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Abstract
Refactoring is a popular technique for improving the struc-
ture of existing programs while maintaining their behav-
ior. For statically typed programming languages such as
Java, a wide variety of refactorings have been described,
and tool support for performing refactorings and ensuring
their correctness is widely available in modern IDEs. For the
JavaScript programming language, however, existing refac-
toring tools are less mature and often unable to ensure that
program behavior is preserved. Refactoring algorithms that
have been developed for statically typed languages are not
applicable to JavaScript because of its dynamic nature.

We propose a framework for specifying and implement-
ing JavaScript refactorings based on pointer analysis. We
describe novel refactorings motivated by best practice re-
commendations for JavaScript programming, and demon-
strate how they can be described concisely in terms of
queries provided by our framework. Experiments performed
with a prototype implementation on a suite of existing appli-
cations show that our approach is well-suited for developing
practical refactoring tools for JavaScript.

Categories and Subject Descriptors D.2.7 [Distribution,
Maintenance, and Enhancement]: Restructuring, reverse en-
gineering, and reengineering

General Terms Languages
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1. Introduction
Refactoring is the process of improving the structure of soft-
ware by applying behavior-preserving program transforma-
tions [9], and has become an integral part of current software
development methodologies [4]. These program transforma-
tions, themselves called refactorings, are typically identified
by a name, such as RENAME FIELD, and characterized by
a set of preconditions under which they are applicable and
a set of algorithmic steps for transforming the program’s
source code. Checking these preconditions and applying the
transformations manually is tedious and error-prone, so in-
terest in automated tool support for refactorings has been
growing. Currently, popular IDEs such as Eclipse,1 Visual-
Studio,2 and IntelliJ IDEA3 provide automated support for
many common refactorings on various programming lan-
guages. In addition, there is much recent research literature
on soundly performing a variety of refactorings (see Sec-
tion 7 for an overview).

However, most research on refactoring has focused on
statically typed languages, such as Java, for which express-
ing the preconditions and source code transformations can
take advantage of static type information and name resolu-
tion. Refactoring for dynamic languages such as JavaScript
is complicated because identifiers are resolved at runtime. Of
the few previous approaches to refactoring for dynamically
typed languages, the most well-developed one can be found
in the Smalltalk Refactoring Browser [24], which relies on a
combination of runtime instrumentation and the existence of
a test suite to ensure that behavior is preserved. By contrast,
we aim for a sound technique that does not require compre-
hensive test suites.

In this paper, we present a framework for refactoring pro-
grams written in JavaScript, a dynamically typed scripting

1 http://www.eclipse.org/
2 http://www.microsoft.com/visualstudio/
3 http://www.jetbrains.com/idea/



language that has become the lingua franca of web browsers.
To understand why implementing even simple refactorings
in JavaScript is more challenging than implementing analo-
gous refactorings for statically typed languages such as Java,
consider the RENAME FIELD refactoring in Java. A key re-
quirement when renaming field f of class C to g is to iden-
tify all references to that field so they can be renamed con-
sistently. Renaming all references to a field is easy for Java
programs since static type information is available. For ex-
ample, an expression of the form e.f where the static type
of e is C definitely refers to the renamed field. In contrast, the
corresponding task for a RENAME PROPERTY refactoring in
JavaScript is in general impossible to solve exactly by static
means. While fields in Java are statically declared within
class definitions, properties in JavaScript are only associated
with dynamically created objects and are themselves dynam-
ically created upon first write. Further complications arise
from other dynamic features of JavaScript, such as the abil-
ity to dynamically delete properties, change the prototype
hierarchy, or reference a property by specifying its name as
a dynamically computed string.

We describe a methodology for implementing auto-
mated refactorings on a nearly complete subset of the EC-
MAScript 5 language [7], the chief omission being dynam-
ically generated code (i.e., eval). Our approach relies on
static pointer analysis for JavaScript to define a set of gen-
eral analysis queries. We have used this methodology to
implement both well-known traditional refactorings, such as
renaming, and novel JavaScript-specific refactorings that tar-
get desirable programming idioms advocated by influential
practitioners [5].

In the process, we have devised various techniques to
handle JavaScript’s highly dynamic features and lack of
static typing. For example, while naively over- or under-
approximating the set of expressions e.f that must be modi-
fied when a property f is renamed (e.g., using a conventional
must- or may-point-to analysis) would be unsound, we de-
scribe an algorithm that over-approximates this set in a safe
manner. We also ensure, through preconditions that can be
expressed in terms of the analysis queries, that behavior is
preserved in the presence of complex JavaScript features
such as reflective for-in loops, first-class functions, and
prototype-based inheritance. In cases where we cannot guar-
antee behavior preservation, refactorings are prevented from
being applied.

We have specified and implemented three refactorings
using our approach: RENAME (which is a generalization of
the previously mentioned RENAME PROPERTY), ENCAPSU-
LATE PROPERTY, and EXTRACT MODULE. We have eval-
uated the quality of our implementations by applying these
refactorings systematically to a set of 50 benchmark pro-
grams, measuring how often refactorings are applied suc-
cessfully and analyzing causes for rejection. Our results
show that most refactorings are performed successfully and

rejections are generally justified by a real danger of unsound-
ness. This demonstrates that our approach is a viable basis
for implementing refactoring tools for JavaScript.

In summary, the major contributions of this paper are as
follows:

• We present a framework for specifying and imple-
menting JavaScript refactorings, based on a set of anal-
ysis queries on top of a pointer analysis.

• We give concise, detailed specifications of JavaScript-
specific refactorings expressed using the framework. To
the best of our knowledge, we are the first to give such
specifications in the context of JavaScript.

• We experimentally validate our approach by exercis-
ing a prototype implementation of the framework and
the refactorings on a set of JavaScript benchmarks. We
demonstrate that the preconditions of our specifications
are not overly conservative, and that a relatively simple
pointer analysis appears to suffice in practice for many
programs ranging in size from 300 to 1700 lines of code.

The remainder of this paper is organized as follows.
Section 2 introduces a motivating example to illustrate
the challenges that arise in defining several refactorings
for JavaScript. Section 3 presents a framework of analysis
queries based on pointer analysis. Section 4 shows how the
three refactorings under consideration are expressed using
this framework. Details of the implementation are described
in Section 5, while Section 6 gives an evaluation of our refac-
torings on a set of JavaScript benchmarks. Related work is
discussed in Section 7. Finally, conclusions are presented in
Section 8.

2. Motivating Examples
Figure 1 shows a small JavaScript program that we will use
to illustrate some of the challenges of refactoring JavaScript
programs. Part (a) of the figure shows a library that defines
two shapes: circles and rectangles. Part (b) shows a client
application that uses this library to draw a number of such
shapes of randomly chosen sizes at random coordinates in
the browser. We will first explain some key details of this
program, and then discuss some of the issues raised by ap-
plying the RENAME, ENCAPSULATE PROPERTY, and EX-
TRACT MODULE refactorings.

2.1 A JavaScript Example Program
As a prototype-based language, JavaScript does not have
built-in support for classes. Instead, they are commonly
simulated using constructor functions. In the example of
Figure 1, two constructor functions are provided: Circle
(lines 1–11) and Rectangle (lines 13–24). These enable the
programmer to create circle and rectangle objects using the
new operator (e.g., line 41). Constructor functions typically
contain statements to initialize a number of object proper-
ties, which are not explicitly declared but created upon the



1 function Circle(x, y, r, c) {
2 this.x = x;
3 this.y = y;
4 this.radius = r;
5 this.color = c;
6 this.drawShape = function (gr) {
7 gr.fillCircle(new jsColor(this.color),
8 new jsPoint(this.x,this.y),
9 this.radius);

10 };
11 }
12
13 function Rectangle(x, y, w, h, c) {
14 this.x = x;
15 this.y = y;
16 this.width = w;
17 this.height = h;
18 this.color = c;
19 this.drawShape = function (gr) {
20 gr.fillRectangle(new jsColor(this.color),
21 new jsPoint(this.x,this.y),
22 this.width, this.height);
23 };
24 }
25 Rectangle.prototype.getArea = function() {
26 return this.width * this.height;
27 };

28 function r(n) { return Math.round(Math.random() * n); }
29
30 function drawAll(sh) {
31 var gr =
32 new jsGraphics(document.getElementById("canvas"));
33 sh.map( function(s) { s.drawShape(gr); });
34 }
35
36 var shapes = [];
37 for (var i = 0; i < 500; i++) {
38 var o = new jsColor().rgbToHex(r(255),r(255),r(255));
39 switch(r(2)){
40 case 0:
41 shapes[i] = new Circle(r(500),r(500),r(50),o);
42 break;
43 case 1:
44 shapes[i] = new Rectangle(r(500),r(500),r(50),r(50),o);
45 alert(shapes[i].getArea());
46 break;
47 }
48 }
49 drawAll(shapes);

(a) (b)

Figure 1. Shapes example. Part (a) shows a small library that defines several types of shapes. Part (b) shows a small client
application that uses the library to draw shapes in the browser.

first write. For example, the constructor for Circle creates
and initializes properties x, y, radius, and color (lines 2–
5) by assigning them values that are passed in as parameters
to the function, and similar for Rectangle.

