim-
ple approaches to the problem are likely to suffer from
subtle errors, or, if correct, to require excessive con-



servatism. We therefore take a formal approach to the
problem that ensures that the semantics of the program
are preserved by the slicing operation.

Statement slicing was originally proposed as a way
to allow programming tools to assist the programmer in
isolating the source of an error, or to focus attention on
code that is relevant to a proposed program modification
(see [29] for a survey of various slicing techniques and
their numerous applications). For C++, our algorithm
can complement statement slicing algorithms (e.g., that
of Larsen and Harrold [20]) by eliminating irrelevant
declarations as well as irrelevant statements.

In addition, our algorithm has the benefit of allow-
ing unused components of classes to be eliminated in
applications that do not use those components. This
application is similar to the work of Agesen and Ungar
[4, 3] for the dynamically typed language Self. How-
ever, the complex static inheritance mechanisms of C++
require a different approach.

Although class slicing can be used to eliminate un-
needed components from any program, it is of particular
value when used in conjunction with statement slicing
to eliminate extraneous components from a class li-
brary. In this scenario, statement slicing would be used
to eliminate library code irrelevant to a particular client
application. Class slicing would then be used to elim-
inate unnecessary data members and inheritance links.
The space savings accruing from elimination of such
components, especially for programs that make exten-
sive use of libraries, can be considerable.

1.2 Statement Slicing

To understand the traditional notion of statement slicing,
consider the example program in Figure 1(a). This
program computes the sum and the product of the first
n integers. Figure 1(b) shows a slice with respect to the
value of prod at the last line of the program. Observe
that the statements that concern the computation of sum
have been eliminated. Thus a programmer concerned
with an error in the computation of prod need not
consider the omitted statements when tracking down
the error’s source.

#include <iostream.h>

void main()f
int n;
cin >> n;
int sum = 0;
int prod = 1;
for (int i = 1;

i <= n;
i++)f

sum += i;
prod *= i;

g
cout << sum << endl;
cout << prod << endl;

g

#include <iostream.h>

void main()f
int n;
cin >> n;

int prod = 1;
for (int i = 1;

i <= n;
i++)f

prod *= i;
g

cout << prod << endl;
g

(a) (b)

Figure 1: (a) Example program. (b) Slice of the program
w.r.t. the value of prod at the last line of the program;
constructs irrelevant to the final value of prod have been
eliminated and replaced by boxes.

1.3 Slicing Class Hierarchies

Consider now the more substantial example in Fig-
ure 2(a), which shows a class hierarchy that uses both
multiple inheritance and virtual inheritance. This exam-
ple is deliberately very contrived in order to illustrate a
number of fine points.

According to the semantics of C++ [14], any ob-
ject of type D contains two distinct subobjects of type A
(inherited non-virtually through classesB andC, respec-
tively), but only one subobject of type S (because S is
inherited virtually through classes B and C). The subob-
ject graph [27, 26] for this class hierarchy is depicted in
Figure 2(b). For convenience, we will refer to the twoA
subobjects ofD as �D� D�B�A� and �D� D�C�A�, respectively.
The control flow in the example is slightly counterin-
tuitive. The call to method bar() in procedure main
is resolved to C::bar(). The resolution process that
is used here, relies on the notion of dominance �. In
this case, both C::bar() and S::bar() are “visi-
ble from” class D, and the former dominates the latter.
The call to method foo() in the body of C::bar()
is resolved in a similar way. However, due to the
fact that foo() is virtual, the run-time type is used

�A member name f in one subobject B dominates a member
name f in subobject A if A is a base class subobject of B [1, Section
10.2].



class A f
public:

int x;
g;

class S f
public:

virtual void foo();
void bar();

g;

class B : public A,
public virtual S f

public:
virtual void foo();

g;

class C : public A,
public virtual S f

public:
void bar();

g;

class D : public B,
public C fg;

void S::foo()fg;
void S::bar()fg;
void B::foo()f x++; g;
void C::bar()f this->foo(); g;

void main()f
D d;

B* b = &d; b->x = 17;
C* c = &d; c->x = 71;

d.bar();

int v = b->x;
int w = c->x;

g

foo()

A

B

A

D

S

C

bar()
x x

bar()

foo()
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class A f
public:

int x;
g;

class S f
public:

virtual void foo();

g;

class B : public A,
public virtual S f

public:
virtual void foo();

g;

class C :
public virtual S f

public:
void bar();

g;

class D : public B,
public C fg;

void S::foo()fg;

void B::foo()f x++; g;
void C::bar()f this->foo(); g;

void main()f
D d;

B* b = &d; b->x = 17;

d.bar();

int v = b->x;

g

(a) (d) (c)

Figure 2: (a) Example program. (b) Subobject graph for the class hierarchy of the program. (c) Slice of the example program
w.r.t. the final value of v; constructs irrelevant to the final value of v have been omitted and replaced by boxes. (d) Subobject
graph for the class hierarchy of the slice.



in the resolution process. In this case, the run-time
type of the this pointer in C::bar() is D, because
C::bar() is called for an object of type D in proce-
dure main(). From class D, two foo() methods are
visible: S::foo() and B::foo(), where the latter
dominates the former. Therefore, B::foo() is se-
lected. Consequently, the program computes the value
18 for variable v, and the value 71 for variable w.

We are interested in determining the slice with respect
to the final value of v in the main program. The value
of v is equal to the value of data member x accessed via
pointer b, which is the x in the �D� D�B�A� subobject. By
carefully examining the program we can observe that:

1. The statements C* c = &d and c->x = 71 in
proceduremain that manipulate thex in subobject
�D� D�C�A� are irrelevant for v’s final value.

2. Neither S::bar() nor S::foo() are called, so
they are irrelevant to v’s final value.

3. Although S::foo() is not called, it cannot be
eliminated, because the absence of a statically
“visible” definition of foo() from the body of
C::bar() would prevent B::foo() from be-
ing called.

4. The inheritance relation between classes B and S,
while “locally” superfluous, cannot be removed,
since it affects the dominance relation between
B::foo() and S::foo(). (Note that when a
virtual inheritance relation can be removed safely,
the representation of the base class can often be
optimized by eliminating the need for an indirect
access).

5. The instance variablex in subobject �D� D�C�A� does
not affect the final value of v.

6. The inheritance relationship between C and A is
not needed for determining the final value of v.

Using the algorithm we present in Section 5, the slice
shown in Figure 2(c) can be computed. This example
should make clear that there are a number of subtle
issues that must be considered to ensure that a class
slice is correct, yet not unnecessarily conservative.

