
Refactoring for Generalization using Type Constraints

Frank Tip
IBM T.J. Watson Research

Center
P.O. Box 704, Yorktown
Heights, NY 10598, USA
tip@watson.ibm.com

Adam Kiezun
∗

MIT Lab for Computer Science
200 Technology Square,

Cambridge, MA 02139, USA
akiezun@mit.edu

Dirk Bäumer
IBM Research OTI Labs

Oberdorfstrasse 8, CH-8001
Zürich, Switzerland

dirk baeumer@ch.ibm.com

ABSTRACT
Refactoring is the process of applying behavior-preserving
transformations (called “refactorings”) in order to improve
a program’s design. Associated with a refactoring is a set
of preconditions that must be satisfied to guarantee that
program behavior is preserved, and a set of source code
modifications. An important category of refactorings is con-
cerned with generalization (e.g., Extract Interface for
re-routing the access to a class via a newly created inter-
face, and Pull Up Members for moving members into a
superclass). For these refactorings, both the preconditions
and the set of allowable source code modifications depend
on interprocedural relationships between types of variables.
We present an approach in which type constraints are used
to verify the preconditions and to determine the allowable
source code modifications for a number of generalization-
related refactorings. This work is implemented in the stan-
dard distribution of Eclipse (see www.eclipse.org).

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environ-
ments; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement—restructuring, reverse engi-
neering, and reengineering ; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—
Program analysis

General Terms
Design, Languages, Theory

Keywords
Refactoring, type constraints, program analysis, subtyping,
class hierarchy

∗This work was done while the second author was at IBM
Research OTI Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’03, October 26–30,2003,Anaheim,California,USA.
Copyright 2003 ACM 1-58113-712-5/03/0010 ...$5.00.

1. INTRODUCTION
Refactoring [6, 15] is the process of modifying a program’s

source code without changing its behavior, with the objec-
tive of improving the program’s design. A refactoring oper-
ation is identified by a name, a set of preconditions under
which it is allowed and the actual source-code transforma-
tion that is performed. Recently, code-centric development
methodologies such as “Extreme Programming” [2] have em-
braced refactoring because it fits well with their goal of con-
tinuously improving source code quality. This has resulted
in a renewed interest in tools that verify the preconditions
of refactorings, and that perform the actual source code up-
dates. Several popular development environments such as
Eclipse [5] and IntelliJ IDEA [12] incorporate refactoring
capabilities.

An important category of refactorings is concerned with
generalization [6, Chapter 11][14], e.g., Pull Up Members

for moving a member into a superclass so it can be shared
by a number of subclasses, and Extract Interface for
redirecting access to a class via a newly created interface.
The latter refactoring involves updating declarations of vari-
ables, parameters, method return types, and fields to use
the newly added interface. Not updating these declarations
leads to overspecific variable declarations, which conflicts
with the principles of object-oriented design [13].

This paper proposes the use of an existing framework
of type constraints [16] to address various aspects of refac-
torings related to generalization. We show how type con-
straints can be used to efficiently compute the maximal set
of allowable source-code modifications for Extract Inter-

face, and demonstrate that this solution preserves type-
correctness (we argue informally that preservation of pro-
gram behavior is implied). We also show how type con-
straints serve to succinctly state the preconditions for Pull

Up Members, and briefly discuss other refactorings that
can be modeled similarly. Our work is implemented in the
standard distribution of Eclipse [5], and is available from
www.eclipse.org.

1.1 Motivating Example
Figure 1 shows a Java program P1 that illustrates some

of the challenges associated with Extract Interface. In
Figure 1, class List defines array-based lists that support
operations add() for adding an element, addAll() for adding
the contents of another list, sort() for sorting a list, and
iterator() for iterating through a list without being aware
of its implementation. Also shown is a class Client with a

interface Bag {
public java.util.Iterator iterator();
public List add(Comparable element);

public List addAll(List v0);
}
class List implements Bag {

int size = 0;
Comparable[] elems = new Comparable[10];
public java.util.Iterator iterator(){

return new Iterator(this);
}
public List add(Comparable e){

if (this.size+1 == this.elems.length){
Comparable[] newElems = new Comparable[2 * this.size];
System.arraycopy(this.elems, 0, newElems, 0, this.size);
this.elems = newElems;

}
this.elems[this.size++] = e;
return this;

}
public List addAll(List v1) {

for(java.util.Iterator i=v1.iterator(); i.hasNext();){
this.add((Comparable)i.next())

}
return this;

}
public void sort() { /* insertion sort */

for (int i = 1; i < this.size; i++) {
Comparable e1 = this.elems[i];
int j = i;
while ((j > 0) && (this.elems[j-1].compareTo(e1) > 0)) {

this.elems[j] = this.elems[j-1];
j--;

}
this.elems[j] = e1;

}
}

}
class Iterator implements java.util.Iterator {

private int count = 0;
private List v2;
Iterator(List v3){ this.v2 = v3;}
public boolean hasNext(){ return this.count < this.v2.size; }
public Object next(){ return this.v2.elems[this.count++]; }
public void remove(){ throw new UnsupportedOperationException(); }

}
class Client {

public static void main(String[] args){
List v4 = createList();
populate(v4); update(v4); sortList(v4); print(v4);

}
static List createList(){ return new List();}
static void populate(List v5){ v5.add("foo").add("bar");}
static void update(List v6) {

List v7 = new List().add("zap").add("baz");
v6.addAll(v7);

}
static void sortList(List v8) { v8.sort(); }
static void print(List v9) {

for (java.util.Iterator iter = v9.iterator(); iter.hasNext();)
System.out.println("Object: " + iter.next());

}
}

Figure 1: Example program P1 illustrating the Extract Interface refactoring. Declarations shown in boxes
can be given type Bag instead of type List.

main() method that models a typical usage of List. Now, let
us assume that we want to (further) hide the implementation
details of List, to make it easier to switch to a different (e.g.,
linked) list implementation. To do so, we create an interface
Bag that declares add(), addAll(), and iterator(). Then, we
make Bag a superinterface of List. In Figure 1, these basic
steps of Extract Interface have already been performed.

At this point, Bag is not yet used because P1 contains no
element whose declared type is Bag. As the main goal of Ex-

tract Interface is to re-route the access to List via the
Bag interface, we want to update the declarations of vari-
ables, parameters, fields, and method return types so that
they use, where possible, Bag instead of List. In program
P1, v0, v1, v2, v3, v4, v5, v6, v7, v8 and v9, and the return
types of List.add(), List.addAll(), Bag.add(), Bag.addAll()
and Client.createList() are of type List. Which of these
can be given type Bag without affecting program behavior?
Careful examination of the program reveals that:

• Field Iterator.v2 cannot be declared as type Bag be-
cause the fields size and elems are accessed from v2,
but not declared in Bag.

• Parameter v3 (declared in class Iterator’s constructor)
is assigned to v2, requiring that the declared type of
v3 be equal to or a subtype of the declared type of
v2. As the declaration of v2 cannot be updated, the
declaration of v3 cannot be updated either.

• The type of v8 (declared in Client.sortList()) must
remain List because sort() is called on v8, and sort()

is not declared in Bag.

• Variable v4 (declared in Client.main()) is passed as
an argument to Client.sortList(), implying an assign-
ment v8 = v4. Hence, v4’s declared type must be equal
to, or a subtype of v8’s declared type, which cannot be
changed. So, v4’s type cannot change either.

• Finally, the return type of Client.createList() cannot
be updated because the return value of this method is
assigned to v4, whose declared type must remain List,
as was discussed above.

To summarize our findings, only v0, v1, v5, v6, v7, v9 and the
return types of List.add(), List.addAll(), Bag.add(), and
Bag.addAll() can be given type Bag instead of List. In Fig-
ure 1, these declarations are shown boxed. Clearly, care
must be taken when updating declarations.

1.2 Organization of this Paper
Section 2 presents a model of type constraints for a sub-

stantial Java subset. Its use in modeling Extract Inter-

face is presented in Section 3. Section 4 studies other refac-
torings that can be accommodated using this model. Sec-
tion 5 presents implementation issues related to Java fea-
tures not previously discussed. Sections 6 and 7 discuss
related work and directions for future work, respectively.