Both also create properties drawShape on line 6 and
line 19 that contain functions to display the appropriate
geometric shape.4 These functions can refer to their receiver
object using this expressions, and thus act like methods.

Function Rectangle shows another way of emulating
methods that makes use of JavaScript’s prototype-based na-
ture. Functions like Circle and Rectangle are themselves
objects, and hence can have properties. In particular, ev-
ery function object has a prototype property that is im-
plicitly initialized to an empty object. On line 25 we create
a property getArea in this object by assigning it a func-
tion that computes the area of a rectangle. Every object
created by invoking new Rectangle(...) has an inter-
nal prototype property, which references the object stored
in Rectangle.prototype. When a property x is looked up
on this object, but the object does not itself define property
x, the internal prototype is searched for x instead.

Thus, every rectangle has both a getArea and a
drawShape property, the latter defined in the object itself,
the former defined in its internal prototype. But while ev-
ery rectangle has its own copy of drawShape (created on
line 19), there is only one copy of getArea, which is shared
by all rectangles.

4 The functions are implemented using jsDraw2D, a graphics library for
JavaScript, which is available from http://jsdraw2d.jsfiction.com/.

Function r (line 28) returns a random value between 0
and its argument n. Function drawAll (lines 30–34) takes as
an argument an array shapes, and on line 33 uses a closure
and the map function to invoke drawShape on each element
of the array. Lines 36–49 contain a sequence of statements
that are executed when the page containing the script is
loaded. This code creates an array of 500 randomly colored
shapes of various kinds, displaying the area of every rectan-
gle upon creation on line 45, and then invokes drawAll to
draw these shapes in the browser.

Note that in the invocation shapes[i].getArea() on
line 45, the function to be invoked is found on the internal
prototype object of shapes[i], but its receiver object (i.e.,
the value of this) is shapes[i] itself, not the prototype
object. This ensures, for instance, that the property access
this.width in line 26 refers to the property defined on
line 16.

We will now discuss the issues that arise when three
refactorings—RENAME, ENCAPSULATE PROPERTY, and
EXTRACT MODULE—are applied to the example program
of Figure 1.

2.2 RENAME

We begin by considering some applications of the RE-
NAME refactoring to the example program of Figure 1. In
JavaScript, there are no property declarations. Although it
is natural to think of the assignment to this.x in Circle
as a declaration, it is just a write access to a property x that
is created on the fly since it does not exist yet. The absence
of declarations and static typing information makes refac-



toring more difficult because it is necessary to determine all
property expressions in a program that may refer to the same
property and rename them consistently. We consider a few
examples:

• The property expression this.x on line 2 in Circle
can be renamed to xCoord. This requires updating the
property expression this.x on line 8 to this.xCoord
as well. However, there is no need to rename the prop-
erty expression this.x on line 14, because the proper-
ties accessed on lines 8 and 14 must reside in different
objects. If we nevertheless do decide to rename this.x
on line 14 to this.xCoord as well, then the subsequent
property expression on line 21 must also be changed to
this.xCoord.

• Refactoring the property expression this.drawShape
on line 6 in Circle to this.draw requires that the
property expression this.drawShape on line 19 in
Rectangle is refactored to this.draw as well: the re-
ceiver s in the expression s.drawShape(gr) on line 33
can be bound to a Circle or a Rectangle object, and
therefore the methods have to be renamed consistently.
Note that Circle and Rectangle are completely unre-
lated; in particular there is no prototype relationship.

As these examples illustrate, the key correctness requirement
for renaming is name binding preservation—each use of a
property in the refactored program should refer to the same
property as in the original program. Name binding preserva-
tion is also a natural correctness condition for other refactor-
ings, as we describe below. Schäfer et al. [26] used this con-
dition successfully to provide sound automated refactorings
for Java, including renaming. Unfortunately, their techniques
rely on explicit declarations and static scoping, so they are
not directly applicable to JavaScript.

A natural approach is to use a static pointer analysis to ap-
proximate name binding information. However, a naive use
of pointer analysis would be unsound. For example, consider
the renaming of this.drawShape on line 6 in Circle de-
scribed above. Renaming only expressions that must point
to the same property as the one referenced on line 6 is insuf-
ficient. A sound must-point-to analysis could indicate that
there is no other access of drawShape that must definitely
point to the same property, therefore requiring nothing else
to be renamed. On the other hand, renaming only expres-
sions that may point to the property referenced on line 6 is
also insufficient. For example, a sound may-point-to analy-
sis could exclude the property expression this.drawShape
on line 19 in Rectangle since it definitely accesses a dis-
tinct property from that of Circle. However, that expres-
sion must in fact be renamed to preserve program behavior,
as we saw above. We define a notion of relatedness in Sec-
tion 3 based on may-points-to information, which captures
the set of property expressions in a program that are affected
by renaming a particular expression a.

50 function dble(c) {
51 var nc = new Circle();
52 for (var a in c) {
53 nc[a] = (a != "radius") ? c[a] : c[a]*2;
54 }
55 return nc;
56 }
57
58 function r(n) { return Math.round(Math.random() * n); }
59
60 function drawAll(sh) {
61 var gr =
62 new jsGraphics(document.getElementById("canvas"));
63 sh.map( function(s) { s.drawShape(gr); });
64 }
65
66 var shapes = [];
67 for (var i = 0; i < 500; i++){
68 var o = new jsColor().rgbToHex(r(255),r(255),r(255));
69 switch(r(2)) {
70 case 0:
71 shapes[i] =
72 dble(new Circle(r(500),r(500),r(50),o));
73 break;
74 case 1:
75 shapes[i] =
76 new Rectangle(r(500),r(500),r(50),r(50),o);
77 alert(shapes[i].getArea());
78 break;
79 }
80 }
81 drawAll(shapes);

Figure 2. Modified client application, with dble function
added.

We now consider a minor variation on the client applica-
tion where a function dble has been added (lines 50–56) as
shown in Figure 2. The client application is the same as in
Figure 1(b) except that dble is used to double the radius of
circles created in line 72.

The function dble takes an argument c, which is as-
sumed to be a Circle object, and returns a new Circle ob-
ject at the same coordinates but with a doubled radius. This
function illustrates several interesting features of JavaScript.
First, on line 51, the constructor of Circle is called with-
out any explicit arguments, which causes the special value
undefined to be passed as default argument. Second,
line 52 shows a for-in loop, in which the variable a it-
erates through the names of properties in the object pointed
to by parameter c. Line 53 also provides several examples
of a dynamic property expression. For example, the dynamic
property expression c[a] on that line refers to the property
of c named by the value of a. Together, these reflective fea-
tures have the effect of copying all property values from the
argument c into the corresponding property of the newly
created object, except for radius, which is also multiplied
by two. These features pose some challenges for refactoring:

• Applying RENAME to this.radius on line 4 is prob-
lematic because of the for-in loop and dynamic prop-
erty expression in dble. For example, renaming the prop-
erty expression to this.rad would require changing the
string constant "radius" on line 53 in order to preserve
behavior. In general, dynamic property expressions may



use values computed at runtime, which would thwart any
static analysis. In order to ensure that dynamic property
expressions do not cause changes in program behavior
when applying the RENAME refactoring, our approach
(as detailed in Section 4) is to conservatively disallow the
renaming of any property in any object on which proper-
ties may be accessed reflectively. Hence, in this example,
we disallow renaming any of the properties in Circle
objects.

• The names of the drawShape methods in Circle and
Rectangle must be kept consistent, because the call on
line 63 may resolve to either one of these, as we ex-
plained above. Since we now disallow renaming any of
the properties in Circle, we must also disallow renam-
ing drawShape in Rectangle.

• The remaining properties of Rectangle, i.e., x, y, width,
and height can still be renamed.

2.3 ENCAPSULATE PROPERTY

In Java, the ENCAPSULATE FIELD refactoring can be used to
encapsulate state by making a field private and redirecting
access to that field via newly introduced getter and setter
methods [9, page 206]. Unfortunately, JavaScript does not
provide language constructs to control the accessibility of
properties in objects: If a function has a reference to an
object, it can access any property of that object. Such a lack
of encapsulation is problematic because it leads to code that
is brittle, and hard to understand and maintain.