1.4 Use of Type Inference Algorithms

Our algorithm for computing class slices assumes as a
prerequisite the existence of a type inference algorithm
for C++. Such an algorithm is used to determine the set
of potential run-time types of all receiver expressions
of the form e�f�� or e � f��, where f�� is a virtual
function. By narrowing the range of potential run-time
types for expressions, more accurate class slices may
be computed. In the absence of a more sophisticated
algorithm, the trivial algorithm which assumes that the
receiver may have any subtype of its static type can be
used. Section 6.2 reviews type inference algorithms in
greater detail.

1.5 Scope of the Paper

In this paper, we will view a class hierarchy somewhat
abstractly, treating it as a collection of classes with in-
heritance relations defined among them. Each class is
then modeled as a simple collection of members. This
view intentionally elides such issues as name scoping,
access rights, and the genesis of the class definitions,
e.g., whether they arise via preprocessing mechanisms
such as templates and macros. By setting these is-
sues aside, we are able to focus on the core technical
problems of class slicing. For many applications of
class slicing, particularly space optimization, the ab-
stract view alone is sufficient. Slicing in the presence
of preprocessing mechanisms is an important open is-
sue (both for statement and for class slicing), which we
leave for future work. Most of the remaining issues not
covered by our abstract model are only relevant when
a compilable program must be computed from a slice;
however, a “smart” compiler that could use the results of
our slicing algorithm directly would not need to address
these problems.

2 Application to Program Optimiza-
tion

To enable reusability, object oriented programming en-
courages the use of classes that incorporate a high de-
gree of functionality. While reusability is very desir-
able, this approach has some drawbacks. Programs that



class ListLink f
public:

friend class List;
ListLink(int i);

private:
ListLink* prev;
ListLink* next;
int elem;

g;

class List f
public:

List();
void addHead(int i);
void addTail(int i);
int deleteHead();
int deleteTail();

private:
ListLink* head;
ListLink* tail;

g;

List::List(): head(0), tail(0)fg;

ListLink::ListLink(int i):
elem(i), prev(0), next(0)fg;

void List::addHead(int i)f
ListLink* newLink = new ListLink(i);
newLink-> next = head;
if ( head) head-> prev = newLink;
head = newLink;
if (! tail) tail = newLink;

g

void List::addTail(int i)f
ListLink* newLink = new ListLink(i);
newLink-> prev = tail;
if ( tail) tail-> next = newLink;
tail = newLink;
if (! head) head = newLink;

g

int List::deleteHead()f
int elem = head-> elem;
if ( tail == head) tail = 0;
ListLink* oldHead = head;
head = head-> next;
delete oldHead;
return elem;

g

int List::deleteTail()f
int elem = tail-> elem;
if ( head == tail) head = 0;
ListLink* oldTail = tail;
tail = tail-> prev;
delete oldTail;
return elem;

g

int main() f
List list;
list.addHead(17);
list.addHead(18);
list.deleteHead();
int j = list.deleteHead();
return j;

g

class ListLink f
public:

friend class List;
ListLink(int i);

private:

ListLink* next;
int elem;

g;

class List f
public:

List(): head(0),
void addHead(int i);

int deleteHead();

private:
ListLink* head;

g;

List::List(): head(0), fg;

ListLink::ListLink(int i):
elem(i), next(0)fg;

void List::addHead(int i)f
ListLink* newLink = new ListLink(i);
newLink-> next = head;

head = newLink;

g

int List::deleteHead()f
int elem = head-> elem;

head = head-> next;

return elem;
g

int main() f
List list;
list.addHead(17);
list.addHead(18);
list.deleteHead();
int j = list.deleteHead();
return j;

g

(a) (b)

Figure 3: (a) Example program. (b) Optimized program obtained by slicing with respect to the return expression of
main().



use feature-rich classes may pay a penalty for func-
tions they do not use. The more obvious penalty is that
of increased code size resulting from linking unused
functions [28]. The less obvious penalty is that ob-
jects may contain unnecessary data members and sub-
objects. Larger objects can not only increase the space
requirements of the program, but also decrease its exe-
cution speed, due to the extra time required for object
construction and destruction, and the effects of pag-
ing and caching. These considerations force the class
designer to choose carefully between features (which
enable reusability) and performance.

One solution to this quandary is to design the class
with as many features as needed, relying on the com-
piler to optimize applications by specializing classes to
the requirements of the program. Statement and class
slicing together can perform such an optimization by
eliminating not only dead code and dead functions (as
some “smart” linkers are also capable of doing), but
also unused data members and subobjects.

Figure 3(a) illustrates this process using a program
containing a class List. List defines doubly linked
lists together with a number of associated operations;
its auxiliary class ListLink represents a single list
element. ListLink consists of a data member elem
containing an integer value, and pointers prev and
next, which refer to the object’s predecessor and suc-

cessor, respectively. The crux of the example is that the
procedure main() does not make use of the fact that
the list is doubly linked.

Figure 3(b) shows an optimized version of the pro-
gram, where in addition to the dead code in methods
addTail and deleteTail, the prev pointers in
class ListLink have been removed. The program of
Figure 3(b) can be obtained by first computing an in-
terprocedural statement slice with respect to the return
expression of procedure main(), then determining the
components of the class hierarchy that are “needed” by
the statements in the executable slice. The statement
slice may be computed using a slightly enhanced ver-
sion of the algorithm of Larsen and Harrold [20] (see
Section 6.3 for further comments on statement slicing
in C++).

The example above does not illustrate the full power
of slicing-based optimization, since the benefits of the

latter extend beyond the elimination of unnecessary data
members. First, unused subobjects may be eliminated.
Second, the removal of virtual inheritance links can en-
able further optimizations, even when subobjects cannot
be eliminated. For instance, eliminating such a link
from the dreaded diamond-shaped inheritance graph
(created by virtual inheritance and multiple inheritance)
breaks the diamond. Most compilers can then generate
more efficient code as a result.

If one is interested only in eliminating unnecessary
data members and not in these more involved optimiza-
tions, it is possible to use techniques that are simpler
than the slicing algorithm presented in this paper. For
instance, one could simply eliminate data members not
mentioned in the statement slice.

3 The Rossie-Friedman Framework

We will begin by formalizing the notion of a class hierar-
chy, the set of subobjects for a given class in a hierarchy,
and the selection of class members. The definition of a
slice that will be presented subsequently is expressed in
terms of these concepts.

