
Chianti: A Tool for Change Impact Analysis of Java
Programs

Xiaoxia Ren1, Fenil Shah2, Frank Tip3, Barbara G. Ryder1, and Ophelia Chesley1∗

Division of Computer and Information Sciences1 IBM Software Group2 IBM T.J. Watson Research Center3

Rutgers University 17 Skyline Drive P.O. Box 704
110 Frelinghuysen Road Hawthorne, NY 10532, USA Yorktown Heights, NY 10598, USA

Piscataway, NJ 08854-8019, USA fenils@us.ibm.com tip@watson.ibm.com
{xren,ryder,ochesley}@cs.rutgers.edu

ABSTRACT
This paper reports on the design and implementation of
Chianti, a change impact analysis tool for Java that is imple-
mented in the context of the Eclipse environment. Chianti
analyzes two versions of an application and decomposes their
difierence into a set of atomic changes. Change impact is
then reported in terms of afiected (regression or unit) tests
whose execution behavior may have been modifled by the
applied changes. For each afiected test, Chianti also deter-
mines a set of affecting changes that were responsible for
the test’s modifled behavior. This latter step of isolating
the changes that induce the failure of one speciflc test from
those changes that only afiect other tests can be used as a
debugging technique in situations where a test fails unex-
pectedly after a long editing session.

We evaluated Chianti on a year (2002) of CVS data from
M. Ernst’s Daikon system, and found that, on average, 52%
of Daikon’s unit tests are afiected. Furthermore, each af-
fected unit test, on average, is afiected by only 3.95% of
the atomic changes. These flndings suggest that our change
impact analysis is a promising technique for assisting devel-
opers with program understanding and debugging.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.6 [Software Engineering]: Programming Environ-
ments; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages|Program analysis

General Terms
Algorithms, Measurement, Languages, Reliability

∗This research was supported by NSF grant CCR-0204410
and in part by REU supplement CCR-0331797.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

Keywords
Change impact analysis, regression test, unit test, analysis
of object-oriented programs

1. INTRODUCTION
The extensive use of subtyping and dynamic dispatch in

object-oriented programming languages make it di–cult to
understand value °ow through a program. For example,
adding the creation of an object may afiect the behavior of
virtual method calls that are not lexically near the alloca-
tion site. Also, adding a new method deflnition that over-
rides an existing method can have a similar non-local efiect.
This nonlocality of change impact is qualitatively difierent
and more important for object-oriented programs than for
imperative ones (e.g., in C programs a precise call graph can
be derived from syntactic information alone, except for the
typically few calls through function pointers [14]).

Change impact analysis [3, 13, 15, 21, 16] consists of a
collection of techniques for determining the efiects of source
code modiflcations, and can improve programmer produc-
tivity by: (i) allowing programmers to experiment with dif-
ferent edits, observe the code fragments that they afiect,
and use this information to determine which edit to select
and/or how to augment test suites, (ii) reducing the amount
of time and efiort needed in running regression1 tests, by de-
termining that some tests are guaranteed not to be afiected
by a given set of changes, and (iii) reducing the amount of
time and efiort spent in debugging, by determining a safe
approximation of the changes responsible for a given test’s
failure [21, 19].

The change impact analysis method presented in this pa-
per presumes the existence of a suite T of regression tests
associated with a Java program and access to the original
and edited versions of the code. Our analysis comprises the
following steps:

1. A source code edit is analyzed to obtain a set of in-
terdependent atomic changes A, whose granularity is
(roughly) at the method level. These atomic changes
include all possible efiects of the edit on dynamic dis-
patch.

2. Then, a call graph is constructed for each test in T .
Our method can use either dynamic call graphs that
have been obtained by tracing the execution of the

1In the rest of this paper, we will use the term \regression
test" to refer to unit tests and other regression tests.

tests, or static call graphs that have been constructed
by a static analysis engine. In this paper, we use dy-
namic call graphs2.

3. For a given set T of regression tests, the analysis de-
termines a subset T ′ of T that is potentially affected
by the changes in A, by correlating the changes in A
against the call graphs for the tests in T in the original
version of the program.

4. Finally, for a given test ti ∈ T ′, the analysis can de-
termine a subset A′ of A that contains all the changes
that may have afiected the behavior of ti. This is ac-
complished by constructing a call graph for ti in the
edited version of the program, and correlating that call
graph with the changes in A.

The primary goal of our research is to provide programmers
with tool support that can help them understand why a test
is suddenly failing after a long editing session by isolating
the changes responsible for the failure.

There are some interesting similarities and difierences be-
tween the work presented in this paper, and previous work
on regression test selection and change impact analysis.
Step 3 above is similar in spirit to previous work on regres-
sion test selection. However, unlike previous approaches our
technique does not rely on a pairwise comparison of high-
level program representations such as control °ow graphs
(see, e.g. [20]) or Java InterClass Graphs [10]. Our work
difiers from previous approaches for dynamic change im-
pact analysis [13, 15, 16] in the sense that these previous
approaches are primarily concerned with the problem of de-
termining a subset of the methods in a program that were
affected by a given set of changes. In contrast, step 4 of
our technique is concerned with the problem of isolating a
subset of the changes that affect a given test. In addition,
our approach decomposes the code edit into a set of seman-
tically meaningful, interdependent ’atomic changes’ which
can be used to generate intermediate program versions, in
order to investigate the cause of unexpected test behavior.
These, and other connections to related work, will be further
explored in Section 6.

This paper reports on the engineering of Chianti, a proto-
type change impact analysis tool, and its validation against
the 2002 revision history (taken from the developers’ CVS
repository) of Daikon, a realistic Java system developed by
M. Ernst et al. [7]. Essentially, in this initial study we
substituted CVS updates obtained at intervals throughout
the year for programmer edits, thus acquiring enough data
to make some initial conclusions about our approach. We
present both data measuring the overall efiectiveness of the
analysis and some case studies of individual CVS updates.
Since the primary goal of our research has been to assist pro-
grammers during development, Chianti has been integrated
closely with Eclipse, a widely used open-source development
environment for Java (see www.eclipse.org).

The main contributions of this research are as follows:

• Demonstration of the utility of the basic change impact
analysis framework of [21], by implementing a proof-of-
concept prototype, Chianti, and applying it to Daikon,
a moderate-sized Java system built by others.

2Our previous study used static call graphs [19].

• Extension of the originally specifled techniques [21] to
handle the entire Java language, including such con-
structs as anonymous classes and overloading. This
work entailed extension of the model of atomic changes
and their interdependences.

• Experimental validation of the utility of change im-
pact analysis by determining the percentages of af-
fected tests and afiecting changes for 40 versions of
Daikon in 2002. For the 39 sets of changes between
these versions, we found that, on average, 52% of the
tests are potentially afiected. Moreover, for each po-
tentially afiected test, on average, only 3.95% of the
atomic changes afiected it. This is a promising result
with regard to the utility of our technique for enhanc-
ing program understanding and debugging.

In Section 2, we give intuition about our approach through
an example. In Section 3, the model of atomic changes is
discussed, as well as engineering issues arising from handling
Java constructs that were previously not modeled. The im-
plementation of Chianti is described in Section 4. Section 5
describes the experimental setup and presents the empirical
flndings of the Daikon study. Related work and conclusions
are summarized in Sections 6 and 7, respectively.

2. OVERVIEW OF APPROACH
This section gives an informal overview of the change im-

pact analysis methodology originally presented in [21]. Our
approach flrst determines, given two versions of a program
and a set of tests that execute parts of the program, the af-
fected tests whose behavior may have changed. Our method
is safe [20] in the sense that this set of afiected tests contains
at least every test whose behavior may have been afiected.

Then, in a second step, for each test whose behavior was
afiected, a set of affecting changes is determined that may
have given rise to that test’s changed behavior. Our method
is conservative in the sense that the computed set of afiecting
changes is guaranteed to contain at least every change that
may have caused changes to the test’s behavior.

We will use the example program of Figure 1(a) to il-
lustrate our approach. Figure 1(a) depicts two versions
of a simple program comprising classes A, B, and C. The
original version of the program consists of all the program
text except for the 7 program fragments shown in boxes;
the edited version of the program consists of all the pro-
gram text including the program fragments shown in boxes.
Associated with the program are 3 tests, Tests.test1(),
Tests.test2(), and Tests.test3().

Our change impact analysis relies on the computation of
a set of atomic changes that capture all source code mod-
iflcations at a semantic level that is amenable to analysis.
We currently use a fairly coarse-grained model of atomic
changes, where changes are categorized as added classes
(AC), deleted classes (DC), added methods (AM), deleted
methods (DM), changed methods (CM), added flelds (AF),
deleted flelds (DF), and lookup (i.e., dynamic dispatch)
changes (LC)3.

