
Practical Experience with an Application Extractor for Java

Frank Tip Chris La�ra Peter F� Sweeney

IBM T�J� Watson Research Center

P�O� Box ���� Yorktown Heights� NY ���	
� USA

ftip�laffra�pfsg�watson�ibm�com

David Streeter

IBM Toronto Laboratory

���� Eglinton Ave� East

Toronto� Ontario� Canada

daves�ca�ibm�com

Abstract

Java programs are routinely transmitted over low�bandwidth
network connections as compressed class �le archives �i�e��
zip �les and jar �les�� Since archive size is directly propor�
tional to download time� it is desirable for applications to be
as small as possible� This paper is concerned with the use
of program transformations such as removal of dead meth�
ods and �elds� inlining of method calls� and simpli�cation of
the class hierarchy for reducing application size� Such �ex�
traction	 techniques are generally believed to be especially
useful for applications that use class libraries� since typi�
cally only a small fraction of a library
s functionality is used�
By �pruning away	 unused library functionality� application
size can be reduced dramatically� We implemented a number
of application extraction techniques in Jax� an application
extractor for Java� and evaluate their e�ectiveness on a set of
realistic benchmarks ranging from �
 to ����� classes �with
archives ranging from ���
�� to ��������� bytes�� We report
archive size reductions ranging from ����� to ����� ����
�
on average��

� Introduction

Java� ���� programs are routinely transmitted over the in�
ternet as compressed class �le archives �i�e�� zip �les and
jar �les�� A typical example of this situation consists of
downloading a web page that contains one or more embed�
ded Java applets� The downloading of class �le archives is
increasingly often the distribution mechanism of choice for
stand�alone Java applications as well �especially for �net�
work computers	�� Since the time required to download an
application is proportional to the size of the archive� it is
desirable for the archive to be as small as possible�

In this paper we evaluate the e�ectiveness of a number
of compiler�optimization and program transformation tech�

�Java is a trademark of Sun Microsystems�

To appear in the Proceedings of the ��th Annual ACM
SIGPLAN Conference on Object�Oriented Programming
Systems� Languages� and Applications �OOPSLA
����
Denver� Colorado� USA� November ���� �����

niques for extracting Java applications� � These transforma�
tions include�

� removal of redundant methods and �elds�

� devirtualization and inlining of method calls�

� transformation of the class hierarchy� and

� renaming of packages� classes� methods and �elds�

and have the e�ect of reducing application size� Application
extraction is generally believed to be especially useful when
an application is shipped with a �proprietary� class library�
because typically only a small fraction of the library
s func�
tionality is used� In such cases� �pruning away	 unused li�
brary functionality can dramatically reduce application size�

We implemented a number of application extraction tech�
niques in the context of Jax �short for Jikes Application
eXtractor�� Jax reads in the class �les ���� that constitute
a Java application� and performs a whole�program analysis
to determine the components �e�g�� classes� methods� and
�elds� of the application that must be retained in order to
preserve program behavior� Jax removes the unnecessary
components� performs several size�reducing transformations
to the application� and writes out a class �le archive con�
taining the extracted application� Jax relies on user input
to specify the components of the application that are ac�
cessed using Java
s re�ection mechanism ���� but the ex�
traction process is fully automatic otherwise� Jax has been
available on IBM
s alphaWorks web site� since June ����
and has been downloaded over ������ times since then� We
are planning to ship Jax as a Technology Preview with an
IBM product �IBM VisualAge Java ���� Enterprise Edition�
later this year�

We evaluate the performance of Jax on a set of real�
life benchmarks ranging from �
 to ����� classes �the cor�
responding archives range from ���
�� to ��������� bytes��
and measure a reduction in archive size ranging from �����
to ����� ����
� on average��� Measurements over modem
and LAN connections con�rm that download times are re�
duced proportionally�

�In what follows� the word �application� will be used to refer to
applications as well as applets� unless otherwise stated�

�www�alphaWorks�ibm�com�tech�JAX
�All average percentages reported in this paper are computed using

the geometric mean�

�

Recently� Pugh ���� and Bradley et al� ��� ��� designed al�
ternative� more space e�cient representations for Java class
�les� We repeated our experiments using Pugh
s and Bradley
et al�
s class �le representations� and measured average size
reductions for our benchmarks of ����� and ������ respec�
tively �detailed information about these measurements is
presented in Section ��� This shows that the bene�ts of ap�
plication extraction are largely independent from the class
�le representation that is used�

Although the primary motivation for developing Jax has
been to reduce archive size� and therewith download time�
there are a number of additional bene�ts�

� Execution speed may be improved due to several of
the optimizations we perform �in particular� inlining�
devirtualizing� and removal of redundant �elds�� We
measured a speed improvement ranging from ���� to
���� percent for the non�interactive benchmarks�

� By eliminating unused components �in particular�
classes� from applications� the amount of initialization
time spent by a Java virtual machine may be reduced�

� The removal of redundant components may reduce an
application
s memory requirements� by decreasing the
amount of space required for storing the application
itself� and the amount of memory allocated by the ap�
plication at run�time due to the removal of redundant
�elds from objects� In other words� it may be possible
to run the application on a �smaller	 machine after
extraction�

� It is a well�known fact that Java class �les can be de�
compiled into Java source code fairly easily� Although
extracting an application does not prevent decompila�
tion� several of the transformations and optimizations
we perform make the source code resulting from such
decompilation harder to understand� and less useful�

The remainder of this paper is organized as follows� Sec�
tion � discusses the optimizations and transformations used
in Jax� Section � presents the results of running Jax on a re�
alistic set of benchmarks� Section � discusses related work�
Section � outlines ongoing activities and plans for future
work�

� Overview of approach

We will now present a high�level overview of the most sig�
ni�cant transformations and optimizations that are incor�
porated into Jax�

��� Loading the application

Jax begins by reading in the application from the original
archive�s�� and constructing an in�memory representation of
the class �les in the archive that the application refers to�
Super�uous bytecode attributes such as local variable name
tables and line number tables �debugging information� are
discarded at this point�

Java provides a mechanism �in the Java literature re�
ferred to as dynamic loading� that allows an application to
load a class �and create an object of that type� by providing
the class name as a string� Since these strings are computed
at run�time� it is in general undecidable to determine using
static analysis which classes are dynamically loaded by an
application� Therefore� Jax must rely on the user to specify
all classes that are dynamically loaded� and list these in a

interface I f
public void f���

g
class A implements I f
int x� y� z�
public void f�� fint j�x� g���g
public void g�� fy�	� g

g
class B extends A f
public void f�� fy�	� z�	� int j�z�g

g
public class program f
public static void main�String argv
��f

I i � new B���
i�f���

g
g

Figure �� Example program�

con�guration �le� Such classes are treated as additional en�
try points for the class loading process� In Section ��
� we
describe tool support for determining where dynamic load�
ing and re�ection are used�

��� Finding reachable methods and �elds

In general� not all of the methods and �elds in the loaded
classes are required to run an application� In order to de�
termine which methods are reachable� Jax constructs a call
graph by conservatively approximating the �target	 meth�
ods that can be invoked by a dynamic dispatch� Additional
entry points such as initializer methods are also taken into
account during call graph construction�

Various algorithms have been proposed to determine the
potential targets of a dynamic dispatch� including Class Hi�
erarchy Analysis ���� and algorithms for alias or points�to
analysis ���� ��� ���� Jax uses a variation of Rapid Type
Analysis ��� �� �RTA� to resolve virtual calls� RTA uses
global class instantiation information in conjunction with
class hierarchy information�

We will use the example program of Figure � to illustrate
RTA� The program contains classes A and B and an interface
I such that A implements I� B inherits from A� and A declares
three �elds x� y� and z� The program contains one call site �a
dynamically dispatched call to I�f� and creates one object�
of type B� What are the reachable methods in this program�
Class Hierarchy Analysis ��� would determine both A�f and
B�f as potential targets since classes A and B both provide
overriding de�nitions for I�f� RTA uses the fact that class
A is not instantiated anywhere in the program to rule out
A�f as a potential target� Therefore� method A�f is not a
reachable method� Method A�g is unreachable because the
call site in the body of A�f is not reachable�

Unfortunately� not all unreachable methods can simply
be removed� Method A�g can be removed without any prob�
lem� but removing method A�f would lead to an invalid class
�le� because class A promises to implement interface I� but
it would not contain a de�nition of method f� which is spec�
i�ed in the interface� In such cases� we remove the body of
the method and replace it with a return statement�

The elimination of methods can lead to the elimination
of �elds� In our example� x is only accessed from A�f� and
since A�f is unreachable� x may be removed from the appli�
cation without a�ecting program behavior� Fields that are
only written to �but not read� can also be removed since
their value cannot a�ect the program
s behavior ����� In

�

addition to removing the �eld itself� this involves removal
of the instructions that store the value in the �eld� In our
example� �eld A�y is write�only� and can be eliminated�

Figure � depicts a source�to�source view of the succes�
sive transformations performed by Jax �in reality� all these
operations are performed at the class �le level�� Figure ��a�
shows the original program� Figure ��b� shows the program
after removing unreachable method A�g� removing the body
of unreachable method A�f� removing unaccessed �eld A�x�
and removing write�only �eld A�y�

The use of class libraries complicates the task of deter�
mining reachable methods� For the sake of this discussion�
we will make a distinction between application libraries that
are shipped along with the application and for which full in�
formation is available� and external libraries that are outside
the scope of our analysis� and for which we only know the
signatures of methods that can be overridden� Consider a
situation where a class C in the application inherits from a
class L in an external library� and suppose that C provides
an overriding de�nition for a method f in L� Then� a vir�
tual dispatch inside the library can resolve to method C�f in
the application
s code� The crucial issue is that the code for
the library is unavailable� so our analysis may never see a
call to any method f � We conservatively approximate calls
from within libraries by assuming that any overridden and
implemented library method may be called� However� in the
RTA style� we use global class instantiation information to
rule out certain targets�

Java
s re�ection mechanism ��� further complicates the
task of determining reachable methods� because it essen�
tially allows one to invoke a method by specifying its name as
a string �computed at run�time� and its signature� Since it is
in general undecidable to detect such method calls by static
analysis� Jax relies on the user to inform it of such method
invocations� and treats them as entry points for reachable
method analysis� Constructors of dynamically loaded classes
are treated as entry points as well�

��� Class hierarchy transformations

Jax applies a number of semantics�preserving transforma�
tions to the class hierarchy� These transformations reduce
archive size by eliminating classes entirely� or by merging
classes that are adjacent in the hierarchy� The bene�ts of
merging classes are as follows�

� Merging classes may enable the transformation of vir�
tual method calls into direct method calls�

� Merging classes may reduce of the duplication of liter�
als across the constant pools of di�erent classes �this
will be discussed in more detail in Section �����

The class hierarchy transformations used in Jax are an adap�
tation of the ones in ���� ���� where they serve as a simpli�
�cation phase after the generation of specialized class hier�
archies �the relationship with this work will be discussed in
Section ���

One of the simplest transformations is the removal of an
uninstantiated class that does not have any derived classes�
and that does not contain any live methods or �elds� A more
interesting transformation is the merging of classes that are
adjacent in hierarchy under certain conditions� A base class
B and a derived class C are merged if there is no live non�
abstract method f that occurs in both B and C� and one
of the following conditions holds�

�� B is uninstantiated� or

�� C does not contain any live non�static �elds�

By requiring that ��� or ��� hold� we ensure that no ob�
ject created by the application becomes larger �i�e�� contains
more �elds� as a result of the merge�

Merging a base class B with a derived class C involves
a number of steps� All live methods and �elds of C are
moved to B� Cases where B and C have �elds or static
methods with identical names pose no problem� since we
can simply rename any �eld or static method in cases where
name con�icts occur� Constructors required special treat�
ment because B and C may have constructors with iden�
tical signatures� and constructors cannot be renamed� In
such cases� a new signature for the constructor is synthe�
sized by adding dummy arguments� and constructor calls
are updated accordingly by pushing null elements on the
stack� If B and C both have static initializer methods� we
merge the initializer for C into the initializer for B�� If B
and C both contain an instance method f � then at least one
these methods must be abstract due to conditions ��� and
��� above� If both methods f are abstract� C�f is simply
removed� Otherwise� the non�abstract method is preferred
over the abstract method� Finally� all references to class C�
as well as methods and �elds in C are updated to re�ect
their new �location	 in class B�

Other class hierarchy transformations include the merg�
ing of classes with interfaces� and are very similar to the
transformation described above� Due to space limitations�
we will not present these transformations in detail here�
However� a fewmore issues pertaining to class merging should
be mentioned� In order to allow the merging of classes across
package boundaries� classes� methods and �elds need to be
made public� Finally� classes that are explicitly referenced
using Java
s re�ection mechanism cannot be merged with
other classes�

Figure ��c� shows the example program after merging
class B into class A� Note that the �new B
 statement in
method program�main is changed into �new A
� Another issue
of interest is the fact that this class merging operation could
not have been applied to the original class hierarchy� since
both classes A and B contained a non�abstract methods f

originally� Hence� this class merging operation was enabled
by the removal of unreachable method A�f� Figure ��d�
shows the program after merging interface I into class A�
Note that the type of variable i in method program�main is
changed from I to A�

��� Performing optimizations

Thus far� we have primarily focused on archive size reduc�
tion� and optimization was only a secondary goal� How�
ever� a few simple and easy�to�implement optimizations have
been implemented in Jax� Jax inlines non�overridden meth�
ods whose only function is to set or retrieve a �eld
s value�
Moreover� in cases where a virtual dispatch has only one
potential target� we �devirtualize	 the call by replacing an
invokevirtual with an invokespecial bytecode� Unfor�
tunately� the Java Virtual Machine Speci�cation ���� only
permits this in a very limited number of situations� the in�
voked method has to occur in a superclass of the current
method
s class� or has to be a private method� Finally� Jax
marks non�overridden virtual methods final so that a just�
in�time compiler can inline these calls where appropriate�

The example program of Figure � illustrates how trans�
formations can enable each other� We have already seen

�This assumes that programs do not rely on the execution order
of static initializers of di�erent classes�

�

public void f(){

 z=0;int j=z;

int z;

public static void

main(String args[]){

 i.f();

}

 I i = new A();

A

public void f();

I

program

}

public void f(){

 z=0;int j=z;

int z;

A

(a) (c)

public static void

}

main(String args[]){

 int j=x; g(); }

 i.f();

}

 A i = new A();

program

(d)

public void f(){}

int z;

}

public void f(){

public static void

main(String args[]){

 i.f();

}

 I i = new B();

B

A

public void f();

I

program

 z=0;int j=z;

(b)

public void f(){

int x, y, z;

}

 y=0;z=0;int j=z;

public void f(){

public static void

main(String args[]){

 i.f();

}

 I i = new B();

B

A

public void f();

I

program

public void g(){y=0;}

Figure �� Successive steps in transformation of the example program of Figure � by Jax� �a� the original program� �b� the program
after removing unreachable method A�g� removing the body of unreachable method A�f� removing unaccessed �eld A�x� and removing
write�only �eld A�y� �c� the program after merging class B into class A� �d� the program after merging interface

how elimination of �the body of� unreachable methods can
enable class merging� Note that� in the resulting program
of Figure ��d� only a single method f remains in the en�
tire class hierarchy� This implies that the call to f can be
devirtualized� and that f can subsequently be inlined�

��� Name compression

A Java class �le is a self�contained unit of executable code�
References to other classes� methods� and �elds are made
through literal strings� For example� suppose that a class
makes the method call Thread�sleep��		�� Then� the con�
stant pool would contain the strings �java
lang
Thread	�
�sleep	� and ��J�V	� These strings represent the fully qual�
i�ed class name� the method name� and a string representa�
tion of the method
s signature �one argument of type long�
returning void�� Since all linking information is represented
in string form� and is replicated in each class �le� it is obvious
that shortening class� method� and �eld names by shorter
ones will result in smaller archives� Jax currently renames
classes� methods� and �elds a� b� c� � � � but more ambitious
naming schemes� in which methods with di�erent signatures
get the same name� are envisioned eventually�

Certain names cannot be compressed� In particular�
any reference to a class� method� or �eld in an external li�
brary cannot be changed� Methods that override methods in
classes or interfaces in external libraries cannot be renamed�
Any class� method� or �eld accessed using Java
s re�ection
mechanism cannot be changed� The name of the main class
�the applet class� or the class containing the main routine�
and the main method cannot be changed� and neither can
the names of constructors and static initializers be changed�

��	 Constant pool compression

When methods are removed by Jax entries in the constant
pools of class �les may be rendered unnecessary� In the
in�memory representation of class �les constructed by Jax�
references to constant pool entries are replaced by explicit
references to actual objects representing the classes� meth�
ods� �elds� and constants normally contained in the con�
stant pool� After the transformations described above have
been performed by Jax the class is written out again� and a
new constant pool is created from scratch� Only the classes�
methods� �elds� and constants that are actually referenced
will be added to this constant pool� The resulting constant
pool has minimal size and is typically much smaller than the
constant pool originally found in the class �le�

Class merging has interesting repercussions for the size of
constant pools Adjacent classes in the hierarchy are likely
to share many literal values� which are duplicated in their
constant pools� Merging these classes allows us to eliminate
this duplication� We will see in Section ��� that the con�
tribution of class hierarchy transformation to archive size
reduction can be signi�cant�

Early Java compilers were a little careless with the con�
stant pool and added entries to it that were not referenced
from the class �le at all� Such entries are not recreated by
Jax�

��
 Dealing with re�ection

We already discussed the repercussions of the use of Java
s
re�ection mechanism in several places� Certain uses of re�
�ection are relatively harmless� For example� we encoun�
tered a program that used re�ection to retrieve the name
of an object
s class� and subsequently load an image ��gif�

�le with the same name� This case is harmless because Jax

makes the conservative assumption that the name of any
class that is accessed by re�ection should not be changed�

Other scenarios include various forms of self�inspection�
For example� the re�ection mechanism could be used to de�
termine the number of methods that occur in a given class�
If the program
s behavior depends on this number in any
way� none of the methods in that class can be removed�
even if they are known to be unreachable� Since static
analysis cannot determine which classes� methods� and �elds
are accessed via re�ection� Jax relies on the user to specify
these components by listing them in a con�guration �le�
Jax conservatively assumes that these components cannot
be changed in any way �i�e�� renamed� removed� or merged��

In order to assist the user with the process of determining
where dynamic loading and other uses of re�ection are used�
the Jax distribution provides a simple tool that instruments
calls to the re�ection API� Running the instrumented appli�
cation will produce a log �le that lists the classes� methods�
and �elds that are accessed via re�ection in that speci�c
execution of the program� We found this tool to be a very
e�ective for �nding uses of re�ection in unfamiliar applica�
tions�

� Results

��� Overview of the benchmarks

Table � lists the Java applications used to evaluate Jax�
The benchmarks cover a wide spectrum of programming
styles and are publicly available �except for Mockingbird and
Reservation System�� For each benchmark� the initial num�
ber of classes� methods� and �elds are shown� as well as the
initial size of the archive�

IBM Host�on�Demand is a terminal emulator that is
shipped with Netscape Communicator ��x� Hanoi is an in�
teractive applet version of the well�known �Towers of Hanoi	
problem� and is shipped with Jax� ICE Browser� is a sim�
ple internet browser� Jax itself �version ���� was used as a
benchmark� JavaFig� �version ���� ����������� is a Java ver�
sion of the xfig drawing program� jMark��� is well�known
Java performance benchmark� javac	 is the SPEC JVM ��
version Sun
s javac compiler� Cinderella�
 is an interactive
geometry tool used for education and self�study in schools
and universities� Cinderella Applet is an applet that allows
users to solve geometry exercises interactively� It is con�
tained in the same class �le archive as Cinderella� Lotus
eSuite Sheet�� is an interactive spreadsheet applet� which is
part of the examples shipped with Lotus
 eSuite �DevPack
��� version�� Lotus eSuite Chart is an interactive charting
applet� which is another example shipped with Lotus eSuite�
Mockingbird is a proprietary IBM tool for multi�language op�
erability� It relies on� but uses only limited parts of� several
large class libraries �including Swing� now part of JDK ����
and IBM
s XML parser�� Reservation System is an interac�
tive front�end for an airline� hotel� and car rental reservation
system developed by an IBM customer�

�See www�icesoft�no�
�See tech�www�informatik�uni�hamburg�de�applets�javafig�
� jMark is a trademark of Zi��Davis� See www�zdnet�com�zdbop�
	See www�specbench�org�
�
See www�cinderella�de�
��See www�esuite�lotus�com�

�

benchmark # classes # methods # fields archive size
IBM Host-on-Demand 27 470 1,052 131,190
Hanoi 44 379 232 56,796
ICE Browser 76 761 500 106,081
JAX 101 1,342 790 214,362
JavaFig 161 2,111 1,526 394,432
JMark 2.0 196 723 1,221 186,808
javac 210 1,512 1,107 452,125
Cinderella 468 4,449 3,075 891,552
Cinderella Applet 468 4,449 3,075 891,552
Lotus eSuite Sheet 580 7,321 4,351 1,264,419
Lotus eSuite Chart 730 8,276 5,433 1,570,569
Mockingbird 2,050 17,944 6,738 2,950,543
Reservation System 2,332 21,508 12,493 3,810,120

Table �� Characteristics of the benchmark applications used to evaluate Jax� For each benchmark� the initial number of classes�
methods� and �elds is shown� The size of the initial archive shown here is in bytes and excludes any resource �les contained in the
shipped archives�

benchmark # classes # methods # fields archive size processing time
IBM Host-on-Demand 26 422 426 82,100 8
Hanoi 21 183 100 21,528 4
ICE Browser 64 651 430 91,891 9
JAX 94 898 267 128,257 12
JavaFig 115 1,456 1,112 231,783 20
JMark 2.0 76 387 492 87,432 8
javac 198 1,342 499 230,981 21
Cinderella 327 2,745 1,968 468,748 62
Cinderella Applet 249 1,984 1,542 312,623 45
Lotus eSuite Sheet 302 3,125 1,169 383,233 59
Lotus eSuite Chart 391 4,497 2,162 594,999 80
Mockingbird 237 1,980 757 289,308 30
Reservation System 1,409 11,641 5,337 1,732,576 412

Table �� The number of classes� methods� and �elds and the archive size for the benchmark applications of Table � after processing
by Jax� The rightmost column shows the time �in seconds� required by Jax to process the application�

37
.4%

62
.1%

13
.4%

40
.2% 41

.2%
53

.2%

48
.9%

47
.4%

64
.9% 69

.7%

62
.1%

90
.2%

54
.5%

IBM Host-on-Demand
Hanoi

ICE Browser
JAX

JavaFig
JMark 2.0

javac
Cinderella

Cinderella Applet
Lotus eSuite Sheet

Lotus eSuite Chart
Mockingbird

Reservation System
0%

20%

40%

60%

80%

100%

%
 r

ed
u

ct
io

n

Figure �� Percentage reduction in archive size for the benchmark applications of Table �� Resource �les are excluded from both the
initial and processed archives�

�

3.7
%1

0.2
%

59
.5%

52
.3%

51
.7%5

6.9
%

15
.8%

14
.5%

14
.0%

6.9
%

33
.1%

66
.2%

28
.6%31

.0%

27
.1%

61
.2%

46
.5%

59
.7%

5.7
%1

1.2
%

54
.9%

30
.1%

38
.3%

36
.0%

46
.8%

55
.4%

49
.9%

47
.9%

57
.3%

73
.1%

46
.4%

45
.7%

60
.2%

88
.4%

89
.0%

88
.8%

39
.6%

45
.9%

57
.3%

IBM Host-on-Demand
Hanoi

ICE Browser
JAX

JavaFig
JMark 2.0

javac
Cinderella

Cinderella Applet
Lotus eSuite Sheet

Lotus eSuite Chart
Mockingbird

Reservation System
0%

20%

40%

60%

80%

100%
%

 r
ed

u
ct

io
n

classes
methods
fields

Figure �� Percentage reduction in numbers of classes� methods� and �elds for the benchmark applications of Table ��

��� Measurement issues

For a number of the benchmarks� the shipped version of
the initial archive contains resource �les such as properties
�les and image �les� Since our techniques only address the
transformation of class �les� we moved all resource �les to a
separate archive� This �resources archive	 is una�ected by
Jax� and its contents should be added to the archive pro�
duced by Jax in order to run the compressed application�
Currently� our techniques do not address the issue of deter�
mining which resources are actually used by an application�
and we have observed cases where archives contained many
unneeded resources�

Another issue is that di�erent implementations of zip and
jar tend to produce slightly di�erent results� In order to give
a consistent evaluation� all archives mentioned in this paper
�both the original archives and the archives produced by
Jax� have been unzipped� and subsequently re�zipped �into
a single archive� using WinZip
�����

��� Reductions in archive size� classes� methods�
and �elds

Table � shows the overall size reductions obtained by apply�
ing Jax �version ���� to the benchmarks of Table �� as well
as the time required by Jax to process the benchmarks�� �
Reservation System� the largest benchmark� was processed
in about
 minutes� We consider these processing times to
be quite acceptable� especially since application extraction is
typically an infrequent activity that is only performed when
applications are shipped�

Figure � depicts the percentage by which the archive size
is reduced for each benchmark� As can be seen from the
�gure� the reduction ranges from ����� to ����� ����
�
on average�� Figure � depicts the percentage by which the
number of classes� methods� and �elds are reduced for each
benchmark� As is shown in the �gure� the number of classes
is reduced by ��
� to ������ the number of methods by

��See www�winzip�com�
��Measurements taken on a Pentium II�	

Mhz PC with ��
MB

memory� using the just�in�time compiler developed at the IBM Tokyo
Research Laboratory ��	��

����� to ������ and the number of �elds by ����� to ������
The average percentage reductions for classes� methods� and
�elds are ������ ������ and ���
�� respectively�

��� Evaluation

A number of observations can be made about the results
reported above�

The benchmark for which we measured the smallest re�
duction in archive size is ICE Browser� Analysis of this ap�
plication revealed that the class �les of this program had al�
ready been processed by some other obfuscation extraction
tool� In particular� we observed that many of the names the
class �les were obviously generated!consecutive �elds and
methods had names consisting of consecutive unprintable
characters� The fact that Jax manages to further reduce the
size of this application implies that it may perform more so�
phisticated analyses and transformations than the tool used
to process ICE Browser�

The benchmark for which we measured the highest re�
duction in archive size� Mockingbird� is a special case as
well� Mockingbird consists of two distinct components� a
tool with an interactive GUI and a command�line �batch	
tool� These tools are usually shipped together as a single
class �le archive� In our evaluation� we extracted only the
batch component from this archive� The main reason for
the very large size reduction we measured is that Jax is
very e�ective in removing the unused GUI�related library
classes from batch component� Other benchmarks for which
we measure large reductions such as Hanoi with ������ Lo�
tus eSuite Sheet with ���
�� and Lotus eSuite Chart with
����� either rely on class libraries� or are structured as a
class library with a client application� The large size re�
ductions we measure for these benchmarks are in agreement
with the general perception that applications typically use
only a small fraction of the functionality in class libraries
that they rely on� and it shows that our techniques are quite
successful in eliminating redundant library functionality�

The Cinderella and Cinderella Applet benchmarks are
another interesting case because they are derived from the
same original archive� In this case� Cinderella Applet con�

Lotus eSuite Sheet classes methods fields archive
original size 580 7,321 4,351 1,264,419
loaded 487 5,658 2,017 775,676
dead methods removed 487 3,335 2,017 559,897
dead fields removed 487 3,335 1,169 544,746
inlining/devirtualizing 487 3,202 1,169 542,449
class transformations 302 3,125 1,169 464,777
obfuscation 302 3,125 1,169 383,233