The formalization presented in this section is based
on that of Rossie and Friedman [26], although there are
some differences. The main differences will be pointed
out below.

3.1 Class Hierarchies and Subobjects

Let C denote the set of class names, and let M denote
the set of member names. We will assume that class
names are unique, or that some naming scheme is used
if this is not the case. In addition, let V denote the set
f“non-virtual”� “virtual”g. A class hierarchy� can now
be defined as follows:

Definition 3.1 (class hierarchy) A class hierarchy � is
a quadruple h �C� �M� �P� �Si where:

�The main difference between this notion, and Rossie and Fried-
man’s notion of a class context [26], is that our class hierarchies
specify for each member whether it is virtual or not. Our class hier-
archies are also subject to additional constraints in order to disallow
overriding of a virtual function by a nonvirtual function with the
same name.



(1) �C � C, (2) �M � �C �M� V, (3) �S � �C � �C ,
and (4) �P � �C � �C

such that: (i) �S and �P are irreflexive, (ii) �S� �P � �, (iii)
the transitive closure of � �S � �P � is antisymmetric, (iv) if
hX� m� f�i � �M and hX� m� f�i � �M then f� � f�,
and (v) if hX� m� “virtual”i � �M , hY� m� fi � �M ,
and hY� Xi � � �S � �P �� then f � “virtual”.

Given a class hierarchy �, its components will be
denoted by �C���, �M���, �S���, and �P ���, respectively.
The reflexive and transitive closure of � �S � �P � will be
denoted by �I���.

Here, �C denotes the subset of class names that are
used in this class hierarchy. �M is a function that maps
every class in �C to a subset of the set of member names,
and specifies for every class member if it is virtual or
non-virtual; the function is stated in relational form be-
cause that will make it easier to specify operations on
class hierarchies later. However, in cases where we are
not interested in the virtuality of a member, we will
often write ‘m � �M�C�’ instead of ‘hC� m� vi � �M

for some v’. �S and �P are relations indicating the pro-
prietary (i.e., non-virtual) and the shared (i.e., virtual)
inheritance relations between classes in C.

Constraints (i)–(v) encode the usual C++ constraints
on inheritance relations that: (i) a class cannot be its
own base class, (ii) a class cannot be a non-virtual and
a virtual base class at the same time, (iii) cycles in the
inheritance graph are not allowed, (iv) a member cannot
be virtual and non-virtual at the same time, and (v) a
virtual member cannot be overridden by a non-virtual
member with the same name. For practical reasons, we
will assume class hierarchies to be finite.

Example 3.2 For the example in Figure 2, the class
hierarchy �

ex
is given by:

�C��
ex
� � f A� B� C� D� S g

�M��
ex
� � f hA� x� “non-virtual”i�

hS� foo� “virtual”i�
hS� bar� “non-virtual”i�
hB� foo� “virtual”i�
hC� bar� “non-virtual”i g

�S��
ex
� � f hB� Si� hC� Si g

�P ��
ex
� � f hD� Ci� hD� Bi� hB� Ai� hC� Ai g

�

Rossie and Friedman use the term subobject not to
refer to a “part of an object,” but rather to denote what
is in essence a refined notion of type derived from the
combination of the “static” (declared) and “run-time”
(as allocated) types of an object. Therefore, when we
wish to refer to a “part of an object,” we will use the
term subobject instance.

Intuitively, a subobject identifies the type (i.e., class)
C of the “full object instance” in which a subobject in-
stance is embedded as well as the type (class) D of the
subobject instance itself. However, defining a subob-
ject as a pair hC� Diwould be insufficient, because a C
object instance may contain more than one subcompo-
nent of type D in the presence of multiple inheritance.
We will identify a subobject by a pair �C� C�� � � � �Cn�,
where C denotes the type of the “full object instance”,
and C�� � � � �Cn is a sequence of class names encoding
the transitive inheritance relation between C� to Cn.
There are two cases here: For non-shared subobject
instances we have that C� � C, and for shared sub-
object instances we have that C� is the least derived
(smallest) shared base class of C that contains the sub-
object. This scheme is sufficient because shared base
classes are unique. In Definition 3.3 below, the set of
subobjects� of a class C in a hierarchy � is defined.
We use � to denote a possibly empty sequence of class
names C�� � � � �Cn.

Definition 3.3 (subobject) For a class hierarchy �,
and a class C � �C���, the set of subobjects of C,
denoted ���� C�, is inductively defined as follows:

1. �C� C� � ���� C�

2. �C� D� � ���� C� if there exists an X such that
hC� Xi � �I���, and hX� Di � �S���

3. �C� ��X �Y � � ���� C� if �C� ��X � � ���� C�

and hX� Y i � �P ���.

We will use ���� to denote the set containing all
subobjects of all classes in �.

�Our notion of a subobject is equivalent to Rossie and Friedman’s
[26], although our notation and definition are different.



Example 3.4 For the class hierarchy �
ex

of Exam-
ple 3.2, it follows from Definition 3.3 that the set of
subobjects of class D, ���

ex
� D� consists of:

f �D� D�� �D� D�B�� �D� D�C�� �D� D�B�A�� �D� D�C�A�� �D� S�g

�

Example 3.5 Consider the following fragment of code
with respect to the class hierarchy of Figure 2 and Ex-
ample 3.2:

[1] D d1, d2;
[2] B *b1 = &d1;
[3] B *b2 = &d2;

Using informal conventional terminology, one might
say that d1 and d2 in the above example are (two
different) objects of class D, while b1 and b2 point
to the B subobject of d1 and d2 respectively. In our
terminology, we would say that d1 and d2 are (two
different) instances of the subobject �D� D�, while b1
andb2point to (two different) instances of the subobject
�D� D�B�.

We will now define the notions of a subobject’s most
derived class and a subobject’s least derived class,
respectively�. Intuitively, a subobject’s most derived
class is the class with respect to which references to vir-
tual methods are resolved. A subobject’s least derived
class is the class with respect to which references to data
members, and references to non-virtual methods are re-
solved. In a more operational view, the least derived
class of an object corresponds to the declared type of
an object (i.e., the type as it appears in the object’s de-
claration), whereas the most derived class of an object
corresponds to the run-time type of the object.

Definition 3.6 (most/least derived class) Let
�C� ��X � � ����. Then:

mdc(�C� ��X �) � C

ldc(�C� ��X �) � X

�These concepts are equivalent to Rossie and Friedman’s actual
class and effective class, respectively.

