
Class Hierarchy Specialization

Frank Tip and Peter F. Sweeney

IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

E-mail: ftip,pfsg@watson.ibm.com

Abstract

Class libraries are generally designed with an emphasis on versa-
tility and extensibility. Applications that use a library typically
exercise only part of the library’s functionality. As a result, ob-
jects created by the application may contain unused members. We
present an algorithm that specializes a class hierarchy with respect to
its usage in a program P . That is, the algorithm analyzes the mem-
ber access patterns for P’s variables, and creates distinct classes for
variables that accessdifferent members. Class hierarchy specializa-
tion reduces object size,and is hence primarily a space optimization.
However, execution time may also be reduced through reduced ob-
ject creation/destruction time, and caching/paging effects.

1 Introduction

Class libraries are generally designed with an emphasis on ver-
satility and extensibility. An application that uses a class library
typically exercises only part of the library’s functionality. Unfor-
tunately, this leads to situations where the objects created by the
program contain unused components. For example, for a member
m in a given classC , it may be the case that certainC-objects never
use m. We present an algorithm that specializes a class hierarchy
with respect to its usage in a program P . The algorithm effectively
analyzes the member access patterns for the variables in P , and
creates distinct classes for variables that access different members.
The benefits of specialization can be manifold:

� The space requirements of a program are reduced at run-time,
because objects no longer contain unnecessary members.

� Specialization may eliminate virtual inheritance (i.e., shared
multiple inheritance) from a class hierarchy. This reduces
member access time, and it may reduce object size.

� Creation and destruction of objects requires less time, due to
reduced object size. Time requirements may also be reduced
through caching/paging effects.

� Specialization may create new opportunities for existing opti-
mizations such as virtual function call resolution [4, 9, 3, 8, 5].

Appeared in the Proceedings of the 12th Annual ACM Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’97), October 5–8 1997, Atlanta,
GA. ACM SIGPLAN Notices 32(10), pp. 271–285.

� Specialization may be of use in program understanding and
debugging tools. For example, specialization can be used
as a means to suppress the output of unused parts of objects
during a debugging session.

Although we expect class hierarchy specialization to be primarily
of use in the context of an optimizing compiler, we present the algo-
rithm as a source-to-source translation for the sake of illustration.

1.1 Scope of this paper

The motivation for this work is to reduce the overhead incurred
by class library usage in C++ applications. In order to prevent our
definitions and algorithms from becoming too unwieldy, the present
paper will focus on a small, idealized subset of C++, which we will
refer to as L. Language L contains the inheritance mechanisms
of C++ in their full generality, including multiple inheritance and
virtual inheritance. We have omitted many C++ features from
L because they would clutter the presentation of the algorithm.
E.g., we only allow default constructors/destructors, and members
are assumed to be accessible from anywhere in a program, thus
ignoring all issues related to access rights. In addition, several
features have been omitted from L because their treatment is future
work (e.g., explicit type-cast operations, and nested structures).
This being said, we believe that our techniques are in principle
applicable to realistic languages such as C++ and Java, although
much engineering work remains to be done—future work will be
discussed in Section 6. The syntax and semantics of L are very
close to those of C++, and the example programs presented below
have their usual meanings. For the interested reader, details of L
are provided in Appendix A.

1.2 Motivating examples

Figure 1(a) shows an example program P �, which contains three
objects s1, s2, and s3, each of type S. Careful analysis of P �

reveals that member m1 is accessed from all three objects, member
m2 is accessed from s2, and member m3 is accessed from s3. In
order to save space at run-time, we would like to remove m2 from
s1 and s3, and m3 from s1 and s2. Note that this requires s1,
s2, and s3 to have different types, since objects of the same type
contain the same members.

However, the types of s1, s2, and s3 are not completely un-
related because the assignments s1 = s2 and s2 = s3 impose
constraints on them. If s1, s2, and s3 have three different, unre-
lated types, the compiler would report a type error in the assign-
ments. Observe, however, that s1, s2, ands3 need not necessarily
have exactly the same type: in general, an assignment x � y only

class S f int m1;
int m2;
int m3;

g;

void main()f
S s1; S s2; S s3;
s1.m1 = 10;
s2.m1 = 20; s2.m2 = 30;
s3.m1 = 40; s3.m3 = 50;
s1 = s2;
s2 = s3;

g

class Tvar�s1� f int m1; g;

class Tvar�s2� : Tvar�s1� f int m2; g;

class Tvar�s3� : Tvar�s2� f int m3; g;

void main()f
Tvar�s1� s1; Tvar�s2� s2; Tvar�s3� s3;

s1.m1 = 10;
s2.m1 = 20; s2.m2 = 30;
s3.m1 = 40; s3.m3 = 50;
s1 = s2;
s2 = s3;

g

(a) (b)

Figure 1: (a) Example program P �. (b) Result of specialization.

requires that y’s type be transitively derived from x’s type �. The
specialized class hierarchy of Figure 1(b) shows how this obser-
vation can be exploited, using inheritance relations between the
types of s1, s2, and s3. Note that s1 and s2 now contain fewer
members (the number of members of s3 remains the same) while
program behavior is preserved.

Figure 2(a) shows an example program P � that will be used
as a running example throughout the remainder of the paper. P �

has a class hierarchy with two virtual functions, f() and g().
The result of specialization is shown in Figure 2(b). Note that the
functions A��f(), A��g(), B��g(), and C��f() are dispersed over
four classes Tvar��ap� , Tvar�a� , Tvar�b� , and Tvar�c� , and that class
Tvar��ap� only contains a declaration� of method g(). Observe
that the use of a common base class T var��ap� with only virtual
methods allows us to eliminate the x data member from b and c.

Since the size of an object is strongly implementation-dependent
it is difficult to make general statements about the space savings of
this operation. If we assume that L uses the same object model as
the IBM xlC C++ compiler on the RS/6000/AIX 4.1 platform, the
size of variable a would remain unchanged at 8 bytes, the size of
b would be reduced from 12 to 8 bytes, and the size of c would be
reduced from 16 to 12 bytes.

1.3 Overview of algorithm

The specialization algorithm consists of four distinct phases. In
Phase I, discussed in Section 2, basic program information is col-
lected by inspecting the source code of input program P . This
information comprises the variables, class members, assignments,
and member access operations that occur in P , as well as pointer-
alias information for pointer-typed variables.

Phase II is concerned with the computation of type constraints
that precisely capture the required subtype-relationships between
the types of variables, and the visibility relations between class
members and variables that must be retained in order to preserve
program behavior. Phase II is presented in Section 3.

In Phase III, the type constraints of Phase II are used to con-
struct a new class hierarchy, and the variable declarations in the
program are updated to take this new hierarchy into account. This
is discussed in Section 4.

In the class hierarchy that results from Phase III, redundant
data members and methods have been removed from objects. This
hierarchy is not optimal however, since it typically exhibits an
abundance of virtual inheritance. Virtual inheritance is undesirable

�More precisely, for an assignmentx � y, where x has typeX and y has typeY ,
there must be exactly oneX-subobject inside an Y -object.

�In L, methods only need to be defined if they are invoked. This is not the case in
C++.

because it is usually implemented in a way that increases member
access time, and in some cases object size as well. Phase IV
addresses this problem by applying a set of semantics-preserving
transformation rules that simplify the specialized hierarchy, and
eliminate (virtual) inheritance. Section 5 discusses Phase IV.

1.4 Related work

A number of categories of related work can be distinguished.
The first category consists of techniques for eliminating un-

used components from objects or class hierarchies. Tip, et al. [23]
present a class hierarchy slicing algorithm that eliminates members
and inheritance relations from a C++ hierarchy. In a sense, class
hierarchy specialization can be viewed as a refinement of class hi-
erarchy slicing. Like specialization, class slicing is concerned with
eliminating unused members from hierarchies, but slicing can only
remove a member from a classC if it is not used by any instance of
type C . In contrast, specialization is capable of making finer dis-
tinctions at the variable level: By giving different types to variables
that previously had the same type, members may be eliminated from
certain objects while being retained in others.

Agesen and Ungar [2, 1] describe an algorithm for the dynami-
cally typed language Self that eliminates unused slots from objects
(a slot corresponds to either a data member, a method, or an inher-
itance relation). This algorithm computes, for each message send
that may be executed, a set of slots that is needed to preserve that
send’s behavior, and produces a source file in which redundant slots
have been eliminated. Comparing Agesen and Ungar’s work to
ours is difficult due to the different nature of Self and L. Much
of the complexity of our approach is due to the fact that removing
members from objects requires changing the class hierarchy. This
issue does not come up in Self, because Self is a dynamically typed
language without classes.

