
An Operational Semantics and Type Safety Proof
for Multiple Inheritance in C++

Daniel Wasserrab
Universiẗat Passau

wasserra@fmi.uni-
passau.de

Tobias Nipkow
Technische Universität

München
nipkow@in.tum.de

Gregor Snelting
Universiẗat Passau
snelting@fmi.uni-

passau.de

Frank Tip
IBM T.J. Watson Research

Center
ftip@us.ibm.com

Abstract
We present an operational semantics and type safety proof for
multiple inheritance in C++. The semantics models the behavior
of method calls, field accesses, and two forms of casts in C++
class hierarchies exactly, and the type safety proof was formalized
and machine-checked in Isabelle/HOL. Our semantics enables one,
for the first time, to understand the behavior of operations on C++
class hierarchies without referring to implementation-level artifacts
such as virtual function tables. Moreover, it can—as the semantics
is executable—act as a reference for compilers, and it can form
the basis for more advanced correctness proofs of, e.g., automated
program transformations. The paper presents the semantics and
type safety proof, and a discussion of the many subtleties that we
encountered in modeling the intricate multiple inheritance model
of C++.

Categories and Subject DescriptorsD.3.1 [Formal Definitions
and Theory]: Semantics; D.3.3 [Language Constructs and Fea-
tures]: Inheritance; F.3.2 [Semantics of Programming Languages]:
Operational semantics; F.3.3 [Studies of Program Constructs]:
Type structure

General Terms Languages, Theory

Keywords Multiple Inheritance, C++, Semantics, Type Safety

1. Introduction
We present a operational semantics and type safety proof for the
multiple inheritance model of C++ in all its complexity, includ-
ing both repeated and shared (virtual) inheritance. This semantics
enables one—for the first time—to fully understand and express
the behavior of operations such as method calls, field accesses, and
casts in C++ programs without referring to compiler data structures
such as virtual function tables (v-tables) [28].

Type safety is a language property which can be summarized by
the famous slogan “Well-typed programs cannot go wrong” [14].
Cardelli’s definition of type safety [7] demands that no untrapped
errors may occur (although controlled exceptions are allowed). The
type safety property that we prove is the fact that the execution of
a well-typed, terminating program will deliver a result of the ex-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

pected type, or end with an exception. The semantics and proof are
formalized and machine-checked using the Isabelle/HOL theorem
prover [15] and are available online1.

One of the main sources of complexity in C++ is a complex
form of multiple inheritance, in which a combination of shared
(“virtual”) and repeated (“nonvirtual”) inheritance is permitted. Be-
cause of this complexity, the behavior of operations on C++ class
hierarchies has traditionally been defined informally [29], and in
terms of implementation-level constructs such as v-tables. We are
only aware of a few formal treatments—and of no operational
semantics—for C++-like languages with shared and repeated mul-
tiple inheritance. The subobject model by Rossie and Friedman
[21], upon which our work is based, formalizes the object model of
C++. Rossie and Friedman defined the behavior of method calls and
member access using this model, but their definitions do not follow
C++ behavior precisely, they do not consider the behavior of casts,
and they do not provide an operational semantics. In 1996, Rossie,
Friedman, and Wand [22] stated that “In fact, a provably-safe static
type system [. . .] is an open problem”, and to our knowledge this
problem has remained open until today.

The CoreC++ language studied in this paper features all the
essential elements of the C++ multiple inheritance model (while
omitting many features not relevant to operations involving class
hierarchies). The semantics of CoreC++ were designed to mirror
those of C++ to the maximum extent possible. In previous versions
of the semantics [37], we explored a number of variations, and we
will briefly discuss these in§8.

Our interest in formalizing the semantics of multiple inheritance
was motivated by previous work by two of the present authors on:
(i) restructuring class hierarchies in order to reduce object size at
run-time [34], (ii) composition of class hierarchies in the context of
an approach for aspect-orientation [25], and (iii) refactoring class
hierarchies in order to improve their design [26, 24], In each of
these projects, class hierarchies aregenerated, multiple inheritance
may arise naturally, and additional program transformations are
then used to replace multiple inheritance by a combination of single
inheritance and delegation.

In summary, this paper makes the following contributions:

• We present a formal semantics and machine-checked type
safety proof for multiple inheritance in C++. This enables one,
for the first time, to understand and express the behavior of
operations involving C++ class hierarchies without referring to
compiler data structures.

• We discuss some subtle ambiguities concerning the behavior of
member access and method calls in C++ that were uncovered in
the course of designing the semantics.

1 http://afp.sourceforge.net

• By formalizing the complex behavior of C++ multiple inheri-
tance, we extend the applicability of formal semantics and the-
orem prover technology to a new level of complexity.

Thus the message to language semanticists is that the much
maligned C++ system of multiple inheritance contains a perfectly
sound core.

2. Multiple inheritance
2.1 An intuitive introduction to subobjects

C++ features bothnonvirtual (or repeated) andvirtual (or shared)
multiple inheritance. The difference between the two flavors of
inheritance is subtle, and only arises in situations where a class
Y indirectly inherits from the same classX via more than one
path in the hierarchy. In such cases,Y will contain oneor multiple
X-“subobjects”, depending on the kind of inheritance that is used.
More precisely, if only shared inheritance is used,Y will contain
a single, sharedX-subobject, and if only repeated inheritance is
used, the number ofX-subobjects inY is equal toN , whereN
is the number of distinct paths fromX to Y in the hierarchy.
If a combination of shared and repeated inheritance is used, the
number ofX-subobjects in aY -object will be between1 andN
(a more precise discussion follows). C++ hierarchies with only
single inheritance (the distinction between repeated and shared
inheritance is irrelevant in this case) are semantically equivalent
to Java class hierarchies.

Fig. 1(a) shows a small C++ class hierarchy. In these and subse-
quent figures, a solid arrow from classC to classD denotes the fact
thatC repeated-inherits fromD, and a dashed arrow from classC
to classD denotes the fact thatC shared-inherits fromD. Here,
and in subsequent examples, all methods are assumed to bevir-
tual (i.e. dynamically dispatched), and all classes and inheritance
relations are assumed to bepublic .

In Fig. 1(a), all inheritance is repeated. Since classBottom
repeated-inherits from classesLeft and Right , a Bottom -
object has one subobject of each of the typesLeft andRight . As
Left andRight each repeated-inherit fromTop, (sub)objects of
these types contain distinct subobjects of typeTop. Hence, for the
C++ hierarchy of Fig.1(a), an object of typeBottom containstwo
distinct subobjectsof type Top. Fig. 1(b) shows the layout used
for a Bottom object by a typical compiler, given the hierarchy of
Fig. 1(a). Each subobject has local copies of the subobjects that it
contains, hence it is possible to lay out the object in a contiguous
block of memory without indirections.

Fig. 2(a) shows a similar C++ class hierarchy in which the in-
heritance betweenLeft andTop and betweenRight andTop is
shared. Again, aBottom -object contains one subobject of each of
the typesLeft andRight , due to the use of repeated inheritance.
However, sinceLeft andRight both shared-inherit fromTop,
theTop-subobject contained in theLeft -subobject issharedwith
the one contained in theRight -subobject. Hence, for this hierar-
chy, aBottom -object will containa single subobjectof typeTop.
In general, a shared subobject may be shared by arbitrarily many
subobjects, and requires an object layout with indirections (typi-
cally in the form ofvirtual-base pointers) [28, p.266]2. Fig. 2(b)
shows a typical object layout for an object of typeBottom given
the hierarchy of Fig.2(a). Observe, that theLeft -subobject and
the Right -subobject each contain a pointer to the single shared
Top-subobject.

2 An alternative implementation mechanism is to store the offsets to shared
subobjects in v-tables.

2.2 The Rossie-Friedman Subobject Model

Rossie and Friedman [21] proposed a subobject model for C++-
style inheritance, and used that model to formalize the behavior of
method calls and field accesses. Informally, one can think of the
Rossie-Friedman model as an abstract representation of object lay-
out. Intuitively, asubobject3 identifies a component of typeD that
is embedded within a complete object of typeC. However, simply
defining a subobject type as a pair(C, D) would be insufficient,
because, as we have seen in Fig.1, aC-object may contain multi-
pleD-components in the presence of repeated multiple inheritance.
Therefore, a subobject is identified by a pair[C, Cs], whereC de-
notes the type of the “complete object”, and where thepath Cs
consists of a sequence of class namesC1 · · · · · Cn that encodes
the transitive inheritance relation betweenC1 andCn. There are
two cases here: Forrepeatedsubobjects we have thatC1 = C, and
for sharedsubobjects, we have thatC1 is the least derived (most
general) shared base class ofC that containsCn. This scheme is
sufficient because shared subobjects are unique within an object
(i.e. there can be at most onesharedsubobject of typeS within
any object). More formally, for a given classC, the set of its sub-
objects, along with a containment ordering on these subobjects, is
inductively defined as follows:

1. [C, C] is the subobject that represents the “full”C-object.

2. if S1 = [C, Cs.X] is a subobject for classC whereCs is any
sequence of class names, andX shared-inherits fromY , then
S2 = [C, Y] is a subobject for classC that is accessible from
S1 through a pointer.

3. if S1 = [C, Cs.X] is a subobject for classC whereCs is any
sequence of class names, andX repeated-inherits fromY , then
S2 = [C, Cs.X.Y] is a subobject for classC that is directly
contained within subobjectS1.

Fig. 1(c) and Fig.2(c) show subobject graphsfor the class hi-
erarchies of Fig.1 and Fig.2, respectively. Here, an arrow from
subobjectS to subobjectS′ indicates thatS′ is directly contained
in S or thatS has a pointer leading toS′. For a given subobject
S = [C, Cs.D], we callC thedynamic classof subobjectS andD
thestatic classof subobjectS. Associated with each subobject are
the members that occur in its static class. Hence, if an object con-
tains multiple subobjects with the same static class, it will contain
multiple copies of members declared in that class. For example, the
subobject graph of Fig.1(c) shows two subobjects with static class
Top, each of which has distinct fieldsx andy .

Intuitively, a subobject’s dynamic class represents the type of
the “full object” and is used to resolve dynamically dispatched
method calls. A subobject’s static class represents the declared type
of a variable that points to an (subobject of the full) object and is
used to resolve field accesses. In this paper, we use the Rossie-
Friedman subobject model to define the behavior of operations
such as method calls and casts as functions from subobjects to
subobjects. As we shall see shortly, it will be necessary in our
semantics to maintain full subobject information even for “static”
operations such as casts and field accesses.

Multiple inheritance can easily lead to situations where mul-
tiple members with the same name are visible. In C++, many
member accesses that are seemingly ambiguous are resolved us-
ing the notion ofdominance[29]. A member m in subobject
S′ dominatesa memberm in subobjectS if S is contained in

3 In this paper, we follow the terminology of [21] and use the term “sub-
object” to refer both to the label that uniquely identifies a component of an
object type, as well as to components within concrete objects that are iden-
tified by such labels. In retrospect, the term “subobject label” would have
been better terminology for the former concept.

class Top { int x, y; ... };
class Left : Top { ... };
class Right : Top { int y; ... };
class Bottom : Left, Right { int x; ... };

Top

Right

Top

Left

Bottom

[Bottom,Bottom.Right.Top]

[Bottom,Bottom]

[Bottom,Bottom.Left]

[Bottom,Bottom.Left.Top]

[Bottom,Bottom.Right]

(c)
or a pointer to subobject B

:BA subobject A directly contains subobject B

[Bottom,Bottom.Left]

[Bottom,Bottom.Right.Top]

[Bottom,Bottom.Right]

[Bottom,Bottom]

x y x y

y

x

[Bottom,Bottom.Left.Top]
Top

Left Right

Bottom

y

x y

x

A B :
(b)(a)

B is repeated baseclass of A

Figure 1. The repeated diamond

class Top { void f() { ... }; ... };
class Left : virtual Top { ... };
class Right : virtual Top { void f() { ... }; ... };
class Bottom : Left, Right { ... };

Top

Bottom

Left

Right [Bottom,Bottom.Right]

[Bottom,Top]

[Bottom,Bottom.Left]

[Bottom,Bottom]

[Bottom,Bottom.Left]

or a pointer to subobject B
subobject A directly contains subobject B:BA

[Bottom,Bottom.Right]

[Bottom,Top]

[Bottom,Bottom]

f()

f()

Top

Left Right

Bottom

:BA

f()

f()

A B :
(b)(a) (c)

B is repeated baseclass of A
B is shared baseclass of A

Figure 2. The shared diamond

S′ (i.e. S′ occurs belowS in the subobject graph). Member ac-
cesses are resolved by selecting the unique dominant member
m if it exists; otherwise an access is ambiguous4. For exam-
ple, in Fig. 2, a Bottom -object sees two declarations off() ,
one in classRight and one in classTop. Thus a call(new
Bottom())->f() seems ambiguous. But it is not, because in
the subobject graph forBottom shown in Fig.2(c), the definition
of f() in [Bottom ,Bottom .Right] dominates the one in [Bot-
tom ,Top]. On the other hand, the subobject graph in Fig.1(c) con-
tains three definitions ofy in [Bottom ,Bottom .Right], [Bot-
tom ,Bottom .Right .Top], and [Bottom ,Bottom .Left .Top].
As there is no unique dominant definition ofy here, a field access
(new Bottom())->y is ambiguous.

2.3 Casts in C++

C++ has three cast operators for traversing class hierarchies, each
of which has significant limitations5. Most commonly used are so-
called C-style casts. C-style casts may be used to cast between arbi-
trary unrelated types, although some static checking is performed
on up-casts (e.g., a C-style up-cast is statically rejected if the re-
ceiver’s static type does not contain a unique subobject whose static
class is the type being casted to), but no runtime checks. C-style
casts cannot be used to down-cast along a shared inheritance rela-
tion, as it is not possible to “go back” along the indirection pointers

4 In some cases, C++ uses the static class of the receiver for further
disambiguation. This will be discussed shortly.
5 The remaining two cast operators in C++,const cast andreinter-
pret cast are irrelevant for the issues studied in this paper.

in the object. When used incorrectly, C-style casts may cause run-
time errors.

The static cast operator only performs compile-time
checks (e.g., to ensure that a unique subobject of the tar-
get type exists) and disallows casting between unrelated types.
static cast cannot be used to down-cast along a shared inher-
itance relation. When used incorrectly,static cast may cause
run-time errors.

The dynamic cast operator is the recommended cast oper-
ator in C++. It has the desirable property that failing casts result
in controlled exceptions (when the target of the cast is a reference)
or the special valueNULL (when the target is a pointer). Unlike
the previous two operators, down-casting along shared inheritance
relations is allowed, anddynamic cast may be used to cast be-
tween unrelated types. However, a subtle limitation exists: Ady-
namic cast is statically incorrect when applied to an expression
whose declared type does not declare virtual methods.

In the semantics, we implemented two different casting
operators: a static type safe casting operator analogously to
static cast and a generalization ondynamic cast that is
not restricted to casting types with declared virtual methods. It
would be simple to add this restriction to our type system but this
would weaken our type soundness result, which is completely in-
dependent of this matter.

2.4 Examples

We will now discuss several examples to illustrate the subtleties
that arise in the C++ inheritance model.

Example 1.Dynamic dispatch behavior can be counterintuitive
in the presence of multiple inheritance. One might expect a method

class A { ... };
class B { void f(); };
class C { ... };
class D : A,B { void f(); };
class E : B,C { void f(); };

B* b;
if (...)

b = new D();
else

b = new E();
b->f();

B f() CA

D Ef() f()

(a)

delta−values:

0&D:f

&D:f

A

D

vptr

vptrB B vtable

A&D vtable

this−pointer:

start Call f()

after offset adjustment for f()

Then:

delta−values:

vptr

vptr

&E:f

&E:f

B

C

E

0 B&E vtable

C vtable

Else:

start Call f()

after offset
f()adjustment for

− delta(B)

− delta(C)

(b)

Figure 3. C++ fragment demonstrating dynamically varying sub-
object context

call always to dispatch to a method definition in a superclass or
subclass of the type of the receiver expression. Consider, however,
the “shared diamond” example of Fig.2, where a methodf() is
defined in classesRight andTop. Now assume that the following
C++ code is executed (note the implicit up-cast toLeft in the
assignment):

Left* b = new Bottom(); b->f();

One might expect the method call to dispatch toTop::f() . But
in fact it dispatches tof() in classRight , which is neither a
superclass nor a subclass ofLeft . The reason is that up-casts do
not switch off dynamic dispatch, which is based on the receiver
object’s dynamic class. The dynamic class ofb remainsBottom
after the cast, and sinceRight::f() dominatesTop::f() , the
former is called.

This makes sense from an application viewpoint: Imagine the
top class to be a “Window”, the left class to be a “Window with
menu”, the right class to be a “Window with border”, the bottom
class to be a “Window with border and menu”, andf() to compute
the available window space. Then, a “Window with border and
menu” object which is casted to “Window with menu” pretends
not to have a border anymore (border methods cannot be called).
But for the area computation, the hidden border must be taken into
account, thusf() from “Window with border” must be called.

Example 2.The next example illustrates the need to track some
subobject information at run-time, and how this complicates the
semantics. Consider the program fragment in Fig.3(a), whereb

points to aB-subobject. This subobject occurs in two different
“contexts”, namely either as a[D, D.B] subobject (if the then-
case of theif statement is executed), or as an[E, E.B] subob-
ject (if the else-case is executed). Note that executing the assign-
mentsb = new D() and b = new E() involves an implicit
up-cast to typeB. Depending on the context, the callb->f() will
dispatch toD::f() or E::f() . Now, executing the body of this
f() involves an implicit assignment ofb to its this pointer. Since
the static type ofb is B, and the static type ofthis is the class con-
taining its method, an implicit down-cast (toD or to E, depending
on the context) is needed. At compile time it is not known which
cast will happen at run-time, which implies that the compiler must
keep track of some additional information to determine the cast that
must be performed.

In a typical C++ implementation, a cast actually implies chang-
ing the pointer value in the presence of multiple inheritance, as is
illustrated in Fig.3(b). The up-cast fromD to B (then-case, upper
part of Fig.3(b)) is implemented by adding the offsetdelta(B) of
the [D,D.B] -subobject within theDobject to the pointer to theD
object. Afterwards, the pointer points to the[D,D.B] -subobject.
As we discussed, the subsequent callb->f() requires that the
pointer be down-casted toD again. This cast is implemented by
adding the negative offset−delta(B) of the[D,D.B] -subobject to
the pointer. The else-case (lower part of Fig.3(b)) is analogous, but
involves a different offset, which happens to be 0. In other words,
the offsets in the then- and else-cases are different, and we do not
know until run-time which offset has to be used. To this end, C++
compilers typically extend the virtual function table (v-table) [28]
with “delta” values, that, for each v-table entry, record the offset
that has to be added to thethis -pointer in order to ensure that it
points to the correct subobject after the cast (Fig.3(b), left part).6

Our semantics correctly captures the information needed for
performing casts, without referring to compiler data structures such
as v-table entries and offsets.

Example 3.The following example shows how C++ resolves
ambiguities by exploiting static types. In the “repeated diamond”
of Fig. 1, let us assume that we have declared a methodf() in
classTop, and execute the following code:

Left* b = new Bottom(); b->f();

Note that the assignment performs an implicit up-cast to type
Left , and that the method call is statically correct because a single
definition off() is visible.

However, at run-time the dynamic class of the subobject
[Bottom ,Bottom .Left] associated withb is used to resolve the
dynamic dispatch. The dynamic class ofb is Bottom , andb has
two Top subobjects containingf (andx). As neither definition of
f() dominates the other, the call tob->f() appears to be am-
biguous.

Note that the code forf exists only once, but this code will be
called with an ambiguousthis -pointer at run-time: is it the one
pointing to the [Bottom , Bottom.Left.Top] subobject, or the
one pointing to the [Bottom ,Bottom.Right.Top] subobject?
Each of these subobject has its own fieldx , and thesex ’s may have
different values at run-time when referenced byf() , leading to
ambiguous program behavior.

C++ uses the static type ofb to resolve the ambiguity
and generate a unique v-table entry forf() . As b’s static
type is Left , the “delta” part of the v-table entry will cause
the dynamic object of typeBottom (and thus thethis -
pointer) to be cast to [Bottom ,Bottom.Left.Top], andnot to
[Bottom ,Bottom.Right.Top].

6 An alternative to delta entries in v-tables are so-called “trampolines”,
which use additional machine code for pointer adjustment.

While this may seem to be a “natural” way to resolve the ambi-
guity, it makes the result of dynamic dispatch—which, intuitively,
is basedsolelyon an object’sdynamictype—additionally depen-
dent on the object’s static type. During the evolution of our seman-
tics, for a long time we considered this a flaw in the design of C++,
and our first semantics [37] (for a language then called C+) did not
resolve the ambiguity using the static type, but threw an exception
instead. This viewpoint was inspired by Rossie and Friedman, who
also considered this situation to be ambiguous. Now we stick ex-
actly to C++, even though this makes the semantics more complex
(see discussion in§8).

Example 4.C++ allows method overriding withcovariant(i.e.
more specific) return types. Unrestricted covariance can however
lead to ambiguities. In the context of the repeated diamond of
Fig. 1, consider:

class A { Top* f(); };
class B : A { Bottom* f(); }; //not allowed

A* a = new B();
Top* t = a->f();

Statically, everything seems fine: because the type ofa is A, the
type of a->f() is Top. However, if we allowed the redefinition
of f() , at run-timea->f() evaluates to aBottom object. C++
implicitly casts to the return type of the statically selected method
(which would beTop); but this cast is ambiguous, as aBottom
object has two differentTop subobjects in the repeated diamond.
Hence this redefinition is statically incorrect. C++ requiresunique
covariance: if the return type of the statically selected method isC
and the return type of the dynamically selected one isD, then there
must exist a unique path fromD back toC.

Example 5.C++ does not allow method overriding withcon-
travariant (i.e. less specific) parameter types, and one reason for
this is again the possibility of ambiguities. In the context of the
repeated diamond of Fig.1, consider:

class A { void f(Left* l); };
class B : A { void f(Top* t); }; //no redefinition

//in C++!
A* a = new B();
a->f(new Bottom());

Here, the actual parameter must be cast fromBottom to Top,
but again this cast is ambiguous.

Example 6.This example is taken from [20]. It shows that many
compilers treat dominance incorrectly and thus have problems with
field access/assignment (as well as method call):

class A { int x; };
class B { int x; };
class C : virtual A, virtual B { int x; };
class D : virtual A, virtual B, C {};

(new D())->x = 42;

The g++ compiler rejects the left hand side of
(new D())->x = 42 as ambiguous, whereas the Intel
compiler accepts this program. We will come back to this example
in §5.1.3.

Clearly, the semantics of method calls, field accesses, and casts
are quite complicated in the presence of shared and repeated mul-
tiple inheritance. Typical C++ compilers rely on implementation-
level artifacts such as v-tables and subobject offsets to define the
behavior of these constructs. We will now present a formaliza-
tion that relies solely on subobjects and paths, which enables us
to demonstrate type-safety.

3. Formalization
Our semantics builds on the multiple inheritance calculus devel-
oped by Rossie and Friedman [21], but goes well beyond that
work by providing an executable semantics and a type-safety proof.
Rossie and Friedman merely provide the subobject model but no
programming language, they do not model casts and their notion
of method dispatch does not model C++ precisely (see Example 3
above).

The starting point for our formal semantics was Jinja [11], a
model of a Java-like language defined in higher-order logic (HOL)
in the theorem prover Isabelle/HOL. However, because of the many
intricacies of C++, CoreC++ has really outgrown its parent. As an
indicator for this see the fact that the size of the formal specification
and associated proofs more than doubled.

Our meta-language HOL conforms largely to everyday mathe-
matical notation. This section introduces further non-standard no-
tation and in particular a few basic data types with their primitive
operations.

3.1 Basic notation — The meta language

Typesinclude the basic types of truth values, natural numbers and
integers, which are calledbool , nat , andint respectively. The space
of total functions is denoted by⇒. Type variables are written′a, ′b,
etc. The notationt::τ means that HOL termt has HOL typeτ .

Pairs come with the two projection functionsfst :: ′a × ′b ⇒
′a andsnd :: ′a × ′b ⇒ ′b . We identify tuples with pairs nested to
the right:(a, b , c) is identical to(a, (b , c)) and ′a × ′b × ′c is
identical to ′a × (′b × ′c).

Sets(type ′a set) follow the usual mathematical convention.
Lists(type ′a list) come with the empty list[], the infix construc-

tor ·, the infix@ that appends two lists, and the conversion function
set from lists to sets. Variable names ending in “s” usually stand for
lists andlength xs is the length ofxs. The standard functionmap,
which applies a function to every element in a list, is also available.

Function updateis defined as follows:
f(a := b) ≡ λx. if x = a then b else f x
wheref :: ′a ⇒ ′b anda :: ′a andb :: ′b.

datatype ′a option = None | Some ′a
adjoins a new elementNone to a type ′a. All existing elements
in type ′a are also in ′a option, but are prefixed bySome. For
succinctness we writebac instead ofSome a. Hencebool option
has the valuesbTruec, bFalsec andNone.

Partial functionsare modeled as functions of type′a ⇒ ′b op-
tion, whereNone represents undefinedness andf x = byc means
x is mapped toy. Instead of ′a ⇒ ′b option we write ′a ⇀
′b , call such functionsmaps, and abbreviatef(x:=byc) to f(x
7→ y). The latter notation extends to lists:f([x1,. . .,xm] [7→]
[y1,. . .,yn]) meansf(x1 7→y1). . .(xi 7→yi), where i is the mini-
mum ofm andn. The notation works for arbitrary list expressions
on both sides of[7→], not just enumerations. Multiple updates like
f(x 7→y)(xs[7→]ys) can be written asf(x 7→ y, xs [7→] ys). The
map λx. None is written empty, andempty(. . .), where. . . are
updates, abbreviates to[. . .]. For example,empty(x 7→y, xs[7→]ys)
becomes[x 7→ y, xs [7→] ys]. The domain of a map is defined as
dom m ≡ {a |m a 6= None}. Functionmap-of turns an list of pairs
into a map:

map-of [] = empty
map-of(p·ps) = map-of ps(fst p 7→ snd p)

3.2 Names, paths, and base classes

Type cname is the (HOL) type of class names. The (HOL) vari-
ablesC andD will denote class names,Cs andDs are paths. We
introduce the type abbreviation

path = cname list

Programs are denoted byP. For the moment we do not need to
know what programs look like. Instead we assume the following
predicates describing the class structure of a program:

• P ` C ≺R D meansD is a direct repeated base class ofC.

• P ` C ≺S D meansD is a direct shared base class ofC.

• �∗ means(≺R ∪ ≺S)∗.

• is-class P C means classC is defined inP.

3.3 Subobjects

We slightly change the appearance of subobjects in comparison
with Rossie-Friedman style: we use a tuple with a class and a path
component where a path is represented as a list of classes. For ex-
ample, a Rossie-Friedman subobject[Bottom,Bottom.Left]
is translated into(Bottom,[Bottom,Left]) .

The subobject definitions are parameterized by a programP.
First we defineSubobjsR P, the subobjects whose path consists
only of repeated inheritance relations:

is-class P C
(C , [C]) ∈ SubobjsR P

P ` C ≺R D (D , Cs) ∈ SubobjsR P
(C , C ·Cs) ∈ SubobjsR P

Now we defineSubobjs P, the set of all subobjects:

(C , Cs) ∈ SubobjsR P
(C , Cs) ∈ Subobjs P

P ` C �∗ C ′ P ` C ′≺S D (D , Cs) ∈ SubobjsR P
(C , Cs) ∈ Subobjs P

We have shown that this definition and the one by Rossie and
Friedman (see§2.2) are equivalent. Ours facilitates proofs because
paths are built up following the inductive nature of lists.

3.4 Path functions

Functionlast on lists returns the topmost class in a path (w.r.t. the
class hierarchy),butlast chops off the last element.

Function@p appends two paths assuming the second one is
starting where the first one ends with. If the second path only
contains repeated inheritance, then it starts with the same class the
first one ends with, so we can append both of them via@ (taking
care to just use the common class once). If the second path begins
with a shared class, the first path just disappears (because we lose
all information below the shared class):

Cs@p Cs′≡ if last Cs= hd Cs′ then Cs@ tl Cs′ else Cs′

The following property holds under the assumption that programP
is well-formed.

If (C, Cs) ∈ Subobjs Pand (last Cs, Ds) ∈ Subobjs P
then (C, Cs@p Ds) ∈ Subobjs P.

A well-formed program requires certain natural constraints of the
program such as the class hierarchy relation to be irreflexive.

An ordering on paths is defined as follows:

(C , Cs) ∈ Subobjs P
(C , Ds) ∈ Subobjs P Cs = butlast Ds

P ,C ` Cs @1 Ds
(C , Cs) ∈ Subobjs P P ` last Cs ≺S D

P ,C ` Cs @1 [D]

The reflexive and transitive closure of@1 is writtenv. The intu-
ition of this ordering is subobject containment:P ,C ` Cs v Ds
means that subobject(C ,Ds) lies below(C ,Cs) in the subobject

graph. For example, it is not hard to deriveP ,Bottom ` [Bottom]
v [Bottom,Left ,Top] (in the repeated diamond) from these defini-
tions.

4. Abstract syntax of CoreC++
We do not define a concrete syntax for CoreC++, just an ab-
stract syntax. The translation of the C++-subset corresponding to
CoreC++ into abstract syntax is straightforward.

In the sequel, we use the following (HOL) variable conventions:
V is a (CoreC++) variable name,F a field name,M a method name,
e an expression,v a value, andT a type.

In addition tocname (class names) there are also the (HOL)
types vname (variable and field names), andmname (method
names). We do not assume that these types are disjoint.

4.1 References

A reference refers to a subobject within an object. Hence it is a
pair of anaddressthat identifies the object on the heap (see§6.1
below) and a path identifying the subobject. Formally:

reference = addr × path

The path represents the dynamic context of a subobject as a result of
previous casts (as explained in§2.4), and corresponds to the result
of adding “delta” values to an object pointer in the standard “v-
table” implementation. Note that our semantics does not emulate
the standard implementation, but is more abstract.

Note: CoreC++ references are not equivalent to C++ references,
but are more like C++ pointers.

As an example, consider Fig.3. If we assume that theelse
statement is executed, thenb will have the reference value(a, [E , B])
wherea is the memory address of the newE object, and path[E ,
B] represents the fact that this object has been up-cast toB andb
in fact points to theB subobject.

4.2 Values and Expressions

A CoreC++value (abbreviatedval) can be

• a booleanBool b, whereb :: bool, or

• an integerIntg i, wherei :: int, or

• a referenceRef r, wherer :: reference, or

• the null referenceNull, or

• the dummy valueUnit.

CoreC++ is an imperative but an expression-based language where
statements are expressions that evaluate toUnit. The following
expressions(of HOL typeexpr) are supported by CoreC++:

• creation of new object:new C
• static casting:stat cast C e
• dynamic casting:dyn cast C e
• literal value:Val v
• binary operation:e1 �bop� e2 (wherebop is one of+ or =)

• variable accessVar V and variable assignmentV := e
• field accesse.F{Ds} and field assignmente1.F{Ds} := e2

(whereDs is the path to the subobject whereF is declared)

• method call:e.M(es)
• block with locally declared variable:{V :T ; e}
• sequential composition:e1; e2

• conditional:if (e) e1 else e2

(do not confuse with HOL’sif b then x else y)

prog = cdecl list cdecl = cname × class
class = base list × fdecl list × mdecl list fdecl = vname × ty
method = ty list × ty × vname list × expr mdecl = mname × method

datatype base = Repeats cname | Shares cname

Figure 4. Abstract program syntax

• while loop:while (e) e ′

The constructorsVal andVar are needed in our meta-language
to disambiguate the syntax. There is no return statement because
everything is an expression and returns a value.

The annotation{Ds} in field access and assignment is not part
of the input language but is something that a preprocessor, e.g., the
type checking phase of a compiler, must add.

To ease notation we introduce an abbreviation:

ref r ≡ Val (Ref r)

4.3 Programs

The abstract syntax of programs is given by the type definitions in
Fig. 4, wherety is the HOL type of CoreC++ types.

A CoreC++ program is a list of class declarations. Aclass
declaration consists of the name of the class and the class itself.
A classconsists of the list of its direct superclass names (marked
shared or repeated), a list of field declarations and a list of method
declarations. Afield declaration is a pair of a field name and its
type. A method declarationconsists of the method name and the
method itself, which consists of the parameter types, the result type,
the parameter names, and the method body.

Note that CoreC++ (like Java, but unlike C++) does not have
global variables. Method bodies can access only theirthis-pointer
and parameters, and return a value.

We refrain from showing the formal definitions (see [11]) of
the predicates likeP ` C ≺R D introduced in§3 as they are
straightforward. Instead we introduce one more access function:

• class P C : the class (more precisely:class option) associated
with C in P.

5. Type system
CoreC++ types are either primitive (Boolean and Integer), class
typesClass C , NT (the type ofNull), or Void (the type ofUnit).
The set of these types (i.e. the corresponding HOL type) is called
ty. The first two rules of the subtype relation≤ are straightforward:

P ` T ≤ T P ` NT ≤ Class C

To relate two classes, we have to take care that we can use an object
of the smaller type wherever an object of the more general type can
occur. This property can be guaranteed by requiring that a static
cast between these two types can be performed, resulting in the
premise7:

P` path C to D unique ≡ ∃ !Cs. (C, Cs) ∈ Subobjs P∧ last Cs= D

This property ensures that the path from classC leading to classD
exists and is unique (∃ ! is unique existence).

This leads to the third subtyping rule:

P ` path C to D unique
P ` Class C ≤ Class D

The pointwise extension of≤ to lists is written[≤] .

7 For more information about static casts, see§5.1.1

5.1 Typing rules

The core of the type system is the judgmentP ,E ` e :: T , where
E is anenvironment, i.e. a map from variables to their types. We
call T thestatic type ofe.

We will discuss the typing rules (see Fig.5) construct by con-
struct, concentrating on object-orientation. The remaining rules can
be found elsewhere [11]. For critical constructs we will also con-
sider the question of type safety: does the type system guarantee
that evaluation cannot get stuck and that, if a value is produced, it
is of the right type.

Values are typed with their corresponding types, e.g.,Bool
as Boolean, Intg as Integer. However, there is no rule to type a
reference, so explicit references cannot be typed. CoreC++, like
Java or ML, does not allow explicit references for well known
reasons.

5.1.1 Cast

Typing static casts is non-trivial in CoreC++ because the type
system needs to prevent ambiguities at run-time (although it cannot
do so completely). When evaluatingstat cast C e, the object
thate evaluates to may have multiple subobjects of classC. If it is
an up-cast, i.e. ifP ,E ` e :: Class D andD is a subclass ofC, we
have to check if there is a unique path fromD to C.

Two examples will make this clearer: if we want to cast
Bottom to Top in the repeated diamond in Fig.1, we have two
paths leading to possible subobjects: [Bottom ,Left ,Top] and
[Bottom ,Right ,Top]. So there is no unique path, the cast is am-
biguous and the type system rejects it. But the same cast in the
shared diamond in Fig.2 is possible, as there is only one possible
path, namely [Top].

For down-casts we need to remember (§2.3) that we have chosen
to model a type safe variant ofstatic_cast (which means
we throw an exception where C++ produces a run-time error),
for which C++ has fixed the rules as follows:: down-casts may
only involve repeated inheritance. To enforce this restriction we
introduce the predicate

P` path C to D via Cs ≡ (C, Cs) ∈ Subobjs P∧ last Cs= D

Combining the checks for up- and down-casts in one rule and re-
quiring the class to be known we obtain WT1 (see Fig.5). Re-
member that(C , Cs) ∈ SubobjsR P means thatCs involves only
repeated inheritance.

As an example of an ambiguous down-cast, take the repeated
diamond in Fig.1 and extend it with a shared superclassCof Top.
Casting aBottom object of a static classC to Top is ambiguous
because there are twoTop subobjects.

Dynamic casts are non-trivial operations at run-time but stati-
cally they are as simple as can be: rule WT2 only requires that the
expression is well-typed and the class is known. This liberality is
not just admissible (because dynamic casts detect type mismatches
at run-time) but even necessary. We come back to this point when
we discuss the semantics in§6.3.2.

5.1.2 Variable assignment and binary operators

The assignment rule WT3 is completely straightforward as the
expression on the right hand side has to be a subtype of the variable

WT1
P ,E ` e :: Class D is-class P C P ` path D to C unique ∨ (∀Cs. P ` path C to D via Cs −→ (C , Cs) ∈ SubobjsR P)

P ,E ` stat cast C e :: Class C

WT2
P ,E ` e :: Class D is-class P C

P ,E ` dyn cast C e :: Class C

WT3
E V = bTc P ,E ` e :: T ′ P ` T ′≤ T

P ,E ` V := e :: T

WT4

P ,E ` e1 :: T1 P ,E ` e2 :: T2

case bop of = ⇒ T1 = T2 ∧ T = Boolean | + ⇒ T1 = Integer ∧ T2 = Integer ∧ T = Integer
P ,E ` e1 �bop� e2 :: T

WT5
P ,E ` e :: Class C P ` C has least F : T via Cs

P ,E ` e.F{Cs} :: T

WT6
P ,E ` e1 :: Class C P ` C has least F : T via Cs P ,E ` e2 :: T ′ P ` T ′≤ T

P ,E ` e1.F{Cs} := e2 :: T

WT7
P ,E ` e :: Class C P ` C has least M = (Ts, T , m) via Cs P ,E ` es [::] Ts ′ P ` Ts ′ [≤] Ts

P ,E ` e.M(es) :: T

Figure 5. The typing rules

type on the left hand side, which we get by consulting the typing
environment.

Rule WT4 for binary operators: Addition is unsurprising. In the
equality test, we assume that both operands have the same type, i.e.
that all necessary casts are performed explicitly. This simplifies the
presentation without loss of generality.

5.1.3 Field access and assignment

The typing rule for field access WT5 is straightforward. It can either
be seen as a rule that takes an expression where field access is
already annotated (by{Cs}), and the rule merely checks that the
annotation is correct. Or it can be seen as a rule for computing the
annotation. The latter interpretation relies on the fact that predicate
P ` C has least F : T via Cs can computeT andCs from P, C and
F. So it remains to explainP ` C has least F : T via Cs: it checks
if Cs is the least (w.r.t.v) path leading fromC to a class declaring
anF. First we define the setFieldDecls P C F of all (Cs, T) such
thatCs is a valid path leading to a class with anF of typeT :

FieldDecls P C F≡
{(Cs, T) |
(C, Cs) ∈ Subobjs P∧
(∃Bs fs ms. class P(last Cs) = b(Bs, fs, ms)c ∧ map-of fs F= bTc)}

Then we select a least element from that set:

P` C has least F : T via Cs≡
(Cs, T) ∈ FieldDecls P C F∧
(∀ (Cs′, T′)∈FieldDecls P C F. P,C ` Csv Cs′)

If there is no such least path, field access is ambiguous and hence
not well-typed. We give an example. Once again we concen-
trate on the repeated diamond in Fig.1 and assume that a field
x is defined in classBottom and classTop. When type check-
ing e.x, where e is of classBottom , the path components in
FieldDecls P Bottom x are [Bottom], [Bottom ,Left ,Top] and
[Bottom ,Right ,Top]. The least element of the path components
in this set is [Bottom], so thex in classBottom will be accessed.
Note that if nox in Bottom is declared, then there is no element
with a least path inFieldDecls and the field access is ambiguous
and hence illegal.

Field assignment works analogously as shown in WT6.

Returning to Example 6 from§2.4, one can see that our type
system correctly determines that the least declaration ofx is the
one inC. Hence, our type system does not yield the incorrect result
that is produced by several C++ compilers.

5.1.4 Method call

In the call typing rule WT7 the classC of e is used to collect all
declarations ofM and select the least one. The set of all definitions
of methodM from classC upwards is defined as

MethodDefs P C M≡
{(Cs, mthd) |
(C, Cs) ∈ Subobjs P∧
(∃Bs fs ms. class P(last Cs) = b(Bs, fs, ms)c ∧map-of ms M= bmthdc)}

This set pairs the method (of typemethod, see Fig.4) with the path
Cs leading to the defining class. Among all definitions the least one
(w.r.t. the ordering on paths) is selected:

P` C has least M = mthdvia Cs≡
(Cs, mthd) ∈ MethodDefs P C M∧
(∀ (Cs′, mthd′)∈MethodDefs P C M. P,C ` Csv Cs′)

Unfortunately, the absence of static ambiguity of method lookup is
not sufficient to avoid ambiguities at run-time. Even if the call is
well-typed,e may evaluate to a class belowC from which there is
no least declaration ofM. We presented this problem in Example 3
and will discuss it in detail in§6.3.6.

In the third premise of WT7, the relation[::] is the pointwise
extension of:: to lists.

5.2 Well-formed programs

A well-formed CoreC++ program (wf-C-prog P) must obey all the
usual requirements (every method body is well-typed and of the
declared result type, the class hierarchy is acyclic, etc — for de-
tails see [11]). Additionally, there are CoreC++-specific conditions
concerning method overriding:

(i) covariance in the result type combined with the uniqueness of
paths from the new result class toall result classes in previous
definitions of the same method (see Example 4). This require-
ment is easily formalized by means of thepath-unique predi-
cate introduced in§5.

state = heap × locals
locals = vname ⇀ val
heap = addr ⇀ obj
obj = cname × subo set
subo = path × (vname ⇀ val)

Figure 6. The type of CoreC++ program states

(ii) invariance in the argument types (see Example 5)

(iii) for every method definition a classC sees via pathCs, the
corresponding subobject(C ,Cs) must have a least overrider as
explained in§6.3.6(otherwise the corresponding C++ program
would not be able to construct a unique v-table entry for this
method call and the program would be rejected at compile time)

6. Big Step Semantics
The big step semantics is a (deterministic) relation between an
initial expression-state pair〈e,s〉 and a final expression-state pair
〈e ′,s ′〉. The syntax of the relation is
P ,E ` 〈e,s〉 ⇒ 〈e ′,s ′〉 and we say thate evaluatesto e ′. The rules
will be such thatfinal expressions are always values (Val) or ex-
ceptions (throw), i.e. final expressions are completely evaluated.

6.1 State

The set of states is defined in Fig.6. A state is a pair of aheapand
a store (locals). A store is a map from variable names to values.
A heap is a map from addresses to objects. Anobject is a pair of
a class name and its subobjects. Asubobject (subo) is a pair of a
path (leading to that subobject) and a field table mapping variable
names to values.

The naming convention is thath is a heap,l is a store (thelocal
variables), ands a state.

Note that CoreC++, in contrast to C++, does not allow stack-
allocated objects: variable values can only be pointers (CoreC++
references), but not objects. Objects are only on the heap (as in
Java). We do not expect stack based objects to interfere with multi-
ple inheritance.

Remember further that a reference contains not only an address
but also a path. This path selects the current subobject of an object
and is modified by casts (see below).

6.2 Exceptions

CoreC++ supports exceptions. They are essential to prove type
soundness as certain problems can occur at run-time (e.g., a failing
cast) which we cannot prevent statically. In these cases we throw
an exception so the semantics does not get stuck. Three exceptions
are possible in CoreC++:OutOfMemory, if there is no more space
on the heap,ClassCast for a failed cast andNullPointer for null
pointer access. We will explain in the text exactly when an excep-
tion is thrown but will omit showing the corresponding rules; the
interested reader can find them in the appendix.

6.3 Evaluation

Remember thatP ,E ` 〈e,s〉 ⇒ 〈e ′,s ′〉 is the evaluation judgment,
whereP denotes the program andE the type environment. The
need forE will be explained in§6.3.3.

For a better understanding of the evaluation rules it is helpful
to realize that they preserve the following heap invariant: for any
object(C , S) on the heap we have

• S contains exactly the paths starting fromC :
{Ds | ∃ fs. (Ds, fs) ∈ S} = {Ds | (C , Ds) ∈ Subobjs P},

• S is a (finite) function:
∀ (Cs,fs), (Cs ′,fs ′) ∈ S . Cs = Cs ′−→ fs = fs ′

Furthermore, if an expressione evaluates toref (a, Cs) then the
heap mapsa to b(C , S)c such that

• Cs is the path of a subobject inS : (Cs, fs) ∈ S for somefs.
• last Cs is equal to the class ofe inferred by the type system.

We will now discuss the evaluation rules construct by construct,
concentrating on object-orientation, as shown in Fig.7. The re-
maining rules can be found elsewhere [11].

6.3.1 Object creation

Rule BS1 shows the big step rule for object creation. The result
of evaluatingnew C is a referenceRef (a, [C]) wherea is some
unallocated address returned by the auxiliary functionnew-Addr
(which returnsNone if the heap is exhausted, in which case we
throw anOutOfMemory exception). As a side effect,a is made
to point to the object(C , S), where S = init-obj P C is the
set of all subobjects(Cs, fs) such that(C , Cs) ∈ Subobjs P
and fs :: vname ⇀ val is the field table that contains every field
declared in classlast Cs initialized with its default value (according
to its type). We omit the details. Note that C++ does not initialize
fields. Our desire for type safety requires us to deviate from C++ in
this minor aspect.

6.3.2 Cast

Casting is a non-trivial operation in C++, in contrast to Java. Re-
member that any object reference contains a path component identi-
fying the current subobject which is referenced. A cast changes this
path, thus selects a different subobject. Hence casting must adjust
the path component of the reference. This mechanism corresponds
to Stroustrup’s adjustment of pointers by “delta” values. We con-
sider it a prime example of the fact that our semantics does not rely
on run-time data structures but on abstract concepts.

Let us first look at the static up-cast rule BS2: After evaluating
e to a reference with pathCs, that path is extended (upward) by a
(unique, if the the cast is well-typed,§5.1.1) pathCs ′ from the end
of Cs up to C, which we get by predicatepath-via. So if we want
to castBottom to Left in the repeated diamond in Fig.1, the
appropriate path is [Bottom ,Left], castingRight to Top in the
shared diamond in Fig.2 uses path [Top].

Rule BS3 models the static down-cast which forbids down-casts
involving shared inheritance. This means that classC must occur
in the path component of the reference, or the cast is “wrong”.

If neither of these two rules applies, the static cast throws a
ClassCast exception (see appendix).

Now considerdyn_cast which modelsdynamic_cast in
C++. If possible,dyn_cast tries to behave like the static cast.
Rules BS4 and BS5 are the analogues of BS2 and BS3, except that
BS4 has the additional premiseP ` path last Cs to C unique.
This is because typing ofdyn_cast , in contrast tostat_cast ,
does not guarantee uniqueness (in order to be more general). In the
presence of multiple inheritance, not only up and down-casts are
possible but also cross-casts: A reference(a, [Bottom, Left]) to
the Left subobject of aBottom object (in either the shared or
repeated diamond) can be cast to theRight subobject resulting in
the reference(a, [Bottom, Right]). It is also possible that a legal
down cast cannot be performed by rule BS5 becauseC does not
occur in the path. AssumeB is a shared subclass ofA. Then a
term which is statically of classA and evaluates toref (b , [A]) but
points to an object of classB can be cast toref (b , [B]), but not by
BS5. Both cross-casts and such dynamic down-casts are performed
by rule BS6. After evaluatinge to a reference to addressa, we

BS1
new-Addr h = bac h ′ = h(a 7→ (C , init-obj P C))

P ,E ` 〈new C ,(h , l)〉 ⇒ 〈ref (a, [C]),(h ′, l)〉

BS2
P ,E ` 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉 P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ,E ` 〈stat cast C e,s0〉 ⇒ 〈ref (a, Ds),s1〉

BS3
P ,E ` 〈e,s0〉 ⇒ 〈ref (a, Cs @ [C] @ Cs ′),s1〉

P ,E ` 〈stat cast C e,s0〉 ⇒ 〈ref (a, Cs @ [C]),s1〉

BS4
P ,E ` 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉 P ` path last Cs to C unique P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ,E ` 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Ds),s1〉

BS5
P ,E ` 〈e,s0〉 ⇒ 〈ref (a, Cs @ [C] @ Cs ′),s1〉

P ,E ` 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs @ [C]),s1〉

BS6
P ,E ` 〈e,s0〉 ⇒ 〈ref (a, Cs),(h , l)〉 h a = b(D ,)c P ` path D to C via Cs ′ P ` path D to C unique

P ,E ` 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs ′),(h , l)〉

BS7

P ,E ` 〈e,s0〉 ⇒ 〈ref (a, Cs),(h , l)〉
h a = b(D , S)c ¬ P ` path D to C unique ¬ P ` path last Cs to C unique C /∈ set Cs

P ,E ` 〈dyn cast C e,s0〉 ⇒ 〈null ,(h , l)〉

BS8
P ,E ` 〈e,s0〉 ⇒ 〈Val v,(h , l)〉 E V = bTc P ` T casts v to v ′ l ′ = l(V 7→ v ′)

P ,E ` 〈V := e,s0〉 ⇒ 〈Val v ′,(h , l ′)〉

BS9
P ,E ` 〈e1,s0〉 ⇒ 〈Val v1,s1〉 P ,E ` 〈e2,s1〉 ⇒ 〈Val v2,s2〉 binop (bop, v1, v2) = bvc

P ,E ` 〈e1 �bop� e2,s0〉 ⇒ 〈Val v,s2〉

BS10
P ,E ` 〈e,s0〉 ⇒ 〈ref (a, Cs ′),(h , l)〉 h a = b(D , S)c Ds = Cs ′ @p Cs (Ds, fs) ∈ S fs F = bvc

P ,E ` 〈e.F{Cs},s0〉 ⇒ 〈Val v,(h , l)〉

BS11

P ,E ` 〈e1,s0〉 ⇒ 〈ref (a, Cs ′),s1〉
P ,E ` 〈e2,s1〉 ⇒ 〈Val v,(h2, l2)〉 h2 a = b(D , S)c P ` last Cs ′ has least F : T via Cs P ` T casts v to v ′

Ds = Cs ′ @p Cs (Ds, fs) ∈ S fs ′ = fs(F 7→ v ′) S ′ = S − {(Ds, fs)} ∪ {(Ds, fs ′)} h2
′ = h2(a 7→ (D , S ′))

P ,E ` 〈e1.F{Cs} := e2,s0〉 ⇒ 〈Val v ′,(h2
′, l2)〉

BS12

P ,E ` 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉
P ,E ` 〈ps,s1〉 [⇒] 〈map Val vs,(h2, l2)〉 h2 a = b(C ,)c P ` last Cs has least M = (, T ′, ,) via Ds

P ` (C , Cs @p Ds) selects M = (Ts, T , pns, body) via Cs ′ length vs = length pns P ` Ts Casts vs to vs ′

l2 ′ = [this 7→ Ref (a, Cs ′), pns [7→] vs ′] new-body = (case T ′ of Class D ⇒ stat cast D body | - ⇒ body)
P ,E(this 7→ Class (last Cs ′), pns [7→] Ts) ` 〈new-body,(h2, l2 ′)〉 ⇒ 〈e ′,(h3, l3)〉

P ,E ` 〈e.M(ps),s0〉 ⇒ 〈e ′,(h3, l2)〉

Figure 7. The Big Step rules

look up the classD of the object at addressa. If D has a unique
C subobject, that is the one the reference must now point to.

If BS6 is inapplicable, i.e. if there is either no path or no unique
path from the dynamic class, and a static cast fails as well, we return
the null pointer, i.e. the valuenull (see BS7). This is exactly how
C++ handles failingdynamic_cast s.

We now return to the point raised in the discussion of the typing
rule for dynamic casts in§5.1.1. Rule WT2 needs to be as liberal as
it is because even if there is no relationship betweenC and the static
class ofe (call it B), e may evaluate to an object of a subclass of
bothC andB and the cast could succeed. Does that mean we should
at least require thatC andB have a common subclass (or maybe
superclass)? Not even that: since inheritance is all about permitting
later extensions with new subclasses, the common subclass ofC
andB need not yet exist whendyn cast C e is type checked.

6.3.3 Variable assignment

Assignment is straightforward (see rule BS8) except that it requires
an up-cast of the expression to the static type T of the variable.

Hence we need the environment E to look up T (byE V = [T]).
The up-cast is inserted implicitly by the semantics and defined via

∀C . T 6= Class C
P ` T casts v to v

P ` Class C casts Null to Null

P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ` Class C casts Ref (a, Cs) to Ref (a, Ds)

6.3.4 Binary operators

The evaluation rule for binary operators BS9 is based on a function
binop taking the operator and its two argument values and return-
ing an optional (in order to deal with type mismatches) result. The
definition ofbinop for our two binary operators= and+ is straight-
forward:

binop (=, v1, v2) = bBool (v1 = v2)c
binop (+, Intg i1, Intg i2) = bIntg (i1 + i2)c
binop (, ,) = None

In the first equation, equality on the left hand side is the CoreC++
equality operator, equality in the middle is definitional equality, and
equality on the right hand side is the test for equality. Logically, the
latter two are the same.

Addition only yields a value if both arguments are integers. We
could also insist on similar compatibility checks for the equality
test, but that leads to excessive case distinctions that we want to
avoid for reasons of presentation. In particular,= does not perform
any implicit casts.

6.3.5 Field access and assignment

Let us first look at field access in rule BS10. There are two paths
involved. Cs is (if the expression is well-typed,§5.1.3) the path
from the class ofe to the class whereF is declared.Cs ′ is the
path component of the reference thate evaluates to. As we have
discussed in§6.3, last Cs ′ is equal to the static class ofe. To obtain
the complete path leading to the subobject in whichF lives, we just
have to concatenate via@p the two paths. The resulting pathDs is
the path to the subobject we are looking for. Ife doesn’t evaluate to
a reference, but to a null pointer, we throw aNullPointer exception.

Field assignment (rule BS11) is similar, except that we now
have to update the heap ata with a new set of subobjects. The
up-cast is inserted implicitly, analogously to BS8. Note that the
functional nature of this set is preserved.

6.3.6 Method call

Rule BS12 is lengthy:

• evaluatee to a reference(a, Cs) and the parameter listps to a
list of valuesvs;

• look up the dynamic classC of the object in the heap ata;

• look up the method definition used at type checking time (last
Cs is the static class ofe) and note its return typeT and the
pathDs from last Cs to this definition;

• select the dynamically appropriate method (see below) and note
its parameter namespns, parameter typesTs, body body, and
pathCs ′ from C to this definition;

• check that there are as many actual as formal parameters;

• cast the parameter valuesvs up to their static typesTs by using
P ` Ts Casts vs to vs ′ , the pointwise extension of casts to lists,
yielding vs ′;

• evaluate the body (with an up-cast toT, if T is a class) in
an updated type environment wherethis has typeClass (last
Cs ′) (the class where the dynamically selected method lives)
and the formal parameter names have their declared types, and
where the local variables arethis and the parameters, suitably
initialized.

The final store is the one obtained from the evaluation of the param-
eters; the one obtained from the evaluation ofbody is discarded –
remember that CoreC++ does not have global variables. Ife evalu-
ates to a null pointer, we throw aNullPointer exception.

Method selection is performed by the judgmentP ` (C , Cs)
selects M = mthd via Cs ′ , where(C ,Cs) is the subobject where
the method lives that was used at type checking time. Hence there is
at least one definition ofM visible fromC. There are two possible
cases. If we are lucky, we can select a unique method definition
based solely onC :

P ` C has least M = mthd via Cs ′

P ` (C , Cs) selects M = mthd via Cs ′

Otherwise we need static information to disambiguate the selec-
tion as Example 3 already demonstrated.

class Top { void f(); };
class Right2 : Top { ... };
class Right : virtual Right2 { void f(); };
class Left : Top { void f(); };
class Bottom : Left, Right { ... };

((Right2*)(new Bottom()))->f();

(Bottom,[Bottom])

(Bottom,[Bottom,Right])

(Bottom,[Bottom,Left])

(Bottom,[Right2])

(Bottom,[Right2,Top])f() f()

f()

f()

calling subobject

(Bottom,[Bottom,Left,Top])

Figure 8. Example illustrating static resolution of dynamically
ambiguous method calls

Example. To appreciate the full intricacies of this mecha-
nism, let us consider the example in Fig.8, where a sub-
object (Bottom ,[Right2]) calls method f : the path com-
ponents in MethodDefs P Bottom f are [Bottom ,Left],
[Bottom ,Left ,Top], [Bottom , Right] and [Right2 ,Top].
None of these paths is smaller than all of the others, so we cannot
resolve the method call purely dynamically. So another approach
is taken: we select the minimal paths inMethodDefs P Bottom
f , which leaves us with [Bottom ,Left] and [Bottom ,Right].
Now we have to find out which of these two paths will select the
method to call. This is done by considering the statically selected
method call (i.e. the least one seen from the static classRight2),
yielding path [Right2 ,Top], which is guaranteed to be unique
by the type system. Now we append this “static” path to the path
component of the subobject, which results in the path where the dy-
namic class sees the statically selected method definition, namely
[Right2]@p[Right2 ,Top] = [Right2 ,Top]. Finally we select
a path from the above set of minimal paths that is smaller than the
composed path, which results in [Bottom ,Right]. The unique-
ness of this path is guaranteed by the well-formedness of the pro-
gram (see§5.2(iii)).

Abstractly,P ` (C , Cs) selects M = mthd via Cs ′ selects that
Cs ′ from the set of minimal paths fromC to definitions ofM that
lies onCs, i.e. that lies below the statically selected method defi-
nition Cs. The minimal elements are collected byMinimalMethod-
Defs,

MinimalMethodDefs P C M≡
{(Cs, mthd) |
(Cs, mthd) ∈ MethodDefs P C M∧
(∀ (Cs′, mthd′)∈MethodDefs P C M. P,C ` Cs′v Cs−→ Cs′ = Cs)}

the ones that override the definition atCs, i.e. are belowCs, are
selected byOverriderMethodDefs,

OverriderMethodDefs P R M≡
{(Cs, mthd) |
∃Cs′ mthd′.

P` last (snd R) has least M = mthd′ via Cs′∧
(Cs, mthd) ∈ MinimalMethodDefs P(fst R) M ∧
P,fst R` Csv snd R@p Cs′}

and selection of a least overrider is performed as follows:

P` Rhas overrider M = mthdvia Cs≡
(Cs, mthd) ∈ OverriderMethodDefs P R M∧
card (OverriderMethodDefs P R M) = 1

Note thatOverriderMethodDefs returns a singleton set (card is
the cardinality of a set) if the program is well-formed (see§5.2
(iii)). Hence the second defining rule forselects is

∀mthd Cs ′. ¬ P ` C has least M = mthd via Cs ′

P ` (C , Cs) has overrider M = mthd via Cs ′

P ` (C , Cs) selects M = mthd via Cs ′

6.4 Small Step Semantics

Big step rules are easy to understand but cannot distinguish non-
termination from being stuck. Hence we also have asmall stepse-
mantics where expression-state pairs are gradually reduced. The re-
duction relation is writtenP ,E ` 〈e,s〉 → 〈e ′,s ′〉 and its transitive
reflexive closure isP ,E ` 〈e,s〉 →∗ 〈e ′,s ′〉.

We do not show the rules (for lack of space, the interested reader
can find selected ones in the appendix) but emphasize that we have
proven the equivalence of the big and small step semantics (for
well-formed programs):

P ,E ` 〈e,s〉 ⇒ 〈e ′,s ′〉 = (P ,E ` 〈e,s〉 →∗ 〈e ′,s ′〉 ∧ final e ′).

7. Type Safety Proof
Type safety, one of the hallmarks of a good language design, means
that the semantics is sound w.r.t. the type system:well-typed ex-
pressions cannot go wrong. Going wrong does not mean throw-
ing an exception but arriving at a genuinely unanticipated situation.
The by now standard formalization of this property [39] requires
proving two properties:progress(well-typed expressions can be re-
duced w.r.t. the small step semantics if they are not final yet — the
small step semantics does not get stuck) andpreservationor sub-
ject reduction: reducing a well-typed expression results in another
well-typed expression whose type is≤ the original type.

In the remainder we concentrate on the specific technicalities of
the CoreC++ type safety proof. We do not even sketch the actual
proof, which is routine enough, but all the necessary invariants and
notions without which the proof is very difficult to reconstruct. For
a detailed exposition of the Jinja type safety proof, our starting
point, see [11]. For a tutorial introduction to type safety see, for
example, [19].

7.1 Run-time type system

The main complication in many type safety proofs is the fact that
well-typedness w.r.t. the static type system isnot preserved by the
small step semantics. The fault does not lie with the semantics but
the type system: for pragmatic reasons it requires properties that are
not preserved by reduction and are irrelevant for type safety. Thus
a second type system is needed which is more liberal but closed
under reduction. This is known as therun-time type system[8] and
the judgment isP ,E ,h ` e : T . Please note that there is no type
checking at run-time: this type system is merely the formalization
of an invariant which is not checked but whose preservation we
prove. Many of the rules of the run-time type system are the same
as in the static type system. The ones which differ are shown in
Fig. 9.

Rule RT3 takes care of the fact that small step reduction may
introduce references values into an expression (although the static
type system forbids them, see§5.1). The premiseP ` typeofh v
= bTc expresses that the value is of the right type; ifv = Ref
(a, Cs), its type isClass (last Cs) providedh a = b(C ,)c and
(C , Cs) ∈ Subobjs P .

The main reason why static typing is not preserved by reduction
is that the type of subexpressions may decrease from a class type
to a null type with reduction. Because of this, both cast rules only
require the expression to cast to have a reference type (is-refT T),
which means either a class or the null type. None of the checks that

RT1
P ,E ,h ` e : T is-refT T is-class P C

P ,E ,h ` dyn cast C e : Class C

RT2
P ,E ,h ` e : T is-refT T is-class P C

P ,E ,h ` dyn cast C e : Class C

RT3
P ` typeofh v = bTc

P ,E ,h ` Val v : T

RT4
P ,E ,h ` e : NT

P ,E ,h ` e.F{Cs} : T

RT5
P ,E ,h ` e1 : NT P ,E ,h ` e2 : T ′ P ` T ′≤ T

P ,E ,h ` e1.F{Cs} := e2 : T

RT6
P ,E ,h ` e : NT P ,E ,h ` es [:] Ts

P ,E ,h ` e.M(es) : T

Figure 9. Run-time type system

are needed for the static cast are important for the run-time type
system.

Rule RT4 takes care ofe.F{Cs}where the type ofe has reduced
to NT. Since this is going to throw an exception, and exceptions can
have any type, this expression can have any type, too. Rules RT5
and RT6 work similarly for field assignment and method call.

We have proved thatP ,E ` e :: T impliesP ,E ,h ` e : T. Heap
h is unconstrained as the premise implies thate does not contain
any references.

7.2 Conformance and Definite Assignment

Progress and preservation require that all semantic objectsconform
to the type constraints imposed by the syntax. We say that a valuev
conforms to a typeT (writtenP ,h ` v :≤ T) if the type ofv equals
typeT or, if T is a class type,v has typeNT. A heap conforms to a
program if for every object(C , S) on the heap

• if (Cs, fs) ∈ S then(C , Cs) ∈ Subobjs P and if F is a field of
typeT declared in classlast Cs thenfs F = bvc and the type of
v (in the sense of rule RT1) conforms to typeT.

• if (C , Cs) ∈ Subobjs P then(Cs, fs) ∈ S for somefs.

In this case we writeP ` h
√

. A store l conforms to a type
environmentE iff l V = bvc implies E V = bTc such thatv
conforms toT. In symbols:P ,h ` l (:≤)w E . We also need
conformance concerning the type environment:P ` E

√
states that

for every variable that maps to a type in environmentE, the type is
a valid type in programP.

P` E
√
≡ ∀V T. E V = bTc −→ is-type P T

If P ` h
√

, P ,h ` l (:≤)w E andP ` E
√

then we writeP ,E `
(h , l)

√
and say that state(h ,l) conforms to the program and the

environment.
For the proof we need another conformance property, which

we call type-conf. It simply describes that given a certain type, an
expression has that type in the run-time type system. However, if
this given type is a class type, the run-time type system may also
return the null type for the expression.

P ,E ,h ` e :NT Class C = P ,E ,h ` e : Class C ∨ P ,E ,h ` e : NT
P ,E ,h ` e :NT Void = P ,E ,h ` e : Void

The rules forBoolean, Integer andNT are analogous to the rule
containingVoid.

From Jinja we have inherited the notion ofdefinite assignment,
a static analysis that checks if in an expression every variable is

initialized before it is read. This constraint is essential for proving
type safety. Definite assignment is encoded as a predicateD such
thatD e A (whereA is a set of variables) asserts the following
property: if initially all variables inA are initialized, then execution
of e does not access an uninitialized variable. For technical reasons
A is in fact of typevname set option. That is, if we want to execute
e in the context of a storel we need to ensureD e bdom lc. SinceD
is completely orthogonal to multiple inheritance we have omitted
all details and refer to [11] instead.

7.3 Progress

Progress means that any (run-time) well-typed expression which is
not yet not fully evaluated (i.e. final) can be reduced by a rule of
the small step semantics. To prove this we need to assume that the
program is well-formed, the heap and the environment conform,
and the expression passes the definite assignment test:

If wf-C-prog P and P,E,h` e : T and P` h
√

and P` E
√

and
D ebdom lc and¬ final e then ∃ e′ s′. P,E ` 〈e,(h, l)〉 → 〈e′,s′〉.

This theorem is proved by a quite exhausting rule induction on
the (run-time) typing rules, where most cases consist of several
more case distinctions, likee being final or not. So some cases can
get quite long (e.g., the proof for method call has about 150 lines
of proof script).

7.4 Preservation

To achieve type safety we have have to show that all of the assump-
tions in the Progress theorem above are preserved by the small steps
rules.

First, we consider the heap conformance:

If wf-C-prog Pand P,E ` 〈e,(h, l)〉 → 〈e′,(h′, l ′)〉 and
P,E,h` e : T and P` h

√
then P` h′√.

We proof this by induction on the small step rules. Most cases are
straightforward, the only work lies in the rules which alter the heap,
namely the ones for creation of new objects and field assignment.

Next, we need a similar rule for the conformance of the store.
To prove this, we need to assume that the program is well-formed,
the environment conforms to it and the expression is well typed in
the run-time type system:

If wf-C-prog Pand P,E ` 〈e,(h, l)〉 → 〈e′,(h′, l ′)〉 and
P,E,h` e : T and P,h` l (:≤)w E and P` E

√
then

P,h′` l ′ (:≤)w E.

Here, the interesting cases from the small step rule induction are
those that change the locals, namely variable assignment and blocks
with locally declared variables.

Furthermore, also definite assignment needs to be preserved
by the semantics. The corresponding lemma is easily proved by
induction on the small step rules:

If wf-C-prog Pand P,E ` 〈e,(h, l)〉 → 〈e′,(h′, l ′)〉 and
D ebdom lc thenD e′ bdom l′c.

Finally we have to show that the semantics preserves well-
typedness. Preservation of well-typedness here means that the type
of the reduced expression is equal to that of the original expression
or, if the original expression had a class type, the type may reduce
to the null type. This is formalised via thetype-conf property from
§7.2:

If wf-C-prog Pand P,E ` 〈e,s〉 → 〈e′,s′〉 and P,E ` s
√

and
P,E,hp s` e : T then P,E,hp s′` e′ :NT T.

wherehp s is the heap component ofs. This proof is quite lengthy
because the most complicated cases (mostly method call and field
assignment) of the 68 small step rules can have up to 80 lines of
proof script each (the screenshot in Fig.10 shows the first case of
the proof).

7.5 The Type Safety Proof

All the preservation lemmas only work ’one step’. We have to
extend them from→ to →∗, which is done by induction (because
of the equivalence of big and small step semantics mentioned
in §6.4, all these lemmas now also hold for the big step rules).
Now combining type preservation with progress yields the main
theorem:

If wf-C-prog Pand P,E ` s
√

and P,E ` e :: T and
D ebdom(lcl s)c and P,E ` 〈e,s〉 →∗ 〈e′,s′〉 and
¬ (∃ e′′ s′′. P,E ` 〈e′,s′〉 → 〈e′′,s′′〉) then
(∃ v. e′ = Val v∧ P,hp s′` v :≤ T) ∨
(∃ r. e′ = Throw r∧ the-addr(Ref r) ∈ dom(hp s′)).

If the program is well-formed, states conforms to it,e has type
T and passes the definite assignment test w.r.t.dom (lcl s) (where
lcl s is the store component ofs) and its→-normal form ise ′, then
the following property holds: eithere ′ is a value of typeT (or NT,
if T is of type class) or an exceptionThrow r such that the address
part ofr is a valid address in the heap.

8. Evolution of the Semantics
The semantics presented in this paper has gone through several
stages. This section will discuss a few example steps in the evo-
lution of the specification.

8.1 Addresses, references and object structure

From the beginning, it was clear that objects in the heap have to
comprise an object’s dynamic class, a subobject, and the values
stored in the object’s fields. We initially thought that pointers to
objects could be identified by just an address. However, by studying
the behaviors of static casts and field operations, we soon realized
that we need to keep track of the subobject that is currently being
pointed to. Our first attempt was to incorporate this information
in the object description itself, so objects became a triple with
a path (the only way to uniquely identify a subobject) as a third
component:

obj = cname × path × (path ⇀ vname ⇀ val)

However, in the presence of multiple pointers to some objecto,
each of these pointers may point to a different subobject ofo, and
hard-coding subobject information ino itself is clearly insufficient.
Realizing this, we removed the path component from theobjectand
included it with thepointer(which we now call areference), which
is similar to how C++ works. Moreover, for technical reasons, we
replaced the mapping from paths to the variable maps by a set of
tuples with these two components. Thus, we arrived at the object
representation that we are using now:

obj = cname × (path × (vname ⇀ val)) set
Ref reference, wherereference = addr × path

8.2 Eliminating exceptions by using static type information

A big issue was how to handle method calls that become ambigu-
ous at run-time. As already stated in the discussion of example 3
in §2.4, we initially considered the use of static information to re-
solve dynamically dispatched calls contrary to the idea of dynamic
dispatch. Following this line of reasoning, we argued that a method
call that is ambiguous at runtime should not be resolved but should
throw aMemberAmbiguousExceptioninstead. So the rule looked
as follows:

P ` 〈e,s0〉 ⇒ 〈ref (a,Cs),s1〉
P ` 〈ps,s1〉 [⇒] 〈map Val vs,(h2,l2)〉 h2 a = Some(C ,S)

∀Ts T pns body Cs ′. ¬ P ` C has least M = (Ts,T ,pns,body) via Cs ′

P ` 〈e·M(ps),s0〉 ⇒ 〈THROW MemberAmbiguous,(h2,l2)〉

Figure 10. Screenshot of Isabelle in the Proof General GUI

A similar issue arose in the presence of overridden methods with
covariant return types. Consider, for example, a situation where the
result of a method call (a reference) is assigned to a variable, and
where there exists an overriding definition of the method under
consideration with a “smaller” return type. Then, by assigning
the returned reference to the variable, the reference may receive
a supertype to its actual type (given by the last class in its path
component). Because of this it was possible to have references with
a “gap” between the last class in its path component and the static
class given by the (run-time) type system. In the field access and
field assignment rules one needed to fill this gap by introducing
in the rules a third path. We could not always guarantee this third
path to be unique, and also threw theMemberAmbiguousException
when this was not the case.

However, realizing that the introduction of a new exception
takes us away from the semantics of C++, we adopted the use of
static information in both cases to eliminate theMemberAmbigu-
ousExceptionexception. To this end, we introduced the term of an
overriderwhich enabled us to use static information to make a dy-
namically ambiguous method call unique. Of course, the resulting
method call rule is quite intricate and requires auxiliary predicates.
To close the “gap” between the last class of a reference and the class
computed by the type system we extended assignment and method
call rules with explicit casts to the static type. Thus the need for the
exception disappeared.

9. Working with Isabelle
This section is written for the benefit of readers unfamiliar with au-
tomated theorem provers. So far they may have gotten the impres-
sion that, given all the definitions and the statement of a lemma,
Isabelle proves it automatically. Unfortunately, formal proofs still
require much effort by an expert user, a limitation Isabelle shares
with all such proof systems. A proof is an interactive process, a
dialogue where the user has to provide the overall proof structure
and the system checks its correctness but also offers a number of
tools for filling in missing details. Chief among these tools are the

simplifier (for simplifying formulae) and the logical reasoner (for
proving predicate calculus formulae automatically).

Most of the proofs in the present paper are written inIsar
[38], a language of structured and stylized mathematical proofs
understandable to both machines and humans. This proof language
is invaluable when constructing, communicating and maintaining
large proofs.

Fig.10shows a screenshot ofProof General[1], Isabelle’s GUI,
which turns the XEmacs editor into a front end for Isabelle that
supports interactive proof construction. In the main window the
reader can see a fragment of an Isar proof text. Other windows show
the context, e.g. assumptions currently available, and diagnostic
information, e.g. if a proof step succeeded or failed.

Isabelle also supports the creation of LATEX documents (such as
this paper) based on Isabelle input files: LATEX text may contain
references to definitions and lemmas in Isabelle files and Isabelle
will automatically substitute those references by pretty printed and
typeset versions of the respective formulae. This is similar to and
has all the advantages of “literate programming”.

10. Execution
Isabelle furthermore enables one to automatically create ML files
from theories (“rapid prototyping”) by using its built-in code gener-
ator [3]. We have done so for the semantics and the type system. To
check real C++ programs—restricted to the statements our seman-
tics can handle—against our semantics, we implemented an eclipse
plugin to parse C++ programs to ML. In the result the abstract syn-
tax from Fig.4 is coded as ML expressions. It is also possible to
write these ML files manually.

By executing these ML files—the generated semantics files and
the translated C++ program—with an ML interpreter (e.g. PolyML)
one can check if the program can be typed and if so, with which
type, and what result executing the semantics on the programs will
return—i.e. if the semantics does what it should, compared to the
C++ standard. This enables us to execute arbitrary programs in our
type system and semantics and compare the results with compiler
runs.

val classA :
(string list * (base list * ((string list * ty) list *

(string list * (ty list *
(ty * (string list list * expr)))) list))) =

(["A"],([],([(["x"],Integer)],[])));

val classB :
(string list * (base list * ((string list * ty) list *

(string list * (ty list *
(ty * (string list list * expr)))) list))) =

(["B"],([],([(["x"],Integer)],[])));

val classC :
(string list * (base list * ((string list * ty) list *

(string list * (ty list *
(ty * (string list list * expr)))) list))) =

(["C"],([Shares ["A"],Shares ["B"]],([(["x"],Integer)],[])));

val classD :
(string list * (base list * ((string list * ty) list *

(string list * (ty list *
(ty * (string list list * expr)))) list))) =

(["D"],([Shares ["A"],Shares ["B"],Repeats ["C"]],([],[])));

val prog :
(string list * (base list * ((string list * ty) list *

(string list * (ty list *
(ty * (string list list * expr)))) list))) list =

[classA, classB, classC, classD];

val main =
eval__1_2_3 prog ((fn uu => None),

FAss (new ["D"], ["x"], [["D"], ["C"]], Val (Intg 42)),
((fn uu => None), (fn uu => None)));

Figure 11. ML code generated from Example 6 in§2.4

As an example see the ML code generated from Example 6 in
§2.4 in Fig. 11. The definitionsClassA to ClassB are of type
cdecl andprog of type prog as described in Fig.4. main is the
translation of the main method of the C++ program,eval 1 2 3
is the name of the function which simulates the semantics execution
applied to programprog and the empty type environment, which
is formulated via(fn uu ⇒ None) . Whereas many compilers
cannot handle this program even if it adheres to the C++ standard,
typechecking and executing this code in our framework poses no
problems and returns the expected results.

Executability of our type system and semantics is a strong
indicator that the formalisation is correct and does not contain any
flaws.

11. Related work
There is a wealth of material on formal semantics of object-oriented
languages, but to our knowledge, a formal semantics for a language
with C++-style multiple inheritance has not yet been presented. We
distinguish several categories of related work.

11.1 Semantics of Multiple Inheritance

Cardelli [6] presents a formal semantics for a form of multiple in-
heritance based on structural subtyping of record types, which also
extends to function types. Another early paper that claims to give
a semantics to multiple inheritance for a language (PCF++) with
record types is [5]. It is difficult to relate the language constructs
used in each of these works to the inheritance model of C++.

11.2 C++ Multiple Inheritance

Wallace [36] presents an informal discussion of the semantics of
many C++ constructs, but avoids all the crucial issues. The natural
semantics for C++ presented by Seligman [23] does not include

multiple inheritance or covariant return types. Most closely related
to our work is [9], where some basic C++ data types (including
structs but excluding pointers) are specified in PVS; an object
model is “in preparation”.

The complexities introduced by C++-style multiple inheritance
are manifold, and have to our knowledge never been formalized
adequately or completely. In the C++ standard [29], the semantics
of operations such as method calls and casts that involve class
hierarchies are defined informally, while several other works (see,
e.g., [27]) discuss the implementation of these operations in terms
of compiler data structures such as virtual function pointer tables

Rossie and Friedman [21] were the first to formalize the seman-
tics of operations on C++ class hierarchies in the form of a cal-
culus of subobjects, which forms the basis of our previous work
on semantics-preserving class hierarchy transformations that was
already mentioned in§1 [34, 24, 25, 26].

Ramalingam and Srinivasan [20] observe that a direct imple-
mentation of Rossie and Friedman’s definition of member lookup
can be inefficient because the size of a subobject graph may be ex-
ponential in the size of the corresponding class hierarchy graph.
They present an efficient member lookup algorithm for C++ that
operates directly on the class hierarchy graph. However, like Rossie
and Friedman, their definition does not follow C++ precisely in
cases where static information is used to resolve ambiguities (see
Example 3 in§2.4).

It has long been known that inheritance can be modeled using a
combination of additional fields and methods (a mechanism com-
monly called “delegation”) [12]. Several authors have suggested
independently that multiple inheritance can be simulated using a
combination of interfaces and delegation [33, 32, 35]. Nonetheless,
all of these works stop well short of dealing with the more intri-
cate aspects of modeling multiple inheritance such as object initial-
ization, implicit and explicit type casts, instanceof-operations, and
handling shared and repeated multiple inheritance.

Multiple inheritance also poses significant challenges for C++
compiler writers because the layout of an object can no longer
reflect a simple linearization of the class hierarchy. As a result,
a considerable amount of research effort has been devoted to the
design of efficient object layout schemes for C++ [31, 30, 40].

11.3 Other Languages with Multiple Inheritance

Various models of multiple inheritance are supported in other
object-oriented languages, and we are aware of a number of pa-
pers that explore the semantic foundations of these models.

The work by Attali et al. [2] is similar to ours in spirit but
treats Eiffel rather than C++, whose multiple inheritance model
differs considerably. Eiffel uses shared inheritance by default; re-
peated inheritance is not possible, instead repeated members must
be uniquely renamed when inherited.

In several recent languages such as Jx [16] and Concord [10],
multiple inheritance arises as a result of allowing classes to over-
ride other classes, in the spirit of BETA’s virtual classes [13]. In Jx
[16], an outer classA1 can declare a nested classA1.B, which can
be overridden by a nested classA2.B in a subclassA2 of A1. In
this case,A2.B is a subclass ofA1.B. Shared multiple inheritance
arises whenA2.B also has an explicitly defined superclass. Mem-
ber lookup is defined quite differently than in C++ (implicit over-
riding inheritance takes precedence over explicit inheritance when
selecting a member), but appears to behave similarly in practice.
Nystrom et al. present a type system, operational semantics and
soundness proof for Jx, although the latter is not machine-checked.

Concord [10] introduces a notion ofgroupsof classes, where a
groupg may be extended by a subgroupg′. An implicit form of
inheritance exists between a classg.X declared in groupg that is
further bound by a classg′.X in subgroupg′, giving rise to a simi-

lar form of shared multiple inheritance as in Jx. Two important dif-
ferences, however, are the fact that further binding does not imply
subtyping:g′.X is not a subtype ofg.X, and explicit inheritance
takes precedence over implicit overriding when resolving method
calls. Jolly et al. present a type system and soundness proof (though
not machine-checked) for Concord. Because repeated multiple in-
heritance is not supported in either Jx or Concord, the semantics
for these languages can represent the run-time type of an object
as a simple type, and there is no need for the subobject and path
information required for modeling C++.

Scala [17] provides a mechanism for symmetrical mixin inher-
itance [4] in which a class can inherit members from multiple su-
perclasses. If members are inherited from two mixin classes, the
inheriting class has to resolve the conflict by providing an explicit
overriding definition. Scala side-steps the issue of shared vs. re-
peated multiple inheritance by simply disallowing a class to (indi-
rectly) inherit from a class that encapsulates state more than once
(multiply inheriting from abstract classes that do not encapsulate
state—called traits—is allowed, however). The semantic founda-
tions of Scala, including a type system and soundness proof can be
found in [18].

12. Conclusion
We have presented an operational semantics and type-safety proof
for multiple inheritance in C++. The semantics precisely models
the behavior of method calls, field accesses and two forms of
casts in C++ class hierarchies, and allows one—for the first time—
to understand the behavior of these operations without referring
to implementation-level data structures such as virtual function
pointer tables (v-tables). The type-safety proof was formalized and
machine-checked using Isabelle/HOL.

The paper discusses C++ features in the light of the formal
analysis, discusses a number of subtleties in the design of C++
that we encountered during the construction of the semantics, and
provides some background about its evolution. Trying to put C++
on a formal basis has been interesting but quite challenging at
times. It was great fun figuring out what C++ means at an abstract
level, and this exercise has demonstrated that its mixture of shared
and repeated multiple inheritance gives rise to a lot of additional
complexity at the semantics level.

Acknowledgments
We thank Martin Dirndorfer for his work on the parser plugin for
eclipse and the anonymous referees for their comments.

References
[1] David Aspinall. Proof General — a generic tool for proof

development. In S. Graf and M.I. Schwartzbach, editors,Tools and
Algorithms for Construction and Analysis of Systems, TACAS 2000,
volume 1785 ofLect. Notes in Comp. Sci., pages 38–42. Springer-
Verlag, 2000.

[2] Isabelle Attali, Denis Caromel, and Sidi Ould Ehmety. A natural
semantics for Eiffel dynamic binding.ACM TOPLAS, 18(6):711–
729, 1996.

[3] Stefan Berghofer and Tobias Nipkow. Executing Higher Order Logic.
In P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors,Types
for Proofs and Programs (TYPES 2000), volume 2277 ofLNCS.
Springer-Verlag, 2002.

[4] Gilad Bracha and William Cook. Mixin-based inheritance. InProc.
of OOPSLA/ECOOP’90, pages 303–311, 1990.

[5] V. Breazu-Tannen, C. A. Gunter, and A. Scedrov. Computing with
coercions. InProc. ACM Conf. LISP and functional programming,
pages 44–60. ACM Press, 1990.

[6] Luca Cardelli. A semantics of multiple inheritance.Information and
Computation, 76:138–164, 1988.

[7] Luca Cardelli. Type systems. InThe Computer Science and
Engineering Handbook. 2 edition, 2004.

[8] Sophia Drossopoulou and Susan Eisenbach. Java is type safe —
probably. InProc. of ECOOP’97, volume 1241 ofLect. Notes in
Comp. Sci., pages 389–418, 1997.

[9] Michale Hohmuth and Hendrik Tews. The semantics of C++ data
types: Towards verifying low-level system components. In D. Basin
and B. Wolff, editors,Theorem Proving in Higher Order Logics,
Emerging Trends Proc., pages 127–144. Universität Freiburg, 2003.
Tech. Rep. 187.

[10] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus
Ostermann. Simple dependent types: Concord. InProc. of FTfJP’05,
2005.

[11] Gerwin Klein and Tobias Nipkow. A machine-checked model for a
Java-like language, virtual machine and compiler.ACM TOPLAS. To
appear.

[12] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. InProc. of OOPSLA’86, pages
214–223, 1986.

[13] Ole Lehrmann Madsen and Birger Moeller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented programming. InProc. of
OOPSLA’89, pages 397–406, 1989.

[14] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348–375, 1978.

[15] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel.Isa-
belle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 ofLect. Notes in Comp. Sci.2002. http://www.in.tum.
de/˜nipkow/LNCS2283/ .

[16] Nathaniel Nystrom, Stephen Chong, and Andrew. C. Myers. Scalable
extensibility via nested inheritance. InProc. of OOPSLA’04, pages
99–115, 2004.

[17] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Sebastian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. An overview of the
Scala programming language. Technical Report IC/2004/64,École
Polytechnique F́ed́erale de Lausanne, Lausanne, Switzerland, 2004.
Available fromscala.epfl.ch .

[18] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias
Zenger. A nominal theory of objects with dependent types. InProc.
of ECOOP’03.

[19] Benjamin C. Pierce.Types and Programming Languages. The MIT
Press, 2002.

[20] G. Ramalingam and Harini Srinivasan. A member lookup algorithm
for C++. InProc. of PLDI ’97, pages 18–30, 1997.

[21] Jonathan G. Rossie, Jr. and Daniel P. Friedman. An algebraic
semantics of subobjects. InProc. of OOPSLA’95, pages 187–199.
ACM Press, 1995.

[22] Jonathan G. Rossie, Jr., Daniel P. Friedman, and Mitchell Wand.
Modeling subobject-based inheritance. InProc. of ECOOP’96,
volume 1098 ofLect. Notes in Comp. Sci., pages 248–274, 1996.

[23] Adam Seligman.FACTS: A formal analysis for C++. Williams
College, 1995. Undergraduate thesis.

[24] Gregor Snelting and Frank Tip. Understanding class hierarchies using
concept analysis.ACM TOPLAS, pages 540–582, 2000.

[25] Gregor Snelting and Frank Tip. Semantics-based composition of
class hierarchies. InProc. of ECOOP’02, volume 2374 ofLect. Notes
in Comp. Sci., pages 562–584, 2002.

[26] Mirko Streckenbach and Gregor Snelting. Refactoring Class
Hierarchies with KABA. InProc. of OOPSLA’04, pages 315–330,
2004.

[27] Bjarne Stroustrup. Multiple inheritance for C++.Computing Systems,

http://www.in.tum.de/~nipkow/LNCS2283/
http://www.in.tum.de/~nipkow/LNCS2283/

2(4), 1989.

[28] Bjarne Stroustrup.The Design and Evolution of C++. Addison
Wesley, 1994.

[29] Bjarne Stroustrup.The C++ Standard: Incorporating Technical
Corrigendum No. 1. John Wiley, 2 edition, 2003.

[30] Peter F. Sweeney and Michael G. Burke. Quantifying and evaluating
the space overhead for alternative C++ memory layouts.Software:
Practice and Experience, 33(7):595–636, 2003.

[31] Peter F. Sweeney and Joseph Gil. Space and time-efficient memory
layout for multiple inheritance. InProc. of OOPSLA’99, pages 256–
275, 1999.

[32] Ewan Tempero and Robert Biddle. Simulating multiple inheritance
in Java.Journal of Systems and Software, 55:87–100, 2000.

[33] Krishnaprasad Thirunarayan, Günter Kniesel, and Haripriyan
Hampapuram. Simulating multiple inheritance and generics in Java.
Computer Languages, 25:189–210, 1999.

[34] Frank Tip and Peter Sweeney. Class hierarchy specialization.Acta
Informatica, 36:927–982, 2000.

[35] John Viega, Bill Tutt, and Reimer Behrends. Automated delegation is
a viable alternative to multiple inheritance in class based languages.
Technical Report CS-98-3, University of Virginia, 1998.

[36] Charles Wallace. The semantics of the C++ programming language.
In E. Börger, editor,Specification and Validation Methods, pages
131–164. Oxford University Press, 1995.

[37] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip.
An Operational Semantics and Type Safety Proof for C++-like
Multiple Inheritance. Technical Report RC23709, IBM, 2005.

[38] Markus Wenzel. Isabelle/Isar — A Versatile Environment for
Human-Readable Formal Proof Documents. PhD thesis, Institut
für Informatik, Technische Universität München, 2002.http:
//tumb1.biblio.tu-muenchen.de/publ/diss/in/
2002/wenzel.html .

[39] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness.Information and Computation, (115):38–94, 1994.

[40] Yoav Zibin and Joseph Gil. Two-dimensional bi-directional object
layout. InProc. of ECOOP’03, volume 3013 ofLect. Notes in Comp.
Sci., pages 329–350, 2003.

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

A. Appendix

new-Addr h = None
P ,E ` 〈new C , (h ,l)〉 ⇒ 〈THROW OutOfMemory,(h ,l)〉

P ,E ` 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉 C /∈ set Cs
P ,E ` 〈stat cast C e,s0〉 ⇒ 〈THROW ClassCast ,s1〉

P ,E ` 〈e,s0〉 ⇒ 〈null ,s1〉
P ,E ` 〈e·F{Cs},s0〉 ⇒ 〈THROW NullPointer,s1〉

P ,E ` 〈e1,s0〉 ⇒ 〈null ,s1〉 P ,E ` 〈e2,s1〉 ⇒ 〈Val v,s2〉
P ,E ` 〈e1·F{Cs}:=e2,s0〉 ⇒ 〈THROW NullPointer,s1〉

P ,E ` 〈e,s0〉 ⇒ 〈null ,s1〉 P ,E ` 〈ps,s1〉 [⇒] 〈map Val vs,s2〉
P ,E ` 〈e·M(ps),s0〉 ⇒ 〈THROW NullPointer,s2〉

Figure 12. Big Step exception throwing rules

new-Addr h = bac h ′ = h(a 7→ (C , init-obj P C))

P ,E ` 〈new C ,(h , l)〉 → 〈ref (a, [C]),(h ′, l)〉

P ,E ` 〈e,s〉 → 〈e ′,s ′〉
P ,E ` 〈stat cast C e,s〉 → 〈stat cast C e ′,s ′〉

P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ,E ` 〈stat cast C (ref (a, Cs)),s〉 → 〈ref (a, Ds),s〉
P ,E ` 〈stat cast C (ref (a, Cs @ [C] @ Cs ′)),s〉 → 〈ref (a, Cs @ [C]),s〉

P ,E ` 〈e,s〉 → 〈e ′,s ′〉
P ,E ` 〈dyn cast C e,s〉 → 〈dyn cast C e ′,s ′〉

P ,E ` 〈dyn cast C (ref (a, Cs @ [C] @ Cs ′)),s〉 → 〈ref (a, Cs @ [C]),s〉

P ` path last Cs to C unique P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ,E ` 〈dyn cast C (ref (a, Cs)),s〉 → 〈ref (a, Ds),s〉

hp s a = b(D , S)c P ` path D to C via Cs ′ P ` path D to C unique

P ,E ` 〈dyn cast C (ref (a, Cs)),s〉 → 〈ref (a, Cs ′),s〉
hp s a = b(D , S)c ¬ P ` path D to C unique ¬ P ` path last Cs to C unique C /∈ set Cs

P ,E ` 〈dyn cast C (ref (a, Cs)),s〉 → 〈null ,s〉

P ,E ` 〈e,s〉 → 〈e ′,s ′〉
P ,E ` 〈e �bop� e2,s〉 → 〈e ′�bop� e2,s ′〉

P ,E ` 〈e,s〉 → 〈e ′,s ′〉
P ,E ` 〈Val v1 �bop� e,s〉 → 〈Val v1 �bop� e ′,s ′〉

binop (bop, v1, v2) = bvc
P ,E ` 〈Val v1 �bop� Val v2,s〉 → 〈Val v,s〉

P ,E ` 〈e,s〉 → 〈e ′,s ′〉
P ,E ` 〈V := e,s〉 → 〈V := e ′,s ′〉

E V = bTc P ` T casts v to v ′

P ,E ` 〈V := Val v,(h , l)〉 → 〈Val v ′,(h , l(V 7→ v ′))〉

P ,E ` 〈e,s〉 → 〈e ′,s ′〉
P ,E ` 〈e.F{Cs},s〉 → 〈e ′.F{Cs},s ′〉

hp s a = b(D , S)c Ds = Cs ′ @p Cs (Ds, fs) ∈ S fs F = bvc
P ,E ` 〈ref (a, Cs ′).F{Cs},s〉 → 〈Val v,s〉

P ,E ` 〈e,s〉 → 〈e ′,s ′〉
P ,E ` 〈e.F{Cs} := e2,s〉 → 〈e ′.F{Cs} := e2,s ′〉

P ,E ` 〈e,s〉 → 〈e ′,s ′〉
P ,E ` 〈Val v.F{Cs} := e,s〉 → 〈Val v.F{Cs} := e ′,s ′〉

h a = b(D , S)c P ` last Cs ′ has least F : T via Cs P ` T casts v to v ′ Ds = Cs ′ @p Cs (Ds, fs) ∈ S
P ,E ` 〈ref (a, Cs ′).F{Cs} := Val v,(h , l)〉 → 〈Val v ′,(h(a 7→ (D , {(Ds, fs(F 7→ v ′))} ∪ (S − {(Ds, fs)}))), l)〉

P ,E ` 〈e,s〉 → 〈e ′,s ′〉
P ,E ` 〈e.M(es),s〉 → 〈e ′.M(es),s ′〉

P ,E ` 〈es,s〉 [→] 〈es ′,s ′〉
P ,E ` 〈Val v.M(es),s〉 → 〈Val v.M(es ′),s ′〉

hp s a = b(C , S)c P ` last Cs has least M = (Ts ′, T ′, pns ′, body ′) via Ds
P ` (C , Cs @p Ds) selects M = (Ts, T , pns, body) via Cs ′ length vs = length pns length Ts = length pns

bs = blocks (this·pns, Class (last Cs ′)·Ts, Ref (a, Cs ′)·vs, body) new-body = (case T ′ of Class D ⇒ stat cast D bs | - ⇒ bs)
P ,E ` 〈ref (a, Cs).M(map Val vs),s〉 → 〈new-body,s〉

blocks (V ·Vs, T ·Ts, v·vs, e) = {V :T ; V := Val v; blocks (Vs, Ts, vs, e)}
blocks ([], [], [], e) = e

Figure 13. Small Step rules

	Introduction
	Multiple inheritance
	An intuitive introduction to subobjects
	The Rossie-Friedman Subobject Model
	Casts in C++
	Examples

	Formalization
	Basic notation --- The meta language
	Names, paths, and base classes
	Subobjects
	Path functions

	Abstract syntax of CoreC++
	References
	Values and Expressions
	Programs

	Type system
	Typing rules
	Cast
	Variable assignment and binary operators
	Field access and assignment
	Method call

	Well-formed programs

	Big Step Semantics
	State
	Exceptions
	Evaluation
	Object creation
	Cast
	Variable assignment
	Binary operators
	Field access and assignment
	Method call

	Small Step Semantics

	Type Safety Proof
	Run-time type system
	Conformance and Definite Assignment
	Progress
	Preservation
	The Type Safety Proof

	Evolution of the Semantics
	Addresses, references and object structure
	Eliminating exceptions by using static type information

	Working with Isabelle
	Execution
	Related work
	Semantics of Multiple Inheritance
	C++ Multiple Inheritance
	Other Languages with Multiple Inheritance

	Conclusion
	Appendix