3.2 Subobject Ordering and Member Lookup

Though defined differently, Definition 3.7 below is
equivalent to Rossie and Friedman’s partial ordering
‘�’ on the subobjects in ���� C�. This ordering mod-
els the effect of hiding, as well as the dominance rule
[26].

Definition 3.7 (�) Let � be a class hierarchy, C �
�C���. Then:

�C� �� �p�� �C� ��X �

�C� ��X � �s�� �C� Y � if hX� Y i � �S���

Furthermore, let ‘��’ be the union of ‘�p�� ’ and ‘�s�� ’,
and let	�

� be the transitive and reflexive closure of� � .
Moreover, for any � � ���� C�, let min���� denote
the least element of � w.r.t. 	�

� , when it exists. We will
drop the subscript � if the class hierarchy is obvious
from the context.

Example 3.8 From Definition 3.7 it follows that we
have the following relationshipsbetween the subobjects
in ���

ex
� D� (see Example 3.4) of class hierarchy �

ex

(see Example 3.2):

�D� D�� �D� D�B� �D� D�� �D� D�C�
�D� D�B�� �D� D�B�A� �D� D�B�� �D� S�
�D� D�C�� �D� D�C�A� �D� D�C�� �D� S�

These relationships were rendered pictorially in Fig-
ure 2(b). �

We will now define VisibleDefs(�� �� m), the set of
all subobjects that have a member m that is “visible” in
a subobject ��.

Definition 3.9 (VisibleDefs) Let� be a class hierarchy,
C � �C���, � � ���� C�, and letm be a member name
in M. Then the set of all subobjects of C that have a

�Rossie and Friedman do not define VisibleDefs, but have a
similar notion, fam, which does not take hiding into account. This
does not make a difference for the purpose of defining member
lookup, but VisibleDefs will turn out to be essential for the slicing
algorithm of Section 5.



member m that is visible in � is:

VisibleDefs(�� �� m) �

����������
���������

f � g

if m � �M�ldc(�)�

S
VisibleDefs(�� � �� m)

���
�

if m 
� �M�ldc(�)�

Example 3.10 The subobjects of class D in the class hi-
erarchy �

ex
of Example 3.2 were shown in Example 3.4.

From Definition 3.9, it follows that

VisibleDefs(�
ex
� �D� D�� bar) � f �D� S�� �D� D�C� g

VisibleDefs(�
ex
� �D� D�C�� foo) � f �D� S� g

VisibleDefs(�
ex
� �D� D�B�� x) � f �D� D�B�A� g

�

The key property of a class hierarchy slice that will
be presented in Section 4 is preservation of member
selection. Informally stated, this means that a com-
ponent of the class hierarchy is irrelevant so long as
removing that component does not affect the selection
of members (i.e., data members and virtual and non-
virtual methods). In this section, we will formalize the
process of member selection.

Using Definitions 3.7 and 3.9, we can now formally
define which subobject is selected for a static or dynamic
access to a member m in a subobject �. The functions
static-lookup and dynamic-lookup defined below use
VisibleDefs and the subobject ordering to determine
which subobject contains the member that is accessed.
Functions static-lookup and dynamic-lookup are both
defined as a mapping from subobjects to subobjects.

Definition 3.11 (static lookup and dynamic lookup)
Let � be a class hierarchy, C � �C���, � � ���� C�,
and letm � M be the name of a member. Then:

static-lookup(�� �� m) �
min�VisibleDefs(�� �� m)�

dynamic-lookup(�� �� m) �
min�VisibleDefs(�� �mdc(�)� mdc(�)�� m)�

The lookup is undefined in cases where a minimum el-
ement w.r.t. 	� does not exist and this denotes that the
reference is ambiguous.

Definition 3.11 defines the selection of a subobject
given a member m and a subobject �. However, the
question whether the lookup for m should be static or
a dynamic is encoded in the �M component of the class
hierarchy, and depends on m and the static class of
subobject �. In function lookup� (Definition 3.12 be-
low), a static lookup for member m is performed first.
Then, the virtuality of m is determined, and a dynamic
lookup is performed if m is found to be virtual. This
“double” lookup scheme is designed in such a way to
simplify the subsequent definitions and descriptions of
algorithms; there are obviously more efficient ways of
implementing lookups for virtual members.

Definition 3.12 (lookup) Let � be a class hierarchy,
C � �C���, � � ���� C�, and let m � M be the
name of a member. Let � � � static-lookup(�� �� m),
and let hldc(� �)�m� vi � �M���. Then:

lookup(�� �� m) �

�������
������

��

if v � “non-virtual”

dynamic-lookup(�� �� m)
if v � “virtual”

Example 3.13 From Example 3.2 and Definition 3.12,
we can obtain the following for the call to bar() in
procedure main() of the program of Figure 2.

static-lookup(�
ex
� �D� D�� bar) �

min�VisibleDefs(�
ex
� �D� D�� bar)� �

min�f �D� S�� �D� D�C� g� �
�D� D�C�

Because of hC� bar� “non-virtual”i � �M��
ex
� we have

that

lookup(�
ex
� �D� D�� bar) �

static-lookup(�
ex
� �D� D�� bar) �

�D� D�C�

�static-lookup and dynamic-lookup are equivalent to Rossie and
Friedman’s stat and dyn, though defined differently. In [26], Rossie
and Friedman do not address the problem of determining whether a
lookup should be static or dynamic. In particular, they do not define
a function lookup similar to Definition 3.12 below.



For the call to foo() in C::bar() we have the fol-
lowing:

static-lookup(�
ex
� �D� D�C�� foo) �

min�VisibleDefs(�� �D� D�C�� foo)� �
min�f �D� S� g� �
�D� S�

Since we have that hS� foo� “virtual”i � �M��
ex
� we

have that

lookup(�
ex
� �D� D�C�� foo) �

dynamic-lookup(�
ex
� �D� D�C�� foo) �

min�VisibleDefs(�� �D� D�� foo)� �
min�f �D� S�� �D� D�B� g� �
�D� D�B�

�

4 Class Hierarchy Slices

4.1 Objective

We may view a C++ program as a pair ��� S�, where
� is the declarative part, i.e., a class hierarchy and S

is the non-declarative, or executable, part. Previous
work on slicing can be adapted to compute slices of
the executable part of a C++ program (see Section 6.3):
that is, given a program ��� S� and a slicing criterion,
one can compute a statement slice ��� S �� which has the
same execution behavior as the original program with
respect to the criterion.