We consider class hierarchy specialization to be a technique
that is largely complementary to techniques for eliminating unused
executable code, such as methods, from object-oriented programs
[4, 20, 15]. In the scenario we have in mind, unused executablecode
is removed from an application first, after which the class hierarchy
could be specialized in order to reduce object size. The benefit of
this approach is that members that are only accessed from useless
code are removed from the class hierarchy altogether. A specific
technique that could be used to this end is program slicing [25, 22],
which determines the set of executable statements that may affect
the values computed at some designated point(s) of interest in a
program. Redundant statements can be removed from a program
by slicing w.r.t. all output values.

Another view on class hierarchy specialization is that of a type
inference algorithm, which infers a set of nonstandard types for

2

class A f
virtual int f()f return g(); g;
virtual int g()f return x; g;
int x;

g;
class B : A f

virtual int g()f return y; g;
int y;

g;
class C : B f

virtual int f()f return g() + z; g;
int z;

g;

void main()f
A a; B b; C c;
A *ap;
if (...) f ap = &a; g
else f if (...) f ap = &b; g

else f ap = &c; g g
ap->f();

g

class Tvar�*ap� f

virtual int f()f return g(); g;
virtual int g(); /* declaration only */

g;
class Tvar�a� : Tvar�*ap� f

virtual int g()f return x; g;
int x;

g;
class Tvar�b� : Tvar�*ap� f

virtual int g()f return y; g;
int y;

g;
class Tvar�c� : Tvar�b� f

virtual int f()f return g() + z; g;
int z;

g;

void main()f
Tvar�a� a; Tvar�b� b; Tvar�c� c;

Tvar�*ap� *ap;

if (...) f ap = &a; g
else f if (...) f ap = &b; g

else f ap = &c; g g
ap->f();

g

(a) (b)

Figure 2: (a) Example program P �. (b) Specialized program and class hierarchy.

variables, and constructs a new class hierarchy reflecting these.
For a discussionof type inference for object-oriented languages,

we refer the reader to the seminal work on object-oriented type sys-
tems by Palsberg and Schwartzbach [15]. There are some interest-
ing connections between our work and that of [15]. Since Palsberg
and Schwartzbach study a language with only single inheritance,
they can express an expression’s type as a set of classes. In the
presence of multiple inheritance, this is not possible, and a more
sophisticated mechanism such as Rossie and Friedman’s subobject-
based types is required [18]. Our notion of a type constraint is
similar in spirit to Palsberg and Schwartzbach’s, but due to fact that
types cannot be expressed as sets of classes, type constraints cannot
be expressed using the subset operator. There is also a difference
in the way type constraints are used. Palsberg and Schwartzbach
submit all type constraints to an inference engine, which infers a
type for each program variable. In contrast, in our case, where
initial types are known for each variable, type constraints are not
solved but interpreted as a new class hierarchy for the program.

O’Callahan and Jackson [12] use type inference to determine
statically where the structure of a C program requires sets of vari-
ables to share a common representation. Although they are primar-
ily interested in program understanding applications such as finding
abstraction violations, their algorithm also detects unused fields of
data structures. Since C does not have inheritance, O’Callahan and
Jackson do not address the complex issues related to subtyping that
arise in our setting. We believe that, in principle, the nonstandard
types inferred by our algorithm can be used for the same program
understanding applications as those mentioned in [12].

A third category of related work is that of techniques for restruc-
turing class hierarchies for the sake of improving design, improving
code reuse, and enabling reuse.

Opdyke and Johnson [13, 14] present a number of behavior-
preserving transformations on class hierarchies, which they refer to
as refactorings. The goal of refactoring is to improve design and en-
able reuse by “factoring out” common abstractions. This involves
steps such as the creation of new superclasses, moving around
methods and classes in a hierarchy, and a number of similar steps.
In Opdyke and Johnson’s approach, the transformation of class

hierarchies is guided by the user. In contrast, class hierarchy spe-
cialization has the opposite goal: class hierarchies are customized
for a particular application, as opposed to being generalized for the
sake of reusability and maintenance. Unlike refactoring, where the
programmer determines what restructurings should take place, class
hierarchy specialization requires no programmer intervention.

Moore [11] presents a tool that automatically restructures in-
heritance hierarchies and refactors methods in Self programs. The
goal of this restructuring is to maximize the sharing of expressions
between methods, and the sharing of methods between objects in
order to obtain smaller programs with improved code reuse. Since
Moore is studying a dynamically typed language without explicit
class definitions, a number of complex issues related to preserving
the appropriate subtype-relationships between classes of objects do
not arise in his setting. Another important difference between our
work and Moore’s is that while Moore’s algorithm rearranges meth-
ods in a hierarchy, it is not capable of eliminating unusedmembers.

2 Phase I: Information Gathering

Phase I of the specialization algorithm consists of gathering basic
information about the input program P, which we will assume to
be type-correct. This information will be used in Phase II (dis-
cussed in Section 3) to compute the set of type constraints (e.g.,
subtype-relationships between variables) that must be preserved in
the specialized class hierarchy.

In the sequel, v, w, � � � denote variables in P whose type is
a class; p, q, � � � denote variables in P whose type is a pointer
to a class (we will henceforth use the word “variables” to refer to
variables as well as method parameters). In addition, x, y, � � � will
be used to denote expressions in P . In the definitions that follow,
TypeOf�P� x� denotes the type of expression x in program P .

2.1 Variables

Definition 2.1 below defines ClassVars�P� and ClassPtrVars�P� as
the set of all variables in P whose type is a class, and a pointer

3

to a class, respectively. ClassPtrVars�P� contains elements for
variables that occur in declarations as well as elements for implicitly
declaredthis pointers of methods. In order to distinguish between
this pointers of different methods, the this pointer of method
A��f() will be denoted by the fully qualified name of its method,
i.e., A��f.

Definition 2.1 Let P be a program. Then, we define the sets of
class-typedvariablesand the set of pointer-to-class-typedvariables
as follows:

ClassVars�P� �
f v j v is a variable/parameter in P�

TypeOf�P� v� � C� for some classC in P g

ClassPtrVars�P� �
f p j p is a variable/parameter in P�

TypeOf�P� �p� � C� for some classC in P g

Example 2.2 For programP � of Figure 2, we have:

ClassVars�P�� � f a� b� c g
ClassPtrVars�P�� � f ap� A��f� A��g� B��g� C��f g

�

2.2 Class members

For a given programP , Members�P� denotes the set of unqualified
names of the class members that occur in P. In addition, the sets
DataMembers�P�, and VirtualMethods�P� contain the unqualified
names of data members and virtual methods of P , respectively. For
convenience, we assume the intersection of DataMembers�P� and
VirtualMethods�P� to be empty (if this is not the case, members
can be renamed), and that there are no overloaded methods with
the same name but different argument types (again, renaming is
possible if this is not the case).

Example 2.3 For programP � of Figure 2, we have:

DataMembers�P�� � f x� y� z g
VirtualMethods�P�� � f f� g g

�

2.3 Points-to analysis

We will need for each pointer-to-class-typed variable a conservative
approximation of the set of class-typed variables that it may point
to in some execution of P . Any of several existing algorithms
[7, 6, 16, 21, 19]) can be used to compute this information, and
we do not make assumptions about the particular algorithm used to
compute points-to information. Definition 2.4 uses the information
supplied by some points-to analysis algorithm to construct a set
PointsTo�P�, which contains a pair hp� vi for each pointer p that
may point to a class-typed variable v.

Definition 2.4 LetP be a program. Then, the points-to information
for P is defined as follows:

PointsTo�P� � f hp� vi j p � ClassPtrVars�P��
v � ClassVars�P��
p may point to v g

Example 2.5 We will use the following points-to information for
programP �. Recall thatX��f denotes the this pointer of method
X��f��.

PointsTo�P�� � f
hap�ai� hap�bi� hap�ci� hA��f�ai� hA��f�bi�
hC��f�ci� hA��g�ai� hB��g�bi� hB��g�ci g

�

Note that the following simple algorithm suffices to compute the
information of Example 2.5: for each pointer p of type �X , assume
that it may point to any object of type Y , such that (i) Y � X or
Y is a class transitively derived from X , and (ii) if p is the this
pointer of a virtual methodC��m, no definitions of m that override
C��m exist in class Y .

2.4 Assignments

Definition 2.6 below defines a set Assignments(P) that contains
a pair of objects hx�� y�i for each assignment x � y that oc-
curs in P . For a direct call�, Assignments(P) contains elements
that model parameter-passing between corresponding formal and
actual parameters whose type is a (pointer to a) class. The re-
turn value of a method is treated as an additional parameter as
well if the method’s return type is a class. For an indirect call
p� f�y�� � � � � yn�, Assignments(P) contains elements that model
the parameter-passing in the direct call x�f�y�� � � � � yn�, for each
hp� xi � PointsTo�P�.