1.3 Assumptions
We make the closed-world assumption that a refactoring

tool has access to a program’s full source code, and that
only the behavior of this program needs to be preserved.

Furthermore, we will not consider the introduction of type
casts, which can expand the applicability of refactorings

(e.g., in the example of Figure 1, v4, v8, and the return
type of Client.createList() can be given type Bag if a cast
to List is inserted in Client.sortList()). We believe that
introducing casts does not improve a program’s design.

Finally, we currently disallow refactorings such as Ex-

tract Interface in the presence of overloading (i.e., hav-
ing, in one class, two or more methods with identical names
but different argument types). A call to an overloaded
method is resolved to the method whose formal parame-
ter types most closely match the types of the actual pa-
rameters [10, Section 15.12.2.2]. Refactorings that change
the declared types of method parameters must take care to
ensure that program behavior is not affected. Due to the
static nature of overloading resolution, sufficient conditions
that guarantee preservation of behavior can be designed, but
their precise formulation remains as an item for future work.
Section 5 discusses overloading and other language features
that pose challenges for refactoring.

2. FORMALMODEL
Palsberg and Schwarzbach [16] introduced a model of type

constraints for the purpose of checking whether a program
conforms to a language’s type system. If a program satisfies
all type constraints, no type violations will occur at run-
time (e.g., no method m(· · ·) is invoked on an object whose
class does not define or inherit m(· · ·)). In our setting, we
start with a well-typed program, and use type constraints
similar to those in [16] to determine that declarations can be
updated, or that members can be moved without affecting
a program’s well-typedness.

2.1 Notation and Terminology
We will adopt the term declaration element to refer to dec-

larations of local variables, parameters in static, instance,
and constructor methods, fields, and method return types,
and to type references in cast expressions. Moreover, All(P, C)
denotes the set of all declaration elements of type C in pro-
gram P . For program P1 of Figure 1, using method names
to represent method return types, we have:

All(P1, List) = { v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, Bag.add(),
Bag.addAll(), List.add(), List.addAll(),
Client.createList() }

In what follows, v, v′ denote variables, M, M ′ denote meth-
ods, F, F ′ denote fields, C, C′ denote classes, I, I ′ denote
interfaces, and T, T ′ denote types1. It is important to note
that the symbol M denotes a method together with all its
signature and return type information and the reference to
its declaring type. Similarly, F and C denote a field and a
type, respectively, together with its name, type in which it
is declared and, in the case of fields, its declared type.

Moreover, the notation E, E′ will be used to denote an
expression or declaration element at a specific point in the
program, corresponding to a specific node in the program’s
abstract syntax tree. We will assume that type information
about expressions and declaration elements is available from
a type-checker or compiler.

A method M is virtual if M is not a constructor, M is not
private and M is not static. Definitions 2.1 and 2.2 below

1In this paper, the term type will denote a class or an inter-
face.

[E] the type of expression or declaration
element E

[M] the declared return type of method M
[F] the declared type of field F
Decl(M) the type that contains method M
Decl(F) the type that contains field F
Param(M, i) the i-th formal parameter of method M
T ′≤T T ′ is equal to T , or T ′ is a subtype of T
T ′<T T ′ is a proper subtype of T

(i.e., T ′≤T and not T≤T ′)
super(C) the superclass of class C

Figure 2: Type constraint notation.

define concepts of overriding2 and root definitions for virtual
methods. Definition 2.3 defines a notion of hiding for fields
that will be needed for the Pull Up Members refactoring
in Section 4.

Def. 2.1 (overriding). A virtual method M in type C
overrides a virtual method M ′ in type B if M and M ′ have
identical signatures and C is equal to B or C is a subtype of
B. In this case, we also say that M ′ is overridden by M .

Def. 2.2 (RootDefs). Let M be a method. Define:

RootDefs(M) = {M ′| M overrides M ′, and there exists no
M ′′ (M ′′ �= M ′) such that
M ′ overrides M ′′ }

Def. 2.3 (hiding). Field F in type C hides field F ′ in
type B if F and F ′ have identical names and C is a subtype
of B. Then, we also say that F ′ is hidden by F .

2.2 Type Constraints
Figure 2 shows the notation that will be used to express

type constraints. A constraint variable α is one of the fol-
lowing: C (a type constant), [E] (representing the type of an
expression or declaration element E), Decl(M) (represent-
ing the type in which method M is declared), or Decl(F)
(representing the type in which field F is declared). A type
constraint is a relationship between two or more constraint
variables that must hold in order for a program to be type-
correct. In this paper, a type constraint has one of the fol-
lowing forms: (i) α1�α2, indicating that α1 is defined to
be the same as α2 (ii) α1≤α2, indicating that α1 must be
equal to or be a subtype of α2, (iii) α1=α2, indicating that
α1≤α2 and α2≤α1, (iv) α1<α2, indicating that α1≤α2 but
not α2≤α1, (v) αL

1 ≤αR
1 or · · · or αL

k ≤αR
k , indicating that

αL
j ≤αR

j must hold for at least one j, 1 ≤ j ≤ k.
In discussions about types of expressions and subtype-

relationships that occur in a specific program P , we will use
the notation of Figure 2 with subscript P . For example, [E]P
denotes the type of expression E in program P , DeclP (M)
denotes the declared return type of method M in program
P , DeclP (F) denotes the declared type of field F in program
P , and T ′≤P T denotes a subtype-relationship that occurs in
program P . In cases where the program under consideration
is unambiguous, we will frequently omit these P -subscripts
(in particular, the subscripts of the subtype operators ‘≤P ’
and ‘<P ’ can often be omitted, because programs P and P ′

2Note that, according to Definition 2.1, a virtual method
overrides itself.

have identical class hierarchies). We can now define what it
means for a program to be type-correct.

Def. 2.4 (type correctness). We say that a type con-
straint [E]≤[E′] is satisfied by a program P if and only if
[E]P ≤P [E′]P (similar cases exist for the other forms of type
constraints). Constraints of form α1�α2 are always satis-
fied. We say that program P is type-correct if and only if all
constraints in TC(P) are satisfied by P .

2.3 Generating Type Constraints
Figure 3 lists the type constraints implied by a number

of common Java features, which were carefully designed to
reflect the semantics of Java [10]. Due to space limitations,
we only discuss a few of the more interesting rules in detail.

Rules (1)–(18)3 define relationships between types of dif-
ferent expressions and declaration elements that must hold
in order for the program to be type-correct. Rule (1) states
that the type of the left-hand side of an assignment must
either be the same as, or a supertype of the type of the
right-hand side. For a call E.m(· · ·) to a virtual method
M , we have that: (i) the type of the call-expression is the
same as M ’s return type (rule (2)4), (ii) the type of each
actual parameter must be the same as, or a supertype of
the corresponding formal parameter (rule (3)), and (iii) a
method with the same signature as M must be declared in
[E] or one of its supertypes (rule (4)). This last constraint
involves determining a set of methods M1, · · · ,Mk overrid-
den by M using Definition 2.2, and requiring [E] to be a
subtype of one or more of Decl(M1), · · · ,Decl(Mk).

Rules (8)–(10) are concerned with overriding. Changing a
parameter’s type need not by itself affect type-correctness,
but it may affect virtual dispatch (and program) behavior.
Hence, we require that types of parameters (rule (8)) and
return types (rule (9)) of overriding methods correspond.
Rule (10) states that no single type can contain two methods
with the same signature, and will be needed in Section 4 to
check for cases where methods cannot be moved.

For a cast from class C to class C′, an ordering relation-
ship between C and C ′ in the class hierarchy is required
(rule (16)). Note that this constraint does not apply if the
type of the expression or the type being cast to is an in-
terface [10, Section 5.5]. Rules (19)–(20) define the type
of certain kinds of expressions (this-pointers and allocation
sites, respectively). Finally, rules (21) and (22) define the
type containing a specific method and field, respectively.

Rules (23)–(26) define the types of declaration elements
by referring to their declared types. We conclude this dis-
cussion with a remark. Some of the constraints of Figure 3
(in particular, (8) and (11)) go beyond the type-checking
that is routinely performed by Java compilers. These rules
are needed to ensure preservation of program behavior.