The goal of this work is to compute class hierarchy
slices: given a program ��� S �� (which may be, but is
not necessarily, the output of a statement slicing algo-
rithm), we would like to compute a slice �� �� S�� that
has the same execution behavior as ��� S ��, where ��

is a subhierarchy (see Definition 4.3 below) of �. In
particular, we would like � � to consist only of the parts
of � that are necessary to ensure that ��� �� includes all
subobjects that may be “instantiated” during execution
of S �, and that �M ���� includes all members that may be
used during the execution of the S �. However, we also
need to ensure that replacing � by � � does not change
the execution behavior of S �. The primary component
of the program execution behavior that depends on the
class hierarchy is the member lookup operation. Hence,

the class hierarchy slice should preserve the result of
any member lookup that may be performed during the
execution of the S �. We formalize these requirements
below.

Definition 4.1 (subobject instantiation) A subobject
� is said to be instantiated during program execution
when a pointer or reference to an instance of � is gen-
erated.

Example 4.2 Consider the code in Example 3.5. Line
[1] instantiates the subobject �D� D�, while lines [2]
and [3] instantiate the subobject �D� D�B�. Further,
the subobject �D� D�C� is not instantiated by this code
fragment (even though the �D� D� subobject instances
created in line [1] contain instances of �D� D�C�).

Definition 4.3 (subhierarchy) Let � and � � be class
hierarchies. Then � � is a subhierarchy of � (� �v�) iff:
(i) �C���� � �C���, (ii) �M���� � �M���, (iii) �P ���� �
�P ���, and (iv) �S���� � �S���.

Example 4.4 Let � �
ex

be a class hierarchy, where:

�C���
ex
� � f A� B� C� D� S g

�M���
ex
� � f hA� x� “non-virtual”i�

hS� foo� “virtual”i�
hB� foo� “virtual”i�
hC� bar� “non-virtual”i g

�S���
ex
� � f hB� Si� hC� Si g

�P ���
ex
� � f hD� Ci� hD� Bi� hB� Ai g

Then from Definition 4.3 it follows that � �

ex
is a sub-

hierarchy of the class hierarchy �
ex

that was defined in
Example 3.2. �

Definition 4.5 (class hierarchy slice) Let ��� S �� be a
program. A subhierarchy � � of � is said to be a class
hierarchy slice of ��� S �� if

1. ����� includes every subobject � that may be in-
stantiated during execution of S �.

2. �� preserves the lookup of any member m in any
subobject � that may be performed during execu-
tion of S �: that is,

lookup(� �� �� m) � lookup(�� �� m)



4.2 Member Lookup Slices

We now introduce some terminology and notation that
will be useful in presenting our algorithm. We define
a member lookup slicing criterion to be a pair h�� mi
where m is the name of a member, and � the subobject
associated with the receiver expression e with respect
to which m is referenced or called.

Definition 4.6 (member lookup slicing criterion)
For a given class hierarchy �, a member lookup slicing
criterion is defined as a pair h�� mi, where � � ����

and m � �M���.

We define a union operator on class hierarchies as below.
(Note that this operator is only defined on hierarchies
that have a common superhierarchy.)

Definition 4.7 (�)
Let �� � h �C����� �M����� �S����� �P �� ��i and � �� �

h �C������ �M������ �S������ �P �����i be subhierarchies of
a class hierarchy �. Then:

������ � h �C�� ��� �C�� ���� �M����� �M������
�S����� �S�� ���� �P ����� �P ����� i

Our basic approach is to identify the subhierarchies of
� that are necessary to satisfy various criteria and to
take their union. In particular, we satisfy condition (2)
of Definition 4.5 by identifying the set of all member
lookups h�� mi that may be performed, and by comput-
ing a slice of � for each lookup, and by taking the union
of all these slices.

What should a slice with respect to member lookup
h�� mi be?

Let � �� and � be class hierarchies such that � ��v� and
� � ������. Let us call � �� a weak slice of � with respect
to the member lookup criterion h�� mi if

lookup(� ��� �� m) � lookup(�� �� m)

Although a weak slice S with respect to a criterion
C captures the essential property of preserving lookup
behavior for a criterion C, it is not very useful because
it lacks a desirable compositional property: If S � and
S� are weak slices with respect to criteria C� and C�,
respectively, then S��S� is not necessarily a weak slice

with respect to criterion C� (or C�). This can be seen
from the example of Figure 4. This leads to the follow-
ing definition.

Definition 4.8 (slice) Let � �� and � be class hierarchies
such that � ��v�. ��� is said to be a member lookup slice
of � with respect to criterion h�� mi if for all � � such
that � ��v��v� and � � ��� �� we have that

lookup(� �� �� m) � lookup(�� �� m)

We may define the concepts of a static lookup slice
and dynamic lookup slice analogously by replacing
“lookup” in the above definition by “static-lookup” or
“dynamic-lookup” respectively.

Example 4.9 We will study the member references
d.bar() and this->foo() in the program and
slice of Figure 2. The hierarchies �

ex
and � �

ex
for

the program and the slice were shown in Examples 3.2
and 4.4, respectively.

For call d.bar(), we assume that subobject � �

�D� D� � ���
ex
� D� is associated with expression d.

Since we have that

lookup(�
ex
� �D� D�� bar) �

lookup(� �
ex
� �D� D�� bar) � �D� D�C�

��
ex

is a weak slice of �
ex

with respect to criterion
h�D� D�� bari.

For call this->foo(), suppose that subobject
�D� D�C� � ���

ex
� D� is associated with expression

this. Since we have that

lookup(�
ex
� �D� D�C�� foo) �

lookup(� �
ex
� �D� D�C�� foo) � �D� D�B�

��
ex

is a weak slice of �
ex

with respect to criterion
h�D� D�C�� fooi.