Definition 2.6 Let P be a program. Then, the set of assignments
between variables whose type is a (pointer to a) class is defined as
follows:

Assignments(P) �
f hv�wi j v � w occurs in P� v� w � ClassVars�P� g �
f h�p�wi j p � �w occurs in P� p � ClassPtrVars�P��

w � ClassVars�P� g �
f h�p� �qi j p � q occurs in P� p� q � ClassPtrVars�P� g �
f h�p�wi j �p � w occurs in P� p � ClassPtrVars�P��

w � ClassVars�P� g �
f hv� �qi j v � �q occurs in P� v � ClassVars�P��

q � ClassPtrVars�P� g �
f h�p� �qi j �p � �q occurs in P� p� q � ClassPtrVars�P� g

Example 2.7 For programP � of Figure 2, we have:

Assignments(P �) �
f h*ap�ai� h*ap�bi� h*ap�ci� h*A��f�ai� h*A��f�bi�

h*C��f�ci� h*A��g� ai� h*B��g�bi� h*B��g�ci g

�

2.5 Member access operations

Definition 2.8 below defines a set MemberAccess�P� of all pairs
hm�xi such that m is accessed from variable x. For an indirect
call p � f�y�� � � � � yn�, we also include an element hf�xi in
MemberAccess�P� for each hp� xi � PointsTo�P�.

�A direct call is an invocationof a virtual method from a non-pointertypedvariable.
An indirect call is an invocation of a virtual method from a pointer, which requires the
virtual dispatch mechanism to be invoked.

4

[D,D�C�A]

(a) (b)

A

S

B C

D

x

f z

f

f z

f

xx

[D,D]

[D,D�B] [D,D�C]

[D,S]

[D,D�B�A]

Figure 3: (a) Example class hierarchy graph. Solid edges indicate repli-
cated (nonvirtual) inheritance. Dashed edges indicate virtual (i.e., shared)
inheritance. (b) Subobject graph for type D in the class hierarchy of Fig-
ure 3(a).

Definition 2.8 LetP be a program. Then, the set of memberaccess
operations in P is defined as follows:

MemberAccess�P� �
f hm�vi j v�m occurs in P� m � Members�P��

v � ClassVars�P� g �
f hm� �pi j p� m occurs in P� m � Members�P��

p � ClassPtrVars�P� g �
f hm�xi j p� m occurs in P� m � VirtualMethods�P��

hp� xi � PointsTo�P� g

Example 2.9 For programP � of Figure 2, we have:

MemberAccess�P �� �
f hx�*A��gi� hy�*B��gi� hz�*C��fi� hg�*A��fi� hg�*C��fi�

hf�*api� hf�ai� hf�bi� hf�ci� hg�ai� hg�bi� hg�ci g

�

3 Phase II: Computing Type Constraints

In Phase II of the specialization algorithm, a set of type constraints
is determined. These constraints precisely characterize the subtype-
relationships between the types of variables that must be preserved
in the specialized class hierarchy.

3.1 Member lookup and subobject graphs

The subsequentdefinitions of type constraints must precisely reflect
the semantics of member lookup. In the presence of multiple inher-
itance, an object may contain multiple subobjects of a given type
C , and hence multiple members C��m. In order to distinguish cor-
rectly between these subobjects and members with the same name,
we need to keep track of the subobjects selected by the execution
of member lookup and typecast operations. To this end, we use the
formalization of subobject graphs and member lookup of [18, 23].
Here, we present this model informally; the reader is referred to [23]
for details. An efficient algorithm for performing member lookups
can be found in [17].

A subobject graph can be viewed as an abstract representation
of the layout of an object. The subobject graph contains a distinct
subgraph for each type in the class hierarchy; in what follows,

we will ignore the distinction between the entire subobject graph,
and the subgraph for a specific type. Figure 3(a) depicts a class
hierarchy in which a class D inherits nonvirtually (replicated) from
classes B and C, and classes B and C both inherit virtually (shared)
from class S, and nonvirtually (replicated) from class A. Class A
contains a member x, S and B contain a member f, and C contains
a member z.

Figure 3(b) shows the subobject graph for D. The nodes in
this graph are identified by a pair [Y ,X� � � �Xn] where the first
component,Y , indicates the most derived type of the subobject, and
the second component is a sequenceof class names,X � � � �Xn, that
uniquely identifies a subobject of typeXn insideY . For a subobject
� � [Y ,X� � � �Xn], mdc��� denotes its most derived class Y , and
ldc��� denotes its least derived classXn. We will say that a member
m occurs in subobject� ifm occurs in its least derived class ldc���.
Edges in the subobject graph of Figure 3(b) reflect the containment
relation ‘�’ between subobjects�. In what follows, ���� denotes
the set of all subobjects � for class hierarchy �.

In the example of Figure 3(b), subobject [D,D] indicates the
“full” D object, and subobject [D,D�B] indicates the B subobject
contained in [D,D]; in other words, we have that:

[D,D�B] � [D,D]

Due to the virtual inheritance, [D,D] contains a single shared S-
subobject: [D,S]. By contrast, since B and C inherit nonvirtu-
ally (replicated) from A, [D,D] contains two distinct A-subobjects
[D,D�B�A] and [D,D�C�A], each containing a distinct x.

Using the subobject graph, member lookup and typecast opera-
tions can be defined as functions from subobjects to subobjects. We
will only discuss static-lookup and typecast here, which are func-
tions that model static� member lookups and typecasts, respectively.
Dynamic member lookups can be modeled similarly [23].

Static member lookups are modeled by way of a function
static-lookup whose arguments are: (i) an initial subobject �, (ii) a
member m, and (iii) the containment relation ‘�’ between subob-
jects. static-lookup returns the subobject � � in which the accessed
member is located. As an example, we study a static lookup for
an expression e�m or e � m that occurs in program P . First, an
initial subobject� is associated with receiver e. For a static lookup,
this initial subobject is simply [T ,T], where T � TypeOf�P� e�.
Then, static-lookup determines the unique subobject � � such that
(i) ��	��, (ii) �� contains member m, and (iii) if there is a �����
that contains a member m, then � ��	��� (here, ‘	�’ denotes the
transitive and reflexive closure of ‘�’).

As an example, suppose that there is a lookup d.z, where d is
an object of type D. In this case, the initial subobject is [D,D], and
there is one visible definition for z in subobject [D,D�C]. Conse-
quently, the lookup function returns subobject [D,D�C] indicating
that member z in the [D,D�C]-subobject of D is accessed. In other
words, we have that:

static-lookup([D,D]�z� ‘�’) � [D,D�C]

Typecasts can be modeled as follows. For a cast from type X
to type Y (in the present paper, we only allow the case where Y is
a transitive base class of X), the unique subobject � �	�[X,X] for
which we have that ldc�� �� � Y is selected. For example, suppose
that the program contains an assignmentb = d, where b is of type
B andd is of typeD, respectively. For this assignment, the compiler

�In the present paper, we define the contained subobject to be “less than” the
containingsubobject. We believe this notationto be more intuitive than that of [18, 23],
where the contained subobject is “greater than” the containing subobject.

�We call a member lookup static if it corresponds to a data member access or a
direct method call and dynamic if it corresponds to a method call that invokes the
virtual dispatch mechanism.

5

class A f
virtual void foo()f this->x = 17; g;
int x;

g;

void main()f
A a1; A a2; A *ap;
ap = &a1;
*ap = a2;
ap->foo();
int result = a1.x;

g

class Tvar�a2� f

virtual void foo(); /* declaration */
g;

class Tvar�a1� : Tvar�a2� f

virtual void foo()f this->x = 17; g;
int x;

g;

void main()f
Tvar�a1� a1; Tvar�a2� a2; Tvar�a2� *ap;

ap = &a1;
*ap = a2;
ap->foo();
int result = a1.x;

g
(a) (b)

Figure 4: (a) Example program illustrating the purpose of distinguishing between method declarations and method definitions. (b) Specialized program
and class hierarchy for the program of (a).

generates a typecast from type D to type B. For this typecast, we
have that:

typecast([D,D]�B� ‘�’) � [D,D�B]

This implies that the assignment copies the [D,D�B]-subobject of
d into b.

We conclude the discussionof subobjectsby introducing a com-
position operator ‘
’. Intuitively, this operator determines the sub-
object of a subobject. E.g., [D,D�B]
 [B,B�A] � [D,D�B�A].

3.2 Declarations vs. definitions of members

We will distinguish between declarations and definitions of mem-
bers. A method’s definition models its implementation, which has
a this pointer from which other members may be accessed. The
declaration of a method has the sole purpose of ensuring visibil-
ity. This distinction is important because it enables elimination of
spurious dependences in the presence of virtual method calls.

Figure 4 illustrates this issue by way of a simple program that
uses two class-typed variables a1 and a2, and a class-pointer-
typed variable ap that may point to a1, but not to a2. We will now
informally discuss the type constraints induced by this program,
and how the distinction between declarations and definitions of
methods can be exploited to obtain a specialized class hierarchy.
For convenience, we will frequently write “member m must be
visible/accessible� to variable x” instead of “member m must be
visible/accessible from the type of variable x” in the sequel.