We also compute syntactic dependences between atomic
changes. Intuitively, an atomic change A1 is dependent on

3There are a few more categories of atomic changes that are
not relevant for the example under consideration that will
be presented in Section 3.

another atomic change A2 if applying A1 to the original ver-
sion of the program without also applying A2 results in a
syntactically invalid program (i.e., A2 is a prerequisite for
A1). These dependences can be used to determine that cer-
tain changes are guaranteed not to afiect a given test, and
to construct syntactically valid intermediate versions of the
program that contain some, but not all atomic changes. It is
important to understand that the syntactic dependences do
not capture semantic dependences between changes (con-
sider, e.g., related changes to a variable deflnition and a
variable use in two difierent methods). This means that if
two atomic changes, C1 and C2, afiect a given test T , then
the absence of a syntactic dependence between C1 and C2

does not imply the absence of a semantic dependence; that
is, program behaviors resulting from applying C1 alone, C2

alone, or C1 and C2 together, may all be difierent. If a set
S of atomic changes is known to expose a bug, then the
knowledge that applying certain subsets of S does not lead
to syntactically valid programs, can be used to localize bugs
more quickly.

Figure 1(b) shows the atomic changes that deflne the two
versions of the example program, numbered 1{13 for conve-
nience. Each atomic change is shown as a box, where the
top half of the box shows the category of the atomic change
(e.g., CM for changed method), and the bottom half shows
the method or fleld involved (for LC changes, both the class
and method involved are shown). An arrow from an atomic
change A1 to an atomic change A2 indicates that A2 is de-
pendent on A1. Consider, for example, the addition of the
call B.bar() in method B.foo(). This source code change
resulted in atomic change 8 in Figure 1(b). Observe that
adding this call would lead to a syntactically invalid program
unless method B.bar() is also added. Therefore, atomic
change 8 is dependent on atomic change 6, which is an AM
change for method B.bar(). The observant reader may have
noticed that there is also a CM change for method B.bar()

(atomic change 9). This is the case because our method for
deriving atomic changes decomposes the source code change
of adding method B.bar() into two steps: the addition of
an empty method B.bar() (AM atomic change 6 in the flg-
ure), and the insertion of the body of method B.bar() (CM
atomic change 9 in the flgure), where the latter is dependent
on the former. Observe that addition of B.bar()’s body re-
quires that fleld B.y be added to class B. Hence, there is
a dependence of atomic change 9 on AF atomic change 7,
which represents the addition of fleld B.y. Notice that our
model of dependences between atomic changes correctly cap-
tures the fact that adding the call to B.bar() to the body of
B.foo() requires that a method B.bar() is added, but not
that fleld B.y is added.

The LC atomic change category models changes to the
dynamic dispatch behavior of instance methods. In particu-
lar, an LC change (Y, X.m()) models the fact that a call to
method X.m() on an object of type Y results in the selection
of a difierent method. Consider, for example, the addition of
method C.foo() to the program of Figure 1(a). As a result
of this change, a call to A.foo() on an object of type C will
dispatch to C.foo() in the edited program, whereas it used
to dispatch to A.foo() in the original program. This change
in dispatch behavior is captured by atomic change 4. LC
changes are also generated in situations where a dispatch
relationship is added or removed as a result of a source code

change4. For example, atomic changes 5 (deflning the be-
havior of a call to C.foo() on an object of type C) and 13
(deflning the behavior of a call to C.baz() on an object of
type C) occur due to the addition of methods C.foo() and
C.baz(), respectively.

In order to identify those tests that are afiected by a set
of atomic changes, we have to construct a call graph for each
test. The call graphs used in this paper contain one node
for each method, and edges between nodes to re°ect calling
relationships between methods. Our analysis can work with
call graphs that have been constructed using static analysis,
or with call graphs that have been obtained by observing the
actual execution of the tests. In the experiments reported
in this paper, dynamic call graphs are used.

Figure 1(c) shows the call graphs for the 3 tests test1,
test2, and test3, before the changes have been applied.
In these call graphs, edges corresponding to dynamic dis-
patch are labeled with a pair < T, M >, where T is the
run-time type of the receiver object, and M is the method
shown as invoked at the call site. A test is determined to be
afiected if its call graph (in the original version of the pro-
gram) either contains a node that corresponds to a changed
method (CM) or deleted method (DM) change, or if its
call graph contains an edge that corresponds to a lookup
change (LC). Using the call graphs in Figure 1(c), it is easy
to see that: (i) test1 is not afiected, (ii) test2 is afiected
because its call graph contains a node for B.foo(), which
corresponds to CM change 8, and (iii) test3 is afiected
because its call graph contains an edge corresponding to a
dispatch to method A.foo() on an object of type C, which
corresponds to LC change 4.

In order to compute the changes that afiect a given af-
fected test, we need to construct a call graph for that test in
the edited version of the program. These call graphs for the
tests are shown in Figure 1(d)5. The set of atomic changes
that afiect a given afiected test includes: (i) all atomic
changes for added methods (AM) and changed methods
(CM) that correspond to a node in the call graph (in the
edited program), (ii) atomic changes in the lookup change
(LC) category that correspond to an edge in the call graph
(in the edited program), and (iii) their transitively prereq-
uisite atomic changes.

As an example, we can compute the afiecting changes for
test2 as follows. Observe, that the call graph for test2 in
the edited version of the program contains methods B.foo()
and B.bar(). These nodes correspond to atomic changes
8 and 9 in Figure 1(b), respectively. Atomic change 8 re-
quires atomic change 6, and atomic change 9 requires atomic
changes 6 and 7. Therefore, the atomic changes afiecting
test2 are 6, 7, 8, and 9. Informally, this means that we
can automatically determine that test2 is afiected by the
addition of fleld B.y, the addition of method B.bar(), and
the change to method B.foo(), but not on any of the other
source code changes! In other words, we can safely rule out 9
of the 13 atomic changes as the potential source for test2’s
changed behavior.

To conclude our discussion of the example program of Fig-

4Other scenarios that give rise to LC changes will be dis-
cussed in Section 3.
5The call graph for test1 in the edited version of the pro-
gram is not necessary for our analysis because test1 was
not afiected by any of the changes, and is included in the
flgure solely for completeness.

class A {
public A(){ }
public void foo(){ }
public int x;

}
class B extends A {

public B(){ }
public void foo(){ B.bar(); }
public static void bar(){ y = 17; }
public static int y;

}
class C extends A {

public C(){ }
public void foo(){ x = 18; }
public void baz(){ z = 19; }
public int z;

}

class Tests {
public static void test1(){

A a = new A();
a.foo();

}
public static void test2(){

A a = new B();
a.foo();

}
public static void test3(){

A a = new C();
a.foo();

}
}

(a)

AF

A.x

1

LC

C,C.foo()

5

LC

C,A.foo()

4
CM

C.foo()

2

AM

C.foo()

3

AM

B.bar()

CM

B.foo()

AF

B.y

CM

B.bar()

6 8

7 9

AF

C.z

10

AM

C.baz()

11

CM

C.baz()

12

LC

C,C.baz()

13

(b)

A.A()

Tests.test1()

A.A() A.foo()

Tests.test2()

B.B() B.foo()

A.A()

Tests.test3()

C.C() A.foo()

<A,A.foo()>

<B,A.foo()>

<C,A.foo()>

A.A()

Tests.test1()

A.A() A.foo()

Tests.test2()

B.B()

A.A()

Tests.test3()

C.C() C.foo()

<A,A.foo()>

<B,A.foo()>

B.foo()

B.bar()

<C,A.foo()>

(c) (d)

Figure 1: (a) Example program with 3 tests. Added code fragments are shown in boxes. (b) Atomic changes
for the example program, with their interdependences. (c) Call graphs for the tests before the changes were
applied. (d) Call graphs for the tests after the changes were applied.

AffectedTests(T ,A) =
{ ti | ti ∈ T , Nodes(P, ti) ∩ (CM ∪DM)) 6= ∅ } ∪
{ ti | ti ∈ T , n, A.m ∈ Nodes(P, ti),

n→B, X.mA.m ∈ Edges(P, ti),

〈B, X.m〉 ∈ LC, B<∗X }

AffectingChanges(t,A) =
{ a′ | a ∈ Nodes(P ′, t) ∩ (CM ∪AM), a′ ¹∗ a } ∪
{ a′ | a ≡ 〈B, X.m〉 ∈ LC, B<∗X,

n→B, X.mA.m ∈ Edges(P ′, t),
for some n, A.m ∈ Nodes(P ′, t), a′ ¹∗ a }

Figure 2: Affected Tests and Affecting Changes.

ure 1, consider the atomic changes 10, 11, 12, and 13 corre-
sponding to the addition of fleld C.z and method C.baz(),
respectively. These atomic changes do not afiect any of the
tests, indicating that additional tests are needed.