The reader may verify that � �

ex
is also a slice w.r.t.

each of the criteria mentioned above. �

The following lemma states that the slices of Defini-
tion 4.8 may be composed with the union operation of
Definition 4.7. This property is very important because
it implies that a slicing algorithm can compute member
lookup slices element-wise, and safely compute their
union without affecting the result of any of the lookups.
As the example of Figure 4 shows, there is no analogue
of this theorem for weak slices.



class A f
public:

int y;
g;

class B :
public virtual A f

public:
int y;

g;

class C :
public virtual A f

public:
int x;

g;

class D :
public B,
public C f

g;

void main()f
D d;
d.y = 17;
d.x = 18;
C c;
c.y = 19;

g

y
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A

S�

class A f
public:

int y;
g;

class B
f

public:
int y;

g;

class C :
public virtual A f

public:
int x;

g;

class D :
public B,
public C f

g;

void main()f
D d;
d.y = 17;
d.x = 18;
C c;
c.y = 19;

g

(a) (d) (c) (e)

Figure 4: (a) Example program. (b) Pictorial view of the class hierarchy of (a). (c) Pictorial view of three weak slices S�,
S�, and S� w.r.t. criteria h�D� D�� yi, h�D� D�� xi, and h�C� C�� yi. (d) Pictorial view of the union S��S��S� of the weak
slices of (c). (e) Program corresponding to the (d). Observe that the member-selection expression d.y is ambiguous. This
implies that lookup-behavior is not preserved, and therefore that S ��S��S� is not a weak slice w.r.t. h�D� D�� yi.



Lemma 4.10 Let � be a class hierarchy, let �� be a
slice of � w.r.t. criterion S�, and let �� be a slice of �
w.r.t. criterion S�. Then ��� ���� is a slice w.r.t. S�,
and ��� ���� is slice w.r.t. criterion S�.

Proof. Follows directly from Definition 4.8. �

5 Computing Class Hierarchy Slices

5.1 The Algorithm

In Section 4 we presented a formal definition of what
constitutes a slice. In this section we present an algo-
rithm for slicing a class hierarchy (see Figure 5). The
algorithm is defined as a function Slice that takes a pro-
gram P as an argument and returns a class hierarchy
slice of P .

The first step in computing the class hierarchy slice is
to identify all subobjects that may be instantiated during
the execution of the statement slice.

Objects may be created in a C++ program through
the use of various program constructs such as the
new operator (e.g., “new X”) and variable definitions
(e.g., “X x�”). By scanning P for all object creation
constructs�, we identify the set of all “full” objects (sub-
objects of the form �X� X �) that may be instantiated
during the execution of P , and add the corresponding
class X to the slice. (See lines [4] through [7].)

However, this is not enough. We also need to identify
references (or pointers) to “partial” subobjects (sub-
objects of the form �X� ��Y �, where Y 
� X) that
may be created. Such references are usually created
through a sequence of (implicit or explicit) typecasts
starting from a full object. Hence, we scan P for
all typecast expressions and add an appropriate part
of the class hierarchy to the slice. (See lines [8] to
[10].) In particular, for a typecast from a class F to a
class T we add SubHierClass�F� T � to the slice, where
SubHierClass�F� T �, defined below, denotes the part of
the class hierarchy that lies between the two classes F
and T .

�C++ programs usually have a number of implicit constructs:
constructs that are generated by the compiler if the programmer
omits them. For instance, a constructor for a class may contain
implicit instantiations of all its data members. The algorithm needs
to take care of these implicit constructs as well.

Definition 5.1 (SubHierClass)

SubHierClass��F� T � � h C� �� �S���� �C � C��
�P ���� �C � C� i where

C � fX j hF� Xi � �I��� and hX� T i � �I��� g

We now turn our attention to member lookups. The
next step in the algorithm requires a type inference al-
gorithm to identify for every member lookup operation
e�m or e � m in P the set of possible run-time types
for e, which we denote by PotentialRunTimeTypes�e�
(line [13]). (The algorithm requires the run-time type
information only for lookups of virtual members. For
the sake of simplicity, we ignore this possible refine-
ment.) Once this information is available, the set of
relevant member-lookup slicing criteria is easily deter-
mined. The set of possible run-time types of e and the
static type of e are used to determine the set SubObjSet
of possible subobjects that e may denote at this pro-
gram point. (This is the information computed by Func-
tion CorrespondingSubobjects in lines [20]–[26].) Each
� � SubObjSet identifies a member-lookup slicing cri-
terion h�� mi.

Once the set of member-lookup slicing criteria that
are relevant have been identified, the algorithm simply
computes member lookup slices with respect to each of
these individual criteria and adds them all to the slice
being computed.

The computation of member lookup slices uses
a function SubHier, defined below, that given
any two subobjects �� and �� identifies the
part of the original class hierarchy that lies
“between” these two subobjects. (Note that
SubHier����� ��� v SubHierClass��ldc(��)� ldc(��)�.
We could use SubHierClass��ldc(��)� ldc(��)� in place
of SubHier����� ��� when computing member lookup
slices, but that would lead to larger slices in some cases.)

Definition 5.2 (SubHier)

SubHier����� ��� � hC� �� S� P i where
R � f � j ��	��	��� g
C � f ldc(�) j � � R g

S � f hldc(�)� ldc(��)i j �� �� � R� ��s�
� g

P � f hldc(�)� ldc(��)i j �� �� � R� ��p�
� g



[1] function Slice(Program P ) : hierarchy;
[2] let � be the class hierarchy of P ;
[3] instantiatedClasses = �;
[4] for each (implicit or explicit) object creation construct e in P do
[5] instantiatedClasses � instantiatedClasses � f class instantiated by e g ;
[6] end for
[7] �slice = hinstantiatedClasses� �� �� �i
[8] for each (implicit or explicit) typecast expression (T *) e or (T &) e or (T) e in P do
[9] �slice = �slice � SubHierClass��StaticType�e�� T �;
[10] end for
[11] call ComputePotentialRunTimeTypes(P );
[12] for each (implicit or explicit) expression e�m or e� m in P do
[13] SubObjSet = CorrespondingSubobjects(�� PotentialRunTimeTypes�e�� StaticType�e�);
[14] for each � in SubObjSet do
[15] �slice = �slice � MemberLookupSlice��� ��m�;
[16] end for
[17] end for
[18] return �slice;
[19] end;

[20] function CorrespondingSubobjects(hierarchy �; TypeSet T ; Class X): SubObjectSet;
[21] SubObjSet = �;
[22] for each class C � T do
[23] SubObjSet = SubObjSet � f � j � � ���� C� and ldc(�) � X g;
[24] end for
[25] return SubObjSet;
[26] end;

[27] function MemberLookupSlice (hierarchy �; Subobject �; member m): hierarchy;
[28] �� � static-lookup(�� �� m);
[29] staticLookupSlice � h�� M��� ldc(� �)� m�� �� �i
[30] � SubHier���� ���
[31] � �

S
f SubHier����� ���� j ��� � VisibleDefs(�� �� m) g�;

[32] if hldc(��)� m� “virtual”i � �M ��� then /* virtual member lookup */
[33] �� � dynamic-lookup(�� �� m);
[34] dynamicLookupSlice � h�� M ��� ldc(� �)� m�� �� �i
[35] � SubHier� ��mdc(�)� mdc(�)�� ���
[36] � �

S
f SubHier� ���� ���� j ��� � VisibleDefs(�� �mdc(�)� mdc(�)�� m) g�;

[37] lookupSlice = staticLookupSlice� dynamicLookupSlice;
[38] else
[39] lookupSlice = staticLookupSlice;
[40] end if
[41] return lookupSlice;
[42] end;

Figure 5: Algorithm for slicing class hierarchies.