Clearly, the type of ap must be a base class of the types of
a1 and a2. Otherwise, the assignments ap = &a1 and *ap =
a2 would not be type-correct. Since virtual method foo() is
called from ap, a declaration of foo() must be visible to ap,
and since ap may point to a1, the definition of A��foo() must be
visible to a1. Data member x must be visible to A��foo because
it is accessed from A��foo (recall that A��foo denotes the this
pointer of method A��foo()). However, note that x need not be
visible to a2. In fact, it is undesirable for A��foo’s definition to be
visible to ap, because that forces inclusion of x in a2.

Figure 4(b) shows the specialized program and class hierar-
chy for the example of Figure 4(a). Note that, while the above
constraints are met, data member x has been eliminated from a2.

In the sequel, def�A��m� denotes the definition of member
A��m, whereas decl�A��m� denotes its declaration. As the ex-

�Since we ignore access rights of members and inheritance relations in the present
paper, the notions of “visible” and “accessible” are equivalent.

ample of Figure 4 illustrates, it is useful to separate the declaration
from the definition of virtual methods. Since a data member cannot
access any other class members, we treat data members as if they
only have declarations. (For nonvirtual methods, which are not
treated in the present paper, distinguishing between declaration and
definition is not useful, and only a definition is required.)

3.3 Type constraints and constraint elements

Type constraints are of the form hs� �� ti, where � is a subobject of
the original class hierarchy, and s and t are constraint elements, as
defined by Definition 3.1 below.

Definition 3.1 Let P be a program. Then, the set of constraint
elements for P is defined as follows:

Elems�P� � f var�v� j v � ClassVars�P� g �
f var��p� j p � ClassPtrVars�P��

p is not a method’s this pointer g �
f decl�X��m� j m � Members�P��

m occurs in classX g �
f def�X��m� j m � VirtualMethods�P��

m occurs in classX g

Example 3.2 For programP � of Figure 2, we have:

Elems�P�� � f var�a�� var�b�� var�c�� var�*ap�� decl�A��x��
decl�B��y�� decl�C��z�� decl�A��f�� decl�A��g��
decl�B��g�� decl�C��f�� def�A��f�� def�A��g��
def�B��g�� def�C��f� g

�

Type constraints express subtype-relationships between con-
straint elements. For example, hvar�v�� �� var�w�i states that v
has the same type as the �-subobject of the type of w. Type
constraints will also be used to express the “locations” of mem-
ber declarations/definitions in objects. For example, the constraint
hdecl�A��m�� �� var�w�i expresses the fact that the declaration of
member A��m occurs in the �-subobject of the type of w.

For reasons we will discuss shortly, this pointers of methods
will require somewhat special treatment. Definition 3.3 below maps
a variable v in the program to a constraint element var�v� if v is not
the this pointer of a method, and to def�A��m� if v is the this
pointer of some methodA��m.

6

Definition 3.3 Let x be an expression such that x � v for some
v � ClassVars�P� orx � �p for somep � ClassPtrVars�P�. Then,
the constraint element associated with x is defined as follows:

Elem�x� �

�
def�X��f� when x � �X��f�

for some methodX��f��
var�x� otherwise

Example 3.4 For program P � , we have Elem�a� � var�a� and
Elem�*A��f� � def�A��f�. �

3.4 Type constraints due to assignments

Consider an assignment v � w, where v is of class type V and
w of class type W . This assignment is only type-correct if [W,W]
contains a unique subobject � � [W ,��V], where � is some (pos-
sibly empty) sequence of class names. This subobject � can be
defined as � � typecast([W,W]� V� ‘�’). Definition 3.5 below de-
fines the set of type constraints implied by assignments. These
constraints are of the form hvar�x�� �� var�y�i, which can be in-
terpreted as ‘x must have the same type as the �-subobject of y’,
and hdef�A��f�� �� var�y�i which can be interpreted as ‘the this
pointer of methodA��f must have the same type as the �-subobject
of y’.

Definition 3.5 LetP be a program. Then, the set of type constraints
due to assignments is defined as follows:

AssignTC�P� � f hElem�x�� �� Elem�y�i j
hx� yi � Assignments(P)�
X � TypeOf�P� x�� Y � TypeOf�P� y��
� � typecast([Y,Y]�X� ‘�’) g

Example 3.6 For programP � of Figure 2, we have:

AssignTC�P�� � f
hvar�*ap�� [A,A]� var�a�i� hvar�*ap�� [B,B�A]� var�b�i�
hvar�*ap�� [C,C�B�A]� var�c�i� hdef�A��f�� [A,A]� var�a�i�
hdef�A��f�� [B,B�A]� var�b�i� hdef�C��f�� [C,C]� var�c�i�
hdef�A��g�� [A,A]� var�a�i� hdef�B��g�� [B,B]� var�b�i�
hdef�B��g�� [C,C�B]� var�c�i g

�

3.5 Type constraints due to member access

Definition 3.7 below defines the set of type constraints due to mem-
ber access. The definition has two cases. The first case deals with
situations where only a method declaration is needed, i.e., when
the accessed member m is a data member, or a virtual method that
is invoked from a pointer p. The second case addresses the situa-
tion where m’s definition is required, i.e., when a virtual method
is invoked from a nonpointer variable v. As an example, con-
sider the case where a virtual methodm is accessed from a pointer
p. Assuming that p has type �Y , there must be a unique sub-
object � � [Y ,��X] � static-lookup([Y ,Y]�m� ‘�’) such that
X contains m. Since the virtual dispatch mechanism only re-
quires that a declaration of m be present in class X , a constraint
hdecl�X��m�� �� var��p�i is constructed, expressing the fact that the
�-subobject of �p must contain a declaration of methodX��m��.

Definition 3.7 LetP be a program. Then, the set of type constraints
due to member access operations is defined as follows:

MemberAccessTC�P� �
f hdecl�X��m�� ��Elem�y�i j Y � TypeOf�P� y��

hm�yi � MemberAccess�P��
�y � �p for some p � ClassPtrVars�P�

or m � DataMembers�P���
� � [Y ,��X] � static-lookup([Y ,Y]�m� ‘�’) g �

f hdef�X��m�� �� var�y�i j Y � TypeOf�P� y��
hm�yi � MemberAccess�P��
�y � v for some v � ClassVars�P�
andm � VirtualMethods�P���
� � [Y ,��X] � static-lookup([Y ,Y]�m� ‘�’) g

Example 3.8 For programP � of Figure 2, we have:

MemberAccessTC�P �� � f
hdecl�A��x�� [A,A]� def�A��g�i� hdecl�B��y�� [B,B]� def�B��g�i�
hdecl�C��z�� [C,C]� def�C��f�i� hdecl�A��g�� [A,A]� def�A��f�i�
hdecl�B��g�� [C,C�B]� def�C��f�i� hdecl�A��f�� [A,A]� var�*ap�i�
hdef�A��f�� [A,A]� var�a�i� hdef�A��f�� [B,B�A]� var�b�i�
hdef�C��f�� [C,C]� var�c�i� hdef�A��g�� [A,A]� var�a�i�
hdef�B��g�� [B,B]� var�b�i� hdef�B��g�� [C,C�B]� var�c�i g

�

3.6 Treatment of this pointers

We now return to the issue of modeling this pointers of methods.
The definitions presented above were designed with the following
properties in mind:

� The treatment of this pointers is analogous to that of other
(class-typed and pointer-to-class-typed) parameters. Both are
modeled as assignments.

� Method declarations and method definitions are modeled in
similar ways.

� Since the type of athis pointer is determined by the location
of the associated method in the class hierarchy, any constraint
involving the this pointer of some methodC��f�� is effec-
tively a constraint on the location of C��f�� in the hierarchy.

We obtain the desired properties by mapping this pointers to
constraint elements for the associated method definitions (see De-
finition 3.3). As a result, assignments and member access oper-
ations involving this pointers give rise to constraints involving
the associated method definition. For example, the access to data
member x from A��g’s this pointer gives rise to the type con-
straint hdecl�A��x�� [A,A]� def�A��g�i, which can be interpreted as
‘the declaration of A��x occurs in the [A,A]-subobject of the type
containing the definition of method A��g.

Modeling parameter-passing of this pointers as assign-
ments is consistent with the treatment of other parameters, but
there is a slight drawback: identical type constraints occur in
AssignTC�P� and MemberAccessTC�P�. For example, the con-
straint hdef�A��f�� [A,A]� var�a�i occurs in both AssignTC�P�� and
MemberAccessTC�P �� (see Examples 3.6 and 3.8). Although it is
possible to eliminate this duplication of type constraints by mod-
ifying the definitions slightly, we consider the present solution to
be the most consistent approach. The presence of duplicate type
constraints is harmless in the sense that it does not have an effect
on the specialized class hierarchy.

