
Refactoring Support for Class Library Migration

Ittai Balaban
New York University

251 Mercer St., New York, NY 10012
balaban@cs.nyu.edu

Frank Tip Robert Fuhrer
IBM T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598
{ftip,rfuhrer}@us.ibm.com

ABSTRACT
As object-oriented class libraries evolve, classes are occa-
sionally deprecated in favor of others with roughly the same
functionality. In Java’s standard libraries, for example, class
Hashtable has been superseded by HashMap, and Iterator

is now preferred over Enumeration. Migrating client ap-
plications to use the new idioms is often desirable, but
making the required changes to declarations and allocation
sites can be quite labor-intensive. Moreover, migration be-
comes complicated—and sometimes impossible—if an appli-
cation interacts with external components, if a legacy class
is not completely equivalent to its replacement, or if multi-
ple interdependent classes must be migrated simultaneously.
We present an approach in which mappings between legacy
classes and their replacements are specified by the program-
mer. Then, an analysis based on type constraints determines
where declarations and allocation sites can be updated. The
method was implemented in Eclipse, and evaluated on a
number of Java applications. On average, our tool could
migrate more than 90% of the references to legacy classes.

1. INTRODUCTION
Class libraries evolve because it is difficult to anticipate what
functionality is needed, and new usage patterns may arise
after a library’s initial deployment. The incorporation of
additional functionality in a class library can often be ac-
complished in backward-compatible ways by creating addi-
tional interfaces, and/or adding methods to existing classes.
However, when an existing library class provides insufficient
flexibility because of an unfortunate design decision, it is
often undesirable to make incompatible changes that would
break existing library clients. As a result, classes are occa-
sionally deprecated in favor of others with roughly the same
functionality. In such cases, legacy classes are typically not
removed from a library for backward compatibility reasons.

Several examples of the scenario described above can be
found in the java.util collection libraries. Class Hashtable

has been superseded by a class HashMap that is simi-

lar but allows unsynchronized1 access to a hash-table’s
elements as well as the use of null keys and values.
Class ArrayList is similar to class Vector except for the
fact that it allows unsynchronized access to the list’s el-
ements. Furthermore, the Iterator interface, now fa-
vored over the similar Enumeration interface, uses more
concise method names and provides an additional opera-
tion remove(). Outside of the standard collection classes,
class java.io.PrintWriter is now preferred instead of the
similar class java.io.PrintStream [5]. Moreover, Java 1.5
supports a class java.io.StringBuilder that provides the
same functionality as java.io.StringBuffer but is not
thread-safe. Migrating a client application to the new id-
ioms is often desirable, but can be labor-intensive as it may
involve updating many declarations, allocation sites, and
call sites. Moreover, migration becomes complicated—and
sometimes impossible—if an application interacts with ex-
ternal components, if a legacy class is not completely equiva-
lent to its replacement, or if multiple interdependent classes
must be migrated simultaneously.

The contribution of this paper is a technique for automatic
migration of applications that use legacy library classes. In
this approach, a migration specification defines how uses of
legacy library classes are mapped to uses of their replace-
ment classes. Each such mapping needs to be defined only
once, and can then be used to migrate any number of appli-
cations. We use an analysis based on type constraints [25]
to determine where, for a given migration specification, it
is possible to migrate uses of legacy classes without affect-
ing the program’s type-correctness or behavior. In addition,
an escape analysis (see e.g., [6, 1, 27]) serves to determine
where it is safe to replace a synchronized legacy class with an
unsynchronized replacement class2. In cases where it can-
not be shown that synchronization can be removed safely
for a given object o, our approach is to insert a synchro-
nization wrapper around o. This is accomplished using an
instance of the Decorator design pattern [15] where a col-
lection type is implemented by delegating all operations to
o, and where thread-safety is added by making all the for-
warding methods synchronized. The synchronization wrap-

1In new Java container classes, synchronization is
decoupled from a collection’s functionality. Class
java.util.Collections contains “synchronization wrap-
per” methods for transforming any Map or List into a syn-
chronized Map or List, respectively.
2For example, consider the migration from the synchronized
legacy class Hashtable to its unsynchronized replacement
HashMap.

(1) public class Wizard { public class Wizard {
(2) private static JComboBox selectionBox; private static JComboBox selectionBox;
(3) private static Hashtable h1 = new Hashtable(); /* A1 */ private static HashMap h1 = new HashMap();
(4) private static Vector v2; private static List v2;
(5) public static void main(String[] args) { public static void main(String[] args) {
(6) for (int count = 0; count < 5; count++) for (int count = 0; count < 5; count++)
(7) h1.put(new Integer(count), h1.put(new Integer(count),
(8) "Item " + Integer.toString(count)); "Item " + Integer.toString(count))
(9) Vector v1 = new Vector(); /* A2 */ Vector v1 = new Vector();
(10) retrieveData(v1); retrieveData(v1);
(11) v2 = runWizard(v1); v2 = runWizard(v1);
(12) Object[] dbData = new Object[v2.size()]; Object[] dbData = new Object[v2.size()];
(13) v2.copyInto(dbData); Util.copyInto(v2, dbData);

(14) writeToDatabase(dbData); writeToDatabase(dbData);
(15) } }
(16) private static Vector runWizard(Vector v3) { private static List runWizard(Vector v3) {
(17) Vector v4 = new Vector(); /* A3 */ List v4 = Collections.synchronizedList(new ArrayList());

(18) for (int sel = showWizardDialog(v3); for (int sel = showWizardDialog(v3);
(19) sel >= 0;) { sel >= 0;) {
(20) v4.addElement(v3.elementAt(sel)); v4.add(v3.elementAt(sel));
(21) sel = showWizardDialog(v3); sel = showWizardDialog(v3);
(22) } }
(23) System.out.println("User Selections:"); System.out.println("User Selections:");
(24) printElements(v4.elements()); printElements(v4.iterator());
(25) return v4; return v4;
(26) } }
(27) private static void printElements(Enumeration e1) { private static void printElements(Iterator e1) {
(28) while (e1.hasMoreElements()) while (e1.hasNext())
(29) System.out.println(e1.nextElement()); System.out.println(e1.next());
(30) } }
(31) private static void retrieveData(Vector v5) { private static void retrieveData(Vector v5) {
(32) printElements(h1.elements()); printElements(h1.values().iterator());
(33) for (Enumeration e2 = h1.elements(); for (Iterator e2 = h1.values().iterator();
(34) e2.hasMoreElements();) e2.hasNext();)
(35) v5.addElement(e2.nextElement()); v5.addElement(e2.next());
(36) } }
(37) private static int showWizardDialog(Vector v6) { private static int showWizardDialog(Vector v6) {
(38) selectionBox = new JComboBox(v6); selectionBox = new JComboBox(v6);
(39) selectionBox. selectionBox.
(40) addActionListener(new MyActionListener(v2)); addActionListener(new MyActionListener(v2));

· · · · · ·
(41) } }
(42) static void writeToDatabase(Object[] data) { · · · } static void writeToDatabase(Object[] data) { · · · }
(43) } }
(44) public class MyActionListener implements ActionListener public class MyActionListener implements ActionListener
(45) { {
(46) private Vector v7; private List v7;
(47) public MyActionListener(Vector v6) {v7 = v6;} public MyActionListener(List v6) {v7 = v6;}

· · · · · ·
(48) } }

(a) (b)

Figure 1: (a) Example program that uses the legacy classes Vector, Hashtable, and Enumeration. (b) The
example program after migrating from Vector to ArrayList, Hashtable to HashMap, and Enumeration to Iterator.
Underlining indicates changed code fragments. A1, A2, and A3 denote allocation sites in the program.

pers that we use are provided by the standard library class
java.util.Collections exactly for this purpose.

Our work was implemented as a refactoring [13, 22] in Eclipse
(see www.eclipse.org), a widely used open-source develop-
ment environment for Java, using an existing refactoring
infrastructure [2]. Thus far, our experiments have concen-
trated on migrations involving classes from the Java Stan-
dard Collections Framework, but our techniques can also
be used for migrations involving other library classes, and
for migrations between user-defined classes. At present, the
framework requires that the migration of method calls does
not change the exceptions that may be thrown, and migra-
tions are simply disallowed if this is not the case. This has
not posed any problems in practice, because we did not en-
counter situations that required nontrivial migrations of ex-
ception types while conducting our experiments. Section 2

presents a simple workaround mechanism that is sufficient
to handle most cases of migrations between methods that
differ in the thrown exceptions. In the long term, it does
not seem especially difficult to support the migration of ex-
ception types, as is discussed in Section 7. Furthermore, we
expect that handling other statically typed object-oriented
languages (e.g., C#) would only require minor modifications
of the framework.