Let us now consider how the slice is computed for
a lookup of a non-virtual member m in a subobject �.
(See lines [28]–[31].) Assume that the lookup returns a
subobject � � of least derived classC. The slice consists
of several components. The first component (line [29])
ensures that the class C has the member m; for conve-
nience we use M��� C� m� to denote the singleton set
f hC� m� vi g � �M���, for some v � V . The second
component (line [30]) ensures that� � will be a subobject
of � in the new hierarchy and, hence, that the member
m of �� will be visible in �. The third component (line
[31]) adds enough of the hierarchy to ensure that the
member m in �� dominates any other member m that
may be visible in �. (This component is not necessary
for a weak slice, but is essential for a slice.)

While the above components are all that are required
in the case of a lookup for a non-virtual member, the
lookup for a virtual member requires more parts of the
class hierarchy to be added to the slice. The components
added in lines [34]–[36] are analogous to the compo-
nents added in lines [29]–[31] (except that they apply
to the full object containing �).

Remark: The functions SubHierClass and SubHier,
as defined above, return all of the class hierarchy that
lies between the specified classes or subobjects. For
example, if D derives from a virtual base B in mul-
tiple ways, then SubHierClass�D�B� will include all
the “inheritance paths” between D and B. In actuality,
it would suffice if one of the “inheritance paths” be-
tween D and B was included in the slice. We choose
to include all paths, rather than choose some path “non-
deterministically”. (Ideally, it might be preferable for
the slice to just “record” that D is required to inherit
from B in some fashion. It would, however, be diffi-
cult to “project” such slices onto the source program for
display purposes.)

5.2 Correctness of the Algorithm

We now establish the correctness of our algorithm. We
need to show that the hierarchy �slice returned by Func-
tion Slice satisfies the two conditions in Definition 4.5.

Consider condition (1). Let us denote the re-
sult of typecasting a subobject � to a class X by
typecast��� ��X�.

Lemma 5.3 For every subobject � instantiated during
the execution of P , there exists a sequence of subob-
jects �D� D� = ��, ��, � � �, �k = �, where D is a class
instantiated in P , and for every i � 	, � i is obtained
(during execution of P ) from � i�� through a typecast
(that is, �i = typecast��� �i��� Xi�) or lookup (that is,
�i = lookup(�� �i��� mi)).

Proof. Straightforward. �

Lemma 5.4 Let ��	
�

���. Then, for all
��wSubHier����� ��� if �� � ����� then �� � �����

and ��	�

����.

Proof. Straightforward. �

Lemma 5.5
1. Let �� = static-lookup(�� ��� m). For all
��wSubHier����� ���, if �� � ��� �� then �� �
�����.

2. Let �� = dynamic-lookup(�� ��� m). For all
��wSubHier���mdc(��)� mdc(��)�� ���, if �� �
����� then �� � �����.

3. Let �� = typecast��� ��� T �. For all
��wSubHierClass��ldc(��)� ldc(��)�, if �� �
����� then �� � �����.

Proof. Follows from Lemma 5.4. (For the third part of
the lemma, note that SubHierClass��ldc(��)� ldc(��)�w
SubHier����� ���.) �

It follows from Lemma 5.3 and Lemma 5.5 that �slice
satisfies condition (1) of Definition 4.5.

Consider condition (2) of Definition 4.5. Let us de-
note the value of the variable lookupSlice in a specific
invocation of the function MemberLookupSlice(�� ��m�

by lookupSlice(�,�,m). staticLookupSlice(�,�,m) and
dynamicLookupSlice(�,�,m) are defined similarly.

Lemma 5.6 staticLookupSlice��� ��m� is a static-
lookup slice of � with respect to h�� mi.

Proof. Consider any � � such that

��v�� ��wstaticLookupSlice��� ��m�� and � � ��� ���



We need to show that

static-lookup(� �� �� m) � static-lookup(�� �� m)�

Let �� denote static-lookup(�� �� m).
First, we show that � � � VisibleDefs(� �� �� m). Ob-

serve that �� � ����� and �	�

����. (This follows from
Lemma 5.4 since � � ����� and � �wSubHier���� ���.)
This implies that there is a “path” ������ � � ��k�����

in the subobject graph of � �. Clearly, m 
�
�M����ldc(�i)� for any i, since otherwise we would

not have � � = static-lookup(�� �� m). Since � �v�,
m 
� �M�����ldc(�i)� either. It follows that � � must
be in VisibleDefs(� �� �� m)

We now need to show that � � is the least el-
ement of VisibleDefs(� �� �� m). Let ��� be some
element in VisibleDefs(� �� �� m). This implies
that there is some “path” ������ � � ��k������k �

��� in the subobject graph of � �. Let i be the
minimum value such that m � �M����ldc(�i)�.
Then, �i � VisibleDefs(�� �� m). By construc-
tion, staticLookupSlice��� ��m� w SubHier����� �i�.
Hence, ��wSubHier����� �i�. Lemma 5.4 implies that
��	�

���i. Hence, ��	�

�����, from the transitivity of 	�

�� .
�

Lemma 5.7 dynamicLookupSlice��� ��m� is a
dynamic-lookup slice of � with respect to h�� mi.

Proof. This follows just like Lemma 5.6. �

Lemma 5.8 lookupSlice��� ��m� is a member lookup
slice of � with respect to h�� mi.

Proof. Follows from Lemma 5.6 and Lemma 5.7. �

It follows from Lemma 5.8 and Lemma 4.10 that
�slice satisfies condition (2) of Definition 4.5 also.
Hence, we have the following theorem.

Theorem 5.9 Function Slice computes a class hierar-
chy slice of P .