Table �� Detailed measurements for the Lotus eSuite Sheet benchmark�

38
.7%

55
.7%

56
.9%

57
.1% 63

.2% 69
.7%

loaded
dead methods removed

dead fields removed
inlining/devirtualizing

class transformations
obfuscation

0%

20%

40%

60%

80%

100%

%
 r

ed
u

ct
io

n

Figure �� Percentage reduction in archive size for Lotus eSuite Sheet w�r�t� the original archive after ��� loading� �	� removal of
unreachable methods� �
� removal of useless �elds� ��� method inlining�devirtualizing� �
� class hierarchy transformations� and ��� name
compression�

16
.0% 22

.7%

53
.6%

16
.0%

54
.4%

53
.6%

16
.0%

54
.4%

73
.1%

16
.0%

56
.3%

73
.1%

47
.9% 57

.3%
73

.1%

47
.9% 57

.3%
73

.1%

loaded
dead methods removed

dead fields removed
inlining/devirtualizing

class transformations
obfuscation

0%

20%

40%

60%

80%

100%

%
 r

ed
u

ct
io

n

classes
methods
fields

Figure �� Percentage reduction in the number of classes� methods� and �elds w�r�t� the original archive for Lotus eSuite Sheet after
��� loading� �	� removal of unreachable methods� �
� removal of useless �elds� ��� method inlining�devirtualizing� �
� class hierarchy
transformations� and ��� name compression�

Lotus eSuite Sheet classes methods fields archive
original size 580 7,321 4,351 1,264,419
processed by JAX using CHA 417 4,408 1,765 563,029
processed by JAX using RTA 302 3,125 1,169 383,233

Table �� Comparative measurements for Lotus eSuite Sheet using Class Hierarchy Analysis and Rapid Type Analysis�

�

23
.8%

42
.4%

42
.3%

59
.0%

59
.4%

73
.1%

54
.7%

69
.2%

classes methods fields archive
0%

20%

40%

60%

80%

100%

%
 r

ed
u

ct
io

n

Class Hierarchy Analysis
Rapid Type Analysis

Figure
� A comparison of the reduction in the number of classes� number of methods� number of �elds� and archive size obtained for
Lotus eSuite Sheet using Class Hierarchy Analysis and Rapid Type Analysis to determine reachable methods�

tains �roughly� a subset of Cinderella
s functionality� For
development purposes� it is desirable to have the two appli�
cations share the same archive� but for distribution purposes
it is undesirable to ship the entire archive for Cinderella Ap�
plet� A common solution to such problems consists of split�
ting the classes into a package with �core functionality	�
and separate packages with additional functionality that is
used by di�erent components� This approach has some obvi�
ous organizational drawbacks� In such cases� an application
extractor can extract the desired functionality for each ap�
plication� The fact that Jax is capable of eliminating unused
functionality is evident from the fact that we see a signif�
icantly larger size reduction for Cinderella Applet ������
archive size� than for Cinderella ��
�����

��� Breakdown of the results

Measuring the individual contributions of each step in Jax is
complicated by the fact that each step
s e�ectiveness strongly
depends on the preceding one� For example� the removal of
useless �elds is performed after the removal of unreachable
methods �otherwise� we would not be able to remove �elds
that are only referenced from within unreached methods��
Hence� correlating the contributions of dead �elds or meth�
ods in isolation to the reduction in archive size would be
meaningless� Another example along these lines is that the
number of classes that can be merged is strongly dependent
on removal of unused �elds and methods in a previous step�
Consequently� what we will study in the remainder of this
section is the cumulative e�ect of each step� By selectively
disabling steps performed by Jax� we measure the additional
impact of each step�

Table � shows detailed statistics gathered for the Lotus
eSuite Sheet benchmark� while Figures � and � show the
contributions of each successive steps in a graphical form�

Figure � reveals a number of interesting facts� The ini�
tial archive contains a substantial number of classes that are
not loaded� Removal of these unreferenced classes has the
largest e�ect on the overall result� ���
�� Most of these un�
used classes are library classes that are shipped with� but not
used by the application� Removal of unreachable methods
is the next biggest contributor to the overall result� �
����
The contribution of useless �eld removal is relatively small�
����� Method inlining and devirtualizing have a positive
e�ect on the result ������ because we currently only in�
line very small methods� Inlining such a method does not
increase code size at call sites for the method� and in cases
where all call sites for the method can be inlined� the method
can be removed�

The contribution of class hierarchy transformations is
����� From Table � and Figure � it can be seen that the class
hierarchy transformations remove an additional ���� of the
methods �

 methods�� All of these methods are abstract

methods which disappear as a result of class merging� Name
compression reduces the resulting archive by another �����

��	 An experiment

Although the �direct	 contribution of detecting and remov�
ing unreachable methods is only �
��� for the Lotus eSuite
Sheet benchmark� the removal of unreachable methods has
a number of indirect e�ects�

� The identi�cation of more unreachable methods may
lead to the identi�cation of more useless �elds�

� The identi�cation of more unreachable methods may
lead to the removal of more entries from the constant
pool�

� The removal of more methods and �elds may enable
more merging of classes and interfaces in the hierarchy�

All previously discussed results are based on the use of
Rapid Type Analysis for identifying unreachable methods�
In order to investigate the transitive e�ects of method re�
moval� we conducted an experiment in which we used Class
Hierarchy Analysis �CHA� ��� instead of RTA to determine
a set of reachable methods� CHA is less powerful than RTA
because it only uses class hierarchy information to resolve
virtual method calls� whereas RTA uses instantiated class
information as well� Table � shows a comparison of the re�
ductions in archive size� and number of classes� methods�
and �elds we obtained for Lotus eSuite Sheet using Class
Hierarchy Analysis and Rapid Type Analysis� These results
are depicted in Figure
� The di�erence between the result�
ing archive sizes is pronounced� The archive produced using
CHA is ������� bytes� whereas the archive produced using
RTA is only ������� bytes� This is due to the fact that RTA
is capable of identifying ���� more unreachable methods and
��� more useless �elds than CHA� This� in turn� led to the
elimination of an additional ��� classes�

The conclusion we draw from this experiment is that the
detection of unreachable methods is key to obtaining smaller
archives� In Section �� we discuss our current work on more
sophisticated algorithms for detecting unused methods�

��
 Download Time Results

Table � shows the time required to download the class �le
archives for each of the benchmarks of Table �� before and