7

3.7 Type constraints for preserving dominance

Definition 3.9 introduces a set of type constraints that model hid-
ing/dominance relations between declarations and definitions of
members with the same name. Informally, the definition states that
if there are classesA andB in the original hierarchy that both define
a member m, A �� B, and A is a transitive base class of B then
def�A��m� must be contained in the � ��-subobject of def�B��m�.
Similar relationships are constructed for cases whereA andB both
contain a declaration of a member, and where A contains a dec-
laration and B a definition (in the latter case, a constraint is also
constructed if A � B). These type constraints are used in Phase III
to ensure that member lookup behavior is preserved in cases where
multiple declarations/definitions of a member m are visible to a
variable.

Definition 3.9 LetP be a program. Then, the set of type constraints
that reflect the hiding/dominance relations between same-named
members in the original hierarchy is defined as follows:

DominanceTC�P� �
f hdecl�A��m�� �� def�B��m�i j

A � B orA is a transitive base class of B�
classA contains a declaration of memberm�
classB contains a definition of memberm�
� � typecast([B,B]�A� ‘�’) g �

f hdecl�A��m�� �� decl�B��m�i j
A �� B� A is a transitive base class of B�
classA contains a declaration of memberm�
classB contains a declaration of memberm�
� � typecast([B,B]�A� ‘�’) g �

f hdef�A��m�� �� def�B��m�i j
A �� B� A is a transitive base class of B�
classA contains a definition of memberm�
classB contains a definition of memberm�
� � typecast([B,B]�A� ‘�’) g

Example 3.10 For programP � of Figure 2, we have:

DominanceTC�P�� � f
hdef�A��f�� [C,C�B�A]� def�C��f�i�
hdef�A��g�� [B,B�A]� def�B��g�i�
hdecl�A��f�� [C,C�B�A]� decl�C��f�i�
hdecl�A��g�� [B,B�A]� decl�B��g�i�
hdecl�A��f�� [A,A]� def�A��f�i�
hdecl�A��f�� [C,C�B�A]� def�C��f�i�
hdecl�A��g�� [A,A]� def�A��g�i�
hdecl�A��g�� [B,B�A]� def�B��g�i�
hdecl�B��g�� [B,B]� def�B��g�i�
hdecl�C��f�� [C,C]� def�C��f�i g

�

4 Phase III: Generating a Specialized Hierarchy

In Phase III, a subobject graph for the specialized class hierarchy is
constructed. Then, the specialized hierarchy itself is derived from
the new subobject graph, and variable declarations in the program
are updated to take the new hierarchy into account.

4.1 Classes of the specialized hierarchy

Definition 4.1 below defines the types of the specialized class hi-
erarchy. The specialized hierarchy contains a class T e , for each
constraint element e in Elems�P� (see Definition 3.1).

Definition 4.1 Let P be a program. Then, the classes of the spe-
cialized class hierarchy are defined as follows:

NewClasses�P� � f Te j e � Elems�P� g

Example 4.2 For programP � of Figure 2, we have:

NewClasses�P �� � f
Tvar�a�� Tvar�b�� Tvar�c�� Tvar�*ap�� Tdecl�A��x�� Tdecl�B��y� �

Tdecl�C��z�� Tdecl�A��f�� Tdecl�A��g� � Tdecl�B��g�� Tdecl�C��f��

Tdef�A��f�� Tdef�A��g�� Tdef�B��g�� Tdef�C��f� g

�

4.2 The specialized subobject graph

Definitions 4.3 through 4.6 below together define the subobject
graph hN��i of the specialized class hierarchy as a set of nodesN
on which a containment ordering ‘�’ is defined. In the following
definitions s, t, and u denote constraint elements in Elems�P�.

Definition 4.3 uses the type constraints in AssignTC�P� and
MemberAccessTC�P� to construct the set of nodes N of the spe-
cialized subobject graph.

Definition 4.3 Let P be a program. Then, the set of nodes N of
the specialized subobject graph is inductively defined as follows:

Tvar(v),�,var(v) � N when
v � ClassVars�P�� V � TypeOf�P� v�� � � [V ,V]

Ts,��
��,u � N when Tt,�� ,u � N�

hs� ��� ti � �AssignTC�P��MemberAccessTC�P��

Definition 4.4 below defines the most derived class and the least
derived class for nodes in N .

Definition 4.4 Letn � Ts,�,u be a node inN . Then, we define the
most derived class mdc�n� of n and the least derived class ldc�n�
of n as follows:

ldc�Ts,�,u� � Ts mdc�Ts,�,u� � Tu

Definition 4.5 below defines a mapping from subobjects in the
specialized class hierarchy to subobjects in the original class hier-
archy.

Definition 4.5 LetN be the set of nodes of the specialized subobject
graph. Then, we define a function � that maps nodes in N to
subobjects in the original subobject graph as follows:

��Ts,�,u� � �� where Ts,�,u � N

Definition 4.6 below defines a relation ‘�’ on subobjects
in N . The ‘
’ operator used in this definition was intro-
duced in Section 3.1. The inclusion-relationships (cf. subtype-
relationships) between the nodes in N are determined by the
constraints in AssignTC�P�, MemberAccessTC�P�, as well as
those in DominanceTC�P�. This approach has the effect of se-
lecting the appropriate subset of dominance relationships from
DominanceTC�P� that is needed to preserve the behavior of type-
casts and member lookups in P .

Definition 4.6 LetN be the set of nodes in thenew subobject graph.
Then, the containment ordering ‘�’ on subobjects in N is defined
as follows: For nodes n� n � � N we have that:

n� n� when ��n� � ��n��
��
Ts � ldc�n�� Tt � ldc�n���
hs� �� ti � � AssignTC�P��

MemberAccessTC�P��
DominanceTC�P� �

8

B��g()

Tvar(*ap),[B,B�A],var(b)

Tvar(b),[B,B],var(b)

Tdef(A��f),[B,B�A],var(b) Tdef(B��g),[B,B],var(b)

Tdecl(B��y),[B,B],var(b)Tdecl(A��g),[B,B�A],var(b)Tdecl(A��f),[B,B�A],var(b)

f(); g(); y

A��f()

Figure 5: Specialized subobject graph for object b of example program P � of Figure 2.

Figure 5 shows the specialized subobject graph for object b.
Nodes in this graph correspond to subobjects in the specialized
subobject graph, and edges in the graph reflect the ‘�’-containment
relation between nodes.

4.3 The specialized class hierarchy

We already defined the set of classes of the specialized class hierar-
chy in Section 4.1. In this section, we complete the construction of
the specialized hierarchy by defining the members of these classes,
and the inheritance relationships among these classes, using the
subobject graph hN��i that was constructed in Section 4.2:

1. Class Tvar�x� does not contain any members.

2. Class Tdecl�X��m� contains a declaration of memberm, simi-
lar to the declaration ofm in classX of the original hierarchy.

3. Class Tdef�X��m� contains a definition of memberm, similar
to the definition of m in classX of the original hierarchy.

4. For two subobjectsn� n� � N such that n�n� , class ldc�n�
is an immediate base class of class ldc�n ��. This inheri-
tance relation is virtual if: (i) there is a node n� � N such
that ldc�n�� � ldc�n�, (ii) n��n� , for some n� � N with
ldc�n�� � ldc�n��, (iii) n��n� , for some n� � N such that
n� �� n�, and (iv) n���n� and n���n�, for some n� in N .
Otherwise, the inheritance relation is nonvirtual.

4.4 Updating variable declarations

The final part of PhaseIII consists of updating the declarations in the
program in order to reflect the new class hierarchy. This is accom-
plished by giving type Tvar�v� to each variable v in ClassVars�P�,
and type �Tvar�p� to each variable p in ClassPtrVars�P� which is
not the this pointer of a method. The type of a this pointer is
determined by the location of the associated method definition in
the hierarchy; no declaration needs to be updated in this case.

4.5 Example

Figure 6 shows the new program and hierarchy that are constructed
for program P� of Figure 2. The behavior of this program is

identical to that of the original program, and the reader may verify
that certain members have been eliminated from certain objects,
e.g., objects b and c no longer contain member x. However, due to
an abundanceof virtual inheritance in the transformed hierarchy, the
objects in the transformed program may have become larger than
before the transformation (virtual inheritance increases member
access time, and may increase object size). Assuming that the
object model of the IBM xlC C++ compiler would be used, object
a would now be 52 bytes (was 8), object b would be 68 bytes (was
12), and object c 76 bytes (was 16).

Phase IV of the algorithm addresses this problem by apply-
ing a set of transformation rules that simplify the class hierarchy,
and reduce object size by eliminating virtual inheritance. These
transformations are discussed in Section 5.

4.6 Representability issues

There are two kinds of situations in which the specialization al-
gorithm generates inheritance structures that cannot be represented
directly in terms of the inheritance mechanisms of L (or C++).