We evaluated our technique on a number of moderate-
sized Java applications in which we migrated a number of
heavily used legacy classes from the standard collection li-
braries. Specifically, we considered migration from Vector

to ArrayList, Hashtable to HashMap, and Enumeration to
Iterator. In these benchmarks, our tool could automati-
cally migrate an average of 90.4% of the declarations that
refer to legacy classes, 96.6% of the call sites, and 92.0%

(1) new Vector(), unsynchronized → new ArrayList()
(2) new Vector(), synchronized → Collections.synchronizedList(new ArrayList())
(3) int Vector:receiver.size() → int receiver.size()
(4) Object Vector:receiver.firstElement() → Object receiver.get(0)
(5) Object Vector:receiver.setElementAt(Object: value, int: index) → Object receiver.set(index, value)
(6) void Vector:receiver.copyInto(Object: array) → void Util.copyInto(receiver, array)
(7) Enumeration Vector:receiver.elements() → Iterator receiver.iterator()
(8) new Hashtable(), unsynchronized → new HashMap()
(9) new Hashtable(), synchronized → Collections.synchronizedMap(new HashMap())
(10) Object Hashtable:receiver.put(Object: key, Object: value) → Object receiver.put(key, value)
(11) Enumeration Hashtable:receiver.elements() → Iterator (Collection receiver.values()).iterator()

Figure 2: Specification used for migrating the example program of Figure 1.

of the allocation sites. Moreover, for the migrated alloca-
tion sites, only a small fraction needed to be surrounded
with synchronization wrappers. Code inspection revealed
that the remaining occurrences of legacy classes could not
be migrated due to interaction with external libraries such
as Swing.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a motivating example that illustrates our
approach. Section 3 presents the model of type constraints
that will be used to determine where migrations are allowed,
and Section 4 describes how type constraints are solved. Sec-
tion 5 discusses the evaluation of our approach on a set of
moderate-sized benchmarks. Related work is discussed in
Section 6. Finally, conclusions and directions for future work
are presented in Section 7.

2. MOTIVATING EXAMPLE
Figure 1(a) shows an example program that implements a
simple “wizard” using a number of components from the
Swing class library. The program displays a list of values in a
drop-down menu, and prompts the user to select one or more
of these. Then, the selected values are written to a database
via a call to the method writeToDatabase(Object[]), the
definition of which is omitted. Our goal is to transform
this program so that it uses ArrayList instead of the legacy
class Vector, HashMap instead of Hashtable, and Iterator

instead of Enumeration. Figure 1(b) shows the desired refac-
tored program.

ArrayList was introduced in the standard libraries to re-
place Vector, and is considered preferable because its inter-
face is minimal and matches the functionality of the List

interface. More importantly, it allows for unsynchronized
access to a list’s elements whereas all of Vector’s meth-
ods are synchronized3 which results in unnecessary over-
head when Vectors are used by only one thread. Similarly,
HashMap was introduced to replace Hashtable and allows
for unsynchronized access to a hash-table’s elements. More-
over, HashMap allows for null values and it does not contain
any of Hashtable’s methods that produce Enumerations.
The Iterator interface that replaces Enumeration features
shorter method names and supports an additional remove()

method for the safe removal of elements during iteration.

Figure 2 shows a migration specification, as would be written
by a user, for migrating the example program. This spec-

3As noted in e.g., [6, 1, 27], synchronization operations in
Java programs may incur significant performance overhead.

public class Util {
public static void copyInto(ArrayList v,

Object[] target) {
if (target == null)

throw new NullPointerException();
for (int i = v.size() - 1; i >= 0; i--)

target[i] = v.get(i);
}

}
Figure 3: Auxiliary class that contains a method
used for migrating Vector.copyInto().

ification consists of a set of rewrite rules that express how
allocation sites and method calls on legacy classes4 Vector,
Hashtable and Enumeration can be rewritten. For example,
rule (3) states that migrating calls to method Vector.size()

requires no modification, since ArrayList defines a syn-
tactically and semantically identical method. If methods
in the legacy class are not supported by the replacement
class, rewriting method calls becomes more involved. For
example, Vector supports a method firstElement() not
defined in ArrayList. Rule (4) states that a call receiver.

firstElement(), where receiver is an expression of type
Vector, should be transformed into receiver.get(0). In
cases where it is not possible to express the effect of a
method call on the legacy class in terms of calls to methods
on the replacement class, calls may be mapped to methods
in user-defined classes. For example, Vector has a method
copyInto() that copies the contents of a Vector into an ar-
ray. Since ArrayList does not provide this functional-
ity, rule (6) transforms receiver.copyInto(array) into
a call to method Util.copyInto(receiver, array) of the
Util class shown in Figure 3. This strategy can also be
used to migrate between methods that throw different types
of exceptions. Specifically, a user-defined class method can
be used to wrap a method in a replacement class in order
translate between exception types. Finally, when an opera-
tion in a legacy class that is not supported by a replacement
class cannot be modeled using an auxiliary class, migration
may become impossible.

Rules (1) and (2) are both concerned with rewriting al-
location sites of the form new Vector(). The former
applies in cases where thread-safety need not be pre-
served, and transforms the allocation site into an expres-
sion new ArrayList(). The latter applies in situations
where thread-safety must be preserved, and transforms

4In this discussion we use the term class to refer to Java
classes as well as to interfaces.

the allocation site into Collections.synchronizedList(

new ArrayList()) using a standard synchronization wrap-
per in the class java.util.Collections. Our tool relies on
an escape analysis to determine which of the two rules should
be applied, and prefers (1) over (2) whenever possible.

It is important to realize that, while the specification of
Figure 2 describes how program fragments are transformed,
it does not state when the transformation is allowed. We
will now examine the program of Figure 1 to illustrate the
limitations on migration.

Line (38) of the example program contains a call to a con-
structor javax.swing.JComboBox(Vector) in the Swing li-
brary, where v6 (declared on line (37)) is used as an actual
parameter. The type of v6 cannot be changed to ArrayList

because: (i) the methods of library class JComboBox can-
not be changed, and (ii) changing v6’s type to ArrayList

would result in a type error because ArrayList is not a
subtype of Vector5. Furthermore, observe that method
showWizardDialog(Vector) is invoked on line (18), using
v3 as the actual parameter. v3’s type cannot be changed
to ArrayList because: (i) we just argued that the type of
its formal parameter v6 cannot be changed, and (ii) chang-
ing v3’s type to ArrayList would result in a type-error be-
cause ArrayList is not a subtype of Vector. The type of v1

and of the allocation site labeled A2 cannot be changed to
ArrayList for similar reasons.

Next, we turn our attention to the migration of alloca-
tion sites. Suppose that allocation site A3 is changed to
“new ArrayList()”. Objects allocated at A3 are eventually
passed to the constructor of MyActionListener, a listener
that is passed to a JComboBox object allocated on line (39).
As JComboBox occurs in an external library, we conserva-
tively assume that the listener may be used in a separate
thread and hence preserve thread-safety by rewriting A3 to
“Collections.synchronizedList(new ArrayList)”. The
assignment to v4 on line (17) requires that we also change
v4’s type to List because a type-error occurs otherwise. Us-
ing similar arguments, it can be seen that runWizard()’s
return type and v2’s type must be changed to List as well.

Updating the types of variables may necessitate the trans-
formation of method calls. For example, changing v4’s
type to ArrayList requires that we transform the calls
v4.addElement(· · ·) on line (20) and v4.elements() on
line (24) because these operations are not supported by
ArrayList. Using the specification of Figure 2, we trans-
form the former into v4.add(· · ·) and the latter into
v4.iterator(). Moreover, changing v2’s type requires
transforming the call v2.copyInto(dbData) on line (13)
into Util.copyInto(v2, dbData). Note that the transfor-
mation of expression v4.elements() on line (24) necessi-
tates changing the type of the formal parameter elements

of printElements() from Enumeration to Iterator. This,

5The use of concrete container classes such as Hashtable
(as opposed to abstract container classes such as Map) in the
signature of public methods is often an indication of poor
design, because it unnecessarily exposes implementation de-
tails. Nonetheless, this practice is pervasive. For example,
we counted 215 public methods in the JDK 1.4.2 standard
libraries whose signature refers to Hashtable or Vector.

in turn, entails migrating elements.hasMoreElements() on
line (28) and elements.nextElement() on line (29), and all
callers of printElements() must be updated accordingly,
which involves further changes on lines (3) and (32)–(35).

Figure 1(b) shows the refactored program, using underlining
to highlight transformed program fragments. It is evident
from the above discussion that migrating references of legacy
classes is both labor-intensive (many declarations, calls, and
allocation sites are affected) and error-prone (not all uses of
legacy classes can be migrated, and dependencies between
migrations exist). The limitations on class library migration
can be categorized as follows:

interaction with external libraries. If an application
calls a method of an external library, opportunities
for migration may be limited if the method signature
refers to a concrete class such as Vector.

type correctness requirements due to assignments.
Program constructs such as assignments require that
certain subtype-relationships hold between the types
of variables and expressions. As a result, migrating
one variable often requires migrating others.

dependencies between migrations. If a method in one
legacy class refers to another, one migration may de-
pend on another.

thread safety. A major difference between legacy col-
lection classes and their replacements is the fact that
the latter do do not perform automatic synchroniza-
tion on every method call. If thread-safety is required,
synchronization wrappers must be inserted.