2.4 Classifying Type Constraints
Definition 2.5 below defines TC(P) to be the set of all

type constraints generated for program P , according to the
rules of Figure 3.
3 Rules (17) and (18) in Figure 3 are only shown for com-
pleteness, and are not affected by the refactorings we con-
sider.
4Rules (2), (5), (13), and (19)–(22) define the type of certain
kinds of expressions. While not very interesting by them-
selves, these rules are essential for defining the relationships
between the types of expressions and declaration elements.

program construct implied type constraint(s)
assignment E1 = E2 [E2]≤[E1] (1)

method call
E.m(E1, · · · , En)

to a virtual method M

[E.m(E1, · · · , En)]�[M]
[Ei]≤[Param(M, i)]

[E]≤Decl(M1) or · · · or [E]≤Decl(Mk)
where RootDefs(M) = { M1, · · · , Mk }

(2)
(3)

(4)

access E.f to field F [E.f]�[F]
[E]≤Decl(F)

(5)
(6)

return E in method M [E]≤[M] (7)

M ′ overrides M ,
M ′ �= M

[Param(M ′, i)] = [Param(M, i)]
[M ′] = [M]

Decl(M ′)<Decl(M)

(8)
(9)

(10)
F ′ hides F Decl(F ′)<Decl(F) (11)

constructor call new C(E1, · · · , En)
to constructor M [Ei]≤[Param(M, i)] (12)

direct call
E.m(E1, · · · , En)
to method M

[E.m(E1, · · · , En)]�[M]
[Ei]≤[Param(M, i)]

[E]≤Decl(M)

(13)
(14)
(15)

cast
(C)E

[E]≤[(C)E] or [(C)E]≤[E]
if [E] is a class (16)

for every type T
T≤java.lang.Object

[null]≤T
(17)
(18)

implicit declaration of this in method M [this]�Decl(M) (19)
expression new C(E1, · · · , En) [new C(E1, · · · , En)]�C (20)

declaration of method M (declared in type T) Decl(M)�T (21)
declaration of field F (declared in type T) Decl(F)�T (22)

explicit declaration
of variable or method parameter T v [v]�T (23)

declaration of method M with return type T [M]�T (24)
declaration of field F with type T [F]�T (25)

cast (T)E [(T)E]�T (26)

Figure 3: Type constraints for a set of core Java language features. Rules (1)–(22) define the types of
expressions and impose constraints between the types of expressions and declaration elements. Rules (23)–
(26) define the types of declaration elements.

Def. 2.5 (TCfixed(P), TCvar(P), TC(P)). Let P be a
program. Then, TCfixed(P) denotes the set of type con-
straints inferred for program P according to rules (1)–(22).
Further, TCvar(P) is the set of constraints inferred for P
according to rules (23)–(26). Moreover, TC(P) denotes the
set TCfixed(P) ∪ TCvar(P).

The partitioning of TC(P) into TCfixed(P) and TCvar(P)
in Definition 2.5 is specific to the Extract Interface refac-
toring, and reflects the fact that Extract Interface should
preserve some, but not all type constraints for program P .
In particular, the type constraints in TCfixed(P) correspond-
ing to program constructs that reappear unmodified in P ′

must be satisfied by program P ′ after applying Extract

Interface. However, the type constraints in TCvar(P) are
inferred from declaration elements in P , and need not nec-
essarily be satisfied by P ′, because Extract Interface

updates declaration elements to refer to a newly created in-
terface, and updating a declaration implies that a different
type constraint occurs in TCvar(P ′).

It is important to note that the way in which type con-
straints are partitioned into a “fixed” and a “variable” sub-
set depends on the refactoring under consideration. In the
case of Extract Interface, the types of declaration ele-
ments are variable, and all other type constraints are fixed.
In the case of the Pull Up Members refactoring (discussed
in Section 4), the locations of members in the hierarchy is

variable, and the types of declaration elements are fixed.

2.5 Type Constraints for Program P1

Figure 4 shows the constraints in TCfixed(P1) related to
types List and Bag. Here, each expression Decl(M) has been
reduced to the (constant) class in which M is declared using
rule (21). We can perform this simplification in the context
of Extract Interface because this refactoring does not
affect the declaring classes of members. In general, we can
simplify constraints using “constant definitions” (i.e., con-
straints from TCfixed(P) that use the � symbol) because the
same definitions will occur in the refactored program. We
consider the derivation of some of constraints in TCfixed(P1):

(a) For the call to List.add() on receiver expression v5 in
method Client.populate(), we find using rule (4) that
[v5] ≤ Decl(Bag.add()) = Bag (here, we used the fact
that RootDefs(List.add()) = { Bag.add() }).

(b) For the other call to List.add() in Client.populate()

we have that [v5.add("foo")] ≤ Decl(Bag.add()) =

Bag. We then simplify [v5.add("foo")] to [
List.add()] using rule (2), which yields [List.add()

] ≤ Bag.

(c) For each field access this.size in method List.sort(),
we find using rule (6) that [this] ≤ Decl(List.size)

method(s) constraint(s) rule(s)
List.add(),Bag.add() [Bag.add()] = [List.add()] (9)

List.addAll(), [v0] = [v1] (8)
Bag.addAll() [Bag.addAll()] = [List.addAll()] (9)

List.iterator() List ≤ [v3] (19), (12)
List.add() List ≤ [List.add()] (7), (19)

List.addAll() [v1] ≤ Bag (4)
List ≤ [List.addAll()] (19), (7)

Iterator.Iterator() [v3] ≤ [v2] (1)
Iterator.hasNext() [v2] ≤ List (6)
Iterator.next() [v2] ≤ List (6)
Client.main() [Client.createList()] ≤ [v4] (1), (13)

[v4] ≤ [v5]; [v4] ≤ [v6] (14);(14)
[v4] ≤ [v8]; [v4] ≤ [v9] (14);(14)

Client.createList() List ≤ [Client.createList()] (20), (7)
Client.populate() [v5] ≤ Bag (4)

[List.add()] ≤ Bag (2), (4)
Client.update() [List.add()] ≤ [v7] (1)

[List.add()] ≤ Bag (2), (4)
[v6] ≤ Bag; [v7] ≤ [v1] (4);(3)

Client.sortList() [v8] ≤ List (4)
Client.print() [v9] ≤ Bag (4)

Figure 4: Type constraints TCfixed(P1) for program P1 of Figure 1. Only nontrivial constraints related to types
List and Bag are shown.

= List. We can simplify the left side using rule (19),
which yields List ≤ List. Note that this trivial con-
straint does not constrain the type of any variable.
Similar constraints occur for accesses to field elems.

(d) For method Client.main(), we infer using rules (1)
and (13) that [Client.createList()] ≤ [v4]. Ap-
plications of rule (14) yield [v4] ≤ [v5], [v4] ≤ [v6
], [v4] ≤ [v8], and [v4] ≤ [v9].

3. EXTRACT INTERFACE
We can now state the refactoring problem of Section 1 as

follows: We want to identify a maximal set of declaration
elements G ⊆ All(P1, List) such that the following holds in
the refactored program P ′

1:

[E]�Bag ∈ TCvar(P ′
1) if E ∈ G, and

[E]�List ∈ TCvar(P ′
1) if E ∈ (All(P1, List) \ G)

and such that all constraints in TC(P ′
1) are satisfied. A naive

approach to solve this problem would be to compute all pos-
sible values of G that satisfy the type constraints in TC(P ′

1),
and then select a maximal G. Assuming that All(P1, List)
contains N elements, 2N possible values exist for G (each
element can have type Bag or List). Hence, the cost of this
naive approach is a prohibitive O(2N).

Observe, however, that the type constraints in TCfixed(P1)
already indicate which declaration elements cannot be up-
dated. For example, from Figure 4 it can be seen that List

≤ [v3] ≤ [v2] ≤ List, which implies that v2 and v3 can
only have type List. Definition 3.1 below formalizes this
notion of “non-updatability”.

Def. 3.1 (non-updatable declaration elements).

Let P be a program, let C be a class in P , let I be an inter-
face in P such that C is the only class that implements I and
I does not have any supertypes other than Object. Define:

Bad(P, C, I) = { E | E ∈ All(P, C), and
(([E]≤T1 or · · · or [E]≤Tk ∈ TCfixed(P), (a)

I �≤P T1, · · · , I �≤P Tk)
or
([E]≤[E′] ∈ TCfixed(P), (b)

E′ �∈ All(P, C), I �≤P [E′])
or
([E] = [E′] ∈ TCfixed(P) or (c)
[E]≤[E′] ∈ TCfixed(P) or
[E]<[E′] ∈ TCfixed(P), E′ ∈ Bad(P, C, I))) }

Part (a) of Definition 3.1 is concerned with constraints
that are due to a method call E.m(· · ·), and states that E
cannot be given type I if a declaration of m(· · ·) does not
occur in (a supertype of) I. Part (b) of Definition 3.1 deals
with constraints [E]≤[E′] due to assignments and parameter
passing, and states that E cannot be given type I if the de-
clared type of E′ is not C, and I is not equal to or a subtype
of E′ (the latter condition is needed for situations where a
declaration element of type C is assigned to a declaration
element of type Object). Part (c) handles the propagation
of “badness” due to overriding, assignments, and parameter
passing. For program P1 of Figure 1, we have:

Bad(P1, List, Bag) = { v2, v3, v4, v8, Client.createList() }

Hence, the declarations of v0, v1, v5, v6, v7, and v9 and the
return types of List.add(), List.addAll(), Bag.add(), and
Bag.addAll() can be changed to Bag. Note that we reached
the same conclusion via informal reasoning in Section 1.

An observant reader may have noticed that Definition 3.1
does not contain a case to deal with type constraints that
arise due to casts. This is the case because rule (16) only
applies to a cast expression (T)E if T is a class, and changing
a type cast (C)E into (I)E has the effect of removing a
type constraint. Nevertheless, the type of a cast-expression
may be constrained by assignments to other variables (and
parameter-passing), as Figure 5 illustrates.

private static void sortAndPrintAllLists(List allLists){
for (Iterator iter0 = allLists.iterator(); iter0.hasNext();) {

List list0 = (List) iter0.next();
list0.sort();

}
for (Iterator iter1 = allLists.iterator(); iter1.hasNext();) {

List list1 = (List) iter1.next();
System.out.println(list1.toString());

}
}

Figure 5: Example method that uses type casts (this method is assumed to occur in class Client of Figure 1).

For the code in the first loop of Figure 5, we infer [
(List)iter0.next()] ≤ [list0] (rule (1)) and [list0] ≤
Decl(List.sort()) = List (rule (4)). Hence, we have that:
[(List)iter0.next()] ≤ List. Since the cast expression
must have a type that is equal to, or a subtype of List,
we cannot update it to type Bag. For the second loop, we
find that [(List)iter1.next()] ≤ [list1] (rule (1)) and
[list1] ≤ Decl(Object.toString()) = Object (rule (4)).
Hence, it is only required that [(List)iter1.next()] ≤
Object which always holds (rule (17)). Hence, the cast in
the second loop can be updated to (Bag)iter1.next().

3.1 Justification
Theorem 3.2 states that updating the declaration elements

in All(P, C) that do not occur in Bad(P, C, I) produces a
program that is type-correct.

Theorem 3.2 (type-correctness). Let P be a pro-
gram that is type-correct, let C and I be a class and an in-
terface in P , respectively, such that C is the only class that
implements I, and assume that I does not have any super-
types other than Object. Let P ′ be a program obtained from
P by giving type I to all declaration elements in All(P,C) \
Bad(P, C, I). Then, P ′ is type-correct.

Proof. In P ′, only declared types of variables and fields,
method return types, and types referred to in casts are modi-
fied. Consequently, P and P ′ have identical class hierarchies,
and there exists a one-to-one mapping between method,
fields, types and expressions in program P and their coun-
terparts in P ′. In fact, the statements and expressions in P
and P ′ are exactly the same except for: (i) casts that refer
to type C in P , and to type I in P ′, and (ii) virtual method
calls E.m(· · ·) that refer to a method C.m(· · ·) in P but to
a method I.m(· · ·) in P ′. The latter situation occurs if the
static type of receiver expression E is changed from C to I
as a result of updating a declaration. In the proof, we use
the mapping between statements/expressions in P and their
counterparts in P ′ implicitly in checking whether or not P ′

is type-correct.
According to Definition 2.5, we have that TC(P ′) =

TCfixed(P ′) ∪ TCvar(P ′). Of these, the constraints in
TCvar(P ′) are constructed from declaration elements that
occur in program P ′ and are always satisfied (because they
define rather than constrain). Therefore, we only need to
demonstrate that the constraints in TCfixed(P ′) are satis-
fied. Examination of rules (1)—(22) in Figure 3 reveals that
for each constraint t ∈ TCfixed(P), one of the following sit-
uations applies:

1. Type constraint t ∈ TCfixed(P) was generated for a

program construct that occurs unmodified in P ′. Then,
t ∈ TCfixed(P ′).

2. Type constraint t ∈ TCfixed(P) was generated for a
cast (C)E, for which [(C)E]P = C, but [(C)E]P ′ = I.
In this case, rule (16) does not apply in P ′, and t �∈
TCfixed(P ′). Observe that no type constraint occurs
in TCfixed(P ′) that “replaces” t.

3. Type constraint t ∈ TCfixed(P) was generated
for a virtual method call E.m(· · ·) (rule (4)),
where the type of E is changed from C to I ,
and where RootDefs(m(· · ·)) = { I.m(· · ·) } or
RootDefs(m(· · ·)) = { Object.m(· · ·) }. Then, t ∈
TCfixed(P ′).

4. Type constraint t ∈ TCfixed(P) was generated for
a virtual method call E.m(· · ·) (rule (4)), where
the type of E is changed from C to I, and where
RootDefs(m(· · ·)) is not a singleton set (i.e., not case 3
above). In this case, it follows from Definitions 2.2
and 3.1 that t ≡ t1or · · ·ortk for some k ≥ 2, and that
tj = I, for some 1 ≤ j ≤ k. Moreover, for program
P ′ we have that RootDefs(I.m(· · ·)) = { I.m(· · ·) }
and hence that tj ≡ [E]≤I ∈ TCfixed(P ′). To summa-
rize, for modified virtual method calls a type constraint
t ≡ t1or · · · ortk is replaced with one of its components
tj .

It should be noted that TCfixed(P ′) contains no constraint
t that is not in TCfixed(P) (i.e., constraints inferred by
rules (1)–(22)) except for the case where t is a replacement
for another constraint in TCfixed(P) (see item 4 above). This
is the case because P and P ′ have identical class hierarchies,
and there exists a one-to-one mapping between program con-
structs in P and program constructs in P ′.
We will demonstrate the type-correctness of P ′ by showing
that, for every type constraint t ∈ TCfixed(P), the corre-
sponding type constraint in TCfixed(P ′), if it exists, is sat-
isfied by P ′. The following cases exist5:

1. t ≡ [E]�C. This constraint is generated due to an
application of one of the rules (2), (5), (13), and (19)–
(22) These constraints merely define the type of an
expression and cannot be violated.

2. t ≡ [E] = [E′]. If [E]P = [E′]P �= C, we have [E]P ′ =
[E]P = [E′]P = [E′]P ′ because the transformation

5We will not discuss a number of constraints in TCfixed(P)
that involve constant types (such as those involving the
declaring classes of members). These remaining cases are
similar to the ones presented, and are in most cases trivial.

only affects expressions and declaration elements of
type C. Otherwise, [E]P = [E′]P = C, and it follows
from Definition 3.1 that either: (i) E ∈ Bad(P, C, I)
and E′ ∈ Bad(P, C, I), or (ii) E �∈ Bad(P, C, I) and
E′ �∈ Bad(P, C, I). In either case ([E]P ′ = C, [E′]P ′ =
C or [E]P ′ = I, [E′]P ′ = I), we have that: [E]P ′ =
[E′]P ′ .