The first kind of situation that gives rise to an irrepresentable
inheritance structure arises in the presence of a set of assignments
of the form:

x� = x�; x� = x�; � � �; xn�� = xn; xn = x�

(the same situation arises in the presenceof recursive method calls).
Each assignment xi � xi�� implies that the type of xi is a base
class of the type of xi��. Since the assignment xn � x� implies
that the type of xn is a base of the type of x�, there will be a cycle
in the inheritance graph unless precautions are taken.

Another situation that leads to irrepresentable inheritance struc-
tures has to do with the fact that the specialization may effec-
tively transform any replicated subobject into a shared subobject.
In the presence of nonvirtual multiple inheritance, this may give
rise to multiple, distinct shared subobjects of the same type—
something that cannot be expressed in terms of the inheritance
mechanisms of L (or C++). Figure 7(a) shows a program that il-
lustrates this situation. Note that the specialized subobject graph
for this program, shown in Figure 7(b), contains two distinct nodes
Tdecl(A��x),[D,D�B�A],var(d) andTdecl(A��x),[D,D�C�A],var(d)

9

class Tdecl�A��x� f

int x;
g;

class Tdecl�A��f� f

virtual int f();
g;

class Tdecl�A��g� f

virtual int g();
g;

class Tdecl�B��y� f

int y;
g;

class Tdecl�B��g� : virtual Tdecl�A��g� f

virtual int g();
g;

class Tdecl�C��z� f

int z;
g;

class Tdef�A��g� : Tdecl�A��x�, virtual Tdecl�A��g� f

virtual int g()f return x; g;
g;

class Tdef�A��f� : virtual Tdecl�A��g�,

virtual Tdecl�A��f� f

virtual int f()f return g(); g;
g;

class Tdef�B��g� : Tdecl�B��y�,

virtual Tdecl�A��g�,

virtual Tdecl�B��g� f

virtual int g()f return y; g;
g;

class Tdef�C��f� : Tdecl�C��z�,

virtual Tdecl�A��f�,

virtual Tdecl�B��g� f

virtual int f()f return g() + z; g;
g;

class Tvar�*ap� : virtual Tdecl�A��f� f g;

class Tvar�a� : Tdef�A��f�, Tdef�A��g�, Tvar�*ap� f g;

class Tvar�b� : Tdef�A��f�, Tdef�B��g�, Tvar�*ap� f g;

class Tvar�c� : Tdef�C��f�, Tdef�B��g�, Tvar�*ap� f g;

void main()f
Tvar�a� a; Tvar�b� b; Tvar�c� c;

Tvar�*ap� *ap;

if (...) f ap = &a; g
else if (...) f ap = &b; g
else f ap = &c; g
ap->f();

g

Figure 6: Result of Phase III for program P � of Figure 2.

class A f int x; g;
class B : A f � � � g;
class C : A f � � � g;
class D : B, C f � � � g;

void main()f
D d;
B *bp1, *bp2;
C *cp1, *cp2;
bp1 = &d; bp2 = &d;
cp1 = &d; cp2 = &d;
bp1->x = 10;
bp2->x += 10;
cp1->x = 40;
cp2->x += 10;
int result;
result = bp1->x;

g
Tvar(d),[D,D],var(d)

x x

Tdecl(A��x),[D,D�B�A],var(d) Tdecl(A��x),[D,D�C�A],var(d)

Tvar(bp2),[D,D�B],var(d) Tvar(cp2),[D,D�C],var(d)

Tvar(cp1),[D,D�C],var(d)Tvar(bp1),[D,D�B],var(d)

(a) (b)

Figure 7: (a) Example program. (b) Generated specialized subobject graph.

10

with the same least derived class: Tdecl�A��x�. Unless countermea-
sures are taken, the algorithm of Section 4.3 will construct a spe-
cialized hierarchy where class Tdecl�A��x� is a shared base class of
classes Tvar�*bp1� , Tvar�*bp2� , Tvar�*cp1� , and Tvar�*cp2� . How-
ever, this implies that there would be a single subobject of type
Tdecl�A��x� inside an object of type Tvar�d� , and therefore, program
behavior would not be preserved: the specialized version of the pro-
gram would compute the value 50 for variable result, whereas
the original program would compute the value 20.

Lack of space prevents us from presenting our approach to
these problems in detail, but the essence of our solution consists of
merging the types of variables in such a way that no irrepresentable
structures can arise (this mechanism will be discussed in [24]). To
this end, we add a phase to the algorithm where constraint elements
are partitioned into equivalence classes; elements that occur in
the same equivalence class must have the same type. Roughly
speaking, two variablesx and y occur in the same equivalence class
if (i) P contains assignments such that x is transitively assigned to
y, and vice versa, or (ii) if a (member in) a replicated class A
(see Appendix A) is accessed from both x and y. In addition, the
type constraints of Section 3 need to be modified slightly to take
equivalence classes into account.

Representability issues such as the ones discussed above be-
come much more prominent for object-oriented languages with
more limited facilities for expressing inheritance than L, such as
Java [10]. The inheritance structures that result from specialization
are derived from the member access and assignment operations that
occur in a program, and do not “naturally” conform to a language’s
limitations on inheritance. This implies that for a language with-
out, e.g., support for multiple inheritance, classes in the specialized
inheritance structures must be merged until all use of multiple in-
heritance is eliminated.

4.7 Justification

In this section, we argue that class hierarchy specialization is a
semantics-preserving program transformation. Due to space limi-
tations, we only state the essential properties here, without proofs
(details may be found in [24]).

In order to show that behavior is preserved, we need to rea-
son about “corresponding” lookup and typecast operations in the
original and the specialized subobject graphs. To this end, we use
the � mapping that was introduced in Section 4.2: we will say
that a subobject n in N corresponds to a subobject � � ���� if
��n� � �.

The following theorem states that assignment behavior is pre-
served. Informally, the theorem states that if (i) � and n are cor-
responding subobjects in ���� and N , respectively, (ii) the least
derived class of � and n correspond to the type of object y, and
(iii) there is an assignment hx� yi � Assignments(P), then execu-
tion of the assignment will result in the selection of corresponding
subobjects in ���� andN .

Theorem 4.7 (preservation of assignment behavior) Let P be a
program with initial subobject graph h����� ‘�’i and specialized
subobject graph hN� ‘�’i. Let n be a subobject in N such that
ldc�n� � T�var(y)� , and let hx� yi � Assignments(P). Then:

	�typecast(n� T�var(x)� � ‘�’)� �
typecast(�n�� TypeOf�P� x�� ‘�’)

Here, �var(x)� denotes the equivalence class for variable x, as was
alluded to in Section 4.6.

The following theorem states that lookup behavior is preserved.
Informally, the theorem states that if (i) � and n are corresponding

subobjects in ���� and N , respectively, (ii) the least derived class
of � and n correspond to the type of object y, and (iii) member m
is accessed from object y, then execution of the lookup will result
in the selection of corresponding subobjects in ���� andN .

Theorem 4.8 (preservation of lookup behavior) Let P be a pro-
gram with initial subobject graph h����� ‘�’i and specialized
subobject graph hN� ‘�’i. Let n be a subobject in N such that
ldc�n� � T�var(y)� , and let hy�mi � MemberAccess�P�. Then:

	�lookup(n�m� ‘�’)� � lookup(�n��m� ‘�’)

5 Phase IV: Simplification

Phase IV of the algorithm consists of the application of a set of
simple transformation rules to the specialized class hierarchy �. The
effect of these transformations is a simplification of the inheritance
structure, which may result in a reduction in the number of compiler-
generated fields in objects, and hence in a reduction of object size.
It is important to realize that the number of explicit (i.e., user-
defined) members contained in each object is not affected by the
transformations, with the exception that a member’s declaration and
definition may be merged.

In the rules below, the “merging” of two classesX andY (where
X is a base class of Y) involves the following steps:

1. A new classZ is created that (virtually, nonvirtually) inherits
from all (virtual, nonvirtual) base classes of X and Y , and
that contains all members of X and Y ,

2. Each class Z � that inherits from X or Y is made to inherit
from Z instead. This inheritance relation is virtual if the
inheritance relation between X and Y or the inheritance re-
lation betweenY andZ � is virtual; otherwise it is nonvirtual.

3. All variables of type X and Y are given type Z , and all
variables of type X� and Y � are given type Z�.

4. ClassesX and Y are removed from the hierarchy.

The conditions of the rules presented below are designed in such
a way that classes are only merged if no object in the program
becomes larger (i.e., contains more members) as a result of the
merge.

Rule 1: Merge a base classX with a derived class Y if:

1. X and Y have no members in common, except for the fact
that for any member m, X may contain a declaration of m,
and Y a definition of m.