3. THE FRAMEWORK
We now present the formal framework for expressing migra-
tions between classes. In what follows, we will use P and P ′

to refer to the original program, and to the refactored pro-
gram, respectively. We will first make precise the concept
of a migration between classes. Then, we present the type
constraints model.

3.1 Migrations
Fix two classes, T and T ′. We say that a mapping m over
fragments of Abstract Syntax Trees (AST) is a migration
from T to T ′ under the following conditions:

• m maps allocation expressions of type T , i.e. expres-
sions of the form new T (· · ·), into allocation expres-
sions of type T ′.

• m maps method call expressions on methods of T to
expressions not written in terms of T .

Given a migration from T to T ′, we refer to T and to T ′

as a legacy class, and a replacement class, respectively. An
expression E is said to be a migration candidate if it is either
an allocation expression of type T , or if it is a call to a
method of T .

The input to the framework, in addition to the program
being refactored, is a set of migrations, each of which is
specified by a set of rules. The example in Figure 2 con-
sists of three migrations: From Vector to ArrayList, from

M, M ′ methods (signature, return type, and a reference to the declaring type are assumed to be available)
F, F ′ fields (name, type, and declaring type are assumed to be available)
C, C′ classes
I, I ′ interfaces
T, T ′ types (in this paper, a type is either a class or an interface)
E, E′, E1, E2, · · · expressions (at a specific point in the program, corresponding to a specific node in the program’s AST)

[E] the type of expression or declaration element E
[M] the declared return type of method M
[F] the declared type of field F
Decl(M) the type that declares method M
Decl(F) the type that declares field F
Param(M, i) the i-th formal parameter of method M
T ′≤T T ′ is equal to T , or T ′ is a subtype of T

RootDefs(M) {M ′ | M overrides M ′, and there exists no M ′′(M ′′ 6= M ′) such that M ′ overrides M ′′ }

Figure 4: Notation used for defining type constraints.

α = α′ type α must be the same as type α′

α≤α′ type α must be the same as, or a subtype of type α′

α≤α1 or · · · or α≤αk α≤αi must hold for at least one i, (1 ≤ i ≤ k)
α 6≤α′ type α must not be a subtype of type α′

(α = α′) → c Constraint c must hold if constraint α = α′ holds

Figure 5: Syntax of type constraints. Here, constraint variables α, α′, ... represent the types associated with
program constructs and must be of one of the following forms: (i) a type constant T , (ii) the type of an
expression [E], (iii) the type declaring a method Decl(M), or (iv) the type declaring a field Decl(F).

Hashtable to HashMap, and from Enumeration to Iterator.
Note that while Figure 2 does not specify how to migrate
all methods declared in these classes, it can be used with
any application. In general, the use of a partial specifica-
tion has the disadvantage that the framework may be able
to migrate smaller portions of a program than with a more
complete one. The grammar of the specification language,
as well as an example of a complete migration from Vector

to ArrayList, can be found in Appendix A.

3.2 Type Constraints
Given a set of migrations M and a program P , a system
of type constraints [25] is generated. Type constraints are
a formalism for expressing relationships between the types
of declarations and expressions that has traditionally been
used for type-checking, type inference, and more recently
for refactoring [31, 30, 14]. We extend the type constraints
framework of [31] to determine where declarations and al-
location sites can be transformed, as per migrations in M,
without affecting program behavior. Type constraints are
generated from the AST of a program in a syntax-directed
manner, and encode relationships between the types of dec-
larations and expressions that must be satisfied in order to
preserve type correctness or program behavior. Figure 4
shows the notation used to formulate type constraints. Fig-
ure 5 shows the syntax of type constraints. The type con-
straints used in this paper can be categorized as follows:

1. Constraints that express relationships between types
of declarations and expressions that must be preserved
in order to preserve type-correctness. These constraints
are generated by rules (1)–(24) in Figure 6, and are
largely the same as in [30, 31], the main difference be-
ing special treatment for legacy classes. Section 3.2.1
presents some of these constraints in more detail.

2. Constraints that express relationships between the types
of declarations and expressions that must be preserved
in order to preserve a program’s run-time behavior.
These constraints are generated by rules (25)–(29) in
Figure 6, and are discussed in Section 3.2.2.

3. Constraints that preserve type-correctness of migra-
tion candidates. These are shown in Figure 7, and will
be discussed in Section 3.2.4.

3.2.1 Preserving Type Correctness
Rules (1)–(24) in Figure 6 generate type constraints for pre-
serving type-correctness. Each rule generates, for a given
program construct, one or more type constraints that ex-
press the subtype-relationships that must exist between the
declared types of the construct’s constituent expressions, in
order for that program construct to be type-correct. By def-
inition, a program is type-correct if the type constraints for
all its constructs are satisfied. We will now study a few of
the constraint generation rules in detail, referring the reader
to [30, 31] for further details.

For example, rule (1) states that an assignment E1 = E2 is
type correct if the type of E2 is the same as or a subtype of
the type of E1. For a field-access expression E.f , rule (2)
defines the type of this expression to be the same as the
declared type of F and rule (3) requires that the type of
expression E be a subtype of the type in which F is declared.

Rules (4)–(6) are concerned with a virtual method call E.m(
E1, · · · , Ek) that refers to a method M . Rule (4) defines the
type of the call-expression to be the same as M ’s return type.
Further, the type of each actual parameter Ei must be the
same as or a subtype of the type of the corresponding for-
mal parameter Param(M, i) (rule (5)). Rule (6) states that

program construct(s)/analysis fact(s) implied type constraint(s)

assignment E1 = E2 [E2]≤[E1] (1)

access E.f to field F [E.f] = [F]
[E]≤Decl(F)

(2)
(3)

method call
E.m(E1, · · · , En)

to a virtual method M
[E]P is not a migration candidate

[E.m(E1, · · · , En)] = [M]
[Ei]≤[Param(M, i)]

[E]≤Decl(M1) or · · · or [E]≤Decl(Mk)
where RootDefs(M) = {M1, · · · , Mk }

(4)
(5)

(6)

return E in method M [E]≤[M] (7)
Constructor call new C(E1, · · · , En) to constructor M

[new C(E1, · · · , En)]P = C
Class C is not a legacy class

[Ei]≤[Param(M, i)] (8)

direct call
E.m(E1, · · · , En)

to method M

[E.m(E1, · · · , En)] = [M]
[Ei]≤[Param(M, i)]

[E]≤Decl(M)

(9)
(10)
(11)

down-cast
(C)E

[(C)E]≤[E]
if [E] is a class

(12)

for every type T
T≤java.lang.Object

[null]≤T
(13)
(14)

implicit declaration of this in method M [this] = Decl(M) (15)
declaration of method M (declared in type T) Decl(M) = T (16)

declaration of field F (declared in type T) Decl(F) = T (17)
explicit declaration of i’th parameter v of

method or constructor M Param(M, i) = [v] (18)

down-cast expression (T)E
T is a legacy type

[(T)E] ≤ T>

T⊥ ≤ [(T)E]
(19)
(20)

down-cast expression (T)E
T is not legacy type [(T)E] = T (21)

expression new C(E1, · · · , En)
C is a legacy class with replacement C′

[new C(E1, · · · , En)] ≤ C>

C⊥ ≤ [new C(E1, · · · , En)]
(22)
(23)

expression new C(E1, · · · , En)
C is not a legacy class [new C(E1, · · · , En)] = C (24)

M ′ overrides M ,
M ′ 6= M

[Param(M ′, i)] = [Param(M, i)]
[M ′] = [M]

(25)
(26)

actual parameter E in call to method in external library,
[E]P = T [E] = T (27)

for each down-cast expression (C)E, and each
allocation expression E′ ∈ PointsTo(P, E)
such that [E′]P≤[(C)E]P

[E′]≤[(C)E] (28)

for each down-cast expression (C)E, and each
allocation expression E′ ∈ PointsTo(P, E)
such that [E′]P 6≤[(C)E]P

[E′] 6≤[(C)E] (29)

Figure 6: Type constraints for a set of core Java language features.

program construct(s)/analysis fact(s) implied type constraint(s)

Expression E of the form new C(· · ·)
[E]P = C

C is a legacy class with replacement C′

E′ is a migration of E

([E] = C) → c
([E] = C′) → c′

for every c ∈ consts(E), c′ ∈ consts(E′)

(30)
(31)

Expression E of the form E1.m(· · ·)
[E1]P = T

T is a legacy type with replacement T ′

E′ is a migration of E

([E] = T) → c
([E] = T ′) → c′

for every c ∈ consts(E), c′ ∈ consts(E′)

(32)
(33)

Figure 7: Type constraints for migration candidates.

a declaration of a method with the same signature as M
must occur in a supertype of the type of E. The complexity
in this rule stems from the fact that M may override one or
more methods M1, · · · , Mk that are declared in supertypes
T1, · · · , Tk of the type Decl(M). Here, the type-correctness
of the method call only requires that the type of receiver ex-
pression E is a subtype of one of these Ti. This is expressed
by way of a disjunction in rule (6) using auxiliary function
RootDefs of Figure 4.