3. t ≡ [E]≤D or D≤[E]. Then, t occurs due to a cast
(D)E in P (rule (16)). There are two cases:

(a) [(D)E]P �= C or (D)E ∈ Bad(P, C, I). Then, the
cast cannot be updated, and [(D)E]P ′ = [(D)E]P =
D. Two sub-cases exist: (i) If E �∈ All(P,C),
then [E]P ′ = [E]P , and t holds because P is
type-correct; (ii) [E]P = C. If E ∈ Bad(P, C, I),
we have [E]P ′ = [E]P , and t holds because P is
type-correct. If E �∈ Bad(P, C, I), we have that
[E]P ′ = I , and t �∈ TCfixed(P ′) because rule (16)
does not apply.

(b) [(D)E]P = C and (D)E �∈ Bad(P, C, I). The cast
occurs as (I)E in P ′, and t �∈ TCfixed(P ′) because
rule (16) does not apply.

4. t ≡ [E]≤[E′]. We distinguish the following cases:

(a) E �∈ All(P, C) and E′ �∈ All(P, C). Then, [E]P =
[E]P ′ and [E′]P = [E′]P ′ . Hence, [E]P ′≤[E′]P ′ .

(b) E �∈ All(P, C) and E′ ∈ All(P, C). Then, [E]P =
[E]P ′ . Two sub-cases exist: (i) if E′ ∈ Bad(P, C, I),
then [E′]P ′ = [E′]P and [E]P ′≤[E′]P ′ ; (ii) if E′ �∈
Bad(P, C, I), then C = [E′]P ≤[E′]P ′ = I. Hence,
[E]P ′≤[E′]P ′ .

(c) E ∈ All(P,C) and E′ �∈ All(P, C). Then,
[E′]P ′ = [E′]P . Two sub-cases exist: (i) If
I �≤[E′]P , then from Definition 3.1 it follows that
E ∈ Bad(P, C, I), so we have that [E]P ′ = [E]P ,
and therefore [E]P ′≤[E′]P ′ ; (ii) Otherwise, we
have that I≤[E′]P , so [E]P ′≤ I ≤[E′]P ′ .

(d) E ∈ All(P, C) and E′ ∈ All(P, C). Two sub-
cases exist: (i) If E′ ∈ Bad(P, C, I), Definition 3.1
implies that E ∈ Bad(P, C, I). Hence, [E]P =
[E]P ′ = [E′]P = [E′]P ′ = C, and [E]P ′≤[E′]P ′ ;
(ii) If E′ �∈ Bad(P, C, I), then [E′] = I in P ′.
Depending on whether or not E ∈ Bad(P, C, I),
we have [E]P ′ = C or [E]P ′ = I, but in either
case we have that [E]P ′≤[E′]P ′ .

5. t ≡ [E]≤T . Then, t is due to a virtual call E.m(· · ·)
to a method M , and T defines a method MT that is
overridden by M (rule (4)). Two cases exist:

(a) E �∈ All(P, C) or E ∈ Bad(P, C, I). Then, [E]P ′ =
[E]P and from rule (4) and Definition 2.2 it fol-
lows that t ∈ TCfixed(P ′). The fact that pro-
gram P satisfies t implies that [E]P ≤T , and from
[E]P ′ = [E]P ≤T it follows that P ′ satisfies t.

(b) E ∈ All(P, C) and E �∈ Bad(P,C, I). Then, [E]P ′ =
I. From Definition 2.2, it follows that T = Object
or T = I (otherwise, Definition 2.2 would not
have computed a singleton set), so we have 2 sub-
cases: (i) if T = Object, it follows from Defini-
tion 2.2 and rule (4) that t ∈ TCfixed(P ′), and P ′

trivially satisfies t because [E]P ′ = I ≤ Object =

T ; (ii) if T = I, then it follows from Definition 2.2
and rule (4) that t ∈ TCfixed(P ′), and P ′ trivially
satisfies t because [E]P ′ = I = T .

6. t ≡ [E]≤T1 or · · · or [E]≤Tk, k ≥ 2. Then, t is due
to a virtual call E.m(· · ·) to a method M , and each
type Ti (1 ≤ i ≤ k) defines a method Mi that is over-
ridden by M (rule (4)). From the Definition 2.2 and
the fact that k ≥ 2, it can be seen that no method
m(· · ·) occurs in class Object. Two cases exist:

(a) E �∈ All(P, C) or E ∈ Bad(P, C, I). Then, [E]P ′ =
[E]P and from rule (4) and Definition 2.2 it fol-
lows that t ∈ TCfixed(P ′). The fact that program
P satisfies t implies that [E]P ≤Th, for at least
one h such that 1 ≤ h ≤ k, and from [E]P ′ =
[E]P ≤Th, it follows that P ′ satisfies t.

(b) E ∈ All(P, C) and E �∈ Bad(P, C, I). Then, [E]P ′ =
I. From Definition 2.2, the fact that Object is the
only supertype of I, and the fact that method
m(· · ·) is not defined in class Object, we find
that a constraint t′ ≡ [E]≤I ∈ TCfixed(P ′) is
generated for method call E.m(· · ·) in program
P ′ (this constraint t′ ∈ TCfixed(P ′) replaces con-
straint t ∈ TCfixed(P)). P ′ satisfies this con-
straint because [E]P ′ = I.

Since all type constraints in TC(P ′) are satisfied, P ′ is type-
correct.

Example. Let us consider type constraint t ≡ [v4]≤[v5]
derived from the call to Client.populate() in Client.main().
Constraint t is satisfied in P1 because [v4]P1 = [v5]P1 =
List. We also note that v4 ∈ Bad(P1, List, Bag) and v5 /∈
Bad(P1, List, Bag). Thus, case 4d(ii) of the proof applies
and we see that because [v4]P ′

1
= List and [v5]P ′

1
= Bag we

have that [v4]P ′
1
≤[v5]P ′

1
, so t is satisfied in P ′

1 as well.

Conjecture 3.3 (preservation of behavior). Let P
be a type-correct program, let C and I be a class and an in-
terface in P , respectively, such that C is the only class that
implements I and such that I does not have any supertypes
other than Object. Let P ′ be a program obtained from P
by giving type I to all declaration elements in All(P, C) \
Bad(P, C, I). Then, P and P ′ have corresponding program
behaviors.

We plan to prove Conjecture 3.3 using the following ar-
guments: (a) For a given expression E with run-time type
T , a virtual call E.m(· · ·) dispatches to the same method
B.m(· · ·) in P and P ′, even if [E]P = C and [E]P ′ = I; (b)
For a given expression E with run-time type T , a cast (D)E
succeeds/fails in exactly the same cases in P and P ′, even
if [(D)E]P = C and [(D)E]P ′ = I; (c) P and P ′ contain ex-
actly the same statements and expressions. Together with
(a) and (b), this implies that the same points-to relation-
ships arise in P and P ′.

Theorem 3.4 (minimality of Bad(P, C, I)). Let P be
a type-correct program, let C and I be a class and an inter-
face in P , respectively, such that C is the only class that
implements I and such that I does not have any supertypes
other than Object. Let A be any set of declaration elements
such that A ⊂ Bad(P, C, I). Then, the program P ′ ob-
tained from P by giving type I to all declaration elements
in (All(P, C) \ A) is type-incorrect.

Proof. The proof depends on the following auxiliary def-
inition:

Def. 3.5 (Layer). Let Layer(E) : Bad(P,C, I) → N

be defined as follows:

Layer(E) =




0 if [E]≤T1 or · · · or [E]≤Tk ∈
TCfixed(P), I �≤P T1, · · · , I �≤P Tk

0 if [E]≤[E′] ∈ TCfixed(P),
E′ �∈ All(P, C), I �≤P [E′]

n + 1 if Layer(E) �= 0 and
n = min({ m = Layer(E′) | E′ �= E,
[E] = [E′] ∈ TCfixed(P) or
[E]≤[E′] ∈ TCfixed(P) or
[E]<[E′] ∈ TCfixed(P) })

Let B = Bad(P, C, I) \ A. Note that B �= ∅ because A ⊂
Bad(P, C, I) ⊆ All(P, C). We begin by selecting a “mini-
mal” element E ∈ B for which there exists no E′ ∈ B such
that Layer(E′) < Layer(E). Note that, in cases where there
is no unique minimal element, one may be chosen arbitrar-
ily. We are assuming that all elements in B are given type
I in P ′, hence [E]P ′ = I. Two cases exist:

1. Layer(E) = 0. Then, from Definition 3.5,
it follows that there are two sub-cases: (i)
[E]≤T1 or · · · or [E]≤Tk ∈ TCfixed(P),
I �≤T1, · · · , I �≤Tk, and (ii) [E]≤[E′] ∈ TCfixed(P),
E′ �∈ All(P, C), I �≤[E′]. In each case, P ′ does not
satisfy the constraint because of [E]P ′ = I and is
therefore not type-correct.