A commonly used technique, suggested for instance in
Crockford’s popular textbook [5], uses local variables of
constructor functions to simulate private properties. Local
variables in JavaScript (i.e., variables declared using the
var keyword) can only be accessed within the scope of the
declaring function. In the case of constructor functions, lo-
cal variables exist as long as the object exists, and they can
only be accessed by functions defined within the constructor
function itself. The basic idea of the ENCAPSULATE PROP-
ERTY refactoring is to encapsulate state by storing values in
local variables instead of properties of objects, and to intro-
duce getter/setter methods to retrieve and modify them.

Figure 3 shows how the library of Figure 1 is changed
by applying the ENCAPSULATE PROPERTY refactoring to
the width property of Rectangle, with changed bits of
code highlighted in gray. The width property was changed
into a local variable on line 98, and methods getWidth and
setWidthwere introduced on lines 101–106.5 Furthermore,
the property expression this.width was replaced by a call
to getWidth on line 114. Note that there was no need to
introduce a call to getWidth on line 110 because the width
variable can be accessed directly. No calls to setWidth need
to be introduced since there are no write accesses to width.

5 This is not to be confused with the new getter/setter mechanism introduced
in ECMAScript 5, which only applies to object literals [7, §11.1.5].

82 function Circle(x, y, r, c) {
83 this.x = x;
84 this.y = y;
85 this.radius = r;
86 this.color = c;
87 this.drawShape = function(gr) {
88 gr.fillCircle(new jsColor(this.color),
89 new jsPoint(this.x,
90 this.y),
91 this.radius);
92 };
93 }
94
95 function Rectangle(x, y, w, h, c) {
96 this.x = x;
97 this.y = y;
98 var width = w;
99 this.height = h;

100 this.color = c;
101 this.getWidth = function() {
102 return width;
103 };

104 this.setWidth = function(w) {
105 return width = w;
106 };
107 this.drawShape = function(gr) {
108 gr.fillRectangle(new jsColor(this.color),
109 new jsPoint(this.x, this.y),
110 width , this.height);
111 };
112 }
113 Rectangle.prototype.getArea = function() {
114 return this.getWidth() * this.height;
115 };

Figure 3. The library of Figure 1(a) after applying ENCAP-
SULATE PROPERTY to the width property of Rectangle.

The source code of the client application in Figure 1(b) is
unaffected by this refactoring because it does not access the
width property.

Name binding preservation is a key correctness condition
also for the ENCAPSULATE PROPERTY refactoring, but there
are other issues as well.

Encapsulating the width property of Rectangle did not
cause any problems, and all other properties of Rectangle
can be encapsulated similarly. However, this is not the case
for the properties of Circle. To see this, consider a sit-
uation where the radius property of Circle is encapsu-
lated in a scenario where the library is refactored together
with the modified client application of Figure 2. The for-in
loop on line 52 in the original program in Figure 2 iterates
through all properties of a Circle object, so the behavior of
this loop changes if radius becomes a variable instead of
a property. The multiplication in the loop is no longer exe-
cuted since there is no radius property to be copied. The
for-in loop will also copy the drawShape property, but
the copied function object will continue to refer to the lo-
cal variables of the original Circle object that was being
copied. As a result, the program would continue to draw cir-
cles, but with just half the radius. The ENCAPSULATE PROP-
ERTY refactoring should clearly be disallowed in this case. A
JavaScript refactoring tool must carefully take into account
how properties are accessed dynamically and prevent EN-



116 var r1 = new Rectangle(0, 0, 100, 200, ’red’);
117 var r2 = new Rectangle(0, 0, 300, 100, ’blue’);
118 r1.drawShape = r2.drawShape;
119 drawAll([r1]);

Figure 4. Alternative client program.

CAPSULATE PROPERTY in cases where it might lead to be-
havioral changes. In this particular case, a tool could conser-
vatively disallow any of the properties of Circle from being
encapsulated.

JavaScript allows one to dynamically assign function val-
ues to properties, which causes further complications. Sup-
pose that we want to apply ENCAPSULATE PROPERTY to the
width property of Rectangle in a situation that includes
the library of Figure 1(a) and the (artificial) client program
of Figure 4. The original version of the program draws a red
100-by-200 rectangle. However, if width is encapsulated,
as shown in Figure 3, a red 300-by-200 rectangle is drawn
instead. To see why, note that the function stored in prop-
erty r1.drawShape and invoked by drawAll comes from
r2.drawShape, and contains the function originally created
during the constructor invocation on line 117. Hence its lex-
ical environment stores the value 300 for width, and this is
the value read on line 110. The height, on the other hand,
is read from property height of object this; the value of
this is always the object on which the function is invoked,
here r1, so this.height yields 200.

The problem can be resolved by replacing the identifier
reference width on line 110 by a call this.getWidth().
In Section 3, we define the notion of well-scopedness to
characterize functions that act as methods of a single object,
making it safe to access the encapsulated property directly.
Roughly speaking, a function is well-scoped if, on every
call, its receiver object is the same as the value that this
had when the function was defined. In the presence of the
client of Figure 4, drawShape is not well-scoped because of
the assignment on line 118. Therefore, our refactoring tool
knows that it must replace the identifier reference width on
line 110 by a call to this.getWidth.

2.4 EXTRACT MODULE

JavaScript does not provide language constructs for modu-
larization and relies on a single global name space for all top-
level functions and variables, even those that are declared in
different files. This is problematic, because it can easily lead
to situations where declarations of global variables and func-
tions in one file are clobbered by those declared in another.
Fortunately, it is possible to obtain most of the benefits of a
module system using closures [5, page 40].

Figure 5 shows the example program of Figure 1 af-
ter applying EXTRACT MODULE to move the Circle
and Rectangle functions into a new “module” called
geometry. The basic idea is that these previously global
functions become local functions inside an anonymous func-

tion, which returns an object literal with properties Circle
and Rectangle through which the functions can be invoked
(lines 149– 152). This anonymous function is invoked imme-
diately (line 153), and the result is assigned to a newly intro-
duced global variable, geometry (line 120). Hence, the con-
structor functions are now available as geometry.Circle
and geometry.Rectangle. Figure 5(b) shows how the
client application of Figure 1(b) is updated, by using these
“qualified names”. Note that this approach has the important
benefit that inside the newly introduced closure function,
there is no need to refer to the geometry variable. For exam-
ple, the name Rectangle on line 145 need not be qualified.

A refactoring tool must take certain precautions when
applying EXTRACT MODULE. For example, observe that
choosing the name shapes for the new module is problem-
atic because a variable with the same name is already de-
clared on line 161. If we were to perform the refactoring
anyway, the shapes “module” would be overwritten, and the
constructor calls on lines 167 and 171 would cause runtime
errors since the empty array shapes does not have proper-
ties Circle or Rectangle.

2.5 Discussion
The examples in this section show that refactoring tools for
JavaScript have to address a number of challenges that do not
arise in statically typed languages such as Java. Chief among
these challenges is the lack of static typing and variable
declarations, and the use of reflective constructs such as
for-in loops. We address these challenges with a number
of query operations defined on top of a pointer analysis
framework. We present the framework and its queries in
Section 3 and put them to work in Section 4 by specifying
the refactorings introduced in this section in more detail.

3. A Framework for Refactoring with
Pointer Analysis

In this section, we develop the technical machinery needed
to precisely specify and implement refactorings like the ones
described in the previous section. We first describe a set of
basic queries to be provided by an underlying pointer analy-
sis such as the one discussed in Section 5. Then, we motivate
the analysis questions a refactoring tool needs to answer by
taking a closer look at some of the issues illustrated above,
and we show how to crystallize them into reusable queries
that can be implemented on top of the basic query interface.
Section 4 will demonstrate how these queries are in turn used
to give detailed specifications for several refactorings.