Rules (22) and (23) are concerned with allocation expres-
sions of legacy classes. The need for rules specific to legacy
classes is illustrated as follows: In [31], the following con-
straint is generated for an allocation expression of the form
new C(E1, · · · , En):

[new C(E1, · · · , En)] = C

stating that the type of the expression must be C. For non-
legacy classes, this rule is still needed (rule (24)). However,
in the case of legacy classes such as Vector, it is too restric-
tive because we want to consider the alternative solution in
which the expression is changed to allocate an ArrayList

instead of a Vector. To this end, we augment the class hier-
archy with auxiliary classes as well as subtype relationships.
Let T and T ′ be a legacy and a replacement, class, respec-
tively. As in [30], we define the auxiliary classes T> and T⊥
where T> is defined to be a supertype of both T and T ′, and
T⊥ is defined to be a subtype of both T and T ′. For example,
in migrating class Vector to ArrayList, the type Vector>

is introduced as a common supertype of both classes, and
Vector⊥ as a common subtype. Now, rules (22) and (23) al-
low the type of an allocation expression to be either Vector

or ArrayList. (note that the presence of other constraints
may still restrict the expression’s type to Vector). It should
be noted that T> and T⊥ are only used during constraint
solving; the refactored program will not refer to these auxil-
iary classes. The rules for down-cast expressions have been
adapted from [31] similarly.

3.2.2 Preserving Run-Time Behavior
The constraints discussed so far are only concerned with
type-correctness. Additional constraints are needed to en-
sure that program behavior is preserved. Rules (25) and (26)
state that overriding relationships in the original program P
must be preserved in the refactored program P ′.

Rules (28) and (29) state that the execution behavior of
a down-cast (C)E must be preserved. Here, the notation
PointsTo(P, E) refers to the set of objects (identified by
their allocation sites) that an expression E in program P
may point to, and [(C)E]P denotes the type of the down-
cast expression (C)E in the original program P . Any of
several existing algorithms [19, 28] can be used to compute
points-to information. Rule (28) ensures that for each E′

in the points-to set of E for which the down-cast succeeds,
the down-cast will still succeed in P ′. Likewise, Rule (29)
enforces that for each E′ in the points-to set of E for which
the down-cast fails, the down-cast will still fail in P ′. The
treatment of up-casts is completely symmetrical to that of
down-casts and requires rules similar to (12), (19)–(20), and
(28)–(29). We omitted these rules, but our implementation
fully supports up-casts.

Line Constraint Rule

(9)
[A2]≤[v1], [A2]≤Vector>,
Vector⊥≤[A2]

(1), (22),
(23)

(11) [v1]≤[Param(runWizard(Vector), 1)] (10)
(16) [Param(runWizard(Vector), 1)] = [v3] (18)
(49) [v3]≤[Param(showWizardDialog(Vector), 1)] (10)
(37) [Param(showWizardDialog(Vector), 1)] = [v6] (18)
(38) [v6]≤[Param(JComboBox(Vector), 1)] (8)
n/a [Param(JComboBox(Vector), 1)] = Vector (27)

(17)
[A3]≤[v4], [A3]≤Vector>,
Vector⊥≤[A3]

(1), (22),
(23)

Figure 8: Some of the generated type constraints.

External libraries that cannot be modified raise several is-
sues. First, rule (27) states that the types of actual pa-
rameters in calls to methods in external libraries cannot
be changed. Second, since source code is unavailable, we
must make conservative assumptions about casts that may
be performed inside external libraries, and also for comput-
ing points-to information. Rule (27) satisfies these assump-
tions by effectively fixing the type of any allocation site that
may flow to an external library.

3.2.3 Example
Figure 8 shows some of the basic constraints generated for
the example of Figure 1 using the rules of Figure 6. This
set of constraints, although not complete, is sufficient to
demonstrate the migration possibilities and limitations of
allocation sites A2 and A3. Note that A3 is only constrained
to be a subtype of Vector>, and a supertype of Vector⊥,
and can therefore be migrated. However, A2 cannot be mi-
grated due to a call to a constructor of the external class
JComboBox. Rule (27) fixes the parameter of this construc-
tor to be Vector, and the other constraints effectively prop-
agate this fact to A2, whose type accordingly must remain
Vector.

3.2.4 Implication Constraints
Since a migration is a transformation over expressions, a
migration candidate and its transformed counterpart often
generate distinct sets of constraints. To illustrate this, con-
sider the migration in Figure 2 and the expression v2.

copyInto(dbData) on line (13) of Figure 1. The trans-
formed method call is Util.copyInto(v2, dbData). Here,
the original expression generates (by rules (5) and (6)) the
constraints

[v2] ≤ Vector

[dbData] ≤ [Param(Vector.copyInto, 1)]

because v2 is a receiver of the method call, and dbData is an
actual parameter. However, in the transformed expression
v2 and dbData are both actual parameters. Hence the trans-
formed expression generates (by rule (10)) the constraints

[v2] ≤ [Param(Util.copyInto, 1)]

[dbData] ≤ [Param(Util.copyInto, 2)]

Therefore, depending on the type assigned to certain con-
straint variables (in this case the variable [v2]), different sets
of constraints need to be considered by a solving algorithm.
To express this, we use implication constraints, rules for
which are given in Figure 7.

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :

10 :

repeat until fixpoint2
666666666664

repeat until fixpoint2
666664

for every D, E such that (D≤E) ∈ C�
SD := SD − {T | ∀T ′ ∈ SE : T 6≤T ′}
SE := SE − {T ′ | ∀T ∈ SD : T 6≤T ′}

for every D, E such that (D 6≤E) ∈ C�
SD := SD − {T | ∀T ′ ∈ SE : T≤T ′}
SE := SE − {T ′ | ∀T ∈ SD : T≤T ′}

if there exists D such that |SD| > 1
SD := {choose(SD)}

Figure 9: Algorithm Solve-Simple for a set C of sim-
ple constraints over ≤, 6≤

In rules (30)–(33), E denotes a migration candidate, and E′

denotes a transformed form of E. The notation consts(E)
(respectively consts(E′)) denotes the set of constraints gen-
erated by subexpressions of E (respectively E′) according
to the rules in Figure 6. Rules (30)–(31) apply to legacy
allocation sites, while rules (32)–(33) apply to method calls
in which the type of the receiver is a legacy class.

For example, let E be the expression v2.copyInto(dbData).
Then applying rules (32) and (33), we get the following con-
straints for E:

([E] = Vector) → [v2] ≤ Vector

([E] = Vector) → [dbData] ≤ [Param(Vector.copyInto, 1)]

([E] = ArrayList) → [v2] ≤ [Param(Util.copyInto, 1)]

([E] = ArrayList) → [dbData] ≤ [Param(Util.copyInto, 2)]

4. SOLVING CONSTRAINTS
We will present the algorithm for solving systems of type
constraints in two parts. First, an algorithm for solving ba-
sic constraints is presented. This is then embedded in a
solver that accommodates implications. Our goal is to find
a solution to the constraints that maximizes the number of
migration candidates that are transformed to use replace-
ment classes.

4.1 Solving Simple Constraints
An initial step in solving a system of simple constraints
is to simplify all disjunction constraints into equivalent or
stronger constraints over the relation ≤. Disjunctions are
generated by rule (6) for dealing with virtual method calls.
We first remove any disjunction that trivially follows from
some other constraint in the system. Then, any remaining
disjunction is strengthened to a ≤-constraint by replacing
it with one of its disjuncts. If we assume that none of the
disjunctions is derived from a migrated call site6, it is guar-
anteed that a solution to the constraint system will still ex-
ist after strengthening the disjunctions, because the original
program satisfies all disjuncts of all disjunctions. The man-
ner in which a disjunct is chosen to replace the constraint is
the same as in [30].

To solve a system of simple constraints over relations ≤ and
6≤, we partition the set of constraint variables into equiva-
lence classes according to equality constraints. That is, any
solution to the system must assign an identical type to all
members of a single equivalence class. The relations ≤ and 6≤
6This assumption is satisfied if for any method M of a re-
placement class, we require that |RootDefs(M)| = 1.

1 :
2 :
3 :
4 :
5 :

6 :

7 :
8 :
9 :

Invoke Solve-Simple
while I 6= ∅2
666666666664

Let c ∈ I be a constraint of the form ([E] = T) → ψ
I := I − {c}
If T ∈ SE then2
4

(SE , C) := (SE ∩ {T}, C ∪ {ψ})
or

(SE , C) := (SE − {T}, C)
Invoke Solve-Simple
If ∃E.SE = ∅ then

backtrack

Figure 10: Algorithm Solve-Complete for the sets
(I, C) of implication and simple constraints. The no-
tation [V := A or V := B] denotes a nondeterministic
assignment.

are extended to equivalence classes in the obvious way. Then
the set of possible types for each class is computed using an
optimistic algorithm. The algorithm associates with each
equivalence class E a set SE of types, initialized as follows:
(i) if E contains an allocation expression new C(· · ·), then
SE = {C} ∪ {C′ | C is a legacy class with replacement C′};
otherwise (ii) SE contains all types except T> and T⊥, for
all T .