2. Layer(E) = n + 1, where n ≥ 0. Then, there exists an
E′ �= E such that Layer(E′) = n and a type constraint
t ∈ TCfixed(P) exists such that t ≡ [E]=[E′], or t ≡
[E]≤[E′], or t ≡ [E]<[E′]. We observe that E′ /∈ B
because Layer(E′) < Layer(E), and E was selected as
one of B’s elements with minimal Layer-value. From
E′ ∈ A, it follows that [E′]P ′ = C. From [E]P ′ = I
and [E′]P ′ = C it follows that program P ′ does not
satisfy type constraint t, rendering P ′ type-incorrect.

4. OTHERREFACTORINGSRELATEDTO
GENERALIZATION

4.1 Pull Up Members

The purpose of Pull Up Members is to move member(s)
from a given class into its superclass. We will use program
P2 of Figure 6 to illustrate the various issues associated with
Pull Up Members. P2 defines an abstract class List with
two subclasses, CList for representing constant-length lists,
and FList for variable-length lists. Methods are provided
for retrieving the size() of a list, adding elements to FLists,
sorting FLists, getting/setting a specific element, determin-
ing whether or not an FList isEmpty(), and for printing out
the contents of a CList (CList.toString()). Careful exami-
nation of program P2 reveals that:

1. Methods get(), set(), and isEmpty() can each be pulled
up (by itself) from FList into List without affecting
type-correctness and program behavior.

2. Method size() cannot be pulled up from FList into
List because another6 method with the same signature
is already defined in List.

3. Method FList.add() can only be pulled up to List if
FList.set() is pulled up as well, because no method
set() is declared in class List.

4. Note that the body of FList.sort() contains a state-
ment return this, and that the return type of sort()

is FList. If sort() is pulled up into List, the type
of this becomes List, and the resulting program be-
comes type-incorrect because the return expression is
no longer (a subtype of) FList.

5. Pulling up method CList.toString() does not result in
any compiler errors. However, program behavior has
changed because the call w1.toString() now dispatches
to a different definition of the toString() method.

4.2 Checking thePreconditionsofPull Up Mem-

bers

We will reuse the type constraints of Figure 3 to detect
when pulling up a (set of) method(s) would affect type-
correctness or program behavior. However, there is a subtle
difference in the way we use these constraints. In the case
of Extract Interface, we were solving a constraint sys-
tem in which the types of declaration elements were “vari-
able”, and the declaring classes of methods were “fixed”.
In the case of Pull Up Members, a different partition-
ing is required because the types of declaration elements
are fixed (they are not affected by this particular refactor-
ing), but the declaring classes of (pulled-up) members may
change. Hence, in the case of Pull Up Members, we define
TC′

var(P) to be the set of constraints inferred using rule (21),
and TC′

fixed(P) to be the set of constraints inferred using any
of the other rules.

Figure 7 shows the type constraints for P2. Similar to
what we did in Section 2.5, we simplify constraints by apply-
ing the “constant definition” constraints in TC′

fixed(P) that
use the � symbol. Specifically, the type of a declaration
element E is shown as the constant value [E]P . However,
the declaring class of a member M is shown in unsimpli-
fied form (i.e., as Decl(M)) because the Pull Up Members

refactoring may change the location of members in the class
hierarchy. Observe that:

• Pulling up FList.size() into List implies that
Decl(FList.size()) = List. This would violate con-
straint Decl(FList.size()) < Decl(List.size()).

• It is obvious from constraint Decl(FList.add()) ≤
Decl(FList.set()) that FList.add() cannot be pulled
up without also pulling up FList.set().

• Pulling up method FList.sort() means that
Decl(FList.sort()) = List, which violates the type
constraint Decl(FList.sort()) ≤ FList.

• The remaining problem case—pulling up
CList.toString()—does not raise any type-correctness
issues. This illustrates that type constraints by

6This example contains two gratuitously different size()
methods solely for the purpose of illustrating the issues
raised by method overriding.

abstract class List {
int size(){
return this.size;

}
void setSize(int i){
this.size = i;

}
Comparable[] elems;
int size;

}
class CList extends List {

CList(Comparable[] objects){
this.elems = objects;
this.size = objects.length;

}
public String toString() {
return java.util.Arrays.asList(this.elems).toString();

}
}
class FList extends List {

FList(){
this.elems = new Comparable[10];
this.size = 0;

}
void add(Comparable e) {
if (this.size() + 1 == this.elems.length){

Comparable[] newObjects =
new Comparable[2 * this.size()];

System.arraycopy(elems,0,newObjects,0,this.size());
this.elems = newObjects;

}
this.set(this.size(), e);
this.setSize(this.size() + 1);

}
· · ·

/* class FList continued */
int size(){

int n = this.size;
return n;

}
boolean isEmpty(){

return this.size() == 0;
}
public FList sort() { /* insertion sort */

for (int i = 1; i < this.size; i++) {
Comparable e1 = this.elems[i];
int j = i;
while ((j > 0) &&

(this.elems[j-1].compareTo(e1) > 0)) {
this.elems[j] = this.elems[j-1];
j--;

}
this.elems[j] = e1;

}
return this;

}
Comparable get(int index){

return this.elems[index];
}
void set(int index, Comparable o){

this.elems[index] = o;
}

}
class Client {

public static void main(String[] args) {
FList w1 = new FList();
w1.add("foo"); w1.add("bar"); w1.sort();
System.out.println(w1.toString());
List w2 = new CList(new Comparable[]{ "zip", "zap" });
System.out.println(w2.toString());

}
}

Figure 6: Example program P2. Class List represents abstract lists, and has two concrete subclasses: CList
for constant lists, and FList for mutable lists.

themselves are not always sufficient to express the
preconditions of refactorings.

Definition 4.1 below introduces a predicate
CanPullUp(P, M). If this predicate holds, virtual method
M in program P can be pulled up into the superclass
of M ’s declaring class without affecting type-correctness
and program behavior. Referring to the labels (a)–(e) in
Definition 4.1, we have that:

(a) Type constraints of the form Decl(M)≤[E] are due
to assignments ‘E = this’ within M ’s body (as well
as parameter-passing and return-expressions involving
this). To ensure that these constraints still hold after
pulling up M , we require that super(DeclP (M))≤ [E]P .

(b) A constraint Decl(M)≤Decl(M ′) is due to (i) a mem-
ber M ′ that is not a virtual method is accessed from
method M ’s this-pointer, or (ii) a virtual method M ′′

is called on M ’s this-pointer, and RootDefs(M ′′) =
{ M ′ }. To preserve such constraints, we require that
super(DeclP (M))≤DeclP (M ′).

(c) A constraint of the form Decl(M)≤Decl(M1) or
· · · or Decl(M)≤Decl(Mk) arises due to a virtual
method call to M ′ on the this pointer of method
M , where RootDefs(M ′) = { M1, · · · , Mk }. After

pulling up method M , the constraint still holds if
super(DeclP (M))≤DeclP (Mj), for some 1 < j ≤ k.

(d) Constraints of the form Decl(M)<Decl(M ′) occur
when a method M overrides method M ′. Requir-
ing super(DeclP (M))<DeclP (M ′) ensures that no class
contains methods with identical signatures after the
pull-up.

(e) The final condition in Definition 4.1 suffices to pre-
serve dispatch behavior of calls to methods with the
same signature as M , and states that, if a method
with the same signature as M is called on a sub-
type of super(DeclP (M)), the dispatch should re-
solve to a proper subtype of super(DeclP (M)). Here,
staticLookup(P, C, S) is a function that, for a given
program P and class C, determines the nearest su-
perclass of C that declares a method with signature
S.