3.1 Basic Queries
As the foundation of our framework, we assume a pointer
analysis that defines a finite set L of object labels such that
every object at runtime is represented by a label. We assume
that L includes labels to represent environment records [7,
§10.2.1]. For technical reasons, we require that if an object



120 var geometry = (function(){
121 function Circle (x, y, r, c) {
122 this.x = x;
123 this.y = y;
124 this.radius = r;
125 this.color = c;
126 this.drawShape = function (gr) {
127 gr.fillCircle(new jsColor(this.color),
128 new jsPoint(this.x,this.y),
129 this.radius);
130 };
131 }
132
133 function Rectangle (x, y, w, h, c) {
134 this.x = x;
135 this.y = y;
136 this.width = w;
137 this.height = h;
138 this.color = c;
139 this.drawShape = function (gr) {
140 gr.fillRectangle(new jsColor(this.color),
141 new jsPoint(this.x,this.y),
142 this.width, this.height);
143 };
144 }
145 Rectangle.prototype.getArea = function() {
146 return this.width * this.height;
147 };
148
149 return {
150 Circle : Circle,
151 Rectangle : Rectangle

152 };

153 })();

154 function r(n) { return Math.round(Math.random() * n); }
155
156 function drawAll(shapes) {
157 var gr = new jsGraphics(document.getElementById("canvas"));
158 shapes.map( function(s) { s.drawShape(gr); });
159 }
160
161 var shapes = [];
162 for (var i = 0; i < 500; i++) {
163 var o = new jsColor().rgbToHex(r(255), r(255), r(255));
164 switch(r(2)) {
165 case 0:
166 shapes[i] =
167 new geometry. Circle(r(500),r(500),r(50), o);
168 break;
169 case 1:
170 shapes[i] =
171 new geometry. Rectangle(r(500),r(500),r(50), r(50), o);
172 alert(shapes[i].getArea());
173 break;
174 }
175 }
176 drawAll(shapes);

(a) (b)

Figure 5. The example program of Figure 1 after applying EXTRACT MODULE to Circle and Rectangle.

label represents an object allocated by a particular new ex-
pression, then all objects represented by that label are allo-
cated by that expression. Similarly, a single object label can-
not represent two function objects associated with different
textual definitions.

We say that a set L of object labels over-approximates a
set O of runtime objects if every object o ∈ O is represented
by some l ∈ L. For brevity, we will use the term function
definition to mean “function declaration or function expres-
sion” and invocation expression to mean “function call ex-
pression or new expression”.

The pointer analysis should provide the following queries:

objects For any expression e in the program, objects(e) ⊆ L
over-approximates the set of objects to which emay eval-
uate, including objects arising from ToObject conver-
sion [7, §9.9]. For a function declaration f , objects(f)
over-approximates the set of function objects that may
result from evaluating f .

scope For any function definition or catch clause e,
scope(e) ⊆ L over-approximates the set of environment
records corresponding to e at runtime.6 We additionally
define scope(e) := objects(e) for any with expression e.

6 Observe that scope(f) for a function definition f is not necessarily the
same as objects(f): the former approximates environment records, the latter
approximates function objects.

proto For any object label `, proto(`) ⊆ L over-approximates
the possible prototype objects of the runtime objects `
represents. We write proto+(L) for the set of transitive
prototypes of L ⊆ L as determined by this query.

props For any object label `, props(`) ⊆ L over-approximates
the set of objects that could be stored in properties of `
(excluding internal properties).

mayHaveProp, mustHaveProp For any object label ` and
property name p, mayHaveProp(`, p) should hold when-
ever any object represented by ` may have a property p;
mustHaveProp(`, p), conversely, should only hold if ev-
ery object represented by ` has a property p at all times
(for instance if ` represents an environment record and p
is a local variable declared in that environment).

arg, ret For an object label ` and a natural number i, arg(`, i)
over-approximates the set of objects that may be passed
as the ith argument (or the receiver in case i = 0)
to any function labelled by `. Similarly, ret(`) over-
approximates the set of objects that may be returned
from `.

builtin Given the name n of a built-in object as specified in
the language specification [7, §15], builtin(n) returns the
corresponding object label. The object label of the global



object will be denoted as global. We also define

apply := builtin(Function.prototype.apply)
bind := builtin(Function.prototype.bind)
call := builtin(Function.prototype.call)

3.2 Visited and Base Objects
Many preconditions deal with name binding. Any refac-
toring that introduces, renames or removes properties risks
causing name capture, i.e., situations where a property ex-
pression refers to a different object in the refactored pro-
gram. Two key concepts are needed when formulating pre-
conditions to avoid name capture: the visited objects of a
property expression, and its base objects.

Property lookup in JavaScript is, in most circumstances,
prototype based. This means that when evaluating a property
expression e.x, the property x is first looked up on the object
o1 that e evaluates to; if o1 does not have a property of
this name, its prototype object o2 is examined, and so on.
Eventually, an object on is encountered that either has a
property x, or does not have a prototype object (in which
case the lookup returns the undefined value). We describe
this process by saying that the lookup of e.x visits objects
o1, . . . , on; if the property is ultimately found on object on,
we call on the base object of the lookup.

To see how these concepts are useful for specifying refac-
torings, consider the case of a refactoring that adds a prop-
erty y on some object o. This refactoring needs to ensure
that o is not among the objects that any existing property
expression e.y may visit. Otherwise, the base object of an
evaluation of that expression could change, possibly altering
program behavior.

The usual purpose of adding a new property y to an ex-
isting object is to rewrite property expressions that used to
resolve to some property x on that object so that they now
instead resolve to y. For instance, ENCAPSULATE PROP-
ERTY rewrites this.width on line 26 of Figure 1 into
this.getWidth on line 114 of Figure 3 to make it re-
solve to the newly introduced getter function. To prevent
the refactored property expression from being resolved with
the wrong base object or from overwriting an existing prop-
erty, we have to require that a lookup of this.getWidth at
this position in the original program would come up empty-
handed, that is, that none of the visited objects of the prop-
erty expression has a property getWidth. This is indeed the
case in this example because no property getWidth is de-
fined anywhere in Figure 1.

The same considerations apply to the lookup of local and
global variables: global variables are just properties of the
global object, while local variables can be viewed as proper-
ties of environment records. The concepts of visited objects
and base objects can hence be extended to identifier refer-
ences in a straightforward manner as shown in the accompa-
nying technical report [8].

To underscore this commonality, we introduce the um-
brella term access to refer to both identifier references (like
r on line 4 of Figure 1) and property expressions, includ-
ing both fixed-property expressions like s.drawShape on
line 63 of Figure 2 and dynamic ones like nc[a] on line 53
of Figure 2.7 Identifier references and fixed-property expres-
sions are called named accesses.

An over-approximation possiblyNamed(p) of all accesses
in the program that possibly have name p in some execu-
tion, and an under-approximation definitelyNamed(p) of ac-
cesses that definitely have name p in every execution can be
computed based on purely syntactic information, although
pointer analysis may provide additional information that
can, e.g., be used to determine that a dynamic property ac-
cess is always used as an array index and hence cannot have
a non-numeric property name.

Given the basic queries introduced in Section 3.1, it is not
hard to define queries visited and base to over-approximate
visited and base objects of accesses.

For a property expression e.x, for instance, visited(e.x)
can be computed as the smallest set Lv ⊆ L satisfying the
following two conditions:

1. objects(e) ⊆ Lv;

2. if e.x is in rvalue position, then for every ` ∈ Lv with
¬mustHaveProp(`, x) we must have proto(`) ⊆ Lv .

The proviso of the second condition accounts for the fact that
deletion of and assignment to properties does not consider
prototypes.

The definition of visited for identifier references is simi-
lar, using scope to obtain the relevant environment records.

To over-approximate the set of base objects, we first de-
fine a filtered version of visited as follows:

visited(a, x) := {` ∈ visited(a) | mayHaveProp(`, x)}

This discards all object labels that cannot possibly have a
property x from visited(a). For a named access a with name
x in rvalue position, we then define base(a) := visited(a, x),
whereas for a dynamic property access or an access in lvalue
position we set base(a) := visited(a).

It will also be convenient to have a query lookup(e, x)
that simulates local variable lookup of an identifier x at the
position of the expression e, and approximates the set of
environment records or objects on which x may be resolved.
This query can be implemented by traversing the function
definitions, with blocks and catch clauses enclosing e, and
then using scope and mayHaveProp to find possible targets.

3.3 Related Accesses
When renaming an access, it is important to determine which
other accesses in the program refer to the same property.
This is not a well-defined question in general: a given access

7 The technical report [8] generalizes the concept of accesses even further,
but for expository purposes we refrain from doing so here.



may at different times be looked up on different base objects
and even refer to different property names, so two accesses
may sometimes refer to the same property name on the same
object, while at other times they do not. In general, we can
only determine whether two accesses must always refer to
the same property, or whether they may sometimes do so.

Must-alias information is not very useful for renaming,
as explained in Section 2: when renaming this.drawShape
on line 6 of Figure 1, we also have to rename s.drawShape
on line 33, even though it does not necessarily refer to
the same property. But if we rename s.drawShape, we
also have to rename any access that may refer to the same
property as that access, viz., this.drawShape on line 6 and
this.drawShape on line 19.

This example suggests that we have to close the set of
accesses to rename under the may-alias relation. More pre-
cisely, let us call two accesses a1 and a2 directly related if
their base object may be the same and they may refer to the
same property name. The set related(a1) of accesses related
to a1 is then computed as the smallest set R satisfying the
following two closure conditions:

1. a1 ∈ R;

2. for every a ∈ R, if a′ is an access such that a and a′ are
directly related, then also a′ ∈ R.

When renaming a1 we also rename all accesses it is re-
lated to. We have argued above why it is necessary to include
all related accesses in the renaming. On the other hand, it is
also sufficient to just rename these accesses: if any access a′

may at runtime refer to the same property as some renamed
access a, then a and a′ are directly related and hence a′ will
also be renamed. The set of related accesses thus represents
a family of properties that have to be refactored together.

3.4 Initializing Functions
The ENCAPSULATE PROPERTY refactoring looks similar
to the ENCAPSULATE FIELD refactoring for languages like
Java and C#, but the very liberal object system of JavaScript
allows for subtle corner cases that the refactoring needs to
handle. While it is common in JavaScript to make a distinc-
tion between normal functions and constructor functions that
are only used to initialize newly created objects, this distinc-
tion is not enforced by the language.

Any function f can either be invoked through a new
expression new f(. . .), in which case the receiver object is
a newly created object, or through a function invocation, in
which case the receiver object is determined from the shape
of the invocation: for an invocation of the form e.f(. . .), the
receiver object is the value of e; for an unqualified invocation
f(. . .), the receiver object is usually the global object.

We capture the notion of a function behaving “like a
constructor” by saying that a function initializes an object o
if it is invoked precisely once with that object as its receiver,
and this invocation happens before any of o’s properties

are accessed. For instance, function Rectangle in Figure 1
initializes all of the objects created on line 44 by invoking
new Rectangle(...).

If a function is only ever invoked using new and never in-
voked reflectively or using a normal function invocation, it
obviously initializes all objects created by these new invo-
cations. This provides an easy way to approximate the set of
objects that are initialized by a function. Let us first define an
over-approximation of the set of possible callees of an invo-
cation expression c by callees(c) := objects(cf ) where cf is
the part of c containing the invoked expression. Now, given a
function definition f , an under-approximation initializes(f)
of the set of objects that f initializes can be determined by
ensuring the following:

1. f is only invoked through new, that is

(a) No function/method call c has

callees(c) ∩ objects(f) 6= ∅.

(b) f is not invoked reflectively, i.e.,

args(apply, 0) ∩ objects(f) = ∅,

and similarly for bind and call.

2. For any new expression n with

callees(n) ∩ objects(f) 6= ∅

we have
callees(n) ⊆ objects(f)

This ensures that n definitely calls f .

The first condition ensures that f is invoked at most once
on each receiver object, and the second condition ensures
that it is invoked at least once. If both conditions hold, f ini-
tializes all its receiver objects, so we can set initializes(f) :=⋃

`∈objects(f) arg(`, 0); otherwise, we conservatively set
initializes(f) := ∅.

3.5 Well-scopedness
Just as there are no genuine constructors in JavaScript, there
are no real methods either. Although it is common to think
of a function stored in a property of an object o as a method
of o that is only invoked with o as its receiver, this is not
enforced by the language, and such a “method” can, in fact,
be invoked on any object. As shown in Figure 4 this leads to
problems when encapsulating properties.

We capture the notion of a function behaving “like a
method” by the concept of well-scopedness. A function f
is well-scoped in a function g if f is defined within g and
whenever an execution of g on some receiver object o eval-
uates the definition of f , yielding a new function object fo,
then this implies that fo is always invoked with o as its re-
ceiver. If g additionally initializes all objects on which it is



177 function A(g) {
178 if (g)
179 this.f = g;
180 else
181 this.f = function() {};
182 }
183
184 var a = new A(), b = new A(a.f);
185 b.f();

Figure 6. Example program to illustrate the approximation
of well-scopedness.

invoked, then f is guaranteed to behave like a method on
these objects.

To prove that a function definition f is well-scoped in
g, as expressed by the query wellscoped(f, g), it suffices to
check the following conditions:

1. f is a direct inner function of g.

2. f is only assigned to properties of the receiver of g:
whenever the right-hand side er of a simple assignment
may evaluate to f (i.e., objects(er)∩objects(f) 6= ∅), the
sole intra-procedural reaching definition of er is f itself,
and the left-hand side of the assignment is a property
expression of the form this.p (for some identifier p).

3. f is only invoked on the object in whose property it is
stored: any invocation expression c that may call f must
be of the form e.p(. . .), and mayHaveProp(o, p) is false
for every o ∈ proto+(objects(e)).

4. f is not invoked reflectively (cf. condition 1b in the defi-
nition of initializes).

The second condition is motivated by considering the
example program in Figure 6. The function stored in a.f is
not well-scoped in A: the receiver of A at the point where the
function is defined is a, yet when it is called through b.f the
receiver object is b. This non-well-scopedness results from
the assignment in line 179 and is detected by condition 2.

3.6 Intrinsics and Reflective Property Access
A number of intrinsic properties are treated specially by
the runtime system, the browser, or the standard library in
JavaScript, for instance the length property of array objects
or the src property of HTML image objects. Refactorings
must not attempt to modify these properties. We hence need
a query intrinsic so that intrinsic(`, p) holds whenever p is
an intrinsic property on an object labelled by `. This query
can be defined in terms of builtin, consulting the relevant
standards [7, 29].

Several standard library functions access properties of
their argument objects in a reflective way: for instance,
Object.keys returns an array containing the names of all
properties of its argument. To make it possible for refactor-
ings to check for this kind of usage, we need a query refl-
PropAcc such that reflPropAcc(`) holds whenever a prop-
erty of an object labelled by ` may be accessed reflectively

by one of these functions. This query can be defined in terms
of builtin, arg, ret and props.

Finally, queries builtin and arg also make it possible to
conservatively determine whether a program uses dynami-
cally generated code by checking whether the built-in func-
tion eval and its various synonyms are ever invoked, and
whether the intrinsic property innerHTML is assigned to.
Our refactoring specifications assume that such a check is
performed first and a warning is issued if a use of any of
these features has been detected.

4. Specifications of Three Refactorings
We will now give detailed specifications of the refactorings
RENAME, ENCAPSULATE PROPERTY and EXTRACT MOD-
ULE that were informally described in Section 2.

Each specification describes the input to the refactoring,
the preconditions that have to be fulfilled in order for the
refactoring to preserve program behavior, and the transfor-
mation itself. The preconditions are formulated in terms of
the queries introduced in the previous section.

We also provide a brief informal justification of the pre-
conditions.

4.1 RENAME

Input A named access a and a new name y.

Overview The refactoring renames a and its related ac-
cesses to y.

Definitions Let B :=
⋃

r∈related(a) base(r); this set labels
all objects that are affected by the renaming. Let x be the
name part of the access a.

Preconditions

1. x is not an intrinsic property on B:

∀` ∈ B : ¬intrinsic(`, x)

2. Every access to be renamed definitely has name x:

related(a) ⊆ definitelyNamed(x)

3. The accesses in related(a) can be renamed to y without
name capture:

∀r ∈ related(a) : visited(r, y) = ∅

In this case, we will also say that y is free for related(a).

4. y does not cause name capture on B, that is:

(a) Existing accesses are not captured:

∀r ∈ possiblyNamed(y) : visited(r) ∩B = ∅

(b) y is not an intrinsic property on B:

∀` ∈ B : ¬intrinsic(`, y)



(c) Properties of the objects in B must not be accessed
reflectively, that is:

i. For any for-in loop with loop expression e it must
be the case that B ∩ objects(e) = ∅.

ii. We must have ∀` ∈ B : ¬reflPropAcc(`).

Transformation Rename every access in related(a) to y.

Justification Precondition 2 prevents the renaming if it
could affect a computed property access whose name cannot
be statically determined.

Preconditions 3 and 4a ensure that accesses in the refac-
tored program resolve to the same property at runtime as in
the original program: by 3, an access renamed from x to y
is not captured by an existing property y; by 4a, an existing
access named y is not captured by a property renamed from
x to y.

Preconditions 1 and 4b ensure that the renaming does not
affect properties that have special meaning in the language;
for instance, renaming the prototype of a function or the
length property of an array should not be allowed.

Finally, precondition 4c ensures that none of the objects
whose properties may be affected by the refactoring have
their properties examined reflectively.

4.2 ENCAPSULATE PROPERTY

Input A fixed-property expression a.

Overview This refactoring identifies a function c that ini-
tializes all base objects of a and its related accesses, and
turns the property accessed by a into a local variable of c.

Any accesses to the property from within the function c
can be turned into accesses to the local variable if they hap-
pen from inside well-scoped functions; otherwise they might
refer to the wrong variable as seen in Section 2. Accesses
from outside c are handled by defining getter and setter func-
tions in c and rewriting accesses into calls to these functions.

The preconditions identify a suitable c, determine how to
rewrite accesses, and check for name binding issues.

Definitions Let x be the name part of a, and let g and s be
appropriate getter and setter names derived from x.

Let B :=
⋃

r∈related(a) base(r); this is the set of objects
whose properties named x we want to encapsulate.

Preconditions

1. There is a function definition c with B ⊆ initializes(c).
The getter and setter functions are introduced in c; since
c is invoked on every affected object before any of its
properties are accessed, we can be sure that these func-
tions are in place before their first use.

2. The affected objects do not appear on each other’s proto-
type chains, i.e.,

¬∃b1, b2 ∈ B : b2 ∈ proto+(b1)

3. Every access in related(a) is either a fixed-property ex-
pression or an identifier reference. (The latter can only
happen if a with statement is involved.)

4. There is a partitioning related(a) = Ai ] Ag ] As such
that:

(a) Every a ∈ Ai is of the form this.x, it is not an
operand of delete, and its enclosing function defi-
nition f is well-scoped in c, i.e. wellscoped(f, c).
These are the accesses that will be replaced by identi-
fier references x.

(b) No a ∈ Ag is in an lvalue position.
These accesses can be turned into invocations of the
getter function.

(c) Every a ∈ As forms the left-hand side of a simple
assignment.
These accesses can be turned into invocations of the
setter function.

5. Properties of B must not be accessed reflectively (cf.
precondition 4c of RENAME).

6. Naming checks:

(a) Ai can be refactored without name capture:

∀a ∈ Ai : lookup(a, x) ⊆ {global}

(b) The declaration of the new local variable x in c does
not capture existing identifier references.

∀a ∈ possiblyNamed(x) : visited(a) ∩ scope(c) = ∅

(c) x is not an intrinsic property on B:

∀` ∈ B : ¬intrinsic(`, x)

7. If Ag 6= ∅ then g must be free for Ag and must not cause
name capture on initializes(c) (cf. preconditions 3 and 4
of RENAME). Similarly, ifAs 6= ∅ then smust be free for
As and must not cause name capture on initializes(c).

Transformation Insert a declaration var x into c. Insert
a definition of the getter function into c if Ag 6= ∅, and
similarly for As and the setter function. Replace accesses
in Ai with x, accesses in Ag with invocations of the getter,
in As with invocations of the setter.

Justification This refactoring converts properties of ob-
jects into bindings in environment records. The precondi-
tions ensure that property accesses can be rewritten into ac-
cesses to the corresponding local variable binding, while
preventing any changes to other accesses to properties or lo-
cal variables that do not participate in the refactoring.

Consider a runtime object o labeled by some ` ∈ B.
By condition 1, there is precisely one invocation of c on o,
which creates an environment record ρo. In the refactored



program, this environment record contains a binding for a
local variable x, which is captured by the getter and setter
functions stored in properties g and s of o.

Consider now a property access ax in the original pro-
gram that accesses property x of object o. This means that
ax ∈ related(a), so condition 4 ensures that ax is in one of
Ai, Ag and As. In the two latter cases, the property access
will be rewritten into an invocation of the getter method g or
the setter method s on o.

By condition 7 this invocation will not be captured by an-
other method of the same name, and by condition 2 it will not
be captured by the accessor methods of another refactored
object. By condition 1, g and s are already defined, and by
condition 7 they are guaranteed not to have been overwritten
in the meantime, hence the accessor functions set up by c are
executed, accessing the correct binding in ρo.

If ax ∈ Ai, the property access is refactored to a simple
identifier reference x. We know from condition 4a that ax
must occur in some function definition f , which is well-
scoped in c, and that it must be of the form this.x. Hence f
is, in fact, invoked with o as receiver, which by the definition
of well-scopedness means that the invocation of c whose
bindings are captured by f also has receiver o. In other
words, f captures the bindings of ρo. Condition 6a ensures
that the identifier reference x in the refactored program is
not captured by any other local variable, and hence accesses
the binding of x in ρo as desired.

The requirement about ax not being an operand of
delete is purely technical: local variable bindings cannot
be deleted in JavaScript.

Since the set of properties of o has changed in the refac-
tored program, any code that reflectively accesses properties
of o or the set of property names of o may change its be-
havior; conditions 3, 5 and 6c guard against this. Finally,
condition 6b ensures that no existing local variable bindings
are upset by the newly introduced local variable x in c.

Remarks Note that condition 4 makes it impossible to
refactor accesses like ++e.x that both read and write the en-
capsulated property, unless they can be replaced by an iden-
tifier reference. It is straightforward to extend the refactoring
to take care of such accesses, at the cost of a slightly more
complicated transformation involving both getter and setter
invocations in the same expression [8].

4.3 EXTRACT MODULE

Input Contiguous top-level statements s1, . . . , sm con-
taining a set P = {p1, . . . , pn} of identifiers to extract and
an identifier M to be used as module name.

Overview The global variables p1, . . . , pn are turned into
properties of a newly declared global module variable M .
Schematically, the transformation performed by the refac-
toring is as follows:

s1;

.

.

.
sm;

⇒

var M = (function() {
var p1, . . ., pn;
s1; . . . sm;
return {

p1: p1, . . ., pn: pn

};
})();

We refer to the code defining M as the module initializa-
tion code. To reason about the correctness of the transforma-
tion, it is helpful to partition program execution into three
phases: before, during and after execution of the initializa-
tion code. Being a top-level statement, the module initializa-
tion code is executed only once.

None of the variables in P must be accessed before mod-
ule initialization since the module M containing them has
not been defined yet. After module initialization, on the
other hand, they can be accessed as properties of M , i.e.,
M.p1, . . . ,M.pn. It is clearly not possible to access them in
this way during module initialization (M is, after all, not de-
fined yet), but we can instead access the corresponding local
variables p1, . . . , pn if they are in scope.

Closures created during module initialization may still be
able to access a local variable even after module initializa-
tion has finished. This should, however, be avoided unless
it can be proved that the variable is never assigned to af-
ter module initialization: if not, the local variable pi and
the property M.pi may have different values, which could
change program behavior.

The preconditions determine a setQ of accesses that have
to be converted into property accesses of the formM.pi, and
a set U of accesses that can use the local variables of the
module. The preconditions also prevent access to module
variables before initialization and name binding issues.

Definitions Let S be the set of all accesses appearing in
the statements s1, . . . , sm, and let I ⊆ S be the accesses
that are not nested inside functions. Accesses in I are thus
guaranteed to only be evaluated during module initialization.

Let I∗ be an over-approximation of the set of all accesses
that may be evaluated before or during module initialization.
This can be obtained by building a transitive call-graph of all
top-level statements up to sm, using query callees to deter-
mine possible callees of invocations. Finally, let C contain
all accesses in the program except those in I∗. Accesses in
C are thus guaranteed only to be evaluated after module ini-
tialization is complete.

For p ∈ P , we define Ap to be the set of accesses that
may refer to the global variable p, and AP :=

⋃
p∈P Ap. We

define mutable(p) to hold if Ap contains a write access that
does not belong to I , i.e., if p may be written after module
initialization is complete.

Preconditions

1. Any access that may refer to some property in P must
refer to that property, i.e., for every p ∈ P and a ∈ Ap:

a ∈ definitelyNamed(p) ∧ visited(a, p) = {global}



Figure 7. The refactoring plug-in for Eclipse. The user has attempted to rename Vector.prototype.removeFirst to
remove, which the tool correctly determines would clash with an existing property of the same name.

2. There is a partitioning AP = Q ] U as follows:

(a) Q ⊆ C
(b) M is free for every q ∈ Q (cf. precondition 3 of

RENAME).

(c) For every u ∈ U referring to p ∈ P , the following
holds:

i. u ∈ I ∨ (u ∈ S ∧ ¬mutable(p))

ii. u is an identifier reference.

iii. lookup(u, p) ⊆ {global}.
3. M does not cause name capture on global (cf. precondi-

tion 4 of RENAME).

4. No p ∈ P is an intrinsic on global :

∀` ∈ B : ¬intrinsic(`, p)

Transformation Replace s1, . . . , sm with the definition of
module M as shown above; qualify accesses in Q with M .

Justification The refactoring introduces a new global vari-
able M and removes the global variables p1, . . . , pn. Con-
dition 3 ensures that no existing access to a variable M is
captured by the newly introduced module variable, and that
the set of global variables is not examined reflectively. Con-
dition 4 ensures that none of the global variables to be mod-
ularized has special semantics. It should, for instance, be im-
possible to extract the global variable window into a module.

The remaining preconditions ensure that accesses to
global variables p1, . . . , pm can be consistently refactored.

Condition 1 requires that any access either must definitely
refer to some p ∈ P , or must not refer to any variable in
P . Condition 2a checks that accesses in Q, which are to be
qualified with a reference to M , are only evaluated after the
module is defined. For the same set of accesses, condition 2b
ensures that the reference to M that will be inserted by the
refactoring cannot be captured by an existing variable M .

Finally, condition 2c makes sure that every access u ∈ U ,
which used to refer to one of the global variables p ∈ P ,
can directly access the local variable this variable has been
turned into. Sub-condition 2(c)i requires that u is either only
evaluated during module initialization, or that it refers to an
immutable module member and is lexically nested within the
module definition. Either way it can access module mem-
bers without qualification. Sub-condition 2(c)ii rules out the
somewhat subtle case of an access of the form e.p, where
e evaluates to the global object, but may have side effects;
such an access cannot simply be turned into an identifier ref-
erence p, as this would suppress the side effects of e. Sub-
condition 2(c)iii ensures that no existing local variable will
capture the refactored access u.

5. Implementation
We have implemented a refactoring tool in Java that offers
the refactorings described in Section 4. The tool is integrated
as a plug-in into Eclipse as shown in Figure 7.8 In this

8 Note that this is purely a UI-level integration; the underlying analysis
and the code for precondition checking and program transformation is
independent of Eclipse.



section, we will describe the pointer analysis that underlies
the implementation of the framework that we presented in
Section 3.

We first derive a flow graph from the source code of
the original program, similar to the one used in the TAJS
program analysis [18]. From this flow graph, we create a
def-use graph that abstracts away control flow and with
statements. We then run a pointer analysis using standard
techniques, with lattice and constraints that are reminiscent
of the ones used in Gatekeeper [12] (although without using
Datalog). The use of a def-use graph captures a small amount
of flow sensitivity, similar to what SSA-form has been shown
to contribute to a flow-insensitive analysis [16].

For context sensitivity, we experimented with both k-CFA
and object sensitivity (i.e., using the value of this as the
context), and found object sensitivity to be the most effec-
tive. The analysis uses heap specialization (i.e., some object
labels include a context component) and a simple widening
function to ensure termination when combined with object
sensitivity.

To obtain a useful modeling of arrays, we introduce a spe-
cial property name NumberProperty representing all proper-
ties whose name is a number (i.e., array entries). For dy-
namic property expressions where the property name is def-
initely a number, the analysis reads/writes the NumberProp-
erty of the receiver; otherwise, it conservatively reads/writes
all of its properties.

Several built-in functions (such as call and apply) are
supported by means of specialized transfer functions. All
other built-in functions are modelled by simple JavaScript
mock-up functions that we include in the analysis.

We model the HTML DOM and some other browser
features using a special object label DOM. Some global
variables, such as document, are initialized to refer to DOM.
Moreover, we conservatively assume that (1) any property of
DOM may point to DOM, (2) any function reachable from
DOM may be invoked with DOM as the this argument and
any number of actual arguments that all may point to DOM,
and (3) if DOM is invoked as a function, it stores all its
arguments as properties on DOM, and returns DOM. Rules
2 and 3 together take care of event handlers being registered
on HTML elements. We avoid many of the challenges that
arise with the more detailed modeling used in TAJS [20] by
using a relatively simple abstract domain.

Given this basis, the queries of the framework of Sec-
tion 3 are straightforward to implement, as are the refactor-
ings themselves.

6. Evaluation
To gain some insight into the practical applicability and use-
fulness of our approach, we have evaluated our refactoring
tool on a collection of existing JavaScript programs.

In situations where the tool determines that a requested
refactoring can be performed, the refactoring preconditions

ensure that it is safe to perform the refactoring, without
changing the behavior of the program. When a refactoring
attempt is rejected by the tool, either the refactoring would
in fact change the behavior of the program, in which case the
answer given by the tool is correct, or the rejection is caused
by the analysis being too conservative. In the latter case, the
imprecision may be in the refactoring preconditions that are
defined in terms of our queries (Section 4), in the definition
of the derived queries on top of the basic ones (Section 3.2–
3.6), or in the underlying pointer analysis that we employ
to implement the basic queries (Section 5). To quantify how
often these situations occur, we aim to answer these research
questions:

Q1: How often is a refactoring rejected because its precon-
ditions are too conservative?

Q2: How often is a refactoring rejected because a derived
query is defined too conservatively?

Q3: How often is a refactoring rejected because of impreci-
sion in the underlying pointer analysis?

For the RENAME refactoring, it is also relevant how it per-
forms compared to the naive alternative of simply using
search-and-replace through the program source code:

Q4: How often does our RENAME refactoring give a dif-
ferent outcome than syntactic search-and-replace as per-
formed in syntax-directed editors?

We collected a suite of benchmark programs and de-
signed a set of experiments for each of the refactorings spec-
ified in Section 4 to evaluate them with regard to these ques-
tions.

Table 1 shows an overview of our evaluation results, ex-
plained in more detail below: for every refactoring, the ta-
ble shows the total number of attempted refactorings on our
benchmarks in column “total applications”, with the num-
ber of successful applications in the next column; we parti-
tion the set of rejected applications according to our research
questions into cases where overly strict preconditions pre-
vented the application of an otherwise unproblematic refac-
toring, cases where imprecise derived queries were an obsta-
cle, cases where the underlying pointer analysis itself was at
fault, and finally cases where the rejection was indicative of
a real danger of unsoundness.

We will now first give an overview of our benchmark
collection, then present detailed evaluation results for each
of the refactorings, and finally summarize our findings by
answering the research questions.

6.1 Benchmark Programs
We have gathered 50 JavaScript programs. Four are taken
from the V8 benchmarks,9 23 from Chrome Experiments,10

9 http://v8.googlecode.com/svn/data/benchmarks/
10 http://www.chromeexperiments.com/



refactoring total
applications

successful
applications

rejected applications

total imprecise imprecise imprecise justifiedpreconditions queries analysis
RENAME 16612 10693 5919 0 0 669 5250
ENCAPSULATE PROPERTY 510 363 147 35 0 30 82
EXTRACT MODULE (1) 50 43 7 0 0 0 7
EXTRACT MODULE (2) 15 11 4 0 0 0 4

Table 1. Quantitative evaluation of our refactoring tool.

18 from the 10K Apart Challenge,11 and 5 from IE Test
Drive.12 When collecting these benchmarks, we explicitly
excluded programs that our pointer analysis cannot analyze
in a few minutes and ones that use non-trivial dynamic code
execution (e.g., using eval). Four of the benchmarks use
trivial dynamic code, such as setTimeout("loop();",
50), which we have manually replaced by the more manage-
able variant setTimeout(loop, 50). For 27 of the bench-
marks, the tool produces a warning that they may contain
assignments to the innerHTML property of a DOM object,
which can potentially be used to run dynamically generated
code, however manual inspection revealed that this is not the
case in any of the programs.

Each benchmark comprises between 300 and 1700 lines
of JavaScript code, and all perform non-trivial tasks. On
a 3.0 GHz PC, each benchmark is analyzed in less than
4 seconds using 256 MB memory. The time required for
refactoring-specific computations is negligible compared to
the time taken by the pointer analysis.

6.2 RENAME

Our RENAME refactoring can rename both local variables
and properties. Local variables are trivial to rename since
there are no with statements in our benchmarks, so we focus
on renaming of properties.

We have systematically applied our refactoring to every
property expression and property initializer in each bench-
mark, with the aggregate results shown in Table 1 in the row
labeled RENAME. Out of a total of 16612 attempted rename
operations, 10693 were successfully applied, and 5919 were
rejected by our tool. Further analysis revealed that of these
rejections, 5250 were justified. Two benchmarks are respon-
sible for the remaining 669 rejections. In raytracer from
Chrome Experiments, there are 1062 renamable accesses but
665 of these are wrongly rejected, due to the pointer analy-
sis being imprecise. In flyingimages from the IE Test Drive
benchmarks, the program adds some custom properties to a
DOM element, which due to our imprecise DOM model are
then assumed to be intrinsic; thus our tool refuses to rename
these properties. The remaining 48 benchmarks do not give
rise to any RENAME-specific spurious warnings.

11 http://10k.aneventapart.com/
12 http://ie.microsoft.com/testdrive/

To evaluate how our tool compares to a simple search-
and-replace performed at the level of the abstract syntax tree
(AST) in a syntax directed editor, we use the equivalence
classes defined by the related query to divide all the accesses
in a benchmark into components. Accesses in a single com-
ponent always get renamed together. Our tool distinguishes
itself from simple search-and-replace tools when different
components contain accesses with the same name. In par-
ticular, our tool will rename a smaller set of accesses than
search-and-replace would, and if one component can be re-
named while another cannot (e.g., an access in it may refer
to an intrinsic property), search-and-replace would change
the program’s behavior, whereas our approach would reject
the refactoring.

The tool finds that 28 of the 50 benchmarks contain multi-
ple renamable components with the same name, and 19 con-
tain same-name components where some can be renamed
and others are correctly rejected (18 benchmarks fall into
both categories). Overall, our tool succeeds in renaming
1567 components, with 393 of them having a name in com-
mon with another component in the same program.This in-
dicates that our RENAME refactoring will often be more pre-
cise than search-and-replace in practice.

To summarize, RENAME leads to smaller source code
transformations than search-and-replace in about 25% of the
cases. Of the refactoring attempts that were not justifiably
rejected, it issues spurious warnings in only 6% of the cases.
The spurious warnings are all caused by imprecision in the
pointer analysis.

6.3 ENCAPSULATE PROPERTY

We have exhaustively applied the ENCAPSULATE PROP-
ERTY refactoring to every property expression of the form
this.x appearing in an lvalue position inside a function that
is invoked at least once in a new expression, with the results
shown in Table 1 in the row labeled ENCAPSULATE PROP-
ERTY.

In the 50 benchmarks, there are 510 such expressions.
Our tool is able to successfully encapsulate 363 of them,
ignoring warnings about assignments to innerHTML. In the
remaining 147 cases, the tool reports a precondition failure
and rejects the refactoring.

For 82 of these cases, the rejection is justified: in three
cases, getter/setter methods already exist; in eight cases the



encapsulated property would shadow references to a global
variable; in the remaining 71 cases there is a name clash with
a parameter or local variable of the enclosing function. We
manually verified that these cases can be refactored success-
fully if the naming conflict is first resolved by renaming.

Of the 65 remaining cases, where the refactoring is re-
jected although it should have been successful, 35 are due
to a limitation of our specification of ENCAPSULATE PROP-
ERTY: it requires all objects on which the property is encap-
sulated to be initialized by the same function. In some cases,
however, there are identically named properties on objects
constructed by different constructors, which need to be en-
capsulated at the same time because there are accesses that
may refer to either property. Supporting this situation seems
like a worthwhile extension.

Finally, there are 30 cases where the pointer analysis
yields imprecise results that cause spurious precondition vi-
olations. Of these, 19 cases could be fixed by improving the
modelling of standard library array functions.

The concept of well-scopedness and the conservative
analysis to determine well-scopedness described above prove
to be adequate on the considered benchmarks: there are 28
cases where properties to be encapsulated are accessed from
within an inner function of the constructor, and in all cases
the analysis can establish well-scopedness, allowing the ac-
cess to be replaced by an identifier reference instead of a
getter invocation.

In summary, our tool is able to handle about 85% of
the encapsulation attempts satisfactorily (not counting the
justifiably rejected attempts). The remaining 15% are caused
by, in about equal parts, restrictions of the specification and
imprecision of the pointer analysis.

6.4 EXTRACT MODULE

The EXTRACT MODULE refactoring is difficult to evaluate
in an automated fashion, since appropriate module bound-
aries have to be provided for every benchmark. We have
performed two sets of experiments. In the first experiment,
we extracted, for every benchmark, the code in each HTML
script element into its own module; in the case of stand-
alone benchmarks we chose source files as the unit of mod-
ularization instead. The results of this experiment are shown
in Table 1 in the row labeled EXTRACT MODULE (1). In the
second experiment, we manually determined a suitable mod-
ularization for a subset of our benchmarks and used our tool
to perform it; again, the results are shown in Table 1 in row
EXTRACT MODULE (2).

For the first experiment, the automated modularization
was successfully performed on 43 out of 50 benchmarks.
On the remaining seven benchmarks, the refactoring was re-
jected since they contain accesses to module members for
which the refactoring cannot prove that they either definitely
happen only during module initialization, or definitely hap-
pen only after initialization. These rejections turn out to be
justified: the accesses in question are performed by event

handlers registered before or during module initialization.
While it is highly likely that these handlers will not fire until
after initialization is complete, this is not guaranteed.

In three cases, the rejections are arguably due to the very
coarse module structure imposed by this experiment. If the
code that installs the event handlers is excluded from the
module, the handlers are guaranteed to only fire after ini-
tialization and the refactoring can go ahead. In the remain-
ing four benchmarks, on the other hand, event handlers are
installed through HTML attributes before the handler func-
tions are even defined, which could potentially cause races
even in the original program.

For the second experiment, we randomly selected 15
benchmarks that are not already modularized and whose
global variables have sufficiently descriptive names to make
it easy to manually determine a possible modularization. In
three of these programs, we took comments into account that
already suggested a functional grouping of global functions.
Our tool can perform the proposed modularization on 11 of
the 15 benchmarks. The remaining four are again rejected
due to potential races on event handlers.

In both experiments, our tool was thus able to handle all
test cases correctly. The categorization of accesses according
to whether they are evaluated before or after module initial-
ization proved to be a valuable aid in detecting potentially
subtle bugs that could be introduced by the refactoring.

6.5 Summary
Overall, the results of our evaluation are promising. Most
attempted refactorings are performed successfully, and when
our tool rejects a refactoring it mostly does so for a good
reason. We briefly summarize our findings and answer the
general research questions posed at the beginning of this
section.

Q1: Rejections due to rigid preconditions Spurious rejec-
tions resulting from overly conservative preconditions are
not very common: this happens in 35 out of 510−82 appli-
cations (8.2%) of ENCAPSULATE PROPERTY, and not at all
for RENAME and EXTRACT MODULE.

Q2: Rejections due to derived queries The derived queries
are always sufficiently precise in our experiments. For in-
stance, ENCAPSULATE PROPERTY needs to prove well-
scopedness for 28 functions, and all of them are indeed
shown to be well-scoped by the algorithm described in Sec-
tion 3.5.

Q3: Rejections due to imprecise pointer analysis Spuri-
ous rejections resulting from imprecision of the pointer anal-
ysis occur occasionally: 669 of 16612−5250 applications
(5.9%) of RENAME and 30 of 510−82 applications (7.0%)
of ENCAPSULATE PROPERTY are rejected for this reason;
and none for EXTRACT MODULE.

Q4: Improvement over naive search-and-replace For 393
out of 1567 groups of accesses that must be renamed to-



gether (25%), RENAME avoids some of the unnecessary
modifications performed by AST-level search-and-replace.

These results indicate that the precision of the refactoring
preconditions, the derived queries, and the pointer analysis
is sufficient for practical use, and that our technique has
advantages in practice compared to naive approaches.

6.6 Discussion
The validity of our evaluation may be threatened by (1)
benchmark selection, (2) analysis limitations, and (3) selec-
tion of refactoring targets.

While we only consider a relatively small number of
benchmarks of modest size, the programs included do
demonstrate a variety of application areas, from the more nu-
merically oriented V8 benchmarks to browser-based games
and visualization programs in the other benchmark sets.
They also exhibit very different programming styles, with
some benchmarks making heavy use of the object system
and others written in an entirely procedural style.

One notable feature of all our benchmarks is that none
of them make use of a framework library such as jQuery,
Prototype, or MooTools. The pointer analysis currently used
in our implementation cannot tackle such libraries due to
scalability issues. It is possible that the meta-programming
techniques employed by some of these frameworks could
lead to very imprecise analysis results that may lead to a
large number of spurious rejections. In this case, it could be
worthwhile to extend the analysis with special knowledge
about particularly tricky framework functions.

Our analysis has certain limitations that may affect the va-
lidity of our results. In particular, our implementation only
analyzes code that is reachable either from top-level state-
ments or from the DOM. Other code does not influence
the refactoring and is itself not affected by refactoring. This
means that our tool cannot safely be applied to library code
alone, since most of the functions in a library will be consid-
ered dead code when there is no client to invoke them. For
statically typed languages, this problem can be side-stepped
by assuming, for instance, every method to be an entry point,
with the parameter types providing a conservative approxi-
mation of the possible points-to sets of arguments. This is
not easy to do in JavaScript, and making worst-case assump-
tions about argument values would lead to unacceptable pre-
cision loss. All of our benchmarks are standalone applica-
tions, yet about half of them contained some amount of un-
used code. This indicates that the issue may indeed deserve
further attention.

As a second restriction, our analysis currently does not
attempt to analyze dynamically generated code. We handle