The algorithm Solve-Simple in Figure 9 solves a system of
simple constraints by iterating until a fixpoint is reached, in
which no set SE contains more than one type. The algo-
rithm consists of a pruning phase (lines 2-8), where invalid
types are pruned from sets, and a heuristic phase (lines 9-10)
where a non-singleton set is reduced to a single member. The
heuristic phase is defined in terms of some heuristic choose

that, given a set of classes, selects a most preferred class. In
our implementation it greedily prefers replacement classes
over legacy classes, though it does not consistently prefer
any one replacement class over another. Space limitations
prevent us from presenting a proof that Solve-Simple al-
ways computes a solution, and that the heuristic phase does
not eliminate all solutions from the search space. Termina-
tion follows from the fact that every loop body performs a
strictly monotone step, reducing the size of at least one set.

4.2 Solving Implication Constraints
We now consider a general constraint system consisting of
implications as well as simple constraints. Let I be a set of
implication constraints of the form ([E] = T) → ψ and C a
set of simple constraints. The algorithm Solve-Complete
for solving (I, C) is given in Figure 10. Its basic step is
to select an implication constraint ([E] = T) → ψ, and to
nondeterministically satisfy or violate its left side by remov-
ing types from the set SE . Subsequently, the simple solver
is applied with a possibly larger set of simple constraints.
The requirement on the nondeterministic choice, expressed
in line (8), is that it does not eliminate all solutions. If
such a state is reached then the algorithm backtracks to the
last nondeterministic choice point at which not all choices
have been exhausted, and makes a different choice. Such a
point is guaranteed to exist, since the original program is
a valid solution to the constraint system. In practice the
backtracking mechanism is coupled with a policy for direct-
ing nondeterministic choice. For example, given an implica-
tion ([E] = T) → ψ, the implemented policy is to attempt
to satisfy ([E] = T) if T is a replacement class.

The running time of Solve-Complete is worst-case expo-
nential in the number of call sites. However, such behavior
is rare, since implication constraints are rarely independent
of one another (i.e., multiple implications tend to have iden-
tical left hand sides). More importantly, due to the choice-
directing policy, worst case behavior is only exhibited in
programs where a majority of call sites cannot be migrated.
In programs encountered in our evaluation this has not been
the case.

4.3 Preserving Thread-Safety
Suppose that we migrate from a class T to a class T ′,
where T is designed to be thread-safe by only allowing
synchronized access to its internal state, but where T ′

is not. Unless countermeasures are taken, the refactored
program may exhibit different behavior if it uses multi-
ple threads whose executions are interleaved in ways that
could not arise in the original program. The migration from
Vector to ArrayList is an example of this case7, because all
of Vector’s public methods are synchronized, thus prevent-
ing multiple threads from concurrently accessing the same
object, but none of the methods in class ArrayList are. The
JDK library designers deliberately omitted synchronization
from class ArrayList so as to avoid unnecessary overhead
in clients that do not access a list concurrently. To han-
dle cases where thread-safety is required, the Java collec-
tion classes provide a mechanism known as synchroniza-
tion wrappers: An object of type ArrayList can be made
thread-safe by “wrapping” its allocation site with a call to
the static method Collections.synchronizedList(List)8.
Hence, instead of writing:

new ArrayList()

one would write9:

Collections.synchronizedList(new ArrayList())

We support migrations from classes that are thread-safe to
classes that are not by introducing synchronization wrap-
pers. However, synchronization wrappers are only intro-
duced for objects that may be accessed by multiple threads.
To this end, we employ a simple escape analysis (see, e.g., [6,
1, 27]) to compute a conservative approximation of legacy
allocation sites that may escape their allocating thread. If
the analysis indicates that a legacy allocation site may es-
cape, a synchronization wrapper is introduced. Otherwise,
the allocation site is left unwrapped.

Figure 11 shows the algorithm used to determine allocation
sites that may escape their allocating thread. It uses the
notations SF(P) and fields(S) to denote, respectively, the set
of all static field declarations in program P , and the set of
all fields declared by types in the set S. It uses the notation
PointsTo(P, E), discussed in Section 3.2.2, to denote the set

7Migration from Hashtable to HashMap is another example
of migrating from a class that is thread-safe to a class that
is not.
8Class Collections provides similar synchronization wrap-
pers for Collections, Sets, and Maps.
9This can result in different behavior in the presence of
race conditions, due to the use of iterators that, unlike
Enumerations, raise exceptions on detection of concurrent
changes to an underlying collection. If a more strict notion
of preservation is needed, one can use custom synchroniza-
tion wrappers.

1 : S := {class C | C ≤ Thread} ∪
{class C | C ≤ Runnable} ∪S

F∈SF(P){[A] | A ∈ PointsTo(P, F)}
2 : repeat until fixpoint
3 : for each F ∈ fields(S)
4 : S := S ∪ {[A] | A ∈ PointsTo(P, F)}
5 : for each allocation site A
6 : escaping(A) :=

Lib-Escaping(A) ∨
∃F ∈ fields(S) . A ∈ PointsTo(P, F)

Figure 11: Escape Analysis Algorithm. Lib-
Escaping(A) is informally defined as true if A ∈
PointsTo(P, E), where E is an actual parameter in a
call to a method in an external library.

of objects that an expression E may point to. Additionally,
for every allocation site A, [A] denotes its type.

The rationale behind this algorithm is that static fields,
subclasses of Thread, and implementors of the interface
Runnable, which is often used to pass callback procedures to
Thread objects, are the sole vehicles by which objects can es-
cape their allocating thread. Therefore, any escaping object
must be transitively referenced by one or more fields of these
classes. Furthermore, since external libraries cannot partake
in this analysis, the algorithm conservatively assumes that
any allocation site flowing into a method of an external li-
brary class is thread-escaping. As we shall see in Section 5,
this näıve algorithm has proved itself remarkably effective
on the benchmark applications that we have analyzed.

5. EVALUATION
Our work is implemented in Eclipse, a widely-used open-
source development environment for Java, using existing in-
frastructure for building refactorings [2] and type constraints
[31, 14]. Class Hierarchy Analysis [7] is used to compute a
call graph, followed by a variation on 0-CFA [29] to com-
pute points-to information. Care is taken to ensure that
correct points-to information is computed in the presence of
reflection and external class libraries (similar to [32]).

We evaluated the refactoring tool on a number of Java
applications of up to 53 KLOC that we migrated from
Vector to ArrayList, from Hashtable to HashMap, and from
Enumeration to Iterator. Table 1 states the essential char-
acteristics for each benchmark program. From left to right,
columns of the table indicate: (i) the benchmark name, (ii)
the number of lines of source code (in thousands), (iii) the
number of classes, (iv) the legacy classes used (here, V , HT,
and E indicate Vector, Hashtable, and Enumeration, re-
spectively), (v) the number of declarations of variables, pa-
rameters, and fields that refer to legacy classes, (vi) the
number of allocation sites referring to legacy classes, and
(vii) the number of call sites referring to methods in legacy
classes.

The results are shown in Table 2. The columns of the table
show, for each benchmark: (i) the number of legacy dec-
larations that were migrated and those that could not be
migrated for reasons discussed in Section 2 (these numbers
are separated by a ‘/’ symbol), (ii) the number of legacy
allocation sites that were migrated without synchronization

benchmark KLOC #classes legacy classes # legacy # legacy # legacy
used declarations allocation sites call sites

Hanoi 4.0 41 V 3 3 26
JUnit 5.3 100 V , HT, E 62 24 118
JLex 7.9 26 V , HT, E 39 16 185
JavaCup 10.6 36 HT, E 56 14 153
Cassowary 12.2 68 V , HT, E 139 46 728
Azureus 13.9 160 V 13 12 51
HTML Parser 17.1 115 V , HT 144 23 467
JBidWatcher 22.9 154 V , HT 71 36 294
SpecJBB 31.3 110 V , HT, E 28 15 88
Jax 53.1 309 V , HT, E 251 94 706

Table 1: Characteristics of the Java applications used to evaluate our techniques. From left to right, the
columns of the table show: (i) the name of the benchmark, (ii) the number of lines of source code (in
thousands), (iii) the number of classes in the benchmark, (iv) the legacy classes used in this benchmark
(here, V denotes Vector, HT denotes Hashtable, and E denotes Enumeration), (v) the number of declarations
that refer to these legacy classes, (vi) the number of allocation sites that refer to these legacy classes, and
(vii) the number of call sites that refer to these legacy classes.