We will use the equations in Figure 2 [21] to more formally
deflne how we flnd afiected tests and their corresponding af-
fecting atomic changes, in general. Assume the original pro-
gram P is edited to yield program P ′, where both P and P ′

are syntactically correct and compilable. Associated with P
is a set of tests T = t1,...,tn. The call graph for test ti on the
original program, called Gti , is described by a subset of P ’s
methods Nodes(P, ti) and a subset Edges(P, ti) of calling re-
lationships between P ’s methods. Likewise, Nodes(P ′, ti)
and Edges(P ′, ti) form the call graph G′ti

on the edited
program P ′. Here, a calling relationship is represented as
D.n() →B,X.m() A.m(), indicating possible control °ow from
method D.n() to method A.m() due to a virtual call to
method X.m() on an object of type B. In these deflnitions,
we implicitly make the usual assumptions [10], namely that
execution of the program is deterministic and that the li-
brary code used and the execution environment (e.g., JVM)
itself remain unchanged.

3. ATOMIC CHANGES AND THEIR DEPEN-
DENCES

As previously mentioned, a key aspect of our analysis is
the step of uniquely decomposing a source code edit into a
set of interdependent atomic changes. In the original formu-
lation [21], several kinds of changes, (e.g., changes to access
rights of classes, methods, and flelds and addition/deletion
of comments) were not modeled. Section 3.1 discusses how
these changes are handled in Chianti. Table 1 lists the set of
atomic changes in Chianti, which includes the original 8 cat-
egories [21] plus 8 new atomic changes (the bottom 8 rows of
the table). Most of the atomic changes are self-explanatory
except for CM and LC. CM represents any change to a
method’s body. Some extensions to the original deflnition
of CM are discussed in detail in Section 3.1. LC represents
changes in dynamic dispatch behavior that may be caused
by various kinds of source code changes (e.g., by the addi-
tion of methods, by the addition or deletion of inheritance
relations, or by changes to the access control modiflers of
methods). LC is deflned as a set of pairs 〈Y, X.m()〉, in-
dicating that the dynamic dispatch behavior for a call to
X.m() on an object with run-time type Y has changed.

AC Add an empty class
DC Delete an empty class
AM Add an empty method
DM Delete an empty method
CM Change body of a method
LC Change virtual method lookup
AF Add a field
DF Delete a field
CFI Change definition of a instance field initializer
CSFI Change definition of a static field initializer
AI Add an empty instance initializer
DI Delete an empty instance initializer
CI Change definition of an instance initializer
ASI Add an empty static initializer
DSI Delete an empty static initializer
CSI Change definition of an static initializer

Table 1: Categories of atomic changes.

3.1 New and Modified Atomic Changes
Chianti handles the full Java programming language, which

necessitated the modeling of several constructs not consid-
ered in the original framework [21]. Some of these constructs
required the deflnition of new sorts of atomic changes; oth-
ers were handled by augmenting the interpretation of atomic
changes already deflned.

Initializers, Constructors, and Fields. Six of the
newly added changes in Table 1 correspond to initializers.
AI and DI denote the set of added and deleted instance
initializers respectively, and ASI and DSI denote the set of
added and deleted static initializers, respectively. CI and
CSI capture any change to an instance or static initializer,
respectively. The other two new atomic changes, CFI and
CSFI, capture any change to an instance or static fleld, in-
cluding (i) adding an initialization to a fleld, (ii) deleting an
initialization of a fleld, (iii) making changes to the initialized
value of a fleld, and (iv) making changes to a fleld modifler
(e.g., changing a static fleld into a non-static fleld).

Changes to initializer blocks and fleld initializers also have
repercussions for constructors or static initializer methods of
a class. Speciflcally, if changes are made to initializers of in-
stance flelds or to instance initializer blocks of a class C, then
there are two cases: (i) if constructors have been explicitly
deflned for class C, then Chianti will report a CM for each
such constructor, (ii) otherwise, Chianti will report a change
to the implicitly declared method C.〈init〉 that is generated
by the Java compiler to invoke the superclass’s construc-
tor without any arguments. Similarly, the class initializer
C.〈clinit〉 is used to represent the method being changed
when there are changes to a static fleld (i.e., CSFI) or
static initializer (i.e., CSI).

Overloading. Overloading poses interesting issues for
change impact analysis. Consider the introduction of an
overloaded method as shown in Figure 3 (the added method
is shown in a box). Note that there are no textual edits in
Test.main(), and further, that there are no LC changes be-
cause all the methods are static. However, adding method
R.foo(Y) changes the behavior of the program because the
call of R.foo(y) in Test.main() now resolves to R.foo(Y)

instead of R.foo(X) [9]. Therefore, Chianti must report a
CM change for method Test.main() despite the fact that

no textual changes occur within this method6.

class R {
static void foo(X x){ }
static void foo(Y y){ }

}
class X { }
class Y extends X { }
class Test {

static void main(String[] args){
Y y = new Y();
R.foo(y);

}
}

Figure 3: Addition of an overloaded method. The
added method is shown in a box.

Hierarchy changes. It is also possible for changes to the
hierarchy to afiect the behavior of a method, although the
code in the method is not changed. Various constructs in
Java such as instanceof, casts and exception catch blocks
test the run-time type of an object. If such a construct is
used within a method and the type lies in a difierent position
in the hierarchy of the program before the edit and after
the edit, then the behavior of that method may be afiected
by this hierarchy change (or restructuring). For example,
in Figure 4(a), method foo() contains a cast to type B.
This cast will succeed if the type of the object pointed to
by a when execution reaches this statement is B or C in
the original program. In contrast, if we make the hierarchy
change shown in Figure 4(b), then this cast will fail if the
run-time type of the object which reaches this statement is
C. Note that the code in method foo() has not changed due
to the edit, but the behavior of foo() has been possibly
altered. To capture these sorts of changes in behavior due
to changes in the hierarchy, we report a CM change for the
method containing the construct that checks the run-time
type of the object (i.e., CM(Test.foo())).

class Test {
public void foo(){

A a = new C();
...(B)a...

}
}

(a)

A A

C

B
B C

(b)

Figure 4: Hierarchy change that affects a method
whose code has not changed.

6However, the abstract syntax tree for Test.main() will be
difierent after applying the edit, as overloading is resolved
at compile time.

Threads and Concurrency. Threads do not pose sig-
niflcant challenges for our analysis. The addition/deletion
of synchronized blocks inside methods and the addi-
tion/deletion of synchronized modiflers on methods are
both modeled as CM changes. Threads do not present
signiflcant issues for the construction of call graphs either,
because the analysis discussed in this paper does not re-
quire knowledge about the particular thread that executes a
method. The only information that is required are the meth-
ods that have been executed and the calling relationships be-
tween them. If dynamic call graphs are used, as is the case
in this paper, this information can be captured by tracing
the execution of the tests. If °ow-insensitive static analysis
is used for constructing call graphs [19], the only signiflcant
issue related to threads is to model the implicit calling rela-
tionship between Thread.start() and Thread.run().

Exception handling. Exception handling is not a sig-
niflcant issue in our analysis. Any addition or deletion or
statement-level changes to a try, catch or finally block
will be reported as a CM change. Similarly, changes to the
throws clause in a method declaration are also captured as
CM changes. Possible interprocedural control °ow intro-
duced by exception handling is expressed implicitly in the
call graph; however, our change impact analysis correctly
captures efiects of these exception-related code changes. For
example, if a method f() calls a method g(), which in turn
calls a method h() and an exception of type E is thrown in
h() and caught in g() before the edit, but in f() after the
edit, then there will be CM changes for both g() and f()
representing the addition and deletion of the corresponding
catch blocks. These CM changes will result in all tests
that execute either f() or g() to be identifled as afiected.
Therefore, all possible efiects of this change are taken into
account, even without the explicit representation of °ow of
control due to exceptions in our call graphs.

Changes to CM and LC. Accommodating method
access modifler changes from non-abstract to abstract or
vice-versa, and non-public to public or vice-versa, required
extension of the original deflnition of CM. CM now com-
prises: (i) adding a body to a previously abstract method,
(ii) removing the body of a non-abstract method and mak-
ing it abstract, or (iii) making any number of statement-
level changes inside a method body or any method declara-
tion changes (e.g., changing the access modifler from public

to private, adding a synchronized keyword or changing a
throws clause).

In addition, in some cases, changing a method’s access
modifler results in changes to the dynamic dispatch in the
program (i.e., LC changes). For example, there is no entry
for private or static methods in the dynamic dispatch
map (because they are not dynamically dispatched), but if
a private method is changed into a public method, then
an entry will be added, generating an LC change that is
dependent on the access control change, which is represented
as a CM. Additions and deletions of import statements may
also afiect dynamic dispatch and are handled by Chianti.