It should be stated that (d) and (e) are sufficient conditions
that, in some cases, may prohibit pulling up methods when
it is safe to do so. In case of (e) this is unavoidable, because
a precise condition would requires full knowledge about pro-
gram execution behavior. Work on an exact version of (d)
is still in progress.

method(s) constraint(s) rule(s)
List.size(), FList.size() Decl(FList.size()) < Decl(List.size()) (10)

List.setSize() Decl(List.setSize()) ≤ Decl(List.size) (6),(19)
List.size() Decl(List.size()) ≤ Decl(List.size) (6),(19)
CList.CList() Decl(CList.CList()) ≤Decl(List.elems) (6),(19)

Decl(CList.CList()) ≤Decl(List.size) (6),(19)
CList.toString() Decl(CList.toString()) ≤Decl(List.elems) (6),(19)
FList.FList() Decl(FList.FList()) ≤ Decl(List.size) (6),(19)

Decl(FList.FList()) ≤ Decl(List.elems) (6),(19)
FList.add() Decl(FList.add()) ≤ Decl(List.size()) (4),(19)

Decl(FList.add()) ≤ Decl(List.elems) (6),(19)
Decl(FList.add()) ≤ Decl(List.setSize()) (4),(19)

Decl(FList.add()) ≤ Decl(FList.set()) (4),(19)
FList.size() Decl(FList.size()) ≤ Decl(List.size) (6),(19)

FList.isEmpty() Decl(FList.isEmpty()) ≤ Decl(List.size()) (4),(19)
FList.sort() Decl(FList.sort()) ≤ Decl(List.size()) (4),(19)

Decl(FList.sort()) ≤ Decl(List.elems) (6),(19)
Decl(FList.sort()) ≤ FList (7),(19)

FList.get() Decl(FList.get()) ≤ Decl(List.elems) (6),(19)
FList.set() Decl(FList.set()) ≤ Decl(List.elems) (6),(19)
Client.main() FList ≤ Decl(FList.add()) (4),(23)

FList ≤ Decl(FList.sort()) (4),(23)

Figure 7: Type constraints TCfixed(P2) for program P2 of Figure 6. Only nontrivial constraints related to types
List, CList, and FList are shown.

Def. 4.1. Let P be a program, let M be a virtual method
in P such that Decl(M) �= Object, and let Decl(M) be a
class. Define:

CanPullUp(P, M) ⇔
∀Decl(M)≤[E] ∈ TC′

fixed(P) :
super(DeclP (M))≤P [E]P , and (a)

∀Decl(M)≤Decl(M ′) ∈ TC′
fixed(P), M �= M ′ :

super(DeclP (M))≤P DeclP (M ′), and (b)
∀Decl(M)≤Decl(M1) or · · · or
Decl(M)≤Decl(Mk) ∈ TC′

fixed(P), k > 1 :
super(DeclP (M))≤P DeclP (Mj),
for some j, 1 < j ≤ k, and (c)

∀Decl(M)<Decl(M ′) ∈ TC′
fixed(P) :

super(DeclP (M))<P DeclP (M ′), and (d)
∀ C≤super(DeclP (M)) :

staticLookup(P, C,Sig(M))<P super(DeclP (M)) (e)

It is straightforward to extend CanPullUp to nonvirtual
methods, member types, fields and to sets of members (meth-
ods, types and fields). In addition, type constraints can be
used to determine, for a given method M that cannot be
pulled up in isolation, if there exists a set of methods con-
taining M that can be pulled up. Space limitations prevent
us from providing additional details.

4.3 Other Refactorings
Other refactorings that can be modeled using our ap-

proach include:

Generalize Type. This refactoring replaces the type
of a single declaration element E with its supertype.
The preconditions for this refactoring can be stated
as a predicate on the type constraints that involve E.
In some cases, Generalize Type can enable Pull

Up Members refactorings that are otherwise impossi-
ble. If, in program P2 of Figure 6, the return type of
FList.sort() is generalized to List, FList.sort() can
be pulled up into class List.

Extract Subclass [6, page 330]. This is a refactoring for
“splitting” a class, to address situations where a class
has members that are used in some instances of the
class and not in others. This raises issues related to
the updating of declaration elements similar to those
discussed for Extract Interface.

Push Down Members [6, page 328]. This is the inverse
operation of Pull Up Members, and although tech-
nically a refactoring for specialization, it raises very
similar issues.

5. IMPLEMENTATION AND PRAGMATIC
ISSUES

We have implemented Extract Interface in Eclipse [5].
Our implementation follows Definition 3.1 to find decla-
ration elements that can be updated, and uses the stan-
dard model and GUI support for performing refactorings in
Eclipse [1]. Work on the other refactorings of Section 4 is in
progress.

Thus far, we have only shown type constraints for a core
set of Java features. A number of Java’s other features are
discussed below. Some of the more interesting corresponding
type constraints are shown in Figure 8.

Arrays. Arrays and array initializers introduce some rather
straightforward constraints, as shown in Figure 8. Ad-
ditionally, concrete refactorings need to take array types
into account as well. E.g., in the case of Extract In-

terface, the computation of Bad(P, C, I) must take
into account expressions and declaration elements of
type C[], C[][], · · · , etc. Moreover, it would be desir-
able to determine those declaration elements of type
C[], C[][], · · · that can be updated to I [], I[][], · · · ,
respectively. A precise solution to this problem is a
topic for future work.

Casts and instanceof expressions. Type constraints
implied by instanceof expressions (rule (38)) are anal-

program construct implied type constraint(s)

new T [E] [new T [E]]�T []
[E] = Int

(27)
(28)

expression T [E] [T [E]]�T
[E] = Int

(29)
(30)

for any T≤T ′ T []≤T ′[] (31)
initialized declaration
T [] c={E1, . . . , En} [Ei]≤T (32)

initialized creation expression
new T [E]{E1, . . . , En} [Ei]≤T (33)

try {...} catch(E e){...} E≤java.lang.Throwable (34)
try{...} catch(E1 e1){. . .}

· · ·
catch(En en){. . .}

∀i, j : 1 ≤ i < j ≤ n
Ej �≤Ei

(35)

M overrides M ′
∀E ∈ Excptns(M) ∩ CheckedExcptns

∃E′ ∈ Excptns(M ′)
E≤E′

(36)

expression
E instanceof T

[E instanceof T]�Bool

[E]≤T or T≤[E]
if T is a class and [E] is a class

(37)

(38)

CheckedExcptns {E : E ≤java.lang.Throwable ∧ E �≤java.lang.Error ∧
E �≤java.lang.RuntimeException}

Excptns(M) set of exceptions included in throws clause of M ’s declaration

Figure 8: Additional type constraints.

ogous to those for casts (rule (16)) [10, Section 15.20.2].
In addition to rule (16), various other constraints on
the correctness of casts exist. For a detailed discussion,
we refer the reader to [10, Section 5].

Member types. Member types [10, Section 8.5] have ac-
cess to fields, methods, types and variables declared
in their enclosing scopes and supertypes. A member
type is type-incorrect if it uses an identifier that is
declared in both a supertype and an enclosing scope.
Care must be taken when applying refactorings like
Pull Up Members to avoid introducing such ambi-
guities.

Exceptions. Several additional type constraints related
to exceptions are listed in Figure 8 as rules (34)–(36).
Replacing the type referred to in a catch-clause with
its supertype may change program behavior in vari-
ous ways (e.g., more exceptions being caught, or the
program becoming type-incorrect). In our implemen-
tation, we exclude java.lang.Throwable and its sub-
classes from consideration, similarly to [11].

Overloading. Overloading (i.e., having methods with iden-
tical names but different argument types in a class)
raises interesting issues for the refactorings under con-
sideration. An invocation of m(T1, · · · , Tk) results in
selection of a method m(· · ·) with the most specific sig-
nature that matches m(T1, · · · , Tk) [10, Section 15.12.2.2].
Changing parameter types, or pulling up methods may
affect this specificity ordering, and change program be-
havior. Currently, we disallow refactorings when such
problems occur.