2. There is no class Z which is a direct nonvirtual base class of
both X and Y .

3. If there is a direct base class X � �� X of Y , and a direct
derived class Y � �� Y of X , thenX � is an indirect base class
of Y �.

4. If there are any variables in the program whose type is X , or
any type Y � �� Y directly or indirectly derived from X , then
neither Y nor any direct or indirect base classX � �� X of Y
contains any data members.

�Alternatively, the set of type constraints could be simplified before the specialized
class hierarchy is generated. However, since we believe that these transformations are
of interest in their own right (e.g., as an optimization performed subsequent to class
hierarchy slicing [23]), we have chosen to present them as general transformations that
may be applied to any class hierarchy.

11

C��f()

Tdecl�A��f� Tdecl�B��y�

Tdecl�A��x� Tdecl�A��g� Tdecl�B��g� Tdecl���C��z�

Tdef�A��g� Tdef�A��f� Tvar�*ap� Tdef�B��g� Tdef�C��f�

Tvar�a� Tvar�b� Tvar�c�

f(); y

x g(); g(); z

A��g() A��f() B��g()

(a)

Tvar�c�

Tdecl�A��g� Tvar�*ap� Tdecl�B��g�

g(); f(); g();

Tdef�A��g� Tdef�A��f� Tdef�B��g� Tdef�C��f�

A��g()

x
A��f()

y

B��g()

z

C��f()

Tvar�a� Tvar�b�

(b)

C��f()

Tdecl�A��g� Tvar�*ap� Tdecl�B��g�

Tdef�A��f� Tdef�B��g�

Tvar�a� Tvar�b� Tvar�c�

g(); f(); g();

A��f()
y

B��g()

x

A��g()

z

(c)

Figure 8: Illustration of the class hierarchies that result from applying the simplification rules of Section 5 to the specialized class hierarchy of Figure 6.
In the figure, boxes indicate classes, solid arrows indicate nonvirtual (replicated) inheritance, and dashed arrows indicate virtual (shared) inheritance. An
unqualified member name inside a box (e.g., f();) indicates that a declaration of that member occurs in the class. A qualified member name (e.g., A��g())
indicates a member definition and the class in the original hierarchy from where it originated (A).

12

Tdecl�A��g�

C��f()

g();

Tvar�*ap�

A��f()

Tdef�B��g�

y

B��g()

Tvar�a� Tvar�b� Tvar�c�

x

A��g()

z

Tvar�*ap� Tdef�B��g�

C��f()

g();

A��f()

y

B��g()

Tvar�a� Tvar�b� Tvar�c�

x

A��g()

z

(a) (b)
Tvar�*ap� Tvar�b�

Tvar�a�

C��f()

Tvar�c�

g();

A��f()

y

B��g()

x

A��g()

z

Tvar�*ap� Tvar�b�

Tvar�a�

C��f()

Tvar�c�

g();

A��f()

y

B��g()

x

A��g()

z

(c) (d)

Figure 9: Illustration of the class hierarchies that result from applying the simplification rules of Section 5 to the specialized class hierarchy of Figure 6
(continuation of Figure 8).

5. If there are any variables in the program whose type is X ,
or any type Y � �� Y directly or indirectly derived from X ,
and if Y or any direct or indirect base class X � �� X of Y
contains a declaration/definition of a virtual method, then X
contains a declaration/definition of a virtual method.

Conditions (1)–(3) of Rule 1 ensure that the class hierarchy is still
valid after the merge, whereas conditions (4) and (5) ensure that no
object becomes larger as a result of the merge.

Rule 2: Remove the virtual inheritance relation between
classesX and Z when:

1. X is an immediate virtual base class of Y ,

2. X is an immediate virtual base class of Z ,

3. Y is a (direct or indirect) base class of Z .

Rule 3: Replace virtual inheritance between classesX and
Y by nonvirtual inheritance when:

1. X is an immediate virtual base class of Y , and

2. there is no class Y � �� Y such that (i) X is an immediate
virtual base class of Y �, and (ii) there is a classZ that directly
or indirectly inherits from both Y and Y �.

As an example, we will study the simplification of the spe-
cialized class hierarchy that was shown in Figure 6. Figure 8(a)
depicts this class hierarchy before any simplifications have been
performed. In Figure 8(b), the class hierarchy is shown after merg-
ing class Tdecl�A��x� with class Tdef�A��g� (Rule 1), merging class
Tdecl�B��y� with class Tdef�B��g� (Rule 1), merging class Tdecl�C��z�
with class Tdef�C��f� (Rule 1), eliminating the inheritance relation

between class Tdecl�A��g� and class Tdef�B��g� (Rule 2), and merging
class Tdecl�A��f� with class Tvar�*ap� (Rule 1). Figure 8(c) depicts
the class hierarchy after eliminating the inheritance relation be-
tween class Tvar�*ap� and class Tvar�a� (Rule 2), eliminating the
inheritance relation between class Tvar�*ap� and classTvar�b� (Rule
2), eliminating the inheritance relation between class Tvar�*ap� and
class Tvar�c� (Rule 2), merging class Tdef�A��g� with class Tvar�a�
(Rule 1), and merging class Tdef�C��f� with class Tvar�c� (Rule 1).

Figure 9(a) shows the hierarchy after eliminating the inheri-
tance relation between class Tdecl�A��g� and class Tvar�a� (Rule 2),
eliminating the inheritance relation between class Tdecl�B��g� and
class Tvar�c� (Rule 2), merging class Tdecl�B��g� and class Tdef�B��g�
(Rule 1), and merging class Tvar�*ap� and class Tdef�A��f� (Rule 1).
Figure 9(b) shows the hierarchy after merging class T decl�A��g� and
classTvar�*ap� (Rule 1). Figure 9(c) shows the hierarchy after elim-
inating the inheritance relation between class Tvar�*ap� and class
Tvar�b� (Rule 2), eliminating the inheritance relation between class
Tvar�*ap� and class Tvar�c� (Rule 2), and merging class Tdef�B��g�
and class Tvar�b� (Rule 1). The final result, shown in Figure 9(d) is
obtained by replacing all virtual inheritance relations by nonvirtual
inheritance relations (three applications of Rule 3). This is the same
hierarchy that was shown earlier in Figure 2.

While the simplification rules introduced above are sufficient
for the examples presented in this paper, further research is needed
to determine if more simplification rules are needed to cover other
cases. In addition, simplification rules would ideally allow for
certain time/space tradeoffs. For example, one might think of a
situation where a virtual inheritance relation can be eliminated if an
unused data member is added to a certain class. Other issues related
to simplification rules such as proofs of correctness, termination

13

behavior, and completeness also require further research.

6 Conclusions and Future Work

We have presented an algorithm that computes a new class hierar-
chy for a program, and updates the declarations of variables in the
program accordingly. This transformation may remove unneces-
sary members from objects, and it may eliminate virtual (shared)
inheritance (a feature that increases member access time, and that
may increase object size). The advantages of specialization are
reduced space requirements at run-time, and reduced time require-
ments through the reduced cost of object creation/destruction, and
indirectly through caching/paging effects. In addition, we believe
that specialization may create new opportunities for existing opti-
mizations such as virtual function call resolution.

We have presented our techniques for a small object-oriented
language, but our intentions are ultimately to implement class hi-
erarchy specialization for real languages such as C++ and Java.
Before this is feasible, a number of language features need to be
modeled, including:

� Nested structures, i.e., class members whose type is a (pointer
to a) class. Recursive types are an interesting special case of
nested structures.

� Features that bypass the standard typing rules such as explicit
typecasts, and method calls that use the ‘��’ operator.

� User-defined constructors and destructors. Typically, a con-
structor initializes all members of a class. The algorithm
presented in the present paper would not be able to omit any
members accessed from a constructor’s this pointer.

� Static members. Although member lookup works somewhat
differently for static members [17], we do not think that there
are any conceptual difficulties here. From a space savings
point of view, static members are not very interesting because
there is only one such member per class.

Handling these, and the other features that we currently do not treat
will be a major effort, but we foresee no fundamental obstacles.
Since the algorithm only inspects the code, we believe that it can be
implemented efficiently. However, an in-depth complexity analysis
of the algorithm is future work.

In addition to extending the algorithm to accommodate various
language features, we intend to study the following:

� Although the simplification rules of Section 5 are sufficient
for our current examples, more simplification rules may be
needed in general. We intend to develop a complete system
of simplification rules that allows for tradeoffs based on the
compiler’s object model.

� Since L has a very rich inheritance structure, expressing the
inheritance structures that result from specialization in terms
of a valid L-hierarchy is relatively easy. For languages with
more restricted forms of inheritance such as Java, this step
will require more work.

� The primary application we have in mind for specialization
is that of space/time optimization. It would be interesting to
investigate whether specialization could be used as a basis
for class hierarchy design/maintenance tools.

� In order to make class hierarchy specialization practical for
real applications, several pragmatic issues related to separate
compilation and the use of class libraries for which only
object code is available need to be addressed.