benchmark declarations allocation sites call sites time
(migr./unchanged) (migr.-desync/migrated/unchanged) (migr./unchanged) (min:sec)

Hanoi 3/0 3/0/0 26/0 2:07
JUnit 55/7 23/1/0 111/7 8:29
JLex 29/10 12/0/4 167/18 9:38
JavaCup 56/0 14/0/0 153/0 16:56
Cassowary 121/18 44/0/2 692/36 63:45
Azureus 13/0 6/6/0 51/0 7:29
HTML Parser 141/3 21/0/2 461/6 27:35
JBidWatcher 67/4 32/1/3 291/3 32:17
SpecJBB 22/6 13/0/2 78/10 9:36
Jax 208/43 81/0/12 706/0 125:05

Table 2: Results of applying our refactoring tool to the benchmarks. For each benchmark, the table shows:
(i) the number of declarations that could be migrated and the number of declarations that had to be left
unchanged, (ii) the number of allocation sites that could be migrated and desynchronized, the number of
allocation sites that could be migrated but not desynchronized, and the number of allocation sites that could
not be migrated, and (iii) the number of call sites that could be migrated and that could not be migrated.
(iv) the time required to process the benchmark (minutes:seconds).

wrappers, the number of legacy allocation sites that were
migrated with synchronization wrappers, and the number
of legacy allocation sites that could not be migrated (using
‘/’ symbols to separate these numbers), and (iii) the number
of legacy call sites that were migrated, and the number of
legacy call sites that could not be migrated (again, using ‘/’
for separation), and (viii) the time required to process the
benchmark. For example, for the Cassowary benchmark we
found that: (a) 121 of the original 139 legacy class decla-
rations were migrated, but 18 could not be migrated, (b)
44 of the 46 legacy allocation sites could be migrated with-
out inserting synchronization wrappers, and the remaining
2 legacy allocation sites could not be migrated at all, and (c)
692 of the 728 legacy call sites could be migrated, and the
remaining 36 call sites could not be migrated. Processing
times are currently quite slow—processing Jax takes about
2 hours, but we have not done performance tuning yet, and
many optimizations have yet to be implemented. In addi-
tion, our implementation does not yet make use of the new
optimized type constraint infrastructure in Eclipse.

Figure 12 shows a chart that visualizes the percentage of
legacy declarations and legacy call sites that were success-
fully migrated by our tool. From this chart, it can be seen
that, on average, 90.4% of legacy declarations and 96.6% of

legacy call sites were migrated successfully. Figure 13 shows
a chart visualizing the effectiveness of the tool at migrating
allocation sites. In this chart, the bottom part of each bar
shows the percentage of allocation sites that were migrated
without the insertion of synchronization wrappers, and the
top part of each bar shows the percentage of allocation sites
that could be migrated but that required the insertion of
synchronization wrappers. As can be seen in Figure 13,
an average of 92.0% of all allocation sites can be migrated
(82.8% without the insertion of synchronization wrappers
and 9.1% with the insertion of synchronization wrappers).
We now discuss a few cases out of the experiments illustrat-
ing a number of nontrivial aspects of migration.

Nontrivial rewriting. JBidWatcher, JUnit, and
SpecJBB contain calls to the previously discussed method
Vector.copyInto() which requires nontrivial rewriting and
introduction of an auxiliary class. In JBidWatcher, JUnit,
SpecJBB and Jax, the percentages of migrated call sites for
which the method’s name or signature was changed are 30%,
75%, 73%, and 47%, respectively. Clearly, manual migration
of these applications would involve a significant amount of
error-prone editing work.

Interaction with external libraries. In JUnit, one of the
Vectors is eventually passed to the constructor of the exter-

1
0

0
.0

%

9
4

.1
%

9
0

.3
%

1
0

0
.0

%

9
5

.1
%

1
0

0
.0

%

9
8

.7
%

9
9

.0
%

8
8

.6
%

1
0

0
.0

%

9
6

.6
%

1
0

0
.0

%

8
8

.7
%

7
4

.4
%

1
0

0
.0

%

8
7

.1
%

1
0

0
.0

%

9
7

.9
%

9
4

.4
%

7
8

.6
%

8
2

.9
%

9
0

.4
%

Hanoi

JUnit

JLex

JavaCup

Cassowary

Azureus

HTML Parser

JBidWatcher

SpecJBB

Jax

AVERAGE

0%

50%

100%

% of declarations migrated % call sites migrated

Figure 12: Percentage of declarations and call sites that can be migrated.

1
0

0
.0

%

9
5

.8
%

7
5

.0
%

1
0

0
.0

%

9
5

.7
%

1
0

0
.0

%

9
1

.3
%

8
8

.9
%

8
6

.7
%

8
6

.2
%

9
2

.0
%

Hanoi

JUnit

JLex

JavaCup

Cassowary

Azureus

HTML Parser

JBidWatcher

SpecJBB

Jax

AVERAGE

0%

20%

40%

60%

80%

100%

% of allocation sites migrated (synchronized) % of allocation sites migrated (unsynchronized)

Figure 13: Percentage of allocation sites can be migrated. The bottom part of each bar indicates the
percentage of allocation sites that can be migrated without inserting synchronization wrappers, and the
top part depicts the additional allocation sites that can be migrated with the insertion of synchronization
wrappers.

nal Swing library class JList, whose formal parameter is of
type Vector. This flow of objects is not immediately evi-
dent from the code, as the allocated Vector is assigned to a
variable that is elsewhere passed to the constructor. Similar
cases occur in SpecJBB where various Vectors are not mi-
grated because they are stored in other Vectors. With more
insight into the implementation of Vector, it is evident that
concrete types of its elements are irrelevant, which could in
principle be utilized by a more precise analysis10.

Synchronization preservation. The migration of JU-
nit includes a synchronization-wrapped allocation site. It
is detected as escaping since it is assigned to a field whose
declaring class declares a Runnable that references the field.
The Runnable object is passed to Swing, which would cause
any escape analysis without access to the Swing code to
declare it as escaping. In Azureus, escape analysis reports
that synchronization wrappers need to be introduced for cer-
tain ArrayLists, but the program already performs explicit
synchronizations. Hence, in principle, a more precise es-
cape analysis could enable migration without synchroniza-
tion wrappers in Azureus.

10 Such information could be provided in the form of stub
implementations that approximate the behavior of selected
library methods.

6. RELATED WORK
Several categories of related work can be distinguished, as
will be discussed below.

6.1 Refactoring
The field of refactoring and related semantics-preserving
program transformations was pioneered in the early 90s by
Opdyke and Johnson [23, 24] and by Griswold [16, 17].
Opdyke’s Ph.D. thesis [23, page 27–28] catalogs a number of
refactorings, and informally specifies a number of invariants
that any refactoring must respect in order to preserve pro-
gram behavior. For example, the Type-Safe Assignments in-
variant states that “The type of each expression assigned to
a variable must be an instance of the variable’s defined type,
or an instance of one of its subtypes. This applies both to
assignment statements and function calls”. The same con-
straints (encoded by rules (1), (5), (8), and (10)) are used in
the present paper. The refactorings proposed by Opdyke et
al. were implemented in the Smalltalk Refactoring Browser
[26], which was the first tool to provide automated support
for refactoring.

In recent years, refactoring has been popularized by the
emergence of light-weight design methodologies such as “ex-
treme programming” [3] that advocate continuous improve-

ment of a program’s design. For an overview of the field, the
reader is referred to books by Fowler [13] and Kerievsky [20],
to a recent survey article by Mens and Tourwé [22], and to
Martin Fowler’s www.refactoring.com site. Popular devel-
opment environments such as eclipse (see www.eclipse.org)
and IntelliJ IDEA (see www.jetbrains.com/idea/) currently
offer automated support for a wide range of refactorings.
However, we are not aware of any IDE that supports refac-
torings for migrating between functionally equivalent classes.

Dig and Johnson [8] conducted an empirical study on the
role of refactorings in API migration. In their work, succes-
sive versions of several frameworks and libraries are exam-
ined, and the API-breaking changes are classified as refac-
torings or as other changes. In each of these frameworks,
over 80% of the API-breaking changes are refactorings, thus
providing evidence that automated tool support for API mi-
gration is highly desirable. Such tool support is provided by
Henkel and Diwan [18], who developed a tool that records
how refactorings are used to evolve a library. Then, ap-
plications that use the library under consideration can be
refactored accordingly by applying the recorded refactor-
ings. The work by Henkel and Diwan can be viewed as a
tool for automatically deriving migration specifications from
refactorings that have been applied to a library. These spec-
ifications capture a class of transformations that is more lim-
ited than the one we consider, because we consider transfor-
mations that cannot be expressed by refactorings.