Visibility/Accessibility issues. Care must be taken to
preserve the appropriate visibility relationships. E.g.,
extracting an interface may require adding import state-
ments, to ensure the visibility of parameter types. A

refactoring tool must either increase visibility of these
members, or disallow refactoring.

6. RELATEDWORK
In his pioneering work on refactoring, Opdyke [15] iden-

tified and informally specified invariants that any refactor-
ing must preserve [15, page 27–28]. One of these invari-
ants, Compatible Signatures in Member Function Redefini-
tion, states that overriding methods must have correspond-
ing argument types and return types, and is reflected by our
constraints (8) and (9). Opdyke writes the following about
the Type-Safe Assignments invariant: “The type of each ex-
pression assigned to a variable must be an instance of the
variable’s defined type, or an instance of one of its subtypes.
This applies both to assignment statements and function
calls”. This is expressed by our constraints (1), (3), (12),
and (14). Opdyke states the preconditions of refactorings
as requirements on source-level constructs, using a number
of auxiliary predicates that represent structural properties
of programs. Opdyke does not address the issue of using
invariants to compute a set of allowable source code modifi-
cations, as we do in the case of Extract Interface.

Fowler [6] presents a comprehensive classification of a large
number of refactorings, which includes step-by-step direc-
tions on how to perform each of these manually. Many of
the thorny issues related to generalization-related refactor-
ings are not addressed. For example, in the case of Extract

Interface, Fowler only instructs one to “Adjust client type
declarations to use the interface”, ignoring the fact that not
all declarations can be updated.

The development environment IntelliJ IDEA [12] by Jet-
Brains, Inc. supports refactorings that deal with generaliza-
tion such as Extract Interface, and automatically de-
termines declaration elements that can be updated. We are
unfamiliar with the details of their implementation, but the
results obtained with their tool appear similar to ours.

Halloran and Scherlis [11] present an algorithm for de-
tecting overspecific variable declarations. In contrast to our
work, every variable declaration is analyzed in isolation, and
relationships between declarations—all-important in our
approach—are not considered. Hence, several run/modify
iterations may be required to discover all possible declara-
tion updates.

Duggan [4] studies the problem of reverse engineering pa-
rameterized types into existing Java programs. In this work,
type constraints are used to infer bounds on type parame-
ters of parameterized classes, and to determine situations
in which downcasts are guaranteed to succeed. Duggan’s
formal model of type constraints is similar in spirit to ours,
although notationally quite different. Some important dif-
ferences include our treatment of virtual method calls and
overriding, and the fact that in our constraints, the location
of methods and fields is variable.

Tokuda and Batory [22] discuss the use of refactorings to
introduce new (or evolve existing) design patterns [8] in ap-
plications. Several refactorings are presented to support this
evolution of program designs, including one called Substi-

tute which “generalizes a relationship by replacing a sub-
class reference to that of its superclass”. Tokuda and Batory
point out that “This refactoring must be highly constrained
because it does not always work”. Our model can be used
to add proper precondition checking for Substitute.

Seguin [18] analyzes, using Pull Up Field as an example,
challenges for refactoring in strongly typed languages such as
Java. The issues encountered by Seguin are similar to those
described in this paper. Seguin, however, advocates the use
of type casts to preserve the program’s type-correctness, a
solution that we consider inappropriate in a refactoring tool
(see Section 1.3).

Snelting and Tip [19, 20] present an approach for gener-
ating refactoring proposals for Java applications (e.g., in-
dications that a class can be split, or that a member can
be moved). This work is based on earlier work by Tip
and Sweeney [21] in which type constraints record relation-
ships between variables and members that must be pre-
served. From these type constraints, a binary relation be-
tween classes and members is constructed that encodes pre-
cisely the members that must be visible in each object. Con-
cept analysis is used to generated a concept lattice from this
relation, from which refactoring proposals are generated.

Much previous work on generating and solving type con-
straints exists (see, e.g., [17, 7]). Recently, Glew and Pals-
berg [9] designed an algorithm for type-safe method inlining
that makes use of type constraints to refine type-annotations.
Carlos [3] describes an algorithm that analyzes a program’s
type constraints to identify all declaration elements that
need to be updated in response to a request for updating a
given declaration element. This algorithm is only described
informally, and several important language features are not
addressed (e.g., casts). No proof of correctness or optimality
of the computed solution is given.

7. FUTUREWORK
Plans for future work include a complexity analysis of our

algorithms, and a detailed study of other generalization-
related refactorings (see Section 4.3). With respect to
Extract Interface, we plan to extend the declaration-
updating process to include declaration elements whose type
is an array, and declaration elements whose type is a subtype

of the class from which the interface is extracted. A com-
plete formalization of the type constraints associated with
overloading is also future work.

Acknowledgments
We are grateful to Jens Palsberg and V.T. Rajan for com-
ments on drafts of this paper.

8. REFERENCES
[1] Bäumer, D., Gamma, E., and Kieżun, A.

Integrating refactoring support into a Java
development tool. In OOPSLA’01 Companion
(October 2001).

[2] Beck, K. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2000.

[3] Carlos, C. S. The elimination of overheads due to
type annotations and the identification of candidate
refactorings. Master’s thesis, North Carolina State
University, 2002.

[4] Duggan, D. Modular type-based reverse engineering
of parameterized types in java code. In Proceedings of
the 14th Annual Conference on Object-Oriented
Systems, Languages, and Applications (OOPSLA’99)
(Denver, CO, November 1999), pp. 97–113.

[5] Eclipse.org. Eclipse. On-line at
http://www.eclipse.org.

[6] Fowler, M. Refactoring. Improving the Design of
Existing Code. Addison-Wesley, 1999.

[7] Gagnon, E. M., Hendren, L. J., and Marceau,

G. Efficient inference of static types for Java
bytecode. In Proceedings of SAS’00, International
Static Analysis Symposium (2000), Springer-Verlag
(LNCS 1824), pp. 199–219.

[8] Gamma, E., Helm, R., Johnson, R., and

Vlissides, J. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[9] Glew, N., and Palsberg, J. Type-safe method
inlining. In Proceedings of the 16th European
Conference on Object-Oriented Programming
(ECOOP 2002) (Málaga, Spain, June 2002),
pp. 525–544. Springer-Verlag LNCS 2374.

[10] Gosling, J., Joy, B., Steele, G., and Bracha, G.

The Java Language Specification (Second Edition).
Addison-Wesley, 2000.

[11] Halloran, T. J., and Scherlis, W. L. Models of
Thumb: Assuring best practice source code in large
Java software systems. Tech. Rep. Fluid Project,
School of Computer Science/ISRI, Carnegie Mellon
University, Sept. 2002.

[12] JetBrains, Inc. Intellij idea. On-line at
http://www.intellij.com/jetbrains.

[13] Meyer, B. Object-Oriented Software Construction.
Prentice Hall, Inc., 1997.

[14] Opdyke, W. F., and Johnson, R. E. Creating
abstract superclasses by refactoring. In The ACM
1993 Computer Science Conf. (CSC’93) (February
1993), pp. 66–73.

[15] Opdyke, W. F. Refactoring Object-Oriented
Frameworks. PhD thesis, University Of Illinois at
Urbana-Champaign, 1992.

[16] Palsberg, J., and Schwartzbach, M.

Object-Oriented Type Systems. John Wiley & Sons,
1993.

[17] Palsberg, J. Efficient inference of object types.
Information and Computation 123, 2 (1995), 198–209.

[18] Seguin, C. Refactoring tool challanges in a strongly
typed language. In OOPSLA’00 Companion (October
2000), pp. 101–102.

[19] Snelting, G., and Tip, F. Reengineering class
hierarchies using concept analysis. In Proc. ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (Orlando, FL, November 1998),
pp. 99–110.

[20] Snelting, G., and Tip, F. Understanding class
hierarchies using concept analysis. ACM Trans. on
Programming Languages and Systems (May 2000),
540–582.

[21] Tip, F., and Sweeney, P. Class hierarchy
specialization. Acta Informatica 36 (2000), 927–982.

[22] Tokuda, L., and Batory, D. Evolving
object-oriented designs with refactorings. Kluwer
Journal of Automated Software Engineering (August
2001), 89–120.