Program ::= Hierarchy void main() f S List g
Hierarchy ::= ClassDef j ClassDef Hierarchy
ClassDef ::= class Id � : I List � f M List g;
I List ::= � virtual � Id j � virtual � Id, I List
M List ::= Member; j Member; M List
Member ::= virtual int Id(� D List �) � f S List g � j

virtual Id Id(� D List �) � f S List g � j int Id
S List ::= Stat; j Stat; S List
Stat ::= Decl j IfStat j AssignStat j ReturnStat j CallStat
Decl ::= int Id j Id � * � Id
D List ::= Decl j Decl, D List
IfStat ::= if (Id) f S List g � else f S List g �
AssignStat ::= � * � Id � Exp j Id M Op Id � Exp
ReturnStat ::= return Exp
CallStat ::= CallExp
Exp ::= IntConst j Id j *Id j &Id j Exp + Id j CallExp
CallExp ::= Id M Op Id(� Exp List �) j Id M Op Id j Id (� Exp List �)
Exp List ::= Exp j Exp, Exp List
IntConst ::= ... j -1 j 0 j 1 j ...
M Op ::= . j ->

Figure 10: BNF grammar for L.

Acknowledgements

We are grateful to John Field, Yossi Gil, G. Ramalingam, and the
anonymous referees for their many invaluable suggestions.

A Language L

Language L is a small C++-like language with virtual (shared)
and nonvirtual (replicated) multiple inheritance. We omitted many
C++ features from L, including user-specified constructors and
destructors, nonvirtual methods, pure virtual methods and abstract
base classes, access rights (for members and inheritance relations;
members and subobjects are accessible from anywhere within anL-
program), multi-level pointers, functions, operators, overloading,
dynamic allocation, pointer arithmetic, pointers-to-members, the
‘��’ direct method call operator, explicit casts, typedefs, templates,
exception handling constructs. Furthermore, we assume that data
members are of a built-in type. For convenience, we allow classes
to contain the declaration of a method without an accompanying
definition if the method under consideration is not called. All
variable/parameter types are either int or a class, data members
are always of type int, and members may only be accessed a
variable. Figure 10 shows a BNF grammar for L.

Without loss of generality we assume that the program does not
contain variables, parameters, members, and classes with the same
name (if this is not the case, some name-mangling scheme can be
applied). The only exception to this rule is that we allow a virtual
method to override another virtual method with the same name.

We make two assumptions concerning the member lookup ex-
pressions and typecasts in L-programs. If a class hierarchy con-
tains classes X and Y such that a Y -object contains multiple X-
subobjects, we call X a replicated class. We will assume that:

� If the program contains an (implicit) typecast from a class Z
to a replicated classX , thenX is an immediate base of Z .

� If the program contains a member access v�m or v� m that
statically resolves to a member m in a replicated class X ,
then v’s type is X .

These assumptions are nonrestrictive: anyL-program that does not
conform to these assumptions can be trivially transformed into an
equivalent L-program that meets our requirements. The reason for
imposing these restrictions is to avoid the generation of irrepre-
sentable inheritance structures, as is discussed in Section 4.6.

14

References

[1] AGESEN, O. Concrete Type Inference: Delivering Object-Oriented
Applications. PhD thesis, Stanford University, December 1995. Ap-
peared as Sun Microsystems Laboratories Technical Report SMLI
TR-96-52.

[2] AGESEN, O., AND UNGAR, D. Sifting out the gold: Delivering com-
pact applications from an exploratory object-oriented programming
environment. In Proceedings of the Ninth Annual Conference on
Object-Oriented ProgrammingSystems, Languages, and Applications
(OOPSLA’94) (Portland, OR, 1994), pp. 355–370. SIGPLAN Notices
29(10).

[3] AIGNER, G., AND HÖLZLE, U. Eliminating virtual function calls in
C++ programs. In Proceedings of the Tenth European Conference
on Object-Oriented Programming (ECOOP’96) (Linz, Austria, July
1996), vol. 1098 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 142–166.

[4] BACON, D. F., AND SWEENEY, P. F. Fast static analysis of C++ virtual
function calls. In Proceedings of the Eleventh Annual Conference on
Object-Oriented ProgrammingSystems, Languages, and Applications
(OOPSLA’96) (San Jose, CA, 1996), pp. 324–341. SIGPLAN Notices
31(10).

[5] CALDER, B., AND GRUNWALD, D. Reducing indirect function call
overhead in C++ programs. Conference Record of the Twenty-First
ACM Symposium on Principles of Programming Languages (January
1994), 397–408.

[6] CARINI, P. R., HIND, M., AND SRINIVASAN, H. Flow-sensitive type
analysis for C++. Tech. Rep. RC 20267, IBM T.J. Watson Research
Center, 1995.

[7] CHOI, J.-D., BURKE, M., AND CARINI, P. Efficient flow-sensitive in-
terprocedural computation of pointer-induced aliases and side effects.
In ConferenceRecord of the Twentieth ACM Symposium on Principles
of Programming Languages (1993), ACM, pp. 232–245.

[8] DEAN, J., GROVE, D., AND CHAMBERS, C. Optimization of object-
oriented programs using static class hierarchy analysis. In Proceed-
ings of the Ninth European Conference on Object-Oriented Program-
ming (ECOOP’95) (Aarhus, Denmark, Aug. 1995), W. Olthoff, Ed.,
Springer-Verlag, pp. 77–101.

[9] DIWAN, A., MOSS, J. E. B., AND MCKINLEY, K. S. Simple and effective
analysis of statically-typed object-oriented programs. In Proceedings
of the Eleventh Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’96) (San Jose, CA,
1996), pp. 292–305. SIGPLAN Notices 31(10).

[10] GOSLING, J., JOY, B., AND STEELE, G. The Java Language Specifica-
tion. Addison-Wesley, 1996.

[11] MOORE, I. Automatic inheritance hierarchy restructuring and method
refactoring. In Proceedings of the Eleventh Annual Conference on
Object-Oriented ProgrammingSystems, Languages, and Applications
(OOPSLA’96) (San Jose, CA, 1996), pp. 235–250. SIGPLAN Notices
31(10).

[12] O’CALLAHAN, R., AND JACKSON, D. Lackwit: A program understand-
ing tool based on type inference. In Proceedings of the 1997 Inter-
national Conference on Software Engineering Programming Systems,
Languages, and Applications (ICSE’96) (Boston, MA, May 1997).

[13] OPDYKE, W., AND JOHNSON, R. Creating abstract superclasses by
refactoring. In ACM 1993 Computer Science Conference (1993).

[14] OPDYKE, W. F. Refactoring Object-Oriented Frameworks. PhD thesis,
University Of Illinois at Urbana-Champaign, 1992.

[15] PALSBERG, J., AND SCHWARTZBACH, M. Object-Oriented Type Sys-
tems. John Wiley & Sons, 1993.

[16] PANDE, H. D., AND RYDER, B. G. Static type determination and aliasing
for C++. Report LCSR-TR-250-A, Rutgers University, October 1995.

[17] RAMALINGAM, G., AND SRINIVASAN, H. A member lookup algorithm
for C++. In Proceedings of the ACM SIGPLAN’97 Conference on
Programming Language Design and Implementation (Las Vegas, NV,
1997), pp. 18–30.

[18] ROSSIE, J. G., AND FRIEDMAN, D. P. An algebraic semantics of sub-
objects. In Proceedings of the Tenth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA’95) (Austin, TX, 1995), pp. 187–199. SIGPLAN Notices 30(10).

[19] SHAPIRO, M., AND HORWITZ, S. Fast and accurate flow-insensitive
points-to analysis. In Conference Record of the Twenty-Fourth ACM
Symposium on Principles of Programming Languages (Paris, France,
1997), pp. 1–14.

[20] SRIVASTAVA, A. Unreachable procedures in object oriented program-
ming. ACM Letters on Programming Languages and Systems 1, 4
(December 1992), 355–364.

[21] STEENSGAARD, B. Points-to analysis in almost linear time. In Pro-
ceedings of the Twenty-Third ACM Symposium on Principles of Pro-
gramming Languages (St. Petersburg, FL, January 1996), pp. 32–41.

[22] TIP, F. A survey of program slicing techniques. Journal of Program-
ming Languages 3, 3 (1995), 121–189.

[23] TIP, F., CHOI, J.-D., FIELD, J., AND RAMALINGAM, G. Slicing class
hierarchies in C++. In Proceedingsof the Eleventh Annual Conference
on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’96) (San Jose, CA, 1996), pp. 179–197. SIGPLAN
Notices 31(10).

[24] TIP, F., AND SWEENEY, P. F. Class hierarchy specialization. Technical
report, IBM, 1997. Forthcoming.

[25] WEISER, M. Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method. PhD
thesis, University of Michigan, Ann Arbor, 1979.

15