6.2 Refactorings based on Type Constraints
Tip, Kiezun, and Bäumer [31] use a subset of the con-
straint generation rules presented in this paper to express
the preconditions and to compute the allowable source code
modifications for several refactorings related to generaliza-
tion, including Extract Interface, Pull Up Members,
Generalize Type, and Use Supertype Where Possible.
Specifically, the refactorings in [31] restructure the type hi-
erarchy and change declarations (but not allocation sites).
This work was implemented in Eclipse, and our implemen-
tation reuses key parts of this infrastructure.

Donovan et al. [11] and Fuhrer et al. [14] present refactor-
ings that convert Java applications to use Java 1.5 generics
[4]. In this work, the assumption is that an application uses
a class library (e.g., the Java Standard Collections Frame-
work) for which a generic version has become available, and
type inference is used to determine concrete classes that can
be used as actual type parameters to instantiate generic li-
brary classes. An important benefit of this refactoring is
that the use of generic container classes often makes it un-
necessary to use down-casts when retrieving elements, and
[11, 14] both report that a significant number of down-casts
can be removed from the analyzed benchmark applications.
Similar to the work in the present paper, Fuhrer et al. ex-
tend the basic type constraints of [31], but in a way that is
completely different from the rules in the present paper. The
work by Donovan et al. [11] uses type constraints that are
similar to those used in the present paper, but augmented
with type variables and type substitutions to support the
inference of generic types. Interestingly, Donovan et al. also
use a form of implication constraints (referred to as guarded
constraints in [11]), in order to handle situations where the
generation of a constraint depends on whether or not a dec-

laration is left raw (i.e., not parameterized). To solve these,
their solver also employs a form of backtracking.

Von Dincklage and Diwan [33] present a constraint-based ap-
proach for converting non-generic Java classes to use gener-
ics and updating non-generic usages of generic classes. Von
Dincklage’s tool employs a suite of heuristics that resulted
in the successful parameterization of several classes from the
Java standard collections.

Most closely related to the work in the present paper is the
work by De Sutter et al. [30], who present an optimiza-
tion method in which Java applications are rewritten to use
customized versions of library classes. These custom classes
incorporate a number of high-level optimizations that are
likely to result in reduced execution speed and heap con-
sumption, and a combination of static analysis and profile
information is used to select the optimizations to be applied.
The program transformations of [30] are more limited than
the ones we consider, because the methods supported by
the generated custom classes are always a strict subset of
those in the library classes that they replace, and a custom
class always has the same superclass as the original class
that it replaces. The type constraints used in [30] therefore
do not need to allow for situations where auxiliary classes
are needed, and hence there is no need for implication con-
straints (and a backtracking solver). There are several other
significant differences between the work in the present paper
and [30], most notably the fact that we permit non-trivial
user-specified interface mappings between source and tar-
get classes, and that we allow the simultaneous migration of
interdependent classes.

6.3 Support for Migration and Evolution
Although migration is an important theme in the mainte-
nance of long-lived applications, limited tool support ap-
pears to exist, much of which is focused on data and inter-
language migration. In [12], type inference is used to reverse-
engineer date-related types in a given Cobol program, and
migrate them to Year 2000-compliant ones. Unlike the
present work, the interface mapping is trivial, since the
source and target types are equivalent. A tool to migrate
PL/IX programs to C++ programs appears in [21]. Curi-
ously, that work focuses exclusively on language translation,
and ignores API migration.

Dmitriev [9] presents a migration tool for converting persis-
tent objects after certain kinds of changes (e.g., replacing a
single field with two fields, and the renaming of classes).
In this work, changes are specified using a simple speci-
fication language, and the programmer supplies converter
classes that perform the data conversion. In later work,
Dmitriev [10] presents a language-specific make facility for
Java, in which various types of dependences between classes
are distinguished in order to avoid unnecessary recompila-
tion.

7. CONCLUSIONS AND FUTURE WORK
Even small applications may contain large numbers of refer-
ences to legacy classes. Migrating these involves a significant
amount of error-prone editing work, so automation is highly
desirable. We have presented a framework for the automatic
migration of (library) classes that has been implemented in

the Eclipse environment. We evaluated the approach on a
number of moderate-sized Java applications and found that,
in the benchmarks we studied, over 90% of declarations, allo-
cation sites, and call sites were migrated successfully. More-
over, a careful analysis of the results revealed that nontrivial
rewriting of method names and signatures was required in
many cases. The simple escape analysis we use has proved
sufficient to avoid insertion of synchronization wrappers in
all but a few cases. Hence, there does not appear to be a
need for a more precise escape analysis such as [6].

Plans for future work include supporting the migration of
user-defined subclasses of legacy classes, and the introduc-
tion of the Adapter design pattern [15] to wrap alloca-
tion sites and method parameters that could otherwise not
be migrated. We also plan to support migrations between
methods that differ in terms of thrown exceptions. This
situation is similar to the one in Section 2 where the return
type of a method in a legacy class (e.g., Vector.elements())
is another legacy class (in this case, Enumeration), and can
be handled similarly. An additional factor, however, is the
fact that determining all the catch clauses that need to be
migrated requires interprocedural analysis, but we do not
foresee any major problems here. Lastly, our refactoring
tool could be made more useful by providing explanations
in cases a construct could not migrated.

Acknowledgments
We would like to thank Robert O’Callahan for suggesting
the idea of refactoring Vectors into ArrayLists and Julian
Dolby for suggesting an easily-implemented escape analysis
algorithm. We are also grateful to Adam Kiezun and the
anonymous reviewers for comments on drafts of this paper.

8. REFERENCES
[1] Aldrich, J., Chambers, C., Sirer, E. G., and

Eggers, S. J. Static analyses for eliminating
unnecessary synchronization from Java programs. In
Static Analysis Symposium (1999), pp. 19–38.

[2] Bäumer, D., Gamma, E., and Kieżun, A.
Integrating refactoring support into a Java
development tool. In OOPSLA’01 Companion
(October 2001).

[3] Beck, K. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[4] Bracha, G., Cohen, N., Kemper, C., Odersky,
M., Stoutamire, D., Thorup, K., and Wadler, P.
Adding generics to the Java programming language:
Public draft specification, version 2.0. Tech. rep., Java
Community Process JSR-000014, June 23 2003.

[5] Chan, P., Lee, R., and Kramer, D. The Java Class
Libraries Second Edition, Volume 1. Addison-Wesley,
1998.

[6] Choi, J.-D., Gupta, M., Serrano, M., Sreedhar,
V. C., and Midkiff, S. Escape analysis for Java. In
Proc. OOPSLA’99 (1999), ACM Press, pp. 1–19.

[7] Dean, J., Grove, D., and Chambers, C.
Optimization of object-oriented programs using static
class hierarchy analysis. In Proc. ECOOP’95 (Aarhus,

Denmark, Aug. 1995), W. Olthoff, Ed.,
Springer-Verlag, pp. 77–101.

[8] Dig, D., and Johnson, R. The role of refactorings in
API evolution. Tech. Rep. UIUCDCS-R-2005-2555,
University of Illinois at Urbana-Champaign, 2005.

[9] Dmitriev, M. The first experience of class evolution
support in PJama. In Proceedings of the 8th
International Workshop on Persistent Object Systems
(POS8) (Tiburon, CA, 1998), pp. 279–296.

[10] Dmitriev, M. Language-specific make technology for
the Java programming language. In Proc. of
OOPSLA’02 (Seattle, WA, 2002), pp. 373–385.

[11] Donovan, A., Kieżun, A., Tschantz, M. S., and
Ernst, M. D. Converting Java programs to use
generic libraries. In Proc. OOPSLA’04 (Vancouver,
BC, Canada, October 26–28, 2004), pp. 15–34.

[12] Eidorff, P. H., Henglein, F., Mossin, C., Niss,
H., Sørensen, M. H., and Tofte, M. AnnoDomini:
From type theory to year 2000 conversion tool. In
Proc. POPL’99 (Austin, TX, 1999), pp. 1–14.

[13] Fowler, M. Refactoring. Improving the Design of
Existing Code. Addison-Wesley, 1999.

[14] Fuhrer, R., Tip, F., Kiezun, A., Dolby, J., and
Keller, M. Efficiently refactoring Java applications
to use generic libraries. In Proc. ECOOP’05
(Glasgow, Scotland, 2005). To appear.

[15] Gamma, E., Helm, R., Johnson, R., and
Vlissides, J. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[16] Griswold, W. G. Program Restructuring as an Aid
to Software Maintenance. PhD thesis, University of
Washington, 1991. Technical Report 91-08-04.

[17] Griswold, W. G., and Notkin, D. Automated
assistance for program restructuring. ACM Trans.
Softw. Eng. Methodol. 2, 3 (1993), 228–269.

[18] Henkel, J., and Diwan, A. CatchUp! Capturing
and replaying refactorings to support API evolution.
In Proceedings of the 27th International Conference on
Software Engineering (ICSE’05) (St. Louis, MO, May
2005).

[19] Hind, M., and Pioli, A. Evaluating the effectiveness
of pointer alias analyses. Science of Comp.
Programming 39, 1 (2001), 31–55.

[20] Kerievsky, J. Refactoring to Patterns.
Addison-Wesley, 2004.