3.2 Dependences
Atomic changes have interdependences which induce a

partial ordering ≺ on a set of them, with transitive closure
¹∗. Speciflcally, C1 ¹∗ C2 denotes that C1 is a prerequi-
site for C2. This ordering determines a safe order in which
atomic changes can be applied to program P to obtain a syn-

tactically correct edited version P ′′ which, if we apply all the
changes is P ′. Consider that one cannot extend a class X
that does not yet exist, by adding methods or flelds to it (i.e.,
AC(X) ≺ AM(X.m()) and AC(X) ≺ AF(X.f)). These
dependences are intuitive as they involve how new code is
added or deleted in the program. Other dependences are
more subtle. For example, if we add a new method C.m()
and then add a call to C.m() in method D.n(), there will be a
dependence AM(C.m()) ≺ CM(D.n()). Figure 1(b) shows
some examples of dependences among atomic changes.

Dependences involving LC changes can be caused by ed-
its that alter inheritance relations. LC changes can be
classifled as (i) newly added dynamic dispatch tuples (e.g.,
caused by declaring a new class/interface or method), (ii)
deleted dynamic dispatch tuples (e.g., caused by deleting
a class/interface or method), or (iii) dynamic dispatch tu-
ples with changed targets (e.g., caused by adding/deleting a
method or changing the access control of a class or method).
For example, making an abstract class C non-abstract will
result in LC changes. In the original dynamic dispatch map,
there is no entry with C as the run-time receiver type, but
the new dispatch map will contain such an entry. Similar
dependences result when other access modiflers are changed.

3.3 Engineering Issues
One engineering problem encountered in building Chianti

resulted from the absence of unique names for anonymous
and local classes. In a JVM, anonymous classes are repre-
sented as EnclosingClassName$〈num〉, where the number
assigned represents the lexical order of the anonymous class
within its enclosing class. This naming strategy guaran-
tees that all the class names in a Java program are unique.
However, when Chianti compares and analyzes two related
Java programs, it needs to establish a correspondence be-
tween classes and methods in each version to determine the
set of atomic changes. The approach used is a match-by-
name strategy in which two components in difierent pro-
grams match if they have the same name; however, when
there are changes to anonymous or local inner classes, this
strategy requires further consideration.

Figure 5 shows a simple program using anonymous
classes with the code added by the edit shown inside a
box. In this program, method listJavaFiles(String) lists
all Java flles in a directory that is specifled by its pa-
rameter. Anonymous class Lister$1 implements interface
java.io.FilenameFilter and is deflned as part of a method
call expression. Now, assume that the program is edited and
a method listClassFiles(String) is added that lists all
class flles in a directory. This new method declares another,
similar anonymous class. Now, in the edited version of the
program, the Java compiler will name this new anonymous
class Lister$1 and the previous anonymous class, formerly
named Lister$1, will become Lister$2. Clearly, the match-
by-name strategy cannot be based on compiler-generated
names because the original anonymous class has difierent
names before and after the edit.

To solve this problem, Chianti uses a naming strategy
for classes that assigns each a unique internal name.
For top-level classes or member classes, the internal
name is the same as the class name. For anonymous
classes and local inner classes, the unique name consists
of four parts: enclosingClassName, enclosingElement-
Name, selfSuperclassInterfacesName, sequenceNumber.

import java.io.*;
class Lister {

static void listClassFiles(String dir){
File f = new File(dir);
String[] list = f.list(

new FilenameFilter() { //anonymous class
boolean accept(File f, String s){

return s.endsWith(".class");
}

});
for(int i = 0; i < list.length; i++)

System.out.println(list[i]);
}
static void listJavaFiles(String dir){

File f = new File(dir);
String[] list = f.list(
new FilenameFilter() { //anonymous class

boolean accept(File f,String s){
return s.endsWith(".java");

}
});

for(int i = 0; i < list.length; i++)
System.out.println(list[i]);

}
}

Figure 5: Addition of an anonymous class. The
added code fragments are shown inside a box.

For the example in Figure 5, the unique internal
name of the anonymous class in the original program
is Lister$listJavaF iles(String)$java.io.F ilenameFilter$1,
while the unique internal name of the newly
added anonymous class in the edited program is
Lister$listClassF iles(String)$java.io.F ilenameFilter$1.
Similarly, the internal name of the origi-
nal anonymous class in the edited program is
Lister$listJavaF iles(String)$java.io.F ilenameFilter$1.
Notice that this original anonymous class whose compiler-
generated names are Lister$1 in the original program
and Lister$2 in the edited program, has the same unique
internal name in both versions. With this new naming
strategy, match-by-name can identify anonymous and local
inner classes and report atomic changes involving them7.

4. PROTOTYPE
Chianti has been implemented in the context of the Java

editor of Eclipse, a widely used extensible open-source de-
velopment environment for Java. Our tool is designed as a
combination of Eclipse views, a plugin, and a launch con-
figuration that together constitute a change impact analysis
perspective8. Chianti is built as a plugin of Eclipse and con-
ceptually can be divided into three functional parts. One
part is responsible for deriving a set of atomic changes from
two versions of an Eclipse project (i.e., Java program), which
is achieved via a pairwise comparison of the abstract syn-

7This naming scheme can only fail when two anonymous
classes occur within the same scope and extend the same
superclass. If this occurs due to an edit, however, Chianti
generates a safe set of atomic changes corresponding to the
edit.
8A perspective is Eclipse terminology for a collection of
views that support a speciflc task, (e.g., the Java perspective
is used for creating Java applications).

CHIANTI

Original Program P Changed Program P’Set of Unit Tests

Atomic Change

Decoder

Atomic Changes

& Dependences

Call Graph Builder

Call Graphs of Tests in

P

Call Graphs of Tests

in P’

Change Impact

Analyzer
Affected Tests Affecting Changes

Figure 6: Chianti architecture.

tax trees of the classes9 in the two project versions. An-
other part reads test call graphs for the original and edited
projects, computes afiected tests and their afiecting changes.
The third part manages the views that allow the user to
visualize change impact information. Chianti’s GUI also in-
cludes a launch conflguration that allows users to select the
project versions to be analyzed, the set of tests associated
with the project and the call graphs to be used. Figure 6
depicts Chianti’s architecture.

Although Chianti is intended for interactive use, we have
been testing the prototype using successive CVS versions
of a program. Thus, a typical scenario of a Chianti ses-
sion begins with the programmer extracting two versions of
a project from a CVS version control repository into the
workspace. The programmer then starts the change impact
analysis launch conflguration, and selects the two projects
of interest as well as the test suite associated with these
projects. Currently, we allow tests that have a separate
main() routine and JUnit tests10.

In order to enable the reuse of analysis results, and to
decouple the analysis from GUI-related tasks, both atomic
change information and call graphs are stored as XML flles.
Chianti currently supports two mechanisms for obtaining
the call graphs to be used in the analysis. When static call
graphs are desired, Chianti invokes the Gnosis analysis en-
gine11 to construct these [19]. In this case, users need to
supply some additional information relevant to the analysis
engine (e.g., the choice of call graph construction algorithm
to be used and some policy settings for dealing with re°ec-
tion).

Users can also point Chianti directly at an XML flle rep-
resentation of the call graphs that are to be used, in order to
enable the use of call graphs that have been constructed by
external tools. The experiments with dynamic call graphs

9While Eclipse provides functionality for comparing source
flles at a textual level, we found the amount of informa-
tion provided inadequate for our purposes. In particular,
the class hierarchy information provided by Eclipse does not
currently include anonymous and local classes.

10See www.junit.org.
11Gnosis is a static analysis framework that has been devel-
oped at IBM Research as a test-bed for research on demand-
driven and context-sensitive static analysis.

presented in this paper have been conducted using an ofi-
line tool that instruments the class flles for an application.
Executing an application that has been instrumented by this
tool produces an XML flle containing the application’s dy-
namic call graph12.

When the analysis results are available, the Eclipse work-
bench changes to the change impact analysis perspective,
which provides a number of views:

• The affecting changes view shows all tests in a tree
view. Each afiected test can be expanded to show its
set of affecting changes and their prerequisites. Fig-
ure 7 shows a snapshot of this view; note how the
prerequisite changes are shown. Each atomic change
is the root of a tree that can be expanded on demand
to show prerequisite changes. This quickly provides
an idea of the difierent \threads’’ of changes that have
occurred.

• The atomic-changes-by-category view shows the difier-
ent atomic changes grouped by category.

Each of these user interface components is seamlessly inte-
grated with the standard Java editor in Eclipse (e.g., clicking
on an atomic change in the affecting changes view opens an
editor on the associated program fragment).

5. EVALUATION
The experiments with Chianti were performed on versions

of the Daikon system by M. Ernst et al. [7], extracted from
the developers’ CVS repository. The Daikon CVS repository
does not use version tags, so we partitioned the year-long
version history arbitrarily at week boundaries. All modi-
flcations checked in within a week were considered to be
within one edit whose impact was to be determined. How-
ever, in cases where no editing activity took place in a given
week, we extended the interval by one week until it included
changes. The data reported in this section covers the entire
year 2002 (i.e., 52 weeks) of updates, during which there
were 39 intervals with editing activity.

During the year under consideration, Daikon was actively
being developed and increased in size from 48K to 123K lines
of code. More signiflcant are the program-based measures
of growth, from 357 to 755 classes, 2878 to 7112 methods,
and 937 to 2885 flelds. The number of unit tests associated
with Daikon grew from 40 to 62 during the time period
under consideration. Figure 8 shows in detail the growth
curves over this time period. Clearly, this is a moderate-
sized application that experienced considerable growth in
size (and complexity) over the year 2002.

5.1 Atomic Changes
Figure 9(a) shows the number of atomic changes between

each pair of versions. The number of atomic changes per
interval varies greatly between 1 and 11,698 during this pe-
riod, although only 11 edits involved more than 1,000 atomic
changes. Section 5.3 gives more details about two speciflc
intervals in our study.

12We did not optimize the gathering of the dynamic call in-
formation; presently, the instrumented tests run, on aver-
age, about 2 orders of magnitude more slowly than unin-
strumented code, but we think we can reduce this overhead
signiflcantly with some efiort.

Figure 7: Snapshot of Chianti’s affecting changes view. The arrow shows how clicking on an atomic change
opens an editor on the associated source fragment.

Figure 9(b) summarizes the relative percentages of kinds
of atomic changes observed during 2002. The height of each
bar indicates the frequency of the corresponding kind of
atomic change; these values vary widely, by three orders
of magnitude. Three of our atomic change categories were
not seen in this data, namely addInitializer, changeInitial-
izer and deleteInitializer13. Note that the 0.01% value for
deleteStaticInitializer in the flgure represents the 5 atomic
changes of that type out of a total of over 44,000 changes
for the entire year!

Figure 10 shows the proportion of atomic changes per in-
terval, grouped by the program construct they afiect, namely,
classes, flelds, methods and dynamic dispatch. Clearly, the
two most frequent groups of atomic changes are changes to
dynamic dispatch (i.e., LC) and changes to methods (i.e.,
CM); their relative amounts vary over the period.

5.2 Affected Tests and Affecting Changes
Figure 11 shows the percentage of afiected tests for each

of the Daikon versions. On average, 52% of the tests are af-
fected in each edit. Interestingly, there were several intervals
over which no tests were afiected, although atomic changes
did occur. For example, there were no afiected tests for the

13This is not surprising because, in Java, instance initializers
are only needed in the rare event that an anonymous class
needs to perform initialization actions that cannot be ex-
pressed using fleld initializers. In non-anonymous classes, it
is generally preferable to incorporate initialization code in
constructors or in fleld initializers.

interval between 04/01/02 and 04/08/02, despite the fact
that there were 212 atomic changes during this time. Sim-
ilarly, for the interval between 8/26/02 and 9/02/02 there
were 286 atomic changes, but no afiected tests. This means
that the changed code for these intervals was not covered
by any of the tests! In principle, a change impact analysis
tool could inform the user that additional unit tests should
be written when an observation of this kind is made.

Figure 12 shows the average percentage of afiecting changes
per afiected test, for each of the Daikon versions. On av-
erage, only 3.95% of the atomic changes impact a given af-
fected test. This means that our technique has the potential
of dramatically reducing the amount of time required for de-
bugging when a test produces an erroneous result after an
editing session.

By contrast, an earlier study performed with Chianti us-
ing static call graphs for the same Daikon data, yielded on
average 56% afiected tests and 3.7% afiecting changes per
afiected test [19]14. The closeness of these results to those
reported in the present paper suggests that we should inves-
tigate the tradeofis associated with using static or dynamic
call graphs.

14Imprecision in the static call graphs resulted in the detec-
tion of extra afiected tests that had relatively small numbers
of afiecting changes. This skewed our averaging calculations
to yield the counterintuitive result that the afiecting changes
percentage obtained using static call graphs was lower than
the percentage obtained using the more precise dynamic call
graphs.

Figure 8: Daikon growth statistics for the year 2002

Our approach assumes that the test suite associated with
a Java program ofiers good coverage of the entire program.
To verify this assumption, we used the JCoverage tool (see
www.jcoverage.com) to determine how many methods in
Daikon were actually exercised by its unit test suite. For
each version of Daikon, we obtained the number of meth-
ods covered by the associated tests and the total number of
(source code) methods in that version, yielding an average
method coverage ratio. The overall average of these ratios
on the entire Daikon system is quite low, at 21%. How-
ever, this number is skewed by the fact that certain Daikon
components have reasonable coverage (e.g., for the utilMDE

component we flnd an average coverage ratio over the year
of 47%), whereas other components (e.g., the jtb compo-
nent) have virtually no coverage. Thus, while our change
impact analysis flndings are promising, they would be more
compelling with a test suite ofiering better coverage of the
system.

5.3 Case Studies

We conducted two detailed case studies to further inves-
tigate the possible applications of Chianti as it is intended
to be used, namely in interactive environments with short
time intervals between versions. To this end, we selected
two one-week intervals from the whole year’s data in which
heavy editing activity occurred, and divided those intervals
into subintervals of one day each.

Case Study 1 The flrst interval we decided to explore
further is the one for which we found the highest percentage
of afiected tests. This occurred between versions 07/08/02
and 07/15/02, when 88.7% (55 out of 62) of the tests were
afiected. We partitioned the version history of this interval
into daily intervals so that we could obtain changes with

flner granularity. In cases where no editing activity took
place between two days, we extended the interval by one
day, thus obtaining 5 intervals with editing activity.

Figure 13(a) shows the number of afiected tests for each
subinterval as well as the number of afiected tests for the
original week-long interval (shown as the rightmost pair of
bars). Before partitioning, 55 of the 62 unit tests were af-
fected tests, but smaller numbers of afiected tests, ranging
from 1 to 53, were reported for each of the subintervals (for
example, in subinterval 07/10/02|07/11/02, there is only
one afiected test).

Figure 13(b) shows the total number of atomic changes
and the average number of afiecting changes per afiected
test in each subinterval compared with the original inter-
val (again shown as the rightmost pair of bars). The use
of smaller intervals resulted in smaller numbers of atomic
changes for each interval and also smaller numbers of afiect-
ing changes per afiected test; this makes the tracing of af-
fecting changes much easier. In addition, we found that 12 of

268

1471

2810

308

11698

1197

171

397

1006

212

116

300

29

214

350

5238

378

2344

1319

4

286

3

15

65

7

13

6095

153

1

163

635

40

2913

659

723

665

332

465

1747

1

10

100

1000

10000

100000

0
1
0
7
-0
1
1
4

0
1
1
4
-0
1
2
1

0
1
2
1
-0
1
2
8

0
1
2
8
-0
2
0
4

0
2
0
4
-0
2
1
1

0
2
1
1
-0
2
1
8

0
2
1
8
-0
2
2
5

0
2
2
5
-0
3
0
4

0
3
0
4
-0
3
1
1

0
3
1
1
-0
3
1
8

0
3
1
8
-0
4
0
1

0
4
0
1
-0
4
0
8

0
4
0
8
-0
4
1
5

0
4
1
5
-0
5
0
6

0
5
0
6
-0
5
2
7

0
5
2
7
-0
6
0
3

0
6
0
3
-0
6
1
0

0
6
1
0
-0
6
1
7

0
6
1
7
-0
6
2
5

0
6
2
5
-0
7
0
1

0
7
0
1
-0
7
0
8

0
7
0
8
-0
7
1
5

0
7
1
5
-0
7
2
2

0
7
2
2
-0
8
0
5

0
8
0
5
-0
8
1
9

0
8
1
9
-0
8
2
6

0
8
2
6
-0
9
0
2

0
9
0
2
-0
9
0
9

0
9
0
9
-0
9
1
6

0
9
1
6
-0
9
2
3

0
9
2
3
-0
9
3
0

0
9
3
0
-1
1
1
1

1
1
1
1
-1
1
1
9

1
1
1
9
-1
1
2
6

1
1
2
6
-1
2
0
2

1
2
0
2
-1
2
0
9

1
2
0
9
-1
2
1
6

1
2
1
6
-1
2
2
3

1
2
2
3
-1
2
3
0

(a)

1.05% 0.16%

12.36%

19.28%

2.19%
4.90%

0.73%
2.77%

0.55% 0.05% 0.14% 0.01%

55.82%

0%

10%

20%

30%

40%

50%

60%

ad
dC
la
ss

de
le
te
C
la
ss

ad
dM
et
ho
d

ch
an
ge
M
et
ho
d

de
le
te
M
et
ho
d

ad
dF
ie
ld

ch
an
ge
Fi
el
dI
ni
tia
liz
er

ch
an
ge
S
ta
tic
Fi
el
dI
ni
tia
liz
er

de
le
te
Fi
el
d

ad
dS
ta
tic
In
iti
al
iz
er

ch
an
ge
S
ta
tic
In
iti
al
iz
er

de
le
te
S
ta
tic
In
iti
al
iz
er

lo
ok
up
C
ha
ng
e

(b)

Figure 9: (a) Number of atomic changes between each pair of Daikon versions in 2002 (note the log scale).
(b) Categorization of the atomic changes, aggregated over all Daikon edits in 2002.

0%

20%

40%

60%

80%

100%

0
1
0
7
-0

1
1
4

0
1
1
4
-0

1
2
1

0
1
2
1
-0

1
2
8

0
1
2
8
-0

2
0
4

0
2
0
4
-0

2
1
1

0
2
1
1
-0

2
1
8

0
2
1
8
-0

2
2
5

0
2
2
5
-0

3
0
4

0
3
0
4
-0

3
1
1

0
3
1
1
-0

3
1
8

0
3
1
8
-0

4
0
1

0
4
0
1
-0

4
0
8

0
4
0
8
-0

4
1
5

0
4
1
5
-0

5
0
6

0
5
0
6
-0

5
2
7

0
5
2
7
-0

6
0
3

0
6
0
3
-0

6
1
0

0
6
1
0
-0

6
1
7

0
6
1
7
-0

6
2
5

0
6
2
5
-0

7
0
1

0
7
0
1
-0

7
0
8

0
7
0
8
-0

7
1
5

0
7
1
5
-0

7
2
2

0
7
2
2
-0

8
0
5

0
8
0
5
-0

8
1
9

0
8
1
9
-0

8
2
6

0
8
2
6
-0

9
0
2

0
9
0
2
-0

9
0
9

0
9
0
9
-0

9
1
6

0
9
1
6
-0

9
2
3

0
9
2
3
-0

9
3
0

0
9
3
0
-1

1
1
1

1
1
1
1
-1

1
1
9

1
1
1
9
-1

1
2
6

1
1
2
6
-1

2
0
2

1
2
0
2
-1

2
0
9

1
2
0
9
-1

2
1
6

1
2
1
6
-1

2
2
3

1
2
2
3
-1

2
3
0

lookup changes class changes method changes field changes

Figure 10: Classification of atomic changes for each pair of versions. Class changes include AC and DC.
Method changes include AM, CM, DM, ASI, DSI and CSI. Field changes include AF, DF, CSFI and CFI.

In both case studies, we found that the use of subin-
tervals with smaller numbers of afiecting changes improves
the ability of Chianti to help programmers with under-
standing the efiects of an edit. Even in subintervals
such as 01/21/02|01/25/02, where the number of atomic
changes and the average number of afiecting changes are
large relative to the corresponding numbers for the origi-
nal interval, Chianti can provide useful insights. For ex-
ample, consider one test with a large number of afiect-
ing changes: daikon.test.diff.DiffTester.testPpt4Ppt4 from
subinterval 01/21/02|01/25/02. The afiecting changes for
this test are: 67 CM changes, 67 AF changes, and 69 CSFI
changes. Among the 67 CM changes, 65 of them are asso-
ciated with static initializers for some class. These, in turn,
are dependent on 68 of the CSFIs, whose own prerequisites
are 66 of the AFs. A closer look revealed that all the added
flelds have the same name, serialVersionUID, which is used
to add serialization-related functionality to Daikon. It is in-
teresting to observe that Chianti was able to determine that
the changed behavior of this test was almost entirely due to
this serialization-related change, and that the other 800+
atomic changes that occurred during this interval did not
contribute to the test’s changed behavior.

5.4 Chianti Performance
The performance of Chianti has thus far not been our

primary focus, however, we have achieved acceptable per-
formance for a prototype. Deriving atomic changes from
two successive versions of Daikon takes, on average, approx-

imately 87 seconds. Computing the set of afiected tests for
each version pair takes approximately 5 seconds on average,
and computing afiecting changes takes on average approxi-
mately 1.2 seconds per afiected test. All measurements were
taken on a Pentium 4 PC at 2.8Ghz with 1Gb RAM.

6. RELATED WORK
In previous papers, we presented the conceptual frame-

work of our change impact analysis, without empirical ex-
perimentation [21], and reported on experiments with a purely
static version of Chianti using static call graphs generated
by Gnosis, on the same Daikon data used here [19].

We distinguish three broad categories of related work in
the community: (i) change impact analysis techniques, (ii)
regression test selection techniques, and (iii) techniques for
controlling the way changes are made.

6.1 Change Impact Analysis Techniques
Previous research in change impact analysis has varied

from approaches relying completely on static information,
including the early analyses of [3, 11], to approaches that
only utilize dynamic information, such as [13]. There also
are some methods [15] that use a combination of static and
dynamic information. The method described in this paper
is a combined approach, in that it uses (i) static analysis for
flnding the set of atomic changes comprising a program edit
and (ii) dynamic call graphs to flnd the afiected tests and
their afiecting changes.

53%

80%

0%
2%

63%

89%

0%

68%

0%

61%

70%

0%

61%

52%

22%

27%

68%
65%

60%

44%

48%

76%

57%

0%

69%

77%

0%

63%

76%

63%

79%

68%

72%
72%

63%

67%
69%

57%

55%

58%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0
1
0
7
_
0
1
1
4

0
1
1
4
_
0
1
2
1

0
1
2
1
_
0
1
2
8

0
1
2
8
_
0
2
0
4

0
2
0
4
_
0
2
1
1

0
2
1
1
_
0
2
1
8

0
2
1
8
_
0
2
2
5

0
2
2
5
_
0
3
0
4

0
3
0
4
_
0
3
1
1

0
3
1
1
_
0
3
1
8

0
3
1
8
--0
4
0
1

0
4
0
1
--0
4
0
8

0
4
0
8
--0
4
1
5

0
4
1
5
--0
5
0
6

0
5
0
6
--0
5
2
7

0
5
2
7
--0
6
0
3

0
6
0
3
--0
6
1
0

0
6
1
0
--0
6
1
7

0
6
1
7
--0
6
2
5

0
6
2
5
--0
7
0
1

0
7
0
1
-0
7
0
8

0
7
0
8
-0
7
1
5

0
7
1
5
-0
7
2
2

0
7
2
2
-0
8
0
5

0
8
0
5
-0
8
1
9

0
8
1
9
-0
8
2
6

0
8
2
6
-0
9
0
2

0
9
0
2
-0
9
0
9

0
9
0
9
-0
9
1
6

0
9
1
6
-0
9
2
3

0
9
2
3
-0
9
3
0

0
9
3
0
-1
1
1
1

1
1
1
1
-1
1
1
9

1
1
1
9
-1
1
2
6

1
1
2
6
-1
2
0
2

1
2
0
2
-1
2
0
9

1
2
0
9
-1
2
1
6

1
2
1
6
-1
2
2
3

1
2
2
3
-1
2
3
0

A
v
e
ra
g
e

Percentage Affected Tests

Figure 11: Percentage of affected tests for each of the Daikon versions.

9.54%

0.34%

2.58%

15.07%

10.34%

28.24%

2.94%

5.08%

73.53%

43.41%

3.82% 3.95%

0.38%

0.26%

8.33%

5.64%

3.60%

2.88%

1.95%

7.68%

8.81%

1.54%

3.84%

1.44%

12.67%

3.36%

5.90%

0.48%

1.96% 1.92%

33.16%

1.21%

1.29%

5.94%

0.10%

1.00%

10.00%

100.00%

0
1
0
7
_
0
1
1
4

0
1
1
4
_
0
1
2
1

0
1
2
1
_
0
1
2
8

0
1
2
8
_
0
2
0
4

0
2
0
4
_
0
2
1
1

0
2
1
1
_
0
2
1
8

0
2
1
8
_
0
2
2
5

0
2
2
5
_
0
3
0
4

0
3
0
4
_
0
3
1
1

0
3
1
1
_
0
3
1
8

0
3
1
8
--0
4
0
1

0
4
0
8
--0
4
1
5

0
4
1
5
--0
5
0
6

0
5
0
6
--0
5
2
7

0
5
2
7
--0
6
0
3

0
6
0
3
--0
6
1
0

0
6
1
0
--0
6
1
7

0
6
1
7
--0
6
2
5

0
6
2
5
--0
7
0
1

0
7
0
1
-0
7
0
8

0
7
0
8
-0
7
1
5

0
7
1
5
-0
7
2
2

0
7
2
2
-0
8
0
5

0
8
0
5
-0
8
1
9

0
8
1
9
-0
8
2
6

0
9
0
9
-0
9
1
6

0
9
1
6
-0
9
2
3

0
9
3
0
-1
1
1
1

1
1
1
1
-1
1
1
9

1
1
1
9
-1
1
2
6

1
2
0
2
-1
2
0
9

1
2
0
9
-1
2
1
6

1
2
2
3
-1
2
3
0

G
e
o
m
-m
e
a
n

Percentage Affecting Changes

Figure 12: Average percentage of affecting changes, per affected test, for each of the Daikon versions.

62 62 62 62 62 62

42

37

1

53

41

55

0

10

20

30

40

50

60

70

0708_0709 0709_0710 0710_0711 0711_0712 0712_0715 0708-0715

Total tests Affected Tests

(a) Number of affected tests on large and smaller
daily intervals.

25
15

87

327

4834 5238

7

2

7

15

64 68

1

10

100

1000

10000

0708_0709 0709_0710 0710_0711 0711_0712 0712_0715 0708_0715

Total Atomic Changes Affecting Changes on Average

(b)Number of atomic changes and on average af-
fecting changes on large interval and smaller daily
intervals (note log scale)

Figure 13: Detailed analysis results for the interval 7/08/02—7/15/02.

42 42 42 42

32

1

22

32

0

5

10

15

20

25

30

35

40

45

0121_0125 0125_0127 0127_0128 0121-0128

Total tests Affected Tests

(a) Number of affected tests on large and smaller
daily intervals.

1046

5

463

1471

132

3

12

140

1

10

100

1000

10000

0121_0125 0125_0127 0127_0128 0121-0128

Total Atomic Changes Affecting Changes on Average

(b)Number of atomic changes and on average af-
fecting changes on large interval and smaller daily
intervals (note log scale)

Figure 14: Detailed analysis results for the interval 1/21/02—1/28/02.

All of the impact analyses previous to ours focus on flnd-
ing constructs of the program potentially affected by code
changes. In contrast, our change impact analysis aims to
flnd a subset of the changes that impact a test whose be-
havior has (potentially) changed. First we will discuss the
previous static techniques and then address the combined
and dynamic approaches.

An early form of change impact analysis used reachability
on a call graph to measure impact. This technique15 was
presented by Bohner and Arnold [3] as \intuitively appeal-
ing" and \a starting point" for implementing change impact
analysis tools. However, applying the Bohner-Arnold tech-
nique is not only imprecise but also unsound, because, by
tracking only methods downstream from a changed method,
it disregards callers of that changed method that can also
be afiected.

Kung et al. [11] described various sorts of relationships be-
tween classes in an object relation diagram (i.e., ORD), clas-
sifled types of changes that can occur in an object-oriented
program, and presented a technique for determining change
impact using the transitive closure of these relationships.

15This is only one of the static change impact analyses dis-
cussed.

Some of our atomic change types partially overlap with their
class changes and class library changes.

More recently, Tonella’s impact analysis [27] determines if
the computation performed on a variable x afiects the com-
putation on another variable y using a number of straightfor-
ward queries on a concept lattice that models the inclusion
relationships between a program’s decomposition (static)
slices [8]. Tonella reports some metrics of the computed
lattices, but gives no assessment of the usefulness of his tech-
niques.

A number of tools in the Year 2000 analysis domain [5, 18]
use type inference to determine the impact of a restricted set
of changes (e.g., expanding the size of a date fleld) and per-
form them if they can be shown to be semantics-preserving.

Thione et al. [25, 24] wish to flnd possible semantic inter-
ferences introduced by concurrent programmer insertions,
deletions or modiflcations to code maintained with a version
control system. In this work, a semantic interference is char-
acterized as a change that breaks a def-use relation. Their
unit of program change is a delta provided by the version
control system, with no notion of subdividing this delta into
smaller units, such as our atomic changes. Their analysis,
which uses program slicing, is performed at the statement
level, not at the method level as in Chianti. No empirical

experience with the algorithm is given.
The CoverageImpact change impact analysis technique by

Orso et al. [15] uses a combined methodology, by correlating
a forward static slice [26] with respect to a changed program
entity (i.e., a basic block or method) with execution data ob-
tained from instrumented applications. Each program en-
tity change is thusly associated with a set of possibly afiected
program entities. Finally, these sets are unioned to form the
full change impact set corresponding to the program edit.

There are a number of important difierences between our
work and that by Orso et al. First, we difier in the goals of
the analysis. The method of Orso et al. [15] is focused on
flnding those program entities that are possibly afiected by a
program edit. In contrast, our method is focused on flnding
those changes that caused the behavioral difierences in a
test whose behavior has changed. Second, the granularity
of change expressed in their technique is a program entity,
which can vary from a basic block to an entire method. In
contrast, we use a richer domain of changes more familiar to
the programmer, by taking a program edit and decomposing
it into interdependent, atomic changes identifled with the
source code (e.g., add a class, delete a method, add a fleld).
Third, their technique is aimed at deployed codes, in that
they are interested in obtaining user patterns of program
execution. In contrast, our techniques are intended for use
during the earlier stages of software development, to give
developers immediate feedback on changes they make.

Law and Rothermel [13] present PathImpact, a dynamic
impact analysis that is based on whole-path proflling [12].
In this approach, if a procedure p is changed, any procedure
that is called after p, as well as any procedure that is on the
call stack after p returns, is included in the set of potentially
impacted procedures. Although our analysis difiers from
that of Law and Rothermel in its goals (i.e., flnding afiected
program entities versus flnding changes afiecting tests), both
analyses use the same method-level granularity to describe
change impact.

A recent empirical comparison [16] of the dynamic impact
analyses CoverageImpact by Orso et al. [15] and PathImpact
by Law and Rothermel [13] revealed that the latter computes
more precise impact sets than the former in many cases, but
uses considerably (7 to 30 times) more space to store exe-
cution data. Based on the reported performance results,
the practicality of PathImpact on programs that generate
large execution traces seems doubtful, whereas CoverageIm-
pact [16] does appear to be practical, although it can be
signiflcantly less precise. Another outcome of the study is
that the relative difierence in precision between the two tech-
niques varies considerably across (versions of) programs, and
also depends strongly on the locations of the changes.

Zeller [28] introduced the delta debugging approach for lo-
calizing failure-inducing changes among large sets of textual
changes. E–cient binary-search-like techniques are used to
partition changes into subsets, executing the programs re-
sulting from applying these subsets, and determining whether
the result is correct, incorrect, or inconclusive. An impor-
tant difierence with our work is that our atomic changes
and interdependences take into account program structure
and dependences between changes, whereas Zeller assumes
all changes to be completely independent.

6.2 Regression Test Selection
Selective regression testing16 aims at reducing the number

of regression tests that must be executed after a software
change [20, 17]. These techniques typically determine the
entities in user code that are covered by a given test, and
correlate these against those that have undergone modiflca-
tion, to determine a minimal set of tests that are afiected.

Several notions of coverage have been used. For example,
TestTube [4] uses a notion of module-level coverage, and De-
jaVu [20] uses a notion of statement-level coverage. The em-
phasis in this work is mostly on reducing the cost of running
regression tests, whereas our interest is primarily in assist-
ing programmers with understanding the impact of program
edits.

Bates and Horwitz [1] and Binkley [2] proposed flne-grained
notions of program coverage based on program dependence
graphs and program slices, with the goal of providing as-
sistance with understanding the efiects of program changes.
In comparison to our work, this work uses more costly static
analyses based on (interprocedural) program slicing and con-
siders program changes at a lower-level of granularity, (e.g.,
changes in individual program statements).

Our technique for change impact analysis uses afiected
tests to indicate to the user the functionality that has been
afiected by a program edit. Our analysis determines a sub-
set of those tests associated with a program which need to
be rerun, but it does so in a very difierent manner than pre-
vious selective regression testing approaches, because the set
of afiected tests is determined without needing information
about test execution on both versions of the program.

Rothermel and Harrold [20] present a regression test se-
lection technique that relies on a simultaneous traversal of
two program representations (control °ow graphs (CFGs)
in [20]) to identify those program entities (edges in [20])
that represent difierences in program behavior. The tech-
nique then selects any modiflcation-traversing test that is
traversing at least one such \dangerous" entity. This regres-
sion test selection technique is safe in the sense that any test
that may expose faults is guaranteed to be selected.

Harrold et al. [10] present a safe regression test selection
technique for Java that is an adaptation of the technique
of Rothermel and Harrold [20]. In this work, Java Inter-
class Graphs (JIGs) are used instead of control-°ow graphs.
JIGs extend CFGs in several respects: Type and class hi-
erarchy information is encoded in the names of declaration
nodes, a model of external (unanalyzed) code is used for in-
complete applications, calling relationships between meth-
ods are modeled using Class Hierarchy Analysis, and addi-
tional nodes and edges are used for the modeling of exception
handling constructs.