�

benchmark original (modem) processed (modem) reduction original (LAN) processed (LAN) reduction
IBM Host-on-Demand 27.3 16.9 38.1% 0.170 0.110 35.3%
Hanoi 12.0 4.9 59.1% 0.060 0.020 66.7%
ICE Browser 21.8 18.5 14.9% 0.130 0.110 15.4%
JAX 42.1 25.4 39.7% 0.260 0.160 38.5%
JavaFig 83.7 45.5 45.6% 0.480 0.280 41.7%
JMark 2.0 37.2 17.5 53.0% 0.220 0.100 54.5%
javac 93.9 44.7 52.4% 0.550 0.270 50.9%
Cinderella 189.3 90.3 52.3% 1.210 0.630 47.9%
Cinderella Applet 189.3 60.3 68.1% 1.130 0.380 66.4%
Lotus eSuite Sheet 254.0 74.2 70.8% 1.530 0.460 69.9%
Lotus eSuite Chart 314.4 118.4 62.3% 2.070 0.740 64.3%
Mockingbird 584.2 55.8 90.4% 3.750 0.360 90.4%
Reservation System 753.3 330.1 56.2% 4.780 2.140 55.2%

Table �� Time required to download the class �le archives before and after running Jax� for each of the benchmarks of Table ��
Measurements are shown for downloading over a
�K modem connection �throughput up to
�� KB�sec�� and for a fast LAN connection
�average throughput around ��� KB�sec�� All times shown are in seconds�

benchmark execution time (original) execution time (processed) savings
JAX 82.9 81.2 2.1%
javac 68.2 67.9 0.4%
Mockingbird 49.1 46.4 5.4%

Table �� Speed�up measurements for the non�interactive benchmarks� Times shown are in seconds�

after applying Jax� We measured the download time using
ftp� over a ��K modem connection� as well as over a fast
LAN connection�

As could be expected� the reduction between archive size
reduction and download time reduction is proportional� For
the measurements over modem connections� the reductions
in archive size and download time are generally the same
within a few percentage points� This is also the case for
the larger benchmarks over the LAN connections� The re�
sults for the smaller benchmarks over LAN connections are
somewhat erratic� which is probably due to the fact that
the download times are so small that they are di�cult to
measure�

In addition to reducing download time� the reduction in
archive size also has bene�ts on the server side� Since each
data transfer to a client requires less time� more clients can
be served in principle�

An interesting statistic is that for most benchmarks� the
time required to process the application with Jax is less
than the reduction in download time over ��K modem con�
nections�

��
 Execution time speed�up

Table � shows the running time for the three non�interactive
benchmarks �Jax� Mockingbird� and javac� before and after
processing them with Jax� For javac� we used the standard
driver that is shipped with the SPEC JVM�� benchmarks�
and the Cinderella benchmark was used as an input to Jax�
The other benchmarks are all interactive GUI�based appli�
cations� so that direct speedup measurements are di�cult
to conduct�

The speedups we measured turned out to be small and
somewhat erratic� and highly dependent on the �version of
the� used VM and JIT� Using the JIT developed in IBM
s
Tokyo Research Laboratory ����� we measured speedups of
����� �����and ����� We believe that the fact that we
measured the relatively large percentage of ���� for Jax

because Jax spends a relatively small amount of time doing

I O� compared to Mockingbird and javac�

� Related Work

Related work falls into a number of di�erent categories�

��� Related Java tools

We are aware of a number of Java tools that have similar
objectives as Jax�

DashO�Pro�� and Condensity�� are commercially avail�
able tools that aim at archive size reduction� obfuscation�
and optimization� We are unfamiliar with the algorithms
used in these tools� and it is unclear to us how Jax performs
compared to these them�

Several Java tools aim at obfuscation �i�e�� to make
decompilation of class �les into understandable source
code more di�cult�� To mention just a few of these�
SourceGuard�� � ObfuscatePro��� and Jmangle�� all perform
some form of compression of class names� method names�
�eld names� and package names� To our knowledge� of these
tools only SourceGuard goes beyond simple name compres�
sion� and performs other transformations such as modifying
an application
s control �ow�

��� Alternative representations for Java class �les

Pugh ���� and Horspool et al� ���� �� have proposed alterna�
tive� more space�e�cient representations for Java class �les�
These representations rely on techniques such as the use of
a global constant pool to enable sharing of constants across

��DashO�Pro is a trademark of preEmptive Solutions� Inc� See
www�preemptive�com�

��Condensity is a trademark of Plumb Design� Inc� See
www�condensity�com�

��See www��thpass�com�
��See www�anet�dfw�com��neil�index�html�
��Jmangle is a trademark of Taylor Computing� See

www�access�digex�net��rrl�

��

benchmark original application processed with JAX reduction
IBM Host-on-Demand 87,452 61,891 29.2%
Hanoi 25,984 11,228 56.8%
ICE Browser 67,462 58,435 13.4%
JAX 106,212 66,509 37.4%
JavaFig 220,186 146,962 33.3%
JMark 2.0 85,118 51,858 39.1%
javac 164,441 110,589 32.7%
Cinderella 550,653 309,982 43.7%
Cinderella Applet 550,653 168,288 69.4%
Lotus eSuite Sheet 644,737 242,496 62.4%
Lotus eSuite Chart 811,556 392,953 51.6%
Mockingbird 457,025 151,816 66.8%
Reservation System 2,910,029 1,221,174 58.0%

Table
� Results of converting the archives of Tables � and 	 to the Jazz representation� For each of the benchmarks� we show the size
of the original archive converted to Jazz� the archive produced by Jax converted to Jazz� and the corresponding percentage reduction�

benchmark original application processed with JAX reduction
IBM Host-on-Demand 42,848 36,614 14.5%
Hanoi 13,786 7,020 49.1%
ICE Browser 36,452 32,923 9.7%
JAX 50,518 38,807 23.2%
JavaFig 92,819 69,416 25.2%
JMark 2.0 35,934 27,784 22.7%
javac 77,233 64,930 15.9%
Cinderella 197,246 127,420 35.4%
Cinderella Applet 197,246 81,665 58.6%
Lotus eSuite Sheet 548,645 121,158 77.9%
Lotus eSuite Chart 633,228 187,009 70.5%
Mockingbird 505,553 86,429 82.9%
Reservation System 735,629 433,505 41.1%

Table �� Results of converting the archives of Tables � and 	 to Pugh�s class �le representation� For each of the benchmarks� we show
the size of the original archive converted to Pugh�s representation� the archive produced by Jax converted to Pugh�s representation� and
the corresponding percentage reduction�

37
.4%

29
.2%

14
.5%

62
.1%

56
.8%

49
.1%

13
.4%

13
.4%

9.7
%

40
.2%

37
.4%

23
.2%

41
.2%

33
.3%

25
.2%

53
.2%

39
.1%

22
.7%

48
.9%

32
.7%

15
.9%

47
.4%

43
.7%

35
.4%

64
.9%69

.4%

58
.6%

69
.7%

62
.4%

77
.9%

62
.1%

51
.6%

70
.5%

90
.2%

66
.8%

82
.9%

54
.5%58

.0%

41
.1%

IBM Host-on-Demand
Hanoi

ICE Browser
JAX

JavaFig
JMark 2.0

javac
Cinderella

Cinderella Applet
Lotus eSuite Sheet

Lotus eSuite Chart
Mockingbird

Reservation System
0%

20%

40%

60%

80%

100%

%
 r

ed
u

ct
io

n

zipped class files
Jazz
Pugh

Figure �� Comparison of the archive size reductionsobtainedwith Jax in each of the three class �le representations under consideration�
For each benchmark� the leftmost bar indicates the percentage reduction using the standard class �le representation� the middle bar shows
the percentage reduction using the Jazz representation� and the rightmost bar shows the percentage reduction in Pugh�s representation�

��

class �les� e�ciently representing names that share a com�
mon pre�x� and separating di�erent streams of information
�e�g�� opcodes and operands� and compressing the resulting
streams separately� Pugh reports archives that range be�
tween �
� and ��� of the size of the original representation
for a representative set of benchmarks� Pugh also evaluates
the Jazz representation by Horspool et al� on his bench�
marks� and measures archives ranging in size from ��� to
���� of the original representation�

An important advantage of the representations of ���� ���
�� is the enabling of sharing of various information between
di�erent class �les� Jax can only eliminate a limited amount
of duplication by merging classes� On the other hand� ap�
plication extractors can achieve signi�cant size reductions
by eliminating unused methods� classes� and �elds� some�
thing that is not addressed by the compression techniques of
���� ��� ��� Therefore� one would expect application extrac�
tion and more e�cient class �le representations to be largely
�orthogonal	 techniques for reducing application size�

In order to verify this conjecture� we took the original
class �le archives of Table � and the archives produced by
Jax as shown in Table �� and converted them to the Jazz
representation ���� and to Pugh
s Packed representation �����
The results of these conversions are shown in Tables
 and ��
Table
 shows for each of the benchmarks the size of the
Jazz archives before and after applying JAX� As can be
seen from Table
� the percentage reduction ranges from
����� to ����� ������ on average�� Table � shows� for each
of our benchmarks� the size of the Packed archives �Pugh
s
representation� before and after applying JAX� as well as
the percentage reduction� As can be seen from Table �� the
percentage reduction ranges from ��
� to ����� ������ on
average�� Figure � depicts the percentage reduction in each
of the three representations �zipped class �les� Jazz� Pugh
s
representation� for each of the benchmarks� Application ex�
traction clearly remains a highly useful size reduction tech�
nique� even when these more e�cient class �le representa�
tions are used�

Another line of work for reducing the amount of time
needed before a Java application can start executing is the
work by Krintz et al� ����
� on eager class loading� Krintz et
al� study an alternative� less strict execution model in which
an application starts executing even as parts of it �classes
and methods� are still being downloaded� The bene�ts of
this work are likely to be orthogonal to those of application
extraction�

��� Application extraction for other languages

The extraction of applications was pioneered in the Smalltalk
community� where it is usually referred to as �packaging	
���� �� �
�� In order to use a packaging tool for Smalltalk� the
user typically speci�es a set of initially live �root	 objects�
The tool then analyzes the application� and determines all
objects that are referenced from these objects� and contin�
ues this process recursively� Finally� an image is produced
that only includes the objects� Smalltalk packaging tools
typically have mechanisms for excluding certain standard
classes and objects from consideration� and for forcing the
inclusion of objects and methods that are accessed using
re�ection�

Agesen and Ungar ��� �� describe an application extrac�
tor for the Self language that eliminates unused slots from
objects �a slot corresponds to a method or �eld�� For each
message send that may be executed� a set of slots that is
needed to preserve that send
s behavior is computed� Fi�

nally� a source �le is produced in which redundant slots have
been eliminated�

��� Previous work on C��

Many of the techniques incorporated into Jax borrow from
earlier work on C""�

The call graph construction algorithm used by Jax� RTA
was originally proposed by Bacon ���� who proposed RTA
primarily as a means for identifying dynamically dispatched
method calls that can be devirtualized� Bacon and Sweeney
��� evaluated RTA on a set of C"" benchmarks� and com�
pared its e�ectiveness to that of Class Hierarchy Analysis
���� Due to the importance of class libraries for Java� we
found that the accurate treatment of methods that override
methods in external class libraries is important for reducing
archive size�

The detection of useless �elds� including write�only �elds�
was previously studied by Sweeney and Tip ����� and Tip et
al� ���� for C""� Sweeney and Tip used RTA to construct
a call graph� and measured an average percentage �����
useless �elds in a set of C"" applications� In the context
of Jax� we found that� on average� ����� of all �elds are
useless� We conjecture that this di�erence is partly due to
the fact that class libraries are pervasive in Java� and that
these libraries tend to contain a lot of unused functionality�
Furthermore� the larger percentage of unaccessed �elds in
Java applications could be due to the fact that Java lacks
a macro facility and that Java programmers use static �nal
�elds to de�ne constants� Java compilers propagate these
constants so that no accesses to these �elds remain� but the
�elds themselves are not actually removed�

The class hierarchy transformations used by Jax were
originally proposed by Tip and Sweeney ���� in the context
of specializing class hierarchies� The purpose of specializa�
tion is to remove members from objects� Ignoring a number
of details� the specialization algorithm constructs a new class
hierarchy in which a new class is constructed for each vari�
able� method� and �eld in the program� Inheritance relations
between these classes re�ect access relationships between
variables and methods and �elds� and subtype relationships
between variables that must be retained to preserve pro�
gram behavior� In order to reduce the complexity of the
resulting class hierarchy� a number of semantics�preserving
transformation rules was presented�

� Future Work

We are interested in the following areas of future research�

��� More experiments

We conjecture that a reduction in archive size should lead to
smaller representation of the application inside a VM� Fur�
thermore� the removal of �elds from classes leads to smaller
objects being created at run�time� For these reasons� one
would expect an application
s memory requirements to be
reduced� We intend to conduct more experiments in order to
verify this assertion� Also planned are experiments to mea�
sure the e�ect of application extraction on the initialization
�load� time required by a VM�

��� Optimization

The version of Jax discussed in the present paper performs
only a limited number of optimizations� Current experi�
ments include improved inlining� and a transformation in

��

which we redeclare �nal virtual methods as static methods�
and replace virtual dispatches to those methods with a static
�direct� dispatch� Preliminary results of these experiments
are very encouraging�

As a more ambitious e�ort� we are developing a bytecode�
to�bytecode optimizer in order to further reduce class �le
size and to improve an application
s run�time performance�
In this approach� a register�based IR is built from the byte�
codes� since many optimizations are more easily performed
on a register�based than on a than stack�based representa�
tion� Simple optimizations such as constant folding� con�
stant propagation� expression strength reduction� and dead
code elimination are performed while the IR is being built
from bytecodes� and inlining is also done at this time� Af�
ter performing the optimizations� a new bytecode stream
is assembled from the IR� The IR is designed with this in
mind� and its opcodes re�ect those of the bytecode� The
bytecode assembler performs peephole optimizations� local
variable elimination and local variable renumbering�

Future optimizations include traditional intraprocedural
optimizations such as copy propagation and common subex�
pression elimination� as well as some Java�speci�c optimiza�
tions such as removing redundant type checks and inlining
virtual calls� Knowledge of the whole application will al�
low us to do interprocedural optimizations� such as constant
propagation and live variable analysis� Type propagation
through method arguments may result in more dead meth�
ods and opportunities for inlining at virtual call sites� We
also plan to look at additional optimizations such as loop
optimizations�

��� Supplying information to a JVM

In certain cases� Jax is capable of determining useful infor�
mation that it cannot easily exploit� For example� there are
cases where it can be determined that a given invokevirtual
call site always resolves to a speci�c method� but where the
call cannot easily be devirtualized because the use of the
invokespecial bytecode is restricted to certain situations
����� In such cases� Jax can pass on the information to a
JVM in the form of a bytecode attribute�

��� Program understanding tools

One can imagine incorporating the analysis performed by
Jax to detect unnecessary classes� methods� and �elds into
a program development environment� For example� a tool
could inform the user of unreachable methods and �elds� al�
lowing the user to determine if these components are simply
redundant� or unreachable as the result of a bug� The tool
could also inform the user which methods can be declared
as �nal�

Acknowledgements

We are grateful to John Field� Ramalingam and Vivek Sarkar
for comments on drafts of this paper� The feedback from
Robert Weir� and the many people who participated in the
Jax discussion group on alphaWorks is also much appreci�
ated�

We also would like to thank Bill Pugh� Quetzalcoatl
Bradley� Nigel Horspool� and Jan Vitek for making their
class �le compression tools available to us�

Downloading Jax

A free evaluation copy of Jax can be downloaded from�

www�alphaWorks�ibm�com
tech
JAX

Detailed instructions on how to use Jax are also supplied
there�

References

��� Agesen� O� Concrete Type Inference� Delivering Object�
Oriented Applications� PhD thesis� Stanford University� Decem�
ber ����� Appeared as Sun Microsystems Laboratories Technical
Report SMLI TR�������

��� Agesen� O�� and Ungar� D� Sifting out the gold� Delivering com�
pact applications from an exploratory object�oriented program�
ming environment� In Proceedings of the Ninth Annual Con�
ference on Object�Oriented Programming Systems� Languages�
and Applications �OOPSLA���	 �Portland� OR� ������ pp� 	���
	�
� ACM SIGPLAN Notices ����
��

�	� Arnold� K�� and Gosling� J� The Java Programming Language�
second edition ed� Addison�Wesley� �����

��� Bacon� D� F� Fast and E
ective Optimziation of Statically
Typed Object�Oriented Languages� PhD thesis� University of
California at Berkeley� Dec ����� Forthcoming�

��� Bacon� D� F�� and Sweeney� P� F� Fast static analysis of C��
virtual function calls� In Proceedings of the Eleventh Annual
Conference on Object�Oriented Programming Systems� Lan�
guages� and Applications �OOPSLA���	 �San Jose� CA� ������
pp� 	���	��� ACM SIGPLAN Notices 	���
��

��� Bradley� Q�� Horspool� R� N�� and Vitek� J� Jazz� An e�cient
compressed format for java archive �les� In CASCON��� �No�
vember�December ���
�� pp� ����	
��

��� Calder� B�� Krintz� C�� and H�olzle� U� Reducing transfer delay
using java class �le splitting and prefetching� In these proceed�
ings�

�
� Dean� J�� Grove� D�� and Chambers� C� Optimization of object�
oriented programs using static class hierarchy analysis� In Pro�
ceedings of the Ninth European Conference on Object�Oriented
Programming �ECOOP��
	 �Aarhus� Denmark� Aug� ������
W� Oltho�� Ed�� Springer�Verlag� pp� ����
��

��� Digitalk Inc� Smalltalk�V for win�� Programming� ���	�
Chapter ��� �Object Libraries and Library Builder�

��
� Gosling� J�� Joy� B�� and Steele� G� The Java Language Speci�
�cation� Addison�Wesley� �����

���� Horspool� R� N�� and Corless� J� Tailored compression of java
class �les� Software�Practice and Experience ��� �� ����
��
���	����
�

���� IBM Corporation� IBM Smalltalk User�s Guide� version 	� re�
lease
 ed�� ����� Chapter 	�� Introduction to Packaging� Chap�
ter 	�� �Simple Packaging� Chapter 	
� �Advanced Packaging�

��	� Ishizaki� K�� Kawahito� M�� Yasue� T�� Takeuchi� M�� Oga�

sawara� T�� Suganuma� T�� Onodera� T�� Komatsu� H�� and

Nakatani� T� Design� implementation� and evaluation of op�
timizations in a just�in�time compiler� In Proceedings of the
ACM SIGPLAN JavaGrande Conference �San Francisco� CA�
June ������

���� Krintz� C�� Calder� B�� Lee� H� B�� and Zorn� B� G� Overlapping
execution with transfer using non�strict execution for mobile pro�
grams� In Proceedings of the �th International Conference on
Architectural Support for Programming Languages and Operat�
ing Systems �San Jose� California� October ���
�� pp� ��������

���� Lindholm� T�� and Yellin� F� The Java Virtual Machine Spec�
i�cation� Addison�Wesley� �����

���� Pande� H� D�� and Ryder� B� G� Data��ow�based virtual function
resolution� In Proceedings of the Third International Sympo�
sium on Static Analysis �SAS���	 �September ������ pp� �	
�
���� Springer�Verlag LNCS �����

���� ParcPlace Systems� ParcPlace Smalltalk� objectworks release
��� ed�� ����� Section ��� Deploying an Application� Section �
�
Binary Object Streaming Service�

��

��
� Pugh� W� Compressing java class �les� In Proceedings of
the ACM SIGPLAN��� Conference on Programming Language
Design and Implementation �Atlanta� GA� May ������ pp� ����
��
� ACM SIGPLAN Notices 	�����

���� Shapiro� M�� and Horwitz� S� Fast and accurate �ow�insensitive
points�to analysis� In Conference Record of the Twenty�Fourth
ACM Symposium on Principles of Programming Languages
�Paris� France� ������ pp� �����

��
� Steensgaard� B� Points�to analysis in almost linear time� In
Proceedings of the Twenty�Third ACM Symposium on Princi�
ples of Programming Languages �St� Petersburg� FL� January
������ pp� 	�����

���� Sweeney� P� F�� and Tip� F� A study of dead data members in
C�� applications� In Proceedings of the ACM SIGPLAN���
Conference on Programming Language Design and Implemen�
tation �Montreal� Canada� June ���
�� pp� 	���		�� ACM SIG�
PLAN Notices 		����

���� Tip� F�� Choi� J��D�� Field� J�� and Ramalingam� G� Slicing class
hierarchies in C��� In Proceedings of the Eleventh Annual
Conference on Object�Oriented Programming Systems� Lan�
guages� and Applications �OOPSLA���	 �San Jose� CA� ������
pp� �������� ACM SIGPLAN Notices 	���
��

��	� Tip� F�� and Sweeney� P� Class hierarchy specialization� In Pro�
ceedings of the Twelfth Annual Conference on Object�Oriented
Programming Systems� Languages� and Applications �OOP�
SLA���	 �Atlanta� GA� ������ pp� �����
�� ACM SIGPLAN
Notices 	���
��

���� Tip� F�� and Sweeney� P� F� Class hierarchy specialization� Tech�
Rep� RC������ IBM T�J� Watson Research Center� February
���
�

��

