An Operational Semantics and Type Safety Proof
for Multiple Inheritance in C++

Daniel Wasserrab Tobias Nipkow Gregor Snelting Frank Tip
Universitt Passau Technische Universit Universitt Passau IBM T.J. Watson Research
wasserra@fmi.uni- Munchen snelting@fmi.uni- Center
passau.de nipkow@in.tum.de passau.de ftip@us.ibm.com
Abstract pected type, or end with an exception. The semantics and proof are

We present an operational semantics and type safety proof forformalized and machine-checked using the Isabelle/HOL theorem

multiple inheritance in C++. The semantics models the behavior Prover [15 and are available onlirte o .

of method calls, field accesses, and two forms of casts in C++ ©One of the main sources of complexity in C++ is a complex
class hierarchies exactly, and the type safety proof was formalized form of multiple inheritance, in which a combination of shared
and machine-checked in Isabelle/HOL. Our semantics enables one(Virtual”) and repeated (“nonvirtual”) inheritance is permitted. Be-
for the first time, to understand the behavior of operations on C++ cause of this complexity, the behavior of operations on C++ class
class hierarchies without referring to implementation-level artifacts Niérarchies has traditionally been defined informalg][and in
such as virtual function tables. Moreover, it can—as the semantics {€'ms of implementation-level constructs such as v-tables. We are
is executable—act as a reference for compilers, and it can form ©Nly aware of a few formal treatments—and of no operational
the basis for more advanced correctness proofs of, e.g., automategemantics—for C++-like languages with shared and repeated mul-
program transformations. The paper presents the semantics an({'ple inheritance. The subobject model by Rossie and Friedman

; ; ; 21], upon which our work is based, formalizes the object model of
type safety proof, and a discussion of the many subtleties that we X X . ;
encountered in modeling the intricate multiple inheritance model C++. Rossie and Friedman defined the behavior of method calls and

of C++. member access using this model, but their definitions do not follow
C++ behavior precisely, they do not consider the behavior of casts,
Categories and Subject DescriptorsdD.3.1 [Formal Definitions and they do not provide an operational semantics. In 1996, Rossie,
and Theor}. Semantics; D.3.3language Constructs and Fea- Friedman, and Wan®p] stated that “In fact, a provably-safe static
tureq: Inheritance; F.3.2%emantics of Programming Languapes type system [...] is an open problem”, and to our knowledge this
Operational semantics; F.3.%tudies of Program Construgts problem has remained open until today.
Type structure The CoreC++ language studied in this paper features all the
essential elements of the C++ multiple inheritance model (while
omitting many features not relevant to operations involving class
Keywords Mu|t|p|e |nheritance’ c++’ Semantics’ Type Safety hierarchies). The semantics of CoreC++ were designed to mirror
those of C++ to the maximum extent possible. In previous versions
: of the semantics37], we explored a number of variations, and we
1. Introduction will briefly discuss these i8.
We present a operational semantics and type safety proof for the Our interest in formalizing the semantics of multiple inheritance
multiple inheritance model of C++ in all its complexity, includ- was motivated by previous work by two of the present authors on:
ing both repeated and shared (virtual) inheritance. This semantics(i) restructuring class hierarchies in order to reduce object size at
enables one—for the first time—to fully understand and express run-time [34], (ii) composition of class hierarchies in the context of
the behavior of operations such as method calls, field accesses, andn approach for aspect-orientatid@?b], and (iii) refactoring class
casts in C++ programs without referring to compiler data structures hierarchies in order to improve their desig26] 24], In each of

General Terms Languages, Theory

such as virtual function tables (v-tableg§]. these projects, class hierarchies geaerategdmultiple inheritance
Type safety is a language property which can be summarized by may arise naturally, and additional program transformations are
the famous slogan “Well-typed programs cannot go wrorigf].[then used to replace multiple inheritance by a combination of single

Cardelli's definition of type safety7] demands that no untrapped inheritance and delegation.

errors may occur (although controlled exceptions are allowed). The In summary, this paper makes the following contributions:

type safety property that we prove is the fact that the execution of))

a well-typed, terminating program will deliver a result of the ex- ® We present a formal semantics and machine-checked type
safety proof for multiple inheritance in C++. This enables one,
for the first time, to understand and express the behavior of
operations involving C++ class hierarchies without referring to

compiler data structures.
Permission to make digital or hard copies of all or part of this work for personal or P
classroom use is granted without fee provided that copies are not made or distributed o We discuss some subtle ambiguities concerning the behavior of
for profit or commercial advantage and that copies bear this notice and the full citation member access and method calls in C++ that were uncovered in
on the first page. To copy otherwise, to republish, to post on servers or to redistribute s . .

to lists, requires prior specific permission and/or a fee. the course of deS|gn|ng the semantics.

OOPSLA’06 October 22-26, 2006, Portland, Oregon, USA.
Copyright(© 2006 ACM 1-59593-348-4/06/0010. . . $5.00. 1 hnp://afp.Sourceforgelnet

¢ By formalizing the complex behavior of C++ multiple inheri- 2.2 The Rossie-Friedman Subobject Model

tance, we extend the applicability of formal semar_nics and the- Rossie and Friedmar2]] proposed a subobject model for C++-
orem prover technology to a new level of complexity. style inheritance, and used that model to formalize the behavior of

method calls and field accesses. Informally, one can think of the

'I_'hus the message to Ianguag_e semanticists s that the rnuct‘Rossie-Friedman model as an abstract representation of object lay-
maligned C++ system of multiple inheritance contains a perfectly out. Intuitively, asubobject identifies a component of typ that

sound core. is embedded within a complete object of tygeHowever, simply
defining a subobject type as a p&, D) would be insufficient,
because, as we have seen in Riga C-object may contain multi-
2. Multiple inheritance ple D-components in the presence of repeated multiple inheritance.
T) . Therefore, a subobject is identified by a pdit C's], whereC de-
2.1 Anintuitive introduction to subobjects notes the type of the “complete object”, and where plagh C's
C++ features botimonvirtual (or repeatedl andvirtual (or shared consists of a sequence of class natigs --- - C, that encodes

multiple inheritance. The difference between the two flavors of the transitive inheritance relation betwe€h andC,,. There are
inheritance is subtle, and only arises in situations where a classtwo cases here: Foepeatedsubobjects we have thét = C, and
Y indirectly inherits from the same clas§ via more than one for sharedsubobjects, we have thét, is the least derived (most

path in the hierarchy. In such cas&swill contain oneor multiple general) shared base class(@fthat containg’,,. This scheme is
X-“subobjects”, depending on the kind of inheritance that is used. sufficient because shared subobjects are unique within an object
More precisely, if only shared inheritance is us&dwill contain (i.e. there can be at most osbaredsubobject of typeS within

a single, shared -subobject, and if only repeated inheritance is any object). More formally, for a given class, the set of its sub-
used, the number ok -subobjects inY” is equal toN, where N objects, along with a containment ordering on these subobjects, is
is the number of distinct paths frofX to Y in the hierarchy. inductively defined as follows:

If a combination of shared and repeated inheritance is used, the . . ISR
number of X -subobjects in & -object will be betweert and N 1. [C, O] is the subobject that represents the “full~object.

(a more precise discussion follows). C++ hierarchies with only 2. if S; = [C, Cs.X] is a subobject for clas§' whereC's is any
single inheritance (the distinction between repeated and shared sequence of class names, akidshared-inherits fronY”, then
inheritance is irrelevant in this case) are semantically equivalent S, = [C,Y] is a subobject for clas§' that is accessible from
to Java class hierarchies. S1 through a pointer.

Fig. 1(a) shows a small C++ class hierarchy. In these and subse- 3.if S, = [C, Cs.X] is a subobiect for class whereC's is any
quent figures, a solid arrow from claggo classD denotes the fact ’ sequence ’Of cl’ass names, axidepeated-inherits fror, then
thatC' repeated-inherits fron, and a dashed arrow from class S, = [C,Cs.X.Y] is a snjbobject for clas§' that is di’rectly
to classD denotes the fact that' shared-inherits fronD. Here, P
and in subsequent examples, all methods are assumedvio be

tual (i.e. dynamically dispatched), and all classes and inheritance Fig. 1(c) and Fig.2(c) show subobject graphgor the class hi-

contained within subobjed; .

relations are assumed to pablic . _ erarchies of Figl and Fig.2, respectively. Here, an arrow from
In Fig. 1(a), all inheritance is repeated. Since classttom subobjectS to subobjectS” indicates thats’ is directly contained
repeated-inherits from classeéft and Right , a Bottom - in S or thatS has a pointer leading t§’. For a given subobject

object has one subobject of each of the tyjpe andRight . As S = [C, Cs.D], we callC thedynamic clas®f subobjectS and D

Left andRight each repeated-inherit froffop, (sub)objects of thestatic classof subobjectS. Associated with each subobject are
these types contain distinct subobjects of tfjp@. Hence, forthe the members that occur in its static class. Hence, if an object con-
C++ hierarchy of Fig1(a), an object of typ8ottom containgwo tains multiple subobjects with the same static class, it will contain
distinct subobject®f type Top. Fig. 1(b) shows the layout used multiple copies of members declared in that class. For example, the
for aBottom object by a typical compiler, given the hierarchy of subobject graph of Figl(c) shows two subobjects with static class
Fig. 1(a). Each subobject has local copies of the subobjects that it Top, each of which has distinct fieldsandy .

contains, hence it is possible to lay out the object in a contiguous Intuitively, a subobject’s dynamic class represents the type of

block of memory without indirections. . . ~ the “full object” and is used to resolve dynamically dispatched
Fig. 2(a) shows a similar C++ class hierarchy in which the in- method calls. A subobject’s static class represents the declared type
heritance betweebeft andTop and betweeiRight andTop is of a variable that points to an (subobject of the full) object and is

shared Again, aBottom -object contains one subobject of each of used to resolve field accesses. In this paper, we use the Rossie-
the typed eft andRight , due to the use of repeated inheritance. Friedman subobject model to define the behavior of operations

However, sinceLeft andRight both shared-inherit fronfop, such as method calls and casts as functions from subobjects to
theTop-subobject contained in tHeeft -subobject isharedwith subobjects. As we shall see shortly, it will be necessary in our
the one contained in thRight -subobject. Hence, for this hierar- semantics to maintain full subobject information even for “static”
chy, aBottom -object will containa single subobjeatf typeTop. operations such as casts and field accesses.

In general, a shared subobject may be shared by arbitrarily many ~ Multiple inheritance can easily lead to situations where mul-
subobjects, and requires an object layout with indirections (typi- tiple members with the same name are visible. In C++, many
cally in the form ofvirtual-base pointers[28, p.266]°. Fig. 2(b) member accesses that are seemingly ambiguous are resolved us-
shows a typical object layout for an object of tyBettom given ing the notion ofdominance[29]. A memberm in subobject

the hierarchy of Fig2(a). Observe, that theeft -subobject and S’ dominatesa memberm in subobjectS if S is contained in

the Right -subobject each contain a pointer to the single shared
Top-subobject.

3 In this paper, we follow the terminology o2{] and use the term “sub-
object” to refer both to the label that uniquely identifies a component of an
object type, as well as to components within concrete objects that are iden-
2 An alternative implementation mechanism is to store the offsets to shared tified by such labels. In retrospect, the term “subobject label” would have
subobjects in v-tables. been better terminology for the former concept.

class
class
class
class

Left :
Right :
Bottom :

Top { int x, y; ... }

Top { .. }

Top { inty; ... }

Left, Right { int x; ... }

‘ [Bottom,Bottom.Left.Top]‘ Xy ‘[Bottom,Bottom.Right.Top]‘ Xy

Top Xy Top| [Bottom,Bottom.Right.Top] A A
Right | [Bottom,Bottom.Right] ‘ [Bottom,Bottom.Left] ‘ ‘ [Bottom,Bottom.Right] ‘y
‘ Left ‘ ‘ Riqht‘y Top| [Bottom,Bottom.Left.Top] IR Y
Left | [Bottom,Bottom.Left] e s
[Bottom,Bottom] X
Bottom| x Bottom | [Bottom,Bottom]
A B: subobject A directly contains subobject B
A —= B:B is repeated baseclass of A or a pointer to subobject B
(a) () (©
Figure 1. The repeated diamond
class Top { void f) { ... }; ... }
class Left : virtual Top { ... }
class Right : virtual Top { void f) { ... }; ... }
class Bottom : Left, Right { ... };
[Bottom, Top] £()
\d ~
Top £(0)
e S Top [Bottom, Top]
i > - j . [Bottom,Bottom.Left] ‘ ‘ [Bottom,Bottom.Right] £()
‘ Left ‘ ‘ Right‘ £0) Right [Bottom,Bottom.Right] ~ R
Left [Bottom,Bottom.Left] -
[Bottom,Bottom]
Bottom Bottom [Bottom,Bottom]

A —= B:Bis repeated baseclass of A
A--> B:Bis shared baseclass of A

(a) (b)

A

~-» B: subobject A directly contains subobject B
or a pointer to subobject B

©

Figure 2. The shared diamond

S’ (i.e. S’ occurs belowsS in the subobject graph). Member ac-

in the object. When used incorrectly, C-style casts may cause run-

cesses are resolved by selecting the unique dominant membettime errors.

m if it exists; otherwise an access is ambigdbuSor exam-
ple, in Fig. 2, a Bottom -object sees two declarations ffj ,
one in classRight and one in clas§op. Thus a call(new
Bottom())->f() seems ambiguous. But it is not, because in
the subobject graph fa@ottom shown in Fig.2(c), the definition
off() in[Bottom ,Bottom .Right]dominates the one irBot-
tom,Top]. On the other hand, the subobject graph in Big) con-
tains three definitions of in [Bottom ,Bottom .Right], [Bot-
tom ,Bottom .Right .Top], and Bottom ,Bottom .Left .Top].
As there is no unique dominant definitionytere, a field access
(new Bottom())->y is ambiguous.

2.3 Castsin C++

The static _cast operator only performs compile-time
checks (e.g., to ensure that a unique subobject of the tar-
get type exists) and disallows casting between unrelated types.
static _cast cannot be used to down-cast along a shared inher-
itance relation. When used incorrectiyatic _cast may cause
run-time errors.

The dynamic _cast operator is the recommended cast oper-
ator in C++. It has the desirable property that failing casts result
in controlled exceptions (when the target of the cast is a reference)
or the special valu&JULL (when the target is a pointer). Unlike
the previous two operators, down-casting along shared inheritance
relations is allowed, andynamic _cast may be used to cast be-
tween unrelated types. However, a subtle limitation existdyA
namic _cast is statically incorrect when applied to an expression

C++ has three cast operators for traversing class hierarchies, eaclwhose declared type does not declare virtual methods.

of which has significant limitatiois Most commonly used are so-

In the semantics, we implemented two different casting

called C-style casts. C-style casts may be used to cast between arbieperators: a static type safe casting operator analogously to
trary unrelated types, although some static checking is performedstatic _cast and a generalization odynamic _cast that is

on up-casts (e.g., a C-style up-cast is statically rejected if the re- not restricted to casting types with declared virtual methods. It

ceiver's static type does not contain a unique subobject whose staticwould be simple to add this restriction to our type system but this

class is the type being casted to), but no runtime checks. C-stylewould weaken our type soundness result, which is completely in-

casts cannot be used to down-cast along a shared inheritance reladependent of this matter.

tion, as it is not possible to “go back” along the indirection pointers

2.4 Examples

4 In some cases, C++ uses the static class of the receiver for further We will now discuss several examples to illustrate the subtleties

disambiguation. This will be discussed shortly.

5 The remaining two cast operators in C€bnst _cast andreinter-
pret _cast are irrelevant for the issues studied in this paper.

that arise in the C++ inheritance model.
Example 1Dynamic dispatch behavior can be counterintuitive
in the presence of multiple inheritance. One might expect a method

% ;}(‘)ié' 0:) points to aB-subobject. This subobject occurs in two different
(o “contexts”, namely either as[®, D.B] subobject (if the then-
: AB { void f(); } case of thef statement is executed), or as[&n E.B] subob-
: B,C { void f(); } ject (if the else-case is executed). Note that executing the assign-
mentsb = new D() andb = new E() involves an implicit
up-cast to typd. Depending on the context, the cat>f() will
dispatch taD::f() orE:f() . Now, executing the body of this
f() involves an implicit assignment bfto itsthis pointer. Since
the static type ob is B, and the static type dhis is the class con-
taining its method, an implicit down-cast (Bor to E, depending
on the context) is needed. At compile time it is not known which
this—pointer: cast will happen at run-time, which implies that the compiler must
after offset adjustment for f{) keep track of some additional information to determine the cast that
BN must be performed.
start Call ff) ' delta—values: In a typical C++ implementation, a cast actually implies chang-
N A vptr— &D:f A&D vtable ing the pointer value in the presence of multiple inheritance, as is
~ illustrated in Fig.3(b). The up-cast fronD to B (then-case, upper
B v trﬁ\m B viable part of Fig.3(b)) is implemented by adding the offsétita(B) of
P - the[D,D.B] -subobject within thé object to the pointer to thB
D object. Afterwards, the pointer points to tfi2,D.B] -subobject.
As we discussed, the subsequent ¢aff() requires that the
Else: pointer be down-casted D again. This cast is implemented by
adding the negative offsetdelta(B) of the[D,D.B] -subobject to
start Call f{) the pointer. The else-case (lower part of R¢)) is analogous, but
- delta—values: involves a different offset, which happens to be 0. In other words,
the offsets in the then- and else-cases are different, and we do not
B&E vtable know until run-time which offset has to be used. To this end, C++
compilers typically extend the virtual function table (v-tabl2®]
/ C vptr—H &E:f | — delta(C) C vtable with “delta” values, that, for each v-table entry, record the offset
_ after offset that has to be added to tiigis -pointer in order to ensure that it
adjustment for () E points to the correct subobject after the cast (B{b), left part)®
Our semantics correctly captures the information needed for
(b) performing casts, without referring to compiler data structures such
as v-table entries and offsets.

Example 3.The following example shows how C++ resolves
ambiguities by exploiting static types. In the “repeated diamond”
of Fig. 1, let us assume that we have declared a meffjod in
classTop, and execute the following code:

class
class
class
class
class

mooOw>

B* b;

if (...)
b =

else

= new E();
b->f();

Then:

N
/// B vptr—| &E:f

<

-

Figure 3. C++ fragment demonstrating dynamically varying sub-
object context

call always to dispatch to a method definition in a superclass or | eftx h = new Bottom(); b->f();
subclass of the type of the receiver expression. Consider, however,

the “shared diamond” example of Fig, where a method) is Note that the assignment performs an implicit up-cast to type
defined in classeRight andTop. Now assume that the following Left , and that the method call is statically correct because a single
C++ code is executed (note the implicit up-castL&ft in the definition off() is visible.

assignment): However, at run-time the dynamic class of the subobject

.)) [Bottom ,Bottom .Left] associated witlp is used to resolve the
Left* b = new Bottom(); b->f(); dynamic dispatch. The dynamic classtofs Bottom , andb has

One might expect the method call to dispatchirap::f() . But two Top subobjects containing (andx). As neither definition of

in fact it dispatches td() in classRight , which is neither a ~ f() dominates the other, the call to>f() appears to be am-

superclass nor a subclasslafft . The reason is that up-casts do biguous.) _ _

not switch off dynamic dispatch, which is based on the receiver ~ Note that the code fdr exists only once, but this code will be

object's dynamic class. The dynamic classbafemainsBottom called with an ambiguouthis -pointer at run-time: is it the one
after the cast, and sindight::f() dominatesTop::f() , the pointing to the Bottom , Bottom.Left. Top] subobject, or the
former is called. one pointing to theBottom ,Bottom.Right.Top] subobject?

This makes sense from an application viewpoint: Imagine the Each of these subobject has its own fieldand these’s may have
top class to be a “Window”, the left class to be a “Window with ~different values at run-time when referencedffly , leading to
menu”, the right class to be a “Window with border”, the bottom ambiguous program behavior.
class to be a “Window with border and menu”, &@d to compute C++ uses the static type of to resolve the ambiguity
the available window space. Then, a “Window with border and and generate a unique v-table entry fify . As b’s static
menu” object which is casted to “Window with menu” pretends type is Left , the “delta” part of the v-table entry will cause
not to have a border anymore (border methods cannot be called).the dynamic object of typeBottom (and thus thethis -
But for the area computation, the hidden border must be taken into Pointer) to be cast tagottom ,Bottom.Left.Top], andnotto
account, thu$() from “Window with border” must be called. [Bottom ,Bottom.Right.Top].

Example 2The next example illustrates the need to track some
subobject information at run-time, and how this complicates the 6An alternative to delta entries in v-tables are so-called “trampolines”,
semantics. Consider the program fragment in Big), whereb which use additional machine code for pointer adjustment.

While this may seem to be a “natural” way to resolve the ambi- 3. Formalization
guity, it makes the result of dynamic dispatch—which, intuitively,
is basedsolelyon an object'sdynamictype—additionally depen-
dent on the object’s static type. During the evolution of our seman-
tics, for a long time we considered this a flaw in the design of C++
and our first semantic87] (for a language then called C+) did not
resolve the ambiguity using the static type, but threw an exception
instead. This viewpoint was inspired by Rossie and Friedman, who
also considered this situation to be ambiguous. Now we stick ex-
actly to C++, even though this makes the semantics more complex
(see discussion if8).

Example 4C++ allows method overriding withovariant(i.e.
more specific) return types. Unrestricted covariance can however
lead to ambiguities. In the context of the repeated diamond of
Fig. 1, consider:

Our semantics builds on the multiple inheritance calculus devel-
oped by Rossie and FriedmaB1], but goes well beyond that
work by providing an executable semantics and a type-safety proof.
' Rossie and Friedman merely provide the subobject model but no
programming language, they do not model casts and their notion
of method dispatch does not model C++ precisely (see Example 3
above).

The starting point for our formal semantics was Jirfd][a
model of a Java-like language defined in higher-order logic (HOL)
in the theorem prover Isabelle/HOL. However, because of the many
intricacies of C++, CoreC++ has really outgrown its parent. As an
indicator for this see the fact that the size of the formal specification
and associated proofs more than doubled.

Our meta-language HOL conforms largely to everyday mathe-
matical notation. This section introduces further non-standard no-

class A { Top* f(); }; tation and in particular a few basic data types with their primitive
class B : A { Bottom* f(); }; //not allowed operations.

?;pf tz_”zw>f'(3)(,)3 3.1 Basic notation — The meta language
Typesinclude the basic types of truth values, natural numbers and
integers, which are callesbol, nat, andint respectively. The space
of total functions is denoted by. Type variables are writtefa, 'b,
etc. The notation::7 means that HOL termhas HOL typer.
Pairs come with the two projection functionst :: ‘a x 'b =
a andsnd :: ‘a x 'b = 'b. We identify tuples with pairs nested to
the right: (a, b, c) is identical to(a, (b, c)) and‘a x 'b x ‘cis
identical to’a x (b x 'c).
Setgtype ‘a set) follow the usual mathematical convention.
Lists(type 'a list) come with the empty ligf, the infix construc-
tor -, the infix @ that appends two lists, and the conversion function
set from lists to sets. Variable names ending in “s” usually stand for
lists andlength xs is the length ofxs. The standard functiomap,
which applies a function to every element in a list, is also available.
Function updates defined as follows:
f(a:=b)=MXx.ifx =athenbelse fx
wheref :: ‘a = ‘b anda :: 'a andb :: 'b.
datatype ‘a option = None | Some 'a

Statically, everything seems fine: because the tygeisfA, the
type ofa->f() is Top. However, if we allowed the redefinition
of f() , atrun-timea->f() evaluates to 8ottom object. C++
implicitly casts to the return type of the statically selected method ,
(which would beTop); but this cast is ambiguous, asBattom
object has two differentop subobjects in the repeated diamond.
Hence this redefinition is statically incorrect. C++ requinesque
covarianceif the return type of the statically selected method’is
and the return type of the dynamically selected on®,ishen there
must exist a unique path frol back toC.

Example 5.C++ does not allow method overriding witton-
travariant (i.e. less specific) parameter types, and one reason for
this is again the possibility of ambiguities. In the context of the
repeated diamond of Fid, consider:

class A { void f(Left* I); };
class B : A { void f(Top* t); }; //no redefinition

Jfin G+l adjoins a new elemen¥one to a type ‘a. All existing elements
A* a = new B(); in type ‘a are also in’a option, but are prefixed bySome. For
a->f(new Bottom()); succinctness we writga | instead ofSome a. Hencebool option

has the value$§True |, | False | and None.
Here, the actual parameter must be cast fRottom to Top Partial functionsare modeled as functions of type = b op-
but agaih this cast is ambiguous. ' tion, whereNone represents undefinedness ghd = |y| means

Example 6This example is taken fron2[]. It shows thatmany X is mapped toy. Instead of’a = b option we write ‘a —
compilers treat dominance incorrectly and thus have problems with ‘b, call such functionsnaps and abbreviate(x:=|y]|) to f(x

field access/assignment (as well as method call): — y). The latter notation extends to list§([x1,...,xm] [—]
) [Y1,-.-,Yn]) meansf(xi—y1)...(x;—y;), wherei is the mini-
class A { int x; }; mum of m andn. The notation works for arbitrary list expressions

class B { int x; };
class C : virtual A, virtual B { int x; };
class D : virtual A, virtual B, C {};

on both sides of—], not just enumerations. Multiple updates like
f(x—y)(xs[—]ys) can be written a$(x — y, xs [—] ys). The
map Ax. None is written empty, and empty(...), where... are
(new D())->x = 42 updates, abbreviates fta .]. For exampleempty (x—y, xs[—]ys)
becomegx — y, xs [—] ys]. The domain of a map is defined as
The g++ compiler rejects the left hand side of domm = {a|ma# None}.Functionmap-of turns an list of pairs
(new D())->x = 42 as ambiguous, whereas the Intel intoamap:
_compiler accepts this program. We will come back to this example map-of[] = empty
in§5.1.3 . . map-of (p-ps) = map-of pgfst p— snd p
Clearly, the semantics of method calls, field accesses, and casts
are quite complicated in the presence of shared and repeated mul3.2 Names, paths, and base classes
tiple inheritance. Typical C++ compilers rely on implementation-
level artifacts such as v-tables and subobject offsets to define the
behavior of these constructs. We will now present a formaliza-
tion that relies solely on subobjects and paths, which enables us
to demonstrate type-safety. path = cname list

Type cname is the (HOL) type of class names. The (HOL) vari-
ablesC and D will denote class namess and Ds are paths. We
introduce the type abbreviation

Programs are denoted By For the moment we do not need to
know what programs look like. Instead we assume the following
predicates describing the class structure of a program:

e P+ C <r D meandD is a direct repeated base clasgof
e P+ C <s D meansD is a direct shared base class(of

e <*means<gr U <g)".

e is-class P C means clas€ is defined inP.

3.3 Subobjects

graph. For example, it is not hard to deriReBottom + [Bottom]
C [Bottom,Left,Top] (in the repeated diamond) from these defini-
tions.

4. Abstract syntax of CoreC++

We do not define a concrete syntax for CoreC++, just an ab-
stract syntax. The translation of the C++-subset corresponding to
CoreC++ into abstract syntax is straightforward.

In the sequel, we use the following (HOL) variable conventions:
V is a (CoreC++) variable namE a field nameM a method name,

We slightly change the appearance of subobjects in comparisone an expressiony a value, andr’ a type.

with Rossie-Friedman style: we use a tuple with a class and a path

In addition tocname (class names) there are also the (HOL)

component where a path is represented as a list of classes. For extypes vname (variable and field names), angname (method

ample, a Rossie-Friedman subobj@ttom,Bottom.Left]
is translated intgBottom,[Bottom,Left])

The subobject definitions are parameterized by a progPam
First we defineSubobjsr P, the subobjects whose path consists
only of repeated inheritance relations:

is-class P C
(C, [C]) € Subobjsr P
P-C<rD (D, Cs) € Subobjsr P
(C, C-Cs) € Subobjsr P

Now we defineSubobjs P, the set of all subobjects:

(C, Cs) € Subobjsg P

(C, Cs) € Subobjs P
PHC'<sD (D, Cs) € Subobjsr P

(C, Cs) € Subobjs P

PHC=*C

We have shown that this definition and the one by Rossie and

Friedman (se§2.2) are equivalent. Ours facilitates proofs because
paths are built up following the inductive nature of lists.
3.4 Path functions

Functionliast on lists returns the topmost class in a path (w.r.t. the
class hierarchy)utlast chops off the last element.

Function@,, appends two paths assuming the second one is
starting where the first one ends with. If the second path only

names). We do not assume that these types are disjoint.

4.1 References

A referencerefers to a subobject within an object. Hence it is a
pair of anaddressthat identifies the object on the heap ($6el
below) and a path identifying the subobject. Formally:

reference = addr X path

The path represents the dynamic context of a subobject as a result of
previous casts (as explained§B.4), and corresponds to the result

of adding “delta” values to an object pointer in the standard “v-
table” implementation. Note that our semantics does not emulate
the standard implementation, but is more abstract.

Note: CoreC++ references are not equivalent to C++ references,
but are more like C++ pointers.

As an example, consider Fi§. If we assume that thelse
statement is executed, themvill have the reference value, [E, B])
wherea is the memory address of the néwobject, and pathE,

B] represents the fact that this object has been up-catandb
in fact points to theB subobject.

4.2 Values and Expressions

A CoreC++value (abbreviatedal) can be
e a boolearBool b, whereb :: bool, or
¢ an integerntg i, wherei :: int, Or

contains repeated inheritance, then it starts with the same class the ® a referenceRef'r, wherer :: reference, or

first one ends with, so we can append both of them@iéiaking

care to just use the common class once). If the second path begins
with a shared class, the first path just disappears (because we lose

all information below the shared class):
Cs@, Cs' = if last Cs= hd Cs'then Cs@ tl Cs’ else Cs’

The following property holds under the assumption that progPam
is well-formed.

If (C, Cs) € Subobjs Pand (last Cs Ds) € Subobjs P
then (C, Cs@,, Ds) € Subobjs P

A well-formed program requires certain natural constraints of the
program such as the class hierarchy relation to be irreflexive.
An ordering on paths is defined as follows:

(C, Cs) € Subobjs P
(C, Ds) € Subobjs P Cs = butlast Ds

P,CF CsC' Ds
(C, Cs) € Subobjs P P+ last Cs <s D

P,C+CsC' [D]

The reflexive and transitive closure af' is written C. The intu-
ition of this ordering is subobject containme®t;C + Cs C Ds
means that subobje¢C,Ds) lies below(C,Cs) in the subobject

¢ the null referencéNull, or
e the dummy valud/nit.

CoreC++ is an imperative but an expression-based language where
statements are expressions that evaluat@&/ii@r. The following
expressiongof HOL typeexpr) are supported by CoreC++:

e creation of new objechew C

e static castingstat _cast Ce

e dynamic castingdyn cast Ce

e literal value:val v

¢ binary operatione, <bop> es (Wherebop is one of+ or =)
¢ variable acces¥ar V and variable assignmeft:= e

o field accese.F{Ds} and field assignment; .F{Ds} := e2
(whereDs is the path to the subobject whefeas declared)

e method calle.M (es)
e block with locally declared variabld:V:T; e}
e sequential compositior;; e2

e conditionaliif (e) e; else e-
(do not confuse with HOL'$ b then x else y)

prog = cdecl list cdecl = cname X class
class = base list x fdecl list x mdecl list fdecl = vname X ty
method = tylist X ty X vname list X expr mdecl = mname X method
datatype base = Repeats cname | Shares cname
Figure 4. Abstract program syntax
e while loop:while (e) e’ 5.1 Typing rules

The constructor&/al andVar are needed in our meta-language The core of the type system is the judgménE + e :: T, where
to disambiguate the syntax. There is no return statement becausd® iS anenvironment, i.e. a map from variables to their types. We
everything is an expression and returns a value. call T thestatic type ofe.
The annotatior{ Ds} in field access and assignment is not part ~ We Wwill discuss the typing rules (see Fig). construct by con-
of the input |anguage butis Something that a preprocessor, e.g., theStruct, concentrating on ObJeCt'Orlentatlon. The remaining rules can

type checking phase of a compiler, must add. be found elsewherel[l]. For critical constructs we will also con-
To ease notation we introduce an abbreviation: sider the question of type safety: does the type system guarantee
) that evaluation cannot get stuck and that, if a value is produced, it
refr = Val (Refr) is of the right type.
Values are typed with their corresponding types, eRnol
4.3 Programs as Boolean, Intg as Integer. However, there is no rule to type a
The abstract syntax of programs is given by the type definitions in reference, so explicit references cannot be typedoreC++, like
Fig. 4, wherety is the HOL type of CoreC++ types. Java or ML, does not allow explicit references for well known
A CoreC++ program is a list of class declarations.class reasons.

declaration consists of the name of the class and the class itself.

A classconsists of the list of its direct superclass names (marked 5.1.1 Cast

shared or repeated), a list of field declarations and a list of method Typing static casts is non-trivial in CoreC++ because the type
declarations. Afield declaration is a pair of a field name and its system needs to prevent ambiguities at run-time (although it cannot
type. Amethod declaration consists of the method name and the do so completely). When evaluatisgat _cast C e, the object
method itself, which consists of the parameter types, the result type, thate evaluates to may have multiple subobjects of clas it is

the parameter names, and the method body. an up-cast, i.e. iP,E - e :: Class D andD is a subclass of, we
Note that CoreC++ (like Java, but unlike C++) does not have have to check if there is a unique path frdrto C.

global variables. Method bodies can access only tirpointer Two examples will make this clearer: if we want to cast

and parameters, and return a value. Bottom to Top in the repeated diamond in Fi@, we have two
We refrain from showing the formal definitions (sekl]) of paths leading to possible subobjectBoftom ,Left ,Top] and

the predicates likeP = C <gr D introduced in§3 as they are [Bottom ,Right ,Top]. So there is no unique path, the cast is am-
straightforward. Instead we introduce one more access function: biguous and the type system rejects it. But the same cast in the
shared diamond in Fi@ is possible, as there is only one possible

e class P C: the class (more preciselylass option) associated path, namelyTop].

with C in P. For down-casts we need to rememt&.8) that we have chosen
to model a type safe variant aftatic_cast (which means
5. Type system we throw an exception where C++ produces a run-time error),

for which C++ has fixed the rules as follows:: down-casts may
only involve repeated inheritance. To enforce this restriction we
introduce the predicate

CoreC++ types are either primitivdBgolean and Integer), class
typesClass C, NT (the type ofNull), or Void (the type ofUnit).
The set of these types (i.e. the corresponding HOL type) is called
ty. The first two rules of the subtype relatiehare straightforward: P path Cto D via Cs = (C, Cs) € Subobjs PA last Cs= D

PHFT<T PFNT<CClassC Combining the checks for up- and down-casts in one rule and re-
_quiring the class to be known we obtain WTsee Fig.5). Re-
To relate two classes, we have to take care that we can use an objeGhemper thafC, Cs) € Subobjsz P means thaCs involves only
of the smaller type wherever an object of the more general type can repeated inheritance. '
occur. This property can be guaranteed by requiring that a static ~ apg an example of an ambiguous down-cast, take the repeated
cast between these two types can be performed, resulting in thegiamond in Fig1 and extend it with a shared supercl&ssf Top.

premise: Casting aBottom object of a static clas€ to Top is ambiguous
P+ path Cto D unique = 3!Cs (C, Cs) € Subobjs PA last Cs= D because there are tWmp subobjects.))

_ _ Dynamic casts are non-trivial operations at run-time but stati-
This property ensures that the path from clasigading to clas® cally they are as simple as can be: rule \dhly requires that the
exists and is uniqued(! is unique existence). expression is well-typed and the class is known. This liberality is

This leads to the third subtyping rule: not just admissible (because dynamic casts detect type mismatches

P path Cto D unique at run-time) but even necessary. We come back to this point when

e discuss the semantics§6.3.2
P+ Class C < Class D we discu ics§

The pointwise extension of to lists is written]<] . 5.1.2 Variable assignment and binary operators

The assignment rule WBl'is completely straightforward as the
7 For more information about static casts, §6el.1 expression on the right hand side has to be a subtype of the variable

WT1 P.Ete:: Class D is-class P C P - path Dto C unique V (¥ Cs. P - path Cto Dvia Cs — (C, Cs) € Subobjsr P)
P,Erstat _cast Ce:: Class C
P.Ele:: Class D is-class P C
WT2
P,EFdyn _cast Ce:: Class C
EV=|T| PEre:T PFT' LT
WT3
PEFVi=e¢:T
P,E|_611:T1 P,E}_EQ ol T2
WT4 case bopof == Ty = T2 A T = Boolean | + = T1 = Integer A\ T2 = Integer A\ T = Integer
P,Ere; <bop>es:: T
WT5 P.El e :: Class C PF Chasleast F: Tvia Cs
PEFe.F{Cs}:T
WT6 P,Ele; :: Class C PF Chas least F : Tvia Cs PEFey:T PFT' LT
PEFei . F{Cs}:= ea: T
WT7 PEFe:ClassC P ChasleastM = (Ts, T, m) via Cs P.Eles[:] Ts' P Ts'[<] Ts

PEFeMf(es): T

Figure 5. The typing rules

type on the left hand side, which we get by consulting the typing

environment.
Rule WT4 for binary operators: Addition is unsurprising. In the

Returning to Example 6 fror§2.4, one can see that our type
system correctly determines that the least declaratiox isf the
one inC. Hence, our type system does not yield the incorrect result

equality test, we assume that both operands have the same type, i.aghat is produced by several C++ compilers.

that all necessary casts are performed explicitly. This simplifies the

presentation without loss of generality.

5.1.3 Field access and assignment
The typing rule for field access Wbis straightforward. It can either

5.1.4 Method call

In the call typing rule W7 the classC of e is used to collect all
declarations oM and select the least one. The set of all definitions
of methodM from classC upwards is defined as

be seen as a rule that takes an expression where field access isethodDefs P C M=

already annotated (b{Cs}), and the rule merely checks that the

{(Cs mthd) |

annotation is correct. Or it can be seen as a rule for computing the (C, Cs) € Subobjs PA
annotation. The latter interpretation relies on the fact that predicate (3Bsfs msclass P(lastC9 = | (Bs s, ms)| A map-of ms M= [mthd])}

P Chas least F : Tvia Cs can computd” andCs from P, C and
F. So it remains to explaiR - C has least F : T via Cs: it checks
if Cs is the least (w.r.tC) path leading fronC to a class declaring
anF. First we define the sdfieldDecls P C F of all (Cs, T) such
thatCs is a valid path leading to a class with &rof type T

FieldDecls P C F=

{(CsT) | _

(C, Cs) € Subobjs PA

(3Bs fs msclass P(last C9 = | (Bs, fs, ms)| A map-of fs F= |T|)}

Then we select a least element from that set:

PF Chas leastF : TviaCs=
(Cs T) € FieldDecls P C FA
(V(C¢/, T)eFieldDecls P C EP,C+ CsC Cs')

This set pairs the method (of typeethod, see Fig4) with the path
Cs leading to the defining class. Among all definitions the least one
(w.r.t. the ordering on paths) is selected:

P F Chas least M = mthdvia Cs=
(Cs mthd) € MethodDefs P C M\
(V (Cs, mthd')eMethodDefs P C MP,C - CsC. Cs)

Unfortunately, the absence of static ambiguity of method lookup is
not sufficient to avoid ambiguities at run-time. Even if the call is
well-typed,e may evaluate to a class belawfrom which there is
no least declaration g¥1. We presented this problem in Example 3
and will discuss it in detail i136.3.6

In the third premise of WT, the relation[::] is the pointwise
extension of: to lists.

If there is no such least path, field access is ambiguous and hencé-2 Well-formed programs
not well-typed. We give an example. Once again we concen- A well-formed CoreC++ programw(f-C-prog P) must obey all the

trate on the repeated diamond in Figand assume that a field
x is defined in clas8ottom and classTop. When type check-
ing e.x, wheree is of classBottom , the path components in
FieldDecls P Bottom x are Bottom], [Bottom ,Left ,Top] and
[Bottom ,Right ,Top]. The least element of the path components
in this set is Bottom], so thex in classBottom will be accessed.
Note that if nox in Bottom is declared, then there is no element
with a least path irFieldDecls and the field access is ambiguous
and hence illegal.

Field assignment works analogously as shown inBNT

usual requirements (every method body is well-typed and of the
declared result type, the class hierarchy is acyclic, etc — for de-
tails see 11]). Additionally, there are CoreC++-specific conditions
concerning method overriding:

(i) covariance in the result type combined with the uniqueness of
paths from the new result classdb result classes in previous
definitions of the same method (see Example 4). This require-
ment is easily formalized by means of thath-unique predi-
cate introduced ig5.

state

heap X locals e S is a (finite) function:

locals = vname — val V (Cs,fs), (Cs'.fs") € S. Cs = Cs' — fs =15’

heap = addr — obj))

obj — cname X subo set Furthermore, if an expressianevaluates taef (a, Cs) then the
subo = path x (vname — val) heap mapa to [(C, S)] such that

e Cs is the path of a subobject i§: (Cs, fs) € S for somefs.

Figure 6. The type of CoreC++ program states e Jast Cs is equal to the class efinferred by the type system.
We will now discuss the evaluation rules construct by construct,
(i) invariance in the argument types (see Example 5) concentrating on object-orientation, as shown in FigThe re-

(iii) for every method definition a class sees via patlCs, the maining rules can be found elsewhetd]]

corresponding subobje¢€,Cs) must have a least overrider as . .
explained ir§6.3.6(otherwise the corresponding C++ program 6-3.1 Object creation
would not be able to construct a unique v-table entry for this Rule BSL shows the big step rule for object creation. The result
method call and the program would be rejected at compile time) of evaluatingnew C is a referenceRef (a, [C]) wherea is some
unallocated address returned by the auxiliary funciiew-Addr
; ; (which returnsNone if the heap is exhausted, in which case we
6. Big Step Semantics throw an OutOfMemory exceptFi)on). As a side effect, is made
The big step semantics is a (deterministic) relation between anto point to the object(C, S), where S = init-obj P C is the
initial expression-state pafe,s) and a final expression-state pair set of all subobject§Cs, fs) such that(C, Cs) € Subobjs P

(¢'s). = The = syntax of the relation s andfs:: vname — val is the field table that contains every field
PEF (e,s) = (e/;s') and we say that evaluatedo e’. The rules declared in claskist Cs initialized with its default value (according
will be such thaffinal expressions are always valuaga() or ex- to its type). We omit the details. Note that C++ does not initialize

ceptions throw), i.e. final expressions are completely evaluated. fields. Our desire for type safety requires us to deviate from C++ in
this minor aspect.

6.1 State

The set of states is defined in F&y.A stateis a pair of aheapand 6.3.2 Cast

astore (locals). A store is a map from variable names to values. asting is a non-trivial operation in C++, in contrast to Java. Re-

A heap is a map from addresses to objects.object is a pair of member that any object reference contains a path component identi-

a class name and its subobjectss#bobject (subo) is a pair of & fing the current subobject which is referenced. A cast changes this
path (leading to that subobject) and a field table mapping variable path thus selects a different subobject. Hence casting must adjust

nam(ﬁs to va]ues. ion i thati . the path component of the reference. This mechanism corresponds
T b? naming convention is thatis a heapl is a store (théocal to Stroustrup’s adjustment of pointers by “delta” values. We con-
variables), and a state. sider it a prime example of the fact that our semantics does not rely

Note that CoreC++, in contrast to C++, does not allow stack- o rn_time data structures but on abstract concepts.
allocated objects: variable values can only be pointers (CoreC++ | ot s first ook at the static up-cast rule BRfter evaluating
references), but not objects. Objects are only on the heap (as in, g g reference with pattys, that path is extended (upward) by a
Java). We do not expect stack based objects to interfere with multi- (unique, if the the cast is well-typeg5.1.1 pathCs’ from the end

ple inheritance. . of Cs up to C, which we get by predicatgath-via. So if we want
Remember further that a reference contains not only an address;y ¢asiBottom to Left in the repeated diamond in Fig, the

but a_tlso a p_e_lth. This path selects the current subobject of an ObjeCtappropriate path isHottom ,Left], castingRight to Top in the
and is modified by casts (see below). shared diamond in Fi@ uses pathTop].

. Rule B3 models the static down-cast which forbids down-casts
6.2 Exceptions involving shared inheritance. This means that ci@ssiust occur
CoreC++ supports exceptions. They are essential to prove typein the path component of the reference, or the cast is “wrong”.
soundness as certain problems can occur at run-time (e.g., a failing If neither of these two rules applies, the static cast throws a
cast) which we cannot prevent statically. In these cases we throw ClassCast exception (see appendix).
an exception so the semantics does not get stuck. Three exceptions Now considerdyn_cast which modelsdynamic_cast in
are possible in CoreC+-8utOfMemory, if there is no more space C++. If possible,dyn_cast tries to behave like the static cast.
on the heap(lassCast for a failed cast andNullPointer for null Rules B& and BS are the analogues of B&nd BS3, except that
pointer access. We will explain in the text exactly when an excep- BS4 has the additional premisk + path last Cs to C unique.
tion is thrown but will omit showing the corresponding rules; the This is because typing afyn_cast , in contrast tcstat_cast

interested reader can find them in the appendix. does not guarantee uniqueness (in order to be more general). In the
presence of multiple inheritance, not only up and down-casts are
6.3 Evaluation possible but also cross-casts: A referefige [Bottom, Left]) to

the Left subobject of aBottom object (in either the shared or

repeated diamond) can be cast toftight subobject resulting in

the referencéa, [Bottom, Right]). It is also possible that a legal

down cast cannot be performed by rule BiSecauseC does not

occur in the path. AssumB is a shared subclass @f. Then a

term which is statically of clasa and evaluates teef (b, [A]) but

points to an object of clag3 can be cast teef (b, [B]), but not by

¢ S contains exactly the paths starting fra@m BS5. Both cross-casts and such dynamic down-casts are performed
{Ds | 3fs. (Ds, fs) € S} = {Ds | (C, Ds) € Subobjs P}, by rule BS. After evaluatinge to a reference to addreas we

Remember thaP,E + (e,s) = (e’,s") is the evaluation judgment,
where P denotes the program arfl the type environment. The
need forE will be explained ing6.3.3

For a better understanding of the evaluation rules it is helpful
to realize that they preserve the following heap invariant: for any
object(C, S) on the heap we have

new-Addrh = |a| h’ = h(a~ (C, init-obj P C))

P.EF (new C,(h, 1)) = (ref (a, [C]),(h, 1))
P.E\ (e,s0) = (ref (a, Cs),s1) P - path Jast Cs to C via Cs’ Ds = Cs @, Cs’
PEt (stat _cast Ce,so) = (ref (a, Ds),s1)

P.E - (e,s0) = (ref (a, Cs @ [C] @ Cs'),s1)
P.EF (stat _cast Ce,so) = (ref (a, Cs Q[C]),s1)

P.EF (e,s0) = (ref (a, Cs),s1) P - path last Cs to C unique P |- path Iast Cs to C via Cs’ Ds = Cs @, Cs’

BS1

BS2

BS3

BS4 P.E - (dyn _cast Ce,so) = (ref (a, Ds),s1)
BSS P,E + (e,s0) = (ref (a, Cs @ [C] @ Cs'),s1)
P.EF (dyn_cast Ce,so) = (ref (a, Cs @ [C]),s1)
BS6 P.EF (e,sq) = (ref (a, Cs),(h, 1)) ha=|(D,)] P - path Dto Cvia Cs’ P I~ path Dto C unique
P,E - (dyn cast Ce,so) = (ref (a, Cs'),(h, 1))
P.E (e,s0) = (ref (a, Cs),(h, I))
BS7 ha=|(D,S)] — P+ path Dto C unique = P I path last Cs to C unique C ¢ set Cs
P.EF (dyn_cast Ce,so) = (null,(h,1))
Bs8 P.EF (e,s0) = (Val v,(h, 1)) EV=|T] P Tcasts vto v’ I'=1(V V)
P.EF (V= e;s0) = (Val v/, (h, 1)
BS9 P.EF (e1,50) = (Val vi,s1) P.EF (e2,81) = (Val va,s2) binop (bop, v1, v2) = | V]
P.EF (e1 <bop> ez,s0) = (Val v,s3)
BS10 P.E - (e,so) = (ref (a, Cs"),(h, 1)) ha=|(D,S)] Ds = Cs' @, Cs (Ds, fs) € S fsF=|v]

P.EF (e.F{Cs},s0) = (Val v,(h, 1))

P,E - {e1,50) = (ref (a, Cs"),s1)
P.Et {e2,s1) = (Val v,(h2, I2)) hoa=[(D,S)] P |- last Cs" has least F : Tvia Cs P Tcastsvto v/
Ds = Cs' @, Cs (Ds, fs) € S fs' = fs(F — V') §'=8 — {(Ds, fs)} U {(Ds, s")} hs'=hs(a— (D, S"))
P,E [<61.F{CS} = 627SO> = (Val V/,(hgl7 12)>

P.EF (e,s0) = (ref (a, Cs),s1)

P.EF (ps,s1) [=] (mapVal vs,(h2, 1)) hya=|[(C,)] P last Cshas least M = (_, T', _, _) via Ds
P (C, Cs @, Ds) selects M = (Ts, T, pns, body) via Cs’ length vs = length pns P - Ts Casts vsto vs’
12" = [this — Ref (a, Cs'), pns [—] vs'] new-body = (case T’ of Class D = stat _cast D body | - = body)
P,E(this +— Class (last Cs'), pns [—] Ts) (new-body,(h2, 12")) = (e/,(hs, 13))

P.E - (e.M(ps),s0) = (e',(hs, I2))

BS11

BS12

Figure 7. The Big Step rules

look up the clas® of the object at address If D has a unique Hence we need the environment E to look up T by = [T]).

C subobject, that is the one the reference must now point to. The up-cast is inserted implicitly by the semantics and defined via
If BS6 is inapplicable, i.e. if there is either no path or no unique

path from the dynamic class, and a static cast fails as well, we return VC.T# Class C

the null pointer, i.e. the valusull (see BS). This is exactly how P+ Tcastsvtov
C++ handles failinglynamic_cast s.

We now return to the point raised in the discussion of the typing P Class € (_:asts,NuII to Nulf ,
rule for dynamic casts i5.1.1 Rule WT2 needs to be as liberal as P - path last Csto Cvia Cs Ds = Cs @, Cs
itis because even if there is no relationship betw€emd the static P+ Class C casts Ref (a, Cs) to Ref (a, Ds)

class ofe (call it B), e may evaluate to an object of a subclass of

bothC andB and the cast could succeed. Does that mean we shouldg 3.4 Binary operators

at least require thaf” and B have a common subclass (or maybe . . .
superclass)? Not even that: since inheritance is all about permitting 1 n€ evaluation rule for binary operators 88 based on a function
later extensions with new subclasses, the common subclass of Pinop taking the operator and its two argument values and return-

andB need not yet exist whedyn _cast C e is type checked. ing an optional (in order to deal with type mismatches) result. The
- definition of binop for our two binary operators and+ is straight-

forward:

6.3.3 \Variable assignment | Bool (v1 = v»)]

LIntg (i1 + IQ)J
None

. . . _ . binop (=, v1, v2)
Assignment is straightforward (see rule@®xcept that it requires binop (+, Intg iy, Intg i2)
an up-cast of the expression to the static type T of the variable. binop (-, _, _)

In the first equation, equality on the left hand side is the CoreC++
equality operator, equality in the middle is definitional equality, and
equality on the right hand side is the test for equality. Logically, the
latter two are the same.

Addition only yields a value if both arguments are integers. We
could also insist on similar compatibility checks for the equality
test, but that leads to excessive case distinctions that we want to
avoid for reasons of presentation. In particufadoes not perform
any implicit casts.

6.3.5 Field access and assignment

Let us first look at field access in rule B& There are two paths
involved. Cs is (if the expression is well-typed5.1.3 the path
from the class of to the class wherd is declared.Cs’ is the
path component of the reference tlaevaluates to. As we have
discussed i§6.3, Iast Cs’ is equal to the static class ef To obtain
the complete path leading to the subobject in wifidives, we just

class Top { void f(); };

class Right2 : Top { ... };
class Right : virtual Right2 { void f(); };
class Left : Top { void f(); };

class Bottom : Left, Right { ... };

((Right2*)(new Bottom()))->f();

() ‘(Bottom, [Bottom,Left,Top]) ‘ (Bottom, [Right2,Top]) ‘ ()
i 1

calling subobject 9‘

() ‘ (Bottom, [Bottom,Left]) ‘
N~

(Bottom, [Right2])

‘ (Bottom, [Bottom,Right]) ‘ £()
R

(Bottom, [Bottom])

have to concatenate vi@, the two paths. The resulting pais is
the path to the subobject we are looking fore Hoesn't evaluate to
areference, but to a null pointer, we throuallPointer exception.

Field assignment (rule BS) is similar, except that we now
have to update the heap atwith a new set of subobjects. The
up-cast is inserted implicitly, analogously to & Note that the
functional nature of this set is preserved.

6.3.6 Method call
Rule BSL2is lengthy:

evaluatee to a referencéa, Cs) and the parameter ligts to a
list of valuesvs;

look up the dynamic clasS of the object in the heap at

look up the method definition used at type checking titiagt (
Cs is the static class of) and note its return typ& and the
pathDs from last Cs to this definition;

select the dynamically appropriate method (see below) and note
its parameter namegsis, parameter typeg's, body body, and
pathCs’ from C to this definition;

check that there are as many actual as formal parameters;

cast the parameter values up to their static type§'s by using

P - TsCasts vsto vs’, the pointwise extension of casts to lists,
yielding vs’;

evaluate the body (with an up-cast © if T is a class) in
an updated type environment wheteds has typeClass (last

Figure 8. Example illustrating static resolution of dynamically
ambiguous method calls

Example. To appreciate the full intricacies of this mecha-
nism, let us consider the example in Fi§, where a sub-
object Bottom ,[Right2]) calls method f: the path com-
ponents in MethodDefs P Bottom f are [Bottom ,Left],
[Bottom ,Left ,Top], [Bottom , Right] and [Right2 ,Top].
None of these paths is smaller than all of the others, so we cannot
resolve the method call purely dynamically. So another approach
is taken: we select the minimal paths MethodDefs P Bottom
f, which leaves us withBottom ,Left] and Bottom ,Right].

Now we have to find out which of these two paths will select the
method to call. This is done by considering the statically selected
method call (i.e. the least one seen from the static dRight2),
yielding path Right2 ,Top], which is guaranteed to be unique
by the type system. Now we append this “static” path to the path
component of the subobject, which results in the path where the dy-
namic class sees the statically selected method definition, namely
[Right2 1@,[Right2 ,Top] = [Right2 ,Top]. Finally we select

a path from the above set of minimal paths that is smaller than the
composed path, which results iBdttom ,Right]. The unique-
ness of this path is guaranteed by the well-formedness of the pro-
gram (se&5.2 (iii)).

Abstractly,P I (C, Cs) selects M = mthd via Cs’ selects that
Cs’ from the set of minimal paths fror@ to definitions ofM that
lies onCs, i.e. that lies below the statically selected method defi-

CSI) (the class where the dynamically selected method lives) nition Cs. The minimal elements are collected bfinimalMethod-
and the formal parameter names have their declared types, andPefs,

where the local variables arkis and the parameters, suitably
initialized.
The final store is the one obtained from the evaluation of the param-
eters; the one obtained from the evaluatiorbady is discarded —
remember that CoreC++ does not have global variableseVialu-
ates to a null pointer, we throwullPointer exception.
Method selection is performed by the judgmént- (C, Cs)
selects M = mthd via Cs’, where(C,Cs) is the subobject where

MinimalMethodDefs P C M=

{(Cs mthd |

(Cs mthd) € MethodDefs P C Mh

(V (Cs, mthd')eMethodDefs P C MP,C Cs'C Cs— Cs'=Cs)}

the ones that override the definition @t, i.e. are belowCs, are
selected byOverriderMethodDefs,

OverriderMethodDefs P R M=
(Cs mthd) |

the method lives that was used at type checking time. Hence there is5cg’ mthd.

at least one definition a¥1 visible from C. There are two possible
cases. If we are lucky, we can select a unique method definition
based solely oi€:

P F Chas least M = mthd via Cs’
P~ (C, Cs) selects M = mthd via Cs’

Otherwise we need static information to disambiguate the selec-
tion as Example 3 already demonstrated.

P+ last (snd R has least M = mthd via Cs’ A
(Cs mthd) € MinimalMethodDefs Rfst R) M A
P.fst R CsC snd R@, Cs'}

and selection of a least overrider is performed as follows:

P Rhas overrider M = mthdvia Cs=
(Cs, mthd) € OverriderMethodDefs P R M\
card (OverriderMethodDefs P R M= 1

Note thatOverriderMethodDefs returns a singleton set (card is PEhte:T is-refT T is-class P C
R ki

o . . g T1
t_h_e cardinality of a set) if ;h_e program is w_eII formed ($fe2 P.E.hFdyn cast Ce: Class C
(iii})). Hence the second defining rule feglects is
Vmthd Cs'. = P - Chas least M = mthd via Cs’ rrp DEMTe T iswellT isclassPC
P+ (C, Cs) has overrider M = mthd via Cs’ P.E.h-dyn_cast Ce:ClassC

P typeofy, v=|T|
PEhFVal v:T

j— 1 !
P+ (C, Cs) selects M = mthd via Cs RT3

6.4 Small Step Semantics

. o PEhte:NT
Big step rules are easy to understand but cannot distinguish non- RT4
termination from being stuck. Hence we also hawll stepse- P.EhteF{Cs}:T
mantics where expression-state pairs are gradually reduced. The re- P.EhF e :NT PEhbes:T PFT <T
duction relation is writterP,E I (e,s) — (e’,s’) and its transitive T5 PEhF e FICsY = o0 T —
reflexive closure i®,E - (e,s) —* (e’,s'). B e F{Cs} = e,

We do not show the rules (for lack of space, the interested reader PEhFe:NT PEhtes[:]Ts

can find selected ones in the appendix) but emphasize that we have RT6 PEhtFeM(es): T
proven the equivalence of the big and small step semantics (for o
well-formed programs):

P.E+ (e,s) = (e's")y = (P,E \ (e,s) =" (e',s") A final €').

Figure 9. Run-time type system

7. Type Safety Proof are needed for the static cast are important for the run-time type
system.

Type safety, one of the hallmarks of a good language design, means = Rule RT4 takes care of.F{Cs} where the type of has reduced

that the semantics is sound w.r.t. the type systemil-typed ex- o NT. Since this is going to throw an exception, and exceptions can

pressions cannot go wrongsoing wrong does not mean throw- have any type, this expression can have any type, too. Rulés RT
ing an exception but arriving at a genuinely unanticipated situation. and R work similarly for field assignment and method call.
The by now standard formalization of this proper8@] requires We have proved tha,E +- e :: T impliesP,E,h I- e : T. Heap

proving two propertiesprogresgwell-typed expressions canbere- h is unconstrained as the premise implies thaoes not contain
duced w.r.t. the small step semantics if they are not final yet — the any references.

small step semantics does not get stuck) preervationor sub- o)
ject reduction reducing a well-typed expression results in another 7.2 Conformance and Definite Assignment

well-typed expression whose typedsthe original type. Progress and preservation require that all semantic olsjenfsrm
In the remainder we concentrate on the specific technicalities of g the type constraints imposed by the syntax. We say that a value
the CoreC++ type safety proof. We do not even sketch the actual conforms to a typd (written P,h - v :< T) if the type ofv equals

proof, which is routine enough, but all the necessary invariants and type T or, if T is a class typey has typeNT. A heap conforms to a
notions without which the proof is very difficult to reconstruct. For program'if for every objectC, S) on the heap

a detailed exposition of the Jinja type safety proof, our starting)] o]
point, see 11]. For a tutorial introduction to type safety see, for ~ ® if (Cs, fs) € S then(C, Cs) € Subobjs P and if F is a field of

example, 19). type T declared in clastst Cs thenfs F = | v] and the type of
v (in the sense of rule RT1) conforms to type
7.1 Run-time type system e if (C, Cs) € Subobjs P then(Cs, fs) € S for somefs.

The main complication in many type safety proofs is the fact that
Well-ﬁy[iedness w.tr_.t. thTehst?tlclgjpe syst(te?mm ptLetsherved by :_he b tenvironmentE iff 1V = |v]impliesE V = |T] such thatv
small step semantics. The fault does not fie wi € Semantics bul .o \forms toT. In symbols:P,h + I (:<),, E . We also need

the type system: for pragmatic reasons it requires properties thatare; | - = - concerning the type environmerit E ,/ states that

not preserved by reduction and are irrelevant for type safety. Thus ; : . .
a second type system is needed which is more liberal but cIosedf,f\r/aed\i/é9 gg’: rilr?tslr%g:gmaps to atype in environmethe type is

under reduction. This is known as then-time type systeif8] and
the judgment isP,E,h - e : T. Please note that there is no type PFEV=VVT.EV=|T] —is-typePT

checking at run-time: this type system is merely the formalization s p |- p, V) P.hH1(:<), E andP + E / then we writeP E +

of an invariant which is not checked but whose preservation we (h, 1) \/ and say that_stat(sh 1) conforms to the program and the
prove. Many of the rules of the run-time type system are the same grvironment. ’

as in the static type system. The ones which differ are shown in ~ £q; the proof we need another conformance property, which
Fig. 9.) we call type-conf. It simply describes that given a certain type, an

_ Rule RT3 takes care of th_e fact that smal_l step reduction may expression has that type in the run-time type system. However, if
introduce references values into an expression (although the statigp;g given type is a class type, the run-time type system may also

type system forbids them, s@é.l)._ The premiseP t typeofy, v return the null type for the expression.
= | T| expresses that the value is of the right typeyit= Ref

(a, Cs), its type isClass (last Cs) providedh a = |(C,)] and P,E,hFe:NyClassC = P,E,hFe: ClassCV P,E,h-e: NT
(€, Cs) € Subobjs P. P.Eh e N Void P.E,h}e: Void

The main reason why static typing is not preserved by reduction * =+ € :NT YOI e Vol
is that the type of subexpressions may decrease from a class typéerhe rules forBoolean, Integer and NT are analogous to the rule
to a null type with reduction. Because of this, both cast rules only containingVoid.
require the expression to cast to have a reference typef(T), From Jinja we have inherited the notionas#finite assignment
which means either a class or the null type. None of the checks thata static analysis that checks if in an expression every variable is

In this case we writeP - h /. A storel conforms to a type

initialized before it is read. This constraint is essential for proving 7.5 The Type Safety Proof
type safety. Definite assignment is encoded as a predleaech
thatD e A (whereA is a set of variables) asserts the following
property: if initially all variables imA are initialized, then execution

of e does not access an uninitialized variable. For technical reasons
A is in fact of typevname set option. That is, if we want to execute

e in the context of a storewe need to ensurB e |dom1]. SinceD

All the preservation lemmas only work ‘'one step’. We have to
extend them from— to —™, which is done by induction (because
of the equivalence of big and small step semantics mentioned
in §6.4, all these lemmas now also hold for the big step rules).
Now combining type preservation with progress yields the main

) L - . theorem:

is completely orthogonal to multiple inheritance we have omitted

all details and refer tol[1] instead. If wf-C-prog PandP,El-s/ andP,El-e:: T and
D e|dom(lcls)| and P,E+ (e;s) —* (e/,s') and

7.3 Progress - (Je”s".PEF (e/,s") — (e”",s"")) then

(Iv.e’=Val vAPhpsFvV:<T)V

Progress means that any (run-time) well-typed expression which is (3. & = Throw r A the-addr(Ref 1) € dom(hp)

not yet not fully evaluated (i.e. final) can be reduced by a rule of))
the small step semantics. To prove this we need to assume that thef the program is well-formed, state conforms to it,e has type
program is well-formed, the heap and the environment conform, T and passes the definite assignment test wath (Icl s) (where
and the expression passes the definite assignment test: Icl s is the store component 6f anglltSH-normal form ise’, then
the following property holds: either' is a value of typeT (or NT,
If wi-C-progP and PEhi-e:T and P-hy/ and PHE/ and if T is of type class) or an exceptidfhrow r such that the address
De|doml and—finalethen3e’s’. PEF (g (h, 1)) — (e's'). . . .
part ofr is a valid address in the heap.
This theorem is proved by a quite exhausting rule induction on
the (run-time) typing rules, where most cases consist of severalg, Evolution of the Semantics
more case distinctions, likebeing final or not. So some cases can
get quite long (e.g., the proof for method call has about 150 lines
of proof script).

The semantics presented in this paper has gone through several
stages. This section will discuss a few example steps in the evo-
lution of the specification.

7.4 Preservation

. 8.1 Addresses, references and object structure
To achieve type safety we have have to show that all of the assump-

tions in the Progress theorem above are preserved by the small step5fom the beginning, it was clear that objects in the heap have to
rules. comprise an object’s dynamic class, a subobject, and the values

First, we consider the heap conformance: stored in the object’s fields. We initially thought that pointers to
objects could be identified by just an address. However, by studying
g élfh(»igm'? Zr?dng EE t/(fr;g:; }'3)?_;, i‘;/v(h/’ ") and the behaviors of static casts and field operations, we soon realized
T) ’ that we need to keep track of the subobject that is currently being
We proof this by induction on the small step rules. Most cases are pointed to. Our first attempt was to incorporate this information
straightforward, the only work lies in the rules which alter the heap, in the object description itself, so objects became a triple with
namely the ones for creation of new objects and field assignment. a path (the only way to uniquely identify a subobject) as a third
Next, we need a similar rule for the conformance of the store. component:
To prove this, we need to assume that the program is well-formed,

the environment conforms to it and the expression is well typed in obj = cname x path x (path — vname — val)

the run-time type system: However, in the presence of multiple pointers to some ohject
If wi-C-prog Pand P,E F (,(h, 1)) — (¢/,(h’, 1)) and each of these pointers may point to a different subobjeot ahd
PEhFe:TandPhk I (:<), E and P+ E / then hard-coding subobject information énitself is clearly insufficient.
Ph/ =17 (:<)y E. Realizing this, we removed the path component fronothjectand

Here, the interesting cases from the small step rule induction areinC|Uded it with thepointer (which we now call aeferencg, which
’ g P is similar to how C++ works. Moreover, for technical reasons, we

those that change the locals, namely variable assignment and block§eplaced the mapping from paths to the variable maps by a set of

Wm;mfﬁg%ﬁ;gaﬁgova:jneeflmﬁes'assi nment needs to be breserve diuples with these two components. Thus, we arrived at the object
' g P epresentation that we are using now:

by the semantics. The corresponding lemma is easily proved by
induction on the small step rules: obj = cname X (path x (vname — val)) set
If wf-C-prog Pand P,E - (e,(h, 1)) — (€/,(h’, 1)) and Ref reference, wherereference = addr x path

Deldoml| thenD e’ |dom F]. 8.2 Eliminating exceptions by using static type information

A big issue was how to handle method calls that become ambigu-
Bus at run-time. As already stated in the discussion of example 3
in §2.4, we initially considered the use of static information to re-
solve dynamically dispatched calls contrary to the idea of dynamic
dispatch. Following this line of reasoning, we argued that a method

Finally we have to show that the semantics preserves well-
typedness. Preservation of well-typedness here means that the typ
of the reduced expression is equal to that of the original expression
or, if the original expression had a class type, the type may reduce
to the null type. This is formalised via thgpe-conf property from

§7.2 call that is ambiguous at runtime should not be resolved but should
If wf-C-prog PandP,E\ (e,s) — (e’s’) andP,E+ s/ and throw a MemberAmbiguousExceptionstead. So the rule looked
P,Eshps-e: T thenP,Ehps'Fe’:NTT. as follows:

wherehp s is the heap component of This proof is quite lengthy

because the most complicated cases (mostly method call and field P {(e,s0) = (ref (a,Cs),s1)

assignment) of the 68 small step rules can have up to 80 lines of Pt (ps,s1) [=] (map Val vs,(h2,l2)) hy a = Some(C,S)
proof script each (the screenshot in Fl§.shows the first case of ~ V Ts T pns body Cs’. = P I C has least M = (Ts,T,pns,body) via Cs’

the proof). P+ (e-M(ps),so) = (THROW MemberAmbiguous,(h2,l2))

. A —
emacs: TypeSafe.thy XE emacs: “goals* S=1|E3}
FHile Edit View Cmds Tools Options Buffers Proof-General X-Symbol Isabelle 2
- E E B --@ @ n - proof (prove): step 18
State | Context| Retract @‘ ‘ | Command Stop mwv“g] mlp‘ fixed variables: P, E, ¢, h, 1, ', h', 1', es,
es', C=20C, E=E, a=a, h="h, ht =h
BigStep.thv| Conform. thy| Progress.thy TypeSafe.thy _ 1=1, T=rT
~ ~ | prems:
theorem assumes wf: "wf_C_prog P" wf_C_prog P
shows subject_reduction2: "P,E + {e,(h,1)} = {e',(h',1')} new &ddr h = La]
= (AT. [P,EF (h,1) ¥; P,Ech ke : T] h' = h(a » (C, init_obj P C))
= type_conf P ET h' e')" P,E F (h, 1)
and subjects_reduction2: "P,E F {es,(h,1)} [=] {es',(h',1")} P,E,h Fnew C : T
= (ATs.[P,E + (h,1) +; P,E,h F es [:] Ts]
= types_conf (P,E,Ts,h',es'))" 4 | using this:
proof (induct rule:red_reds_induct) T = Class C
case (RedNew C E a h h' 1) P,E,h' F ref (a, [C]) : Class C
have new:"new_2ddr h = Some a"
and h':"h' = h(a = (C, init_obj P C))" goal (show, 1 subgoal):
and wt:"P,E,h F new C : T" . 1. type_conf P E T h' (ref (a, [C])) -
from wt have eq:"T = Class C" and class:"is_class P C"
by auto
from class have subo:"(C,[C]) € Subobjs P" X o .
by({rule Subcbjs_Base) z Smacs: response —
from h' have "h' a = Some(C, init_obj P C)" Successful attempt to solve goal by exported rule: [§
by({simp add:map_upd_Some_unfold) [new_addr *h = [7al;
with subo have "P,E,h' F ref(a,[C]) : Class C" by auto 2h' = ‘Th(‘?‘d ~ (?7C, init_obj P 7C));
with eq show ?case by auto] P,?E F (7 ?1) ¥; P,?E,?h F new ?¢C : ?
next ?E ?T ?h' (i
case (RedNewFail ¢ E h 1) : = type_ conf P 7E 7T 7h' (ref (7a, [7]))D
v s % LI WO~ SR i - . L
§u——** XEmacs: TypeSafe. thy (Isar script XS:isabelle/s Font| | y
[Isabelle] Successful attempt to solve goal by exported rule:

Figure 10. Screenshot of Isabelle in the Proof General GUI

A similar issue arose in the presence of overridden methods with simplifier (for simplifying formulae) and the logical reasoner (for
covariant return types. Consider, for example, a situation where the proving predicate calculus formulae automatically).
result of a method call (a reference) is assigned to a variable, and Most of the proofs in the present paper are writtenldar
where there exists an overriding definition of the method under [38], a language of structured and stylized mathematical proofs
consideration with a “smaller” return type. Then, by assigning understandable to both machines and humans. This proof language
the returned reference to the variable, the reference may receiveis invaluable when constructing, communicating and maintaining
a supertype to its actual type (given by the last class in its path large proofs.
component). Because of this it was possible to have references with Fig. 10shows a screenshot Bfoof Genera[1], Isabelle’s GUI,
a “gap” between the last class in its path component and the staticwhich turns the XEmacs editor into a front end for Isabelle that
class given by the (run-time) type system. In the field access andsupports interactive proof construction. In the main window the
field assignment rules one needed to fill this gap by introducing reader can see a fragment of an Isar proof text. Other windows show
in the rules a third path. We could not always guarantee this third the context, e.g. assumptions currently available, and diagnostic
path to be unique, and also threw tdlemberAmbiguousException information, e.g. if a proof step succeeded or failed.
when this was not the case. Isabelle also supports the creation X documents (such as
However, realizing that the introduction of a new exception this paper) based on Isabelle input fileSgX text may contain
takes us away from the semantics of C++, we adopted the use ofreferences to definitions and lemmas in Isabelle files and Isabelle
static information in both cases to eliminate fdemberAmbigu- will automatically substitute those references by pretty printed and
ousExceptiorexception. To this end, we introduced the term of an typeset versions of the respective formulae. This is similar to and
overriderwhich enabled us to use static information to make a dy- has all the advantages of “literate programming”.
namically ambiguous method call unique. Of course, the resulting
method call rule is quite intricate and requires auxiliary predicates. .
To close the “gap” bqetween the last clasgof a referencggnd the classlo' Execution
computed by the type system we extended assignment and methodsabelle furthermore enables one to automatically create ML files
call rules with explicit casts to the static type. Thus the need for the from theories (“rapid prototyping”) by using its built-in code gener-
exception disappeared. ator [3]. We have done so for the semantics and the type system. To
check real C++ programs—restricted to the statements our seman-
tics can handle—against our semantics, we implemented an eclipse
. . plugin to parse C++ programs to ML. In the result the abstract syn-
9. Working with Isabelle tax from Fig.4 is coded as ML expressions. It is also possible to
This section is written for the benefit of readers unfamiliar with au- write these ML files manually.
tomated theorem provers. So far they may have gotten the impres- By executing these ML files—the generated semantics files and
sion that, given all the definitions and the statement of a lemma, the translated C++ program—with an ML interpreter (e.g. PolyML)
Isabelle proves it automatically. Unfortunately, formal proofs still one can check if the program can be typed and if so, with which
require much effort by an expert user, a limitation Isabelle shares type, and what result executing the semantics on the programs will
with all such proof systems. A proof is an interactive process, a return—i.e. if the semantics does what it should, compared to the
dialogue where the user has to provide the overall proof structure C++ standard. This enables us to execute arbitrary programs in our
and the system checks its correctness but also offers a number otype system and semantics and compare the results with compiler
tools for filling in missing details. Chief among these tools are the runs.

val classA :
(string list * (base list * ((string list * ty) list *
(string list * (ty list *
(ty * (string list list * expr)))) list))) =
('A%, Integen)].));

val classB :
(string list * (base list * ((string list * ty) list *
(string list * (ty list *
(ty * (string list list * expr)))) list))) =
(["B"1.(0.((["x"L.Integen)].M));

val classC :
(string list * (base list * ((string list * ty) list *
(string list * (ty list *
(ty * (string list list * expr)))) list))) =
("C'l.((Shares ['A"],Shares ['B"]],([("x"].Integen)L.[1)));

val classD :
(string list * (base list * ((string list * ty) list *
(string list * (ty list *
(ty * (string list list * expr)))) list))) =
(["'D"],([Shares ['A"],Shares ['B"],Repeats ["C"]],([I.1)));

val prog :
(string list * (base list * ((string list * ty) list *
(string list * (ty list *
(ty * (string list list * expr)))) list))) list =
[classA, classB, classC, classD];

val main =
eval__1 2 3 prog ((fn uu => None),
FAss (new ['D"], ['x"], [['D"], ['C"]l, Val (Intg 42)),
((fn uu => None), (fn uu => None)));

Figure 11. ML code generated from Example 6§8.4

As an example see the ML code generated from Example 6 in
§2.41in Fig. 11. The definitionsClassA to ClassB are of type
cdecl andprog of type prog as described in Figl. main is the
translation of the main method of the C++ prograwval __1.2_3

multiple inheritance or covariant return types. Most closely related
to our work is P], where some basic C++ data types (including
structs but excluding pointers) are specified in PVS; an object
model is “in preparation”.

The complexities introduced by C++-style multiple inheritance
are manifold, and have to our knowledge never been formalized
adequately or completely. In the C++ standa2f][the semantics
of operations such as method calls and casts that involve class
hierarchies are defined informally, while several other works (see,
e.g., R7)) discuss the implementation of these operations in terms
of compiler data structures such as virtual function pointer tables

Rossie and Friedma2]] were the first to formalize the seman-
tics of operations on C++ class hierarchies in the form of a cal-
culus of subobjects, which forms the basis of our previous work
on semantics-preserving class hierarchy transformations that was
already mentioned if1 [34, 24, 25, 26].

Ramalingam and Srinivasa2(] observe that a direct imple-
mentation of Rossie and Friedman’s definition of member lookup
can be inefficient because the size of a subobject graph may be ex-
ponential in the size of the corresponding class hierarchy graph.
They present an efficient member lookup algorithm for C++ that
operates directly on the class hierarchy graph. However, like Rossie
and Friedman, their definition does not follow C++ precisely in
cases where static information is used to resolve ambiguities (see
Example 3ing2.4).

It has long been known that inheritance can be modeled using a
combination of additional fields and methods (a mechanism com-
monly called “delegation”) 12]. Several authors have suggested
independently that multiple inheritance can be simulated using a
combination of interfaces and delegati@®3[32, 35]. Nonetheless,
all of these works stop well short of dealing with the more intri-
cate aspects of modeling multiple inheritance such as object initial-
ization, implicit and explicit type casts, instanceof-operations, and
handling shared and repeated multiple inheritance.

Multiple inheritance also poses significant challenges for C++
compiler writers because the layout of an object can no longer

is the name of the function which simulates the semantics executionreflect a simple linearization of the class hierarchy. As a resuilt,

applied to progranprog and the empty type environment, which
is formulated viafn uu = None) . Whereas many compilers
cannot handle this program even if it adheres to the C++ standard

typechecking and executing this code in our framework poses no

problems and returns the expected results.
Executability of our type system and semantics is a strong

a considerable amount of research effort has been devoted to the
design of efficient object layout schemes for C-84,[30, 40.

11.3 Other Languages with Multiple Inheritance
Various models of multiple inheritance are supported in other

indicator that the formalisation is correct and does not contain any object-oriented languages, and we are aware of a number of pa-

flaws.

11. Related work

There is a wealth of material on formal semantics of object-oriented

languages, but to our knowledge, a formal semantics for a language
with C++-style multiple inheritance has not yet been presented. We

distinguish several categories of related work.

11.1 Semantics of Multiple Inheritance
Cardelli [6] presents a formal semantics for a form of multiple in-

pers that explore the semantic foundations of these models.

The work by Attaliet al. [2] is similar to ours in spirit but
treats Eiffel rather than C++, whose multiple inheritance model
differs considerably. Eiffel uses shared inheritance by default; re-
peated inheritance is not possible, instead repeated members must
be uniquely renamed when inherited.

In several recent languages such as1Bf fnd Concord 10|,
multiple inheritance arises as a result of allowing classes to over-
ride other classes, in the spirit of BETA's virtual class&3|[In Jx
[16], an outer classt; can declare a nested clads. B, which can
be overridden by a nested clads.B in a subclassA; of A;. In
this caseA;. B is a subclass ofl; . B. Shared multiple inheritance

heritance based on structural subtyping of record types, which alsoarises whem,. B also has an explicitly defined superclass. Mem-

extends to function types. Another early paper that claims to give
a semantics to multiple inheritance for a language (PCF++) with
record types isq]. It is difficult to relate the language constructs
used in each of these works to the inheritance model of C++.

11.2 C++ Multiple Inheritance
Wallace B6] presents an informal discussion of the semantics of

ber lookup is defined quite differently than in C++ (implicit over-
riding inheritance takes precedence over explicit inheritance when
selecting a member), but appears to behave similarly in practice.
Nystrom et al. present a type system, operational semantics and
soundness proof for Jx, although the latter is not machine-checked.
Concord [L0] introduces a notion ofroupsof classes, where a
groupg may be extended by a subgrogp An implicit form of

many C++ constructs, but avoids all the crucial issues. The natural inheritance exists between a clasX declared in groug that is

semantics for C++ presented by Seligm&@][does not include

further bound by a clasg.X in subgroupy’, giving rise to a simi-

lar form of shared multiple inheritance as in Jx. Two important dif-
ferences, however, are the fact that further binding does not imply
subtyping:g’. X is not a subtype of.X, and explicit inheritance
takes precedence over implicit overriding when resolving method

calls. Jolly et al. present a type system and soundness proof (though

not machine-checked) for Concord. Because repeated multiple in-
heritance is not supported in either Jx or Concord, the semantics

for these languages can represent the run-time type of an object
as a simple type, and there is no need for the subobject and path

information required for modeling C++.

Scala [L7] provides a mechanism for symmetrical mixin inher-
itance M] in which a class can inherit members from multiple su-
perclasses. If members are inherited from two mixin classes, the
inheriting class has to resolve the conflict by providing an explicit
overriding definition. Scala side-steps the issue of shared vs. re-
peated multiple inheritance by simply disallowing a class to (indi-

rectly) inherit from a class that encapsulates state more than once

(multiply inheriting from abstract classes that do not encapsulate
state—called traits—is allowed, however). The semantic founda-

tions of Scala, including a type system and soundness proof can be

found in [18].

12. Conclusion

We have presented an operational semantics and type-safety proof

for multiple inheritance in C++. The semantics precisely models
the behavior of method calls, field accesses and two forms of
casts in C++ class hierarchies, and allows one—for the first time—
to understand the behavior of these operations without referring
to implementation-level data structures such as virtual function
pointer tables (v-tables). The type-safety proof was formalized and
machine-checked using Isabelle/HOL.

The paper discusses C++ features in the light of the formal
analysis, discusses a number of subtleties in the design of C++
that we encountered during the construction of the semantics, and
provides some background about its evolution. Trying to put C++
on a formal basis has been interesting but quite challenging at
times. It was great fun figuring out what C++ means at an abstract
level, and this exercise has demonstrated that its mixture of shared
and repeated multiple inheritance gives rise to a lot of additional
complexity at the semantics level.

Acknowledgments

We thank Martin Dirndorfer for his work on the parser plugin for
eclipse and the anonymous referees for their comments.

References

[1] David Aspinall. Proof General — a generic tool for proof
development. In S. Graf and M.l. Schwartzbach, editdogls and
Algorithms for Construction and Analysis of Systems, TACAS, 2000
volume 1785 ofLect. Notes in Comp. Scpages 38-42. Springer-
Verlag, 2000.

Isabelle Attali, Denis Caromel, and Sidi Ould Ehmety. A natural
semantics for Eiffel dynamic bindingACM TOPLAS18(6):711—
729, 1996.

Stefan Berghofer and Tobias Nipkow. Executing Higher Order Logic.
In P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editdyges

for Proofs and Programs (TYPES 200@plume 2277 ofLNCS
Springer-Verlag, 2002.

[2

—

13

—_

Gilad Bracha and William Cook. Mixin-based inheritance.Pimoc.
of OOPSLA/ECOOP’'9(pages 303-311, 1990.

[5] V. Breazu-Tannen, C. A. Gunter, and A. Scedrov. Computing with
coercions. InProc. ACM Conf. LISP and functional programmijng
pages 44—-60. ACM Press, 1990.

[4

[l

[6] Luca Cardelli. A semantics of multiple inheritandaformation and
Computation76:138—164, 1988.

[7] Luca Cardelli. Type systems. Ihhe Computer Science and
Engineering Handboaok edition, 2004.

[8] Sophia Drossopoulou and Susan Eisenbach. Java is type safe —
probably. InProc. of ECOOP’97 volume 1241 ofLect. Notes in
Comp. Sci.pages 389-418, 1997.

[9] Michale Hohmuth and Hendrik Tews. The semantics of C++ data
types: Towards verifying low-level system components. In D. Basin
and B. Wolff, editors,Theorem Proving in Higher Order Logics,
Emerging Trends Procpages 127-144. UniveraitFreiburg, 2003.
Tech. Rep. 187.

[10] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus
Ostermann. Simple dependent types: ConcordPrbt. of FTfIP'05
2005.

[11] Gerwin Klein and Tobias Nipkow. A machine-checked model for a
Java-like language, virtual machine and compile&M TOPLAS To
appear.

[12] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. Rroc. of OOPSLA'86pages
214-223, 1986.

[13] Ole Lehrmann Madsen and Birger Moeller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented programming Phoc. of
OOPSLA'89 pages 397-406, 1989.

[14] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciendg43):348-375, 1978.

[15] Tobias Nipkow, Lawrence Paulson, and Markus Wenzida-
belle/HOL — A Proof Assistant for Higher-Order Logiolume
2283 ofLect. Notes in Comp. Sc2002. http://www.in.tum.
de/ nipkow/LNCS2283/

Nathaniel Nystrom, Stephen Chong, and Andrew. C. Myers. Scalable
extensibility via nested inheritance. Rroc. of OOPSLA'04pages
99-115, 2004.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Sebastian Maneth, &hane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. An overview of the
Scala programming language. Technical Report IC/200464|e
Polytechnique Ecerale de Lausanne, Lausanne, Switzerland, 2004.
Available fromscala.epfl.ch

[16

—

(17]

[18] Martin Odersky, Vincent Cremet, Christined&kl, and Matthias
Zenger. A nominal theory of objects with dependent typesPrist.

of ECOOP’03

[19] Benjamin C. PierceTypes and Programming Languagekhe MIT
Press, 2002.

[20] G. Ramalingam and Harini Srinivasan. A member lookup algorithm
for C++. InProc. of PLDI '97, pages 18-30, 1997.

[21] Jonathan G. Rossie, Jr. and Daniel P. Friedman. An algebraic
semantics of subobjects. Rroc. of OOPSLA'95pages 187-199.
ACM Press, 1995.

[22] Jonathan G. Rossie, Jr., Daniel P. Friedman, and Mitchell Wand.
Modeling subobject-based inheritance. Rmoc. of ECOOP’96
volume 1098 ol ect. Notes in Comp. Scpages 248-274, 1996.

[23] Adam Seligman. FACTS: A formal analysis for C++ Williams
College, 1995. Undergraduate thesis.

[24] Gregor Snelting and Frank Tip. Understanding class hierarchies using
concept analysisACM TOPLASpages 540-582, 2000.

[25] Gregor Snelting and Frank Tip. Semantics-based composition of
class hierarchies. IRroc. of ECOOP’02volume 2374 of_ect. Notes
in Comp. Scj.pages 562-584, 2002.

[26] Mirko Streckenbach and Gregor Snelting. Refactoring Class
Hierarchies with KABA. InProc. of OOPSLA'04pages 315-330,
2004.

[27] Bjarne Stroustrup. Multiple inheritance for C+&omputing Systems

http://www.in.tum.de/~nipkow/LNCS2283/
http://www.in.tum.de/~nipkow/LNCS2283/

2(4), 1989.

[28] Bjarne Stroustrup.The Design and Evolution of C++ Addison
Wesley, 1994.

[29] Bjarne Stroustrup.The C++ Standard: Incorporating Technical
Corrigendum No. 1John Wiley, 2 edition, 2003.

[30] Peter F. Sweeney and Michael G. Burke. Quantifying and evaluating
the space overhead for alternative C++ memory layo8tsftware:
Practice and Experienc83(7):595-636, 2003.

[31] Peter F. Sweeney and Joseph Gil. Space and time-efficient memory
layout for multiple inheritance. IRroc. of OOPSLA'99pages 256—
275, 1999.

[32] Ewan Tempero and Robert Biddle. Simulating multiple inheritance
in Java.Journal of Systems and Softwaf&:87-100, 2000.

[33] Krishnaprasad Thirunarayan,iéter Kniesel, and Haripriyan
Hampapuram. Simulating multiple inheritance and generics in Java.
Computer Language25:189-210, 1999.

[34] Frank Tip and Peter Sweeney. Class hierarchy specializafiota
Informaticg 36:927-982, 2000.

[35] John Viega, Bill Tutt, and Reimer Behrends. Automated delegation is
a viable alternative to multiple inheritance in class based languages.
Technical Report CS-98-3, University of Virginia, 1998.

[36] Charles Wallace. The semantics of the C++ programming language.
In E. Borger, editor,Specification and Validation Methodsages
131-164. Oxford University Press, 1995.

[37] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip.
An Operational Semantics and Type Safety Proof for C++-like
Multiple Inheritance. Technical Report RC23709, IBM, 2005.

[38] Markus Wenzel. Isabelle/lsar — A Versatile Environment for
Human-Readable Formal Proof DocumentBhD thesis, Institut
fur Informatik, Technische Universit Miinchen, 2002. http:
/ltumb1.biblio.tu-muenchen.de/publ/diss/in/
2002/wenzel.html

[39] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundnessnformation and Computatiqr{115):38—94, 1994.

[40] Yoav Zibin and Joseph Gil. Two-dimensional bi-directional object
layout. InProc. of ECOOP’03volume 3013 of.ect. Notes in Comp.
Sci, pages 329-350, 2003.

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

A. Appendix

new-Addr h = None P.EF (e,s0) = (ref (a, Cs),s1) C ¢ setCs
P.Et+ (new C, (h,I)) = (THROW OutOfMemory,(h,l)} P,E} (stat _cast Ce,so) = (THROW ClassCast,s1)

P.E - (e,s0) = (null,s1) P.E - (e1,s0) = (null,s1) P.El (e2,s1) = (Val v,s2)
P.E - (e-F{Cs},s0) = (THROW NullPointer,s1) P.E+ (e1-F{Cs}:=e2,s0) = (THROW NullPointer,s1)

P.E\ (e,s0) = (null,s1) P.Et (ps,s1) [=] (map Val vs,s2)
P.E - (e-M(ps),so) = (THROW NullPointer,s2)

Figure 12. Big Step exception throwing rules

new-Addrh = |a| h’' = h(a~ (C, init-obj P C))
P.E - (new C,(h, 1)) — (ref (a, [C]),(h’, 1))
P.E} (e,s) — {e';s") P I~ path last Cs to Cvia Cs’ Ds = Cs @, Cs’
P,E I (stat _cast Ce,s) — (stat _cast Ce’s’) P,EF (stat _cast C (ref (a, Cs)),s) — (ref (a, Ds),s)
P.E - (stat _cast C (ref (a, Cs @ [C] @ Cs')),s) — (ref (a, Cs @ [C]),s)
P.EF (e,s) — (e',s")
P,E} (dyn cast Ce,s)— (dyn_cast Ce’s’)
P | path Jast Cs to C unique P | path Jast Cs to Cvia Cs’ Ds = Cs @, Cs’
P.E - (dyn _cast C (ref (a, Cs)),s) — (ref (a, Ds),s)
hpsa=|(D,S)]| P I~ path Dto Cvia Cs’ P+ path Dto C unique
P.E (dyn cast C (ref (a, Cs)),s) — (ref (a, Cs’),s)
hpsa=|(D,S)]| — P+ path Dto C unique — P I path last Cs to C unique C ¢ set Cs
P.E - (dyn _cast C (ref (a, Cs)),s) — (null,s)
P.EF (e,s) — {e's") P.El (e,s) — (e';s")
P,E | (e <bop> e2,s) — (e/ <bop> e2,s") P,EF (Val vi <bop> e,s) — (Val vi <bop> e’,s")

P.E + (dyn _cast C (ref (a, Cs @Q [C] @ Cs')),s) — (ref (a, Cs @ [C]),s)

binop (bop, v1, v2) = |v]
P,EF (Val vi <bop> Val va,s) — (Val v,s)

P.EF (e,s) — (e's") EV =|T| Pl Tcastsvtov’
PEF (V= es)—(V:i=¢s"y PEF(V:i=Val v,(h,I1))— (Val v/ (h, I(V~ V"))
P.E - (e,s) — (e',s") hpsa=[(D,S)] Ds = Cs' @, Cs (Ds, fs) € S fsF=|v|
P,EF (e.F{Cs},s) — (e'.F{Cs},s’) P,E | (ref (a, Cs').F{Cs},s) — (Val v,s)
P.El (e,s) — (e's") P.E (e,s) — (e's")

P,E I (e.F{Cs}:= ea,s) — (¢/.F{Cs}:= ea,s") P,EF (Val v.F{Cs}:= e,s) — (Val v.F{Cs} = e's')
ha=|(D,S)] P I~ last Cs" has least F : Tvia Cs Pl Tcastsvtov’ Ds = Cs' @, Cs (Ds, fs) € S
P.E | (ref (a, Cs").F{Cs} :=Val v,(h,1)) — (Val v/,(h(a— (D, {(Ds, fs(F — v"))} U (S — {(Ds, £s)}))), 1))

P.EF (e,s) — (e';s') P,E F {es,s) [—] {es’,s")
P.EW (e.M(es),s) — (e’.M(es),s’y P,E+ (Val v.M(es),s) — (Val v.M(es"),s")
hpsa=[(C,S)| P - last Cs has least M = (Ts’, T', pns’, body") via Ds

P (C, Cs @, Ds) selects M = (Ts, T, pns, body) via Cs’ length vs = length pns length Ts = length pns
bs = blocks (this-pns, Class (last Cs')-Ts, Ref (a, Cs’)-vs, body) new-body = (case T’ of Class D = stat _cast D bs | - = bs)

P,E + (ref (a, Cs).M(map Val vs),s) — (new-body,s)

blocks (V-Vs, T-Ts, v-vs,e) = {V:T; V:=Val v; blocks (Vs, Ts, vs,e)}
blocks ([], [], [, e) = e

Figure 13. Small Step rules

	Introduction
	Multiple inheritance
	An intuitive introduction to subobjects
	The Rossie-Friedman Subobject Model
	Casts in C++
	Examples

	Formalization
	Basic notation --- The meta language
	Names, paths, and base classes
	Subobjects
	Path functions

	Abstract syntax of CoreC++
	References
	Values and Expressions
	Programs

	Type system
	Typing rules
	Cast
	Variable assignment and binary operators
	Field access and assignment
	Method call

	Well-formed programs

	Big Step Semantics
	State
	Exceptions
	Evaluation
	Object creation
	Cast
	Variable assignment
	Binary operators
	Field access and assignment
	Method call

	Small Step Semantics

	Type Safety Proof
	Run-time type system
	Conformance and Definite Assignment
	Progress
	Preservation
	The Type Safety Proof

	Evolution of the Semantics
	Addresses, references and object structure
	Eliminating exceptions by using static type information

	Working with Isabelle
	Execution
	Related work
	Semantics of Multiple Inheritance
	C++ Multiple Inheritance
	Other Languages with Multiple Inheritance

	Conclusion
	Appendix