The method for flnding afiected tests presented in this pa-
per is also safe in the sense that it is guaranteed to identify
any test that reveals a fault. However, unlike the regres-
sion test selection techniques such as [20, 10], our method
does not rely on a simultaneous traversal of two representa-
tions of the program to flnd semantic difierences. Instead,
we determine afiected tests by flrst deriving from a source
code edit a set of atomic changes, and then correlating those
changes with the nodes and edges in the call graphs for the

16 We use the term broadly here to indicate any methodology
that tries to reduce the time needed for regression testing
after a program change, without missing any test that may
be afiected by that change.

tests in the original version of the program. Investigating
the cost/precision tradeofis between these two approaches
for flnding tests that are afiected by a set of changes is a
topic for further research.

In the work by Elbaum et al. [6], a large suite of regres-
sion tests is assumed to be available, and the objective is
to select a subset of tests that meets certain (e.g., cover-
age) criteria, as well as an order in which to run these tests
that maximizes the rate of fault detection. The difierence
between two versions is used to determine the selection of
tests, but unlike our work, the techniques are to a large ex-
tent heuristics-based, and may result in missing tests that
expose faults.

The change impact analysis of [15] can be used to provide
a method for selecting a subset of regression tests to be
rerun. First, all the tests that execute the changed program
entities are selected. Then, there is a check if the selected
tests are adequate for those program changes. Intuitively, an
adequate test set T implies that every relationship between a
program entity change and a corresponding afiected entity is
tested by a test in T . In their approach, they can determine
which afiected entities are not tested (if any). According
to the authors, this is not a safe selective regression testing
technique, but it can be used by developers, for example, to
prioritize test cases and for test suite augmentation.

6.3 Controlling the Change Process
Palantir [22] is a tool that informs users of a conflgura-

tion management system when other users access the same
modules and potentially create direct con°icts.

Lucas et al [23] describes reuse contracts, a formalism to
encapsulate design decisions made when constructing an ex-
tensible class hierarchy. Problems in reuse are avoided by
checking proposed changes for consistency with a specifled
set of possible operations on reuse contracts.

7. CONCLUSIONS AND FUTURE WORK
We have presented our experiences with Chianti, a change

impact analysis tool that has been validated on a year of
CVS data from Daikon. Our empirical results show that
after a program edit, on average the set of afiected tests is
a bit more than half of all the possible tests (52%) and for
each afiected test, the number of afiecting changes is very
small (3.95% of all atomic changes in that edit). These flnd-
ings suggest that our change impact analysis is a promising
technique for both program understanding and debugging.

Plans for future research include an in-depth evaluation
of the cost/precision tradeofis involved in using static ver-
sus dynamic call graphs, now that we have some experience
with both. We also intend to experiment with smaller units
of change, to better describe change impact to a user, espe-
cially since we currently consider all changes to code within
a method (i.e., CM) as one monolithic change.

Acknowledgements. We would like to thank Michael
Ernst and his research group at MIT for the use of their
data. We are also grateful to the anonymous reviewers for
their constructive feedback.

8. REFERENCES
[1] Bates, S., and Horwitz, S. Incremental program

testing using program dependence graphs. In Proc. of
the ACM SIGPLAN-SIGACT Conf. on Principles of

Programming Languages (POPL’93) (Charleston, SC,
1993), pp. 384{396.

[2] Binkley, D. Semantics guided regression test cost
reduction. IEEE Trans. on Software Engineering 23, 8
(August 1997).

[3] Bohner, S. A., and Arnold, R. S. An introduction
to software change impact analysis. In Software
Change Impact Analysis, S. A. Bohner and R. S.
Arnold, Eds. IEEE Computer Society Press, 1996,
pp. 1{26.

[4] Chen, Y., Rosenblum, D., and Vo, K. Testtube: A
system for selective regression testing. In Proc. of the
16th Int. Conf. on Software Engineering (1994),
pp. 211{220.

[5] Eidorff, P. H., Henglein, F., Mossin, C., Niss,
H., Sorensen, M. H., and Tofte, M. AnnoDomini:
From type theory to year 2000 conversion. In Proc. of
the ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (January 1999), pp. 11{14.

[6] Elbaum, S., Kallakuri, P., Malishevsky, A. G.,
Rothermel, G., and Kanduri, S. Understanding
the efiects of changes on the cost-efiectiveness of
regression testing techniques. Journal of Software
Testing, Verification, and Reliability (2003). To
appear.

[7] Ernst, M. D. Dynamically discovering likely program
invariants. PhD thesis, University of Washington,
2000.

[8] Gallagher, K., and Lyle, J. R. Using program
slicing in software maintenance. IEEE Trans. on
Software Engineering 17 (1991).

[9] Gosling, J., Joy, B., Steele, G., and Bracha, G.
The Java Language Specification (Second Edition).
Addison-Wesley, 2000.

[10] Harrold, M. J., Jones, J. A., Li, T., Liang, D.,
Orso, A., Pennings, M., Sinha, S., Spoon, S. A.,
and Gujarathi, A. Regression test selection for Java
software. In Proc. of the ACM SIGPLAN Conf. on
Object Oriented Programming Languages and Systems
(OOPSLA’01) (October 2001), pp. 312{326.

[11] Kung, D. C., Gao, J., Hsia, P., Wen, F.,
Toyoshima, Y., and Chen, C. Change impact
identiflcation in object oriented software maintenance.
In Proc. of the International Conf. on Software
Maintenance (1994), pp. 202{211.

[12] Larus, J. Whole program paths. In Proc. of the ACM
SIGPLAN Conf. on Programming Language Design
and Implementation (May 1999), pp. 1{11.

[13] Law, J., and Rothermel, G. Whole program
path-based dynamic impact analysis. In Proc. of the
International Conf. on Software Engineering (2003),
pp. 308{318.

[14] Milanova, A., Rountev, A., and Ryder, B. G.
Precise call graphs for C programs with function
pointers. Journal for Automated Software Engineering
(2004). Special issue on Source Code Analysis and
Manipulation.

[15] Orso, A., Apiwattanapong, T., and Harrold,
M. J. Leveraging fleld data for impact analysis and
regression testing. In Proc. of European Software
Engineering Conf. and ACM SIGSOFT Symp. on the
Foundations of Software Engineering (ESEC/FSE’03)

(Helsinki, Finland, September 2003).

[16] Orso, A., Apiwattanapong, T., Law, J.,
Rothermel, G., and Harrold, M. J. An empirical
comparison of dynamic impact analysis algorithms. In
Proc. of the International Conf. on Software
Engineering (ICSE’04) (Edinburgh, Scotland, 2004),
pp. 491{500.

[17] Orso, A., Shi, N., and Harrold, M. J. Scaling
regression testing to large software systems. In
Proceedings of the 12th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE
2004) (Newport Beach, CA, 2004). To appear.

[18] Ramalingam, G., Field, J., and Tip, F. Aggregate
structure identiflcation and its application to program
analysis. In Proc. of the ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages
(January 1999), pp. 119{132.

[19] Ren, X., Shah, F., Tip, F., Ryder, B. G.,
Chesley, O., and Dolby, J. Chianti: A prototype
change impact analysis tool for Java. Tech. Rep.
DCS-TR-533, Rutgers University Department of
Computer Science, September 2003.

[20] Rothermel, G., and Harrold, M. J. A safe,
e–cient regression test selection technique. ACM
Trans. on Software Engineering and Methodology 6, 2
(April 1997), 173{210.

[21] Ryder, B. G., and Tip, F. Change impact for object
oriented programs. In Proc. of the ACM
SIGPLAN/SIGSOFT Workshop on Program Analysis
and Software Testing (PASTE01) (June 2001).

[22] Sarma, A., Noroozi, Z., and van der Hoek, A.
Palantir: Raising awareness among conflguration
management workspaces. In Proc. of the International
Conf. on Software Engineering (2003), pp. 444{454.

[23] Steyaert, P., Lucas, C., Mens, K., and D’Hondt,
T. Reuse contracts: Managing the evolution of
reusable assets. In Proc. of the Conf. on
Object-Oriented Programming, Systems, Languages
and Applications (1996), pp. 268{285.

[24] Thione, G. L. Detecting semantic con°icts in parallel
changes, December 2002. Masters Thesis, Department
of Electrical and Computer Engineering, University of
Texas, Austin.

[25] Thione, G. L., and Perry, D. E. Parallel changes:
Detecting semantic interference. Tech. Rep.
ESEL-2003-DSI-1, Experimental Software Engineering
Laboratory, University of Texas, Austin, September
2003.

[26] Tip, F. A survey of program slicing techniques. J. of
Programming Languages 3, 3 (1995), 121{189.

[27] Tonella, P. Using a concept lattice of decomposition
slices for program understanding and impact analysis.
IEEE Trans. on Software Engineering 29, 6 (2003),
495{509.

[28] Zeller, A. Yesterday my program worked. Today, it
does not. Why? In Proc. of the 7th European Software
Engineering Conf./7th ACM SIGSOFT Symp. on the
Foundations of Software Engineering (ESEC/FSE’99)
(Toulouse, France, 1999), pp. 253{267.