[21] Kontogiannis, K., Martin, J., Wong, K.,
Gregory, R., Müller, H., and Mylopoulos, J.
Code migration through transformations: an
experience report. In Proc. CASCON’98 (1998), IBM
Press, pp. 1–12.

[22] Mens, T., and Tourwé, T. A survey of software
refactoring. IEEE Trans. on Software Engineering 30,
2 (February 2004), 126–139.

[23] Opdyke, W. F. Refactoring Object-Oriented
Frameworks. PhD thesis, University Of Illinois at
Urbana-Champaign, 1992.

[24] Opdyke, W. F., and Johnson, R. E. Creating
abstract superclasses by refactoring. In The ACM
1993 Computer Science Conf. (CSC’93) (February
1993), pp. 66–73.

[25] Palsberg, J., and Schwartzbach, M.
Object-Oriented Type Systems. John Wiley & Sons,
1993.

[26] Roberts, D., Brant, J., and Johnson, R. E. A
refactoring tool for Smalltalk. Theory and Practice of
Object Systems 3, 4 (1997), 253–263.

[27] Ruf, E. Effective synchronization removal for Java. In
Proc. PLDI 2000 (2000), ACM Press, pp. 208–218.

[28] Ryder, B. G. Dimensions of precision in reference
analysis of object-oriented programming languages. In
Proc. CC 2003 (Warsaw, Poland, April 2003),
pp. 126–137.

[29] Shivers, O. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, CMU, May 1991.
CMU–CS–91–145.

[30] Sutter, B. D., Tip, F., and Dolby, J.
Customization of Java library classes using type
constraints and profile information. In Proc.
ECOOP’04 (Oslo, Norway, June 2004), pp. 585–609.

[31] Tip, F., Kieżun, A., and Bäumer, D. Refactoring
for generalization using type constraints. In Proc.
OOPSLA’03 (Anaheim, CA, October 2003),
pp. 13–26.

[32] Tip, F., Sweeney, P. F., Laffra, C., Eisma, A.,
and Streeter, D. Practical extraction techniques for
Java. ACM Trans. on Programming Languages and
Systems 24, 6 (2002), 625–666.

[33] von Dincklage, D., and Diwan, A. Converting
Java classes to use generics. In Proc. of OOPSLA’04
(Vancouver, BC, Canada, 2004), pp. 1–14.

APPENDIX
A. SPECIFICATION LANGUAGE
The language for specifying migrations is a language of rewrite
rules over templates of Java expressions. A partial grammar
is given in Figure 14. The left side of a rewrite rule consists
of a Java allocation or method call expression, with addi-
tional annotations (e.g., return types) and template vari-
ables. A template variable is used for matching the left side
of a rule against fragments of the program AST. The right
side of a rule consists of an arbitrary Java expression tem-
plate – an expression with annotations and template vari-
ables. Here, the occurrence of a variable denotes a substitu-
tion with an appropriate fragment from the program AST,
as matched with the left side.

A sample specification for the synchronization-less migra-
tion from class Vector to class ArrayList is given in Fig-
ure 15. Figure 16 specifies an auxiliary migration, from

Migration : Rule | Rule Migration
Rule : Allocation → Expression |

MethodCall → Expression
Allocation : new class-name(Args), unsynchronized |

new class-name(Args), synchronized
MethodCall : Type class-name.id(Args) |

Type Var .id(Args)
Args : ε | Arg | Arg Args
Arg : Var | Expression
Var : Type : id | id
Type : prim-type | array-type | class-name

Figure 14: Migration Specification Language Gram-
mar. The nonterminals prim-type and array-type de-
note any string representing a Java primitive or ar-
ray type, respectively. Expression reduces to any
construct that, after variable substitution, is a valid
Java expression. ε denotes the empty string.

Enumeration to Iterator. Figure 17 presents the auxiliary
class used in Figure 15 (a partial version of this class was
presented earlier in Figure 3).

public class Util {
public static void copyInto(List v, Object[] target) {

if (target == null) throw new NullPointerException();
for (int i = v.size() - 1; i >= 0; i--)

target[i] = v.get(i);
}
public static void setSize(List v, int newSize) {

while (v.size() < newSize) v.add(null);
while (v.size() > newSize) v.remove(newSize);

}
public static int indexOf(List v, Object elem, int index) {

if (elem == null) {
for (int i = index; i < v.size(); i++)

if (v.get(i) == null) return i;
} else {

for (int i = index; i < v.size(); i++)
if (elem.equals(v.get(i))) return i;

}
return -1;

}
public static int lastIndexOf(List v, Object e, int indx) {

if (indx >= v.size())
throw new IndexOutOfBoundsException();

if (e == null) {
for (int i = indx; i >= 0; i--)

if (v.get(i) == null) return i;
} else {

for (int i = indx; i >= 0; i--)
if (e.equals(v.get(i))) return i;

}
return -1;

}
}

Figure 17: Auxiliary class for migrating Vector to
ArrayList

new Vector(), unsynchronized → new ArrayList()
new Vector(Collection:c), unsynchronized → new ArrayList(c)
new Vector(int:c), unsynchronized → new ArrayList(c)
void Vector:receiver.copyInto(Object: array) → void Util.copyInto(receiver, array)
boolean Vector:receiver.add(Object:v) → boolean receiver.add(v)
boolean Vector:receiver.add(int:i, Object:v) → boolean receiver.add(i, v)
boolean Vector:receiver.addAll(Collection:c) → boolean receiver.addAll(c)
boolean Vector:receiver.addAll(int:i, Collection:c) → boolean receiver.addAll(i, c)
void Vector:receiver.addElement(Object:v) → boolean receiver.add(v)
void Vector:receiver.clear() → void receiver.clear()
Object Vector:receiver.clone() → Object receiver.clone()
boolean Vector:receiver.contains(Object:o) → boolean receiver.contains(o)
boolean Vector:receiver.containsAll(Collection:c) → boolean receiver.containsAll(c)
Object Vector:receiver.elementAt(int:i) → Object receiver.get(i)
Enumeration Vector:receiver.elements() → Iterator receiver.iterator()
void Vector:receiver.ensureCapacity(int:c) → void receiver.ensureCapacity(c)
boolean Vector:receiver.equals(Object:o) → boolean receiver.equals(o)
Object Vector:receiver.firstElement() → Object receiver.get(0)
Object Vector:receiver.get(int:i) → Object receiver.get(i)
int Vector:receiver.hashCode() → int receiver.hashCode()
int Vector:receiver.indexOf(Object:o) → int receiver.indexOf(o)
int Vector:receiver.indexOf(Object:o, int:i) → int Util.indexOf(receiver, o, i)
void Vector:receiver.insertElementAt(Object:o, int:i) → int receiver.add(i, o)
boolean Vector:receiver.isEmpty() → boolean receiver.isEmpty()
Iterator Vector:receiver.iterator() → Iterator receiver.iterator()
Object Vector:receiver.lastElement() → Object receiver.get(int receiver.size() - 1)
int Vector:receiver.lastIndexOf(Object:o) → int receiver.lastIndexOf(o)
int Vector:receiver.lastIndexOf(Object:o, int:i) → int Util.lastIndexOf(receiver, o, i)
ListIterator Vector:receiver.ListIterator() → ListIterator receiver.ListIterator()
ListIterator Vector:receiver.ListIterator(int:i) → ListIterator receiver.ListIterator(i)
Object Vector:receiver.remove(int:i) → Object receiver.remove(i)
boolean Vector:receiver.remove(Object:o) → boolean receiver.remove(o)
boolean Vector:receiver.removeAll(Collection:c) → boolean receiver.removeAll(c)
void Vector:receiver.removeAllElements() → void receiver.clear()
boolean Vector:receiver.removeElement(Object:o) → boolean receiver.remove(o)
void Vector:receiver.removeElementAt(int:i) → boolean receiver.remove(i)
boolean Vector:receiver.retainAll(Collection:c) → boolean receiver.retainAll(c)
Object Vector:receiver.set(int:i, Object:o) → Object receiver.set(i, o)
void Vector:receiver.setElementAt(Object:o, int:i) → Object receiver.set(i, o)
void Vector:receiver.setSize(int:s) → void Util.setSize(receiver, s)
int Vector:receiver.size() → int receiver.size()
List Vector:receiver.subList(int:f, int:t) → List receiver.subList(f, t)
Object[] Vector:receiver.toArray() → Object[] receiver.toArray()
Object[] Vector:receiver.toArray(Object[]:a) → Object[] receiver.toArray(Object[]:a)
void Vector:receiver.trimToSize() → void receiver.trimToSize()
String Vector:receiver.toString() → String receiver.toString

Figure 15: Specification for migrating from Vector to ArrayList

boolean Enumeration:receiver.hasMoreElements() → boolean receiver.hasNext()
Object Enumeration:receiver.nextElement() → Object receiver.next()

Figure 16: Auxiliary migration from Enumeration to Iterator