6 Related Work

6.1 Elimination of Class Components

The work that is most closely related to ours is that by
Agesen and Ungar [4, 3], who describe an approach for

application extraction for the dynamically typed object
oriented language Self. Agesen and Ungar’s objective
is similar to ours: the elimination of unused parts of
objects while preserving program behavior. It is in-
teresting to observe that, whereas for statically typed
object-oriented languages eliminating such redundan-
cies is a useful optimization, for Self it is almost essen-
tial: Due to the absence of declarations, it is unclear a
priori what code is used by an application and, hence,
even a small application requires the incorporation of
the entire run-time environment unless countermeasures
are taken. Comparing the application extraction algo-
rithm of [4] with our class hierarchy slicing algorithm is
difficult because of the different languages under con-
sideration, and the differences in presentation of the
algorithms, but a few similarities are evident:

� Both algorithms rely on a type inference algorithm
to determine the potential targets of method calls
(message sends in Self). For C++, due to the static
nature of class hierarchies, there is the possibility
of using efficient algorithms that only use class
hierarchy information (see Section 6.2). For Self,
this option is not available.

� Both algorithms essentially determine a separate
slice for each lookup/send, and the slice with re-
spect to a program consists of the union of these
single-point slices.

In his PhD thesis [3], Agesen discusses related work
on application extraction for dynamically typed object-
oriented languages.

To our knowledge, the problem of eliminating dead
declarative code in C++ programs has not been studied.
For statically typed object-oriented languages such as
C++, the focus has thus far been on eliminating dead
executable code, and we are unaware of any approaches
that go much beyond call graph analysis [28] and vir-
tual call elimination [7]. As Srivastava’s study [28] in-
dicates, object-oriented programs are likely to contain
more dead code than programs written in procedural lan-
guages. Agesen [3] remarks that “as the current trend
towards the use of frameworks in the development of
applications continues, the amount of dead code will
likely increase further.” We believe that this applies to
executable as well as declarative code.



6.2 Type Inference

The class hierarchy slicing algorithm of Section 5 re-
quires a set of potential run-time types for each expres-
sion that is involved in a member access. A number
of different approaches for type inference have been
discussed in the literature.

In the context of C++, much work has been done re-
cently on type inference for the sake of virtual method
call elimination. The objective of virtual call elimina-
tion is to identify calls to virtual functions from receiver
expressions that can only have a single run-time type;
such calls can be replaced by direct function calls. Be-
sides the fact that a direct call can be implemented more
efficiently, they can also be inlined, which enables var-
ious intraprocedural optimizations that cannot be per-
formed across function boundaries. Although C++ type
inference algorithms are often designed primarily to de-
termine whether the run-time type of a receiver expres-
sion is unique or not, extension of these algorithms to
compute a set of potential run-time types instead seems
straightforward in most cases. C++ type inference al-
gorithms fall into two broad categories: algorithms that
only use signature information or class hierarchy infor-
mation [10, 16, 28, 8, 7, 13] and more sophisticated
algorithms that are based on alias analysis [23, 11]. Al-
though the latter category theoretically offers the most
precise results, it is unclear how much better these re-
sults are than those of algorithms in the former category
in practice [7].

In addition to the C++ type inference algorithms de-
scribed above, several constraint-based type inference
algorithms for object-oriented languages have been pre-
sented in the literature. Constraint-based type inference
methods compute type information by determining the
solution of a constraint network where the nodes corre-
spond to type variables, and where the edges represent
constraints between type variables [22, 2, 24].

6.3 Statement Slicing for C++

Although class slicing in abstract form simply special-
izes a class hierarchy with respect to a target program,
several applications also require a statement slicing al-
gorithm. Krishnaswamy [19] and Larsen and Harrold
[20] have addressed statement slicing in C++.

Krishnaswamy’s algorithm [19], which is based on an
algorithm for the C language by Livadas and Croll [21],
has insufficient detail for us to confidently evaluate its
accuracy or correctness, although it appears to outline
a slicing algorithm based on interprocedural dataflow
analysis in a procedure call graph derived from a set of
methods.

Later work on slicing in C++ by Larsen and Har-
rold [20], based on work on interprocedural slicing by
Horwitz, et al. [18] and Reps et al. [25], contains
considerably more detail. The most significant con-
tributions of Larsen and Harrold’s work, in our view,
are the idea of treating all instances of method data as
global variables (i.e., “static” members in C++), and
the introduction of a special node in their dependence
graph representation to account for the dynamic binding
implicit in virtual function calls.

However, this work does not explicitly address a
number of common constructs in C++; e.g., object ref-
erence via the “this” pointer, direct access to member
data of objects (only access via member functions is dis-
cussed), and calls to methods on objects that are method
arguments or member data. The latter two omissions
prevent the Larsen/Harrold algorithm from being imme-
diately applicable to the example of Figure 3, although
it is not difficult to apply some simple “patches” to their
algorithm sufficient to yield the slice in the example.

Despite the limitations of existing C++ slicing algo-
rithms, considerable progress has been made in devel-
oping slicing techniques that address problematic con-
structs in other languages, e.g., unstructured control
flow [5, 12, 9], composite datatypes [6], and pointers
[6, 15, 17]. We believe that many of these techniques are
applicable to C++ as well, and algorithms for statement
slicing in C++ are likely to improve over time.

7 Conclusions and Future Work

We have defined a semantically well-founded notion of
a slice of a class hierarchy. This notion of a slice is
defined using an adaptation of Rossie and Friedman’s
algebraic semantics for subobject selection [26]. In
addition, we have presented an algorithm for comput-
ing class hierarchy slices. This algorithm relies on the
availability of run-time type information for receiver



expressions of virtual calls, but any suitable type infer-
ence method can be used to compute this information,
allowing for a variety of cost/accuracy tradeoffs.

Our class hierarchy slicing algorithm has two princi-
pal applications when used in conjunction with a state-
ment slicing algorithm. First, it enhances the utility of
statement slicing in traditional slicing application such
as debugging and program understanding. Second, the
combination of the two algorithms may be used to opti-
mize an object-oriented program by reducing its space
requirements.

For future work, we would like to extend the frame-
work presented in this paper to other declarative aspects
of C++ not treated here, such as static class members,
pointers to members, and typedef constructs. In ad-
dition, slicing in the presence of preprocessing mecha-
nisms such as templates or macros remains a difficult
open problem.

Finally, we wish to investigate how to compute slices
that are not necessarily projections of the source code,
e.g., by allowing transitive inheritance relations to be
replaced by direct inheritance relations.
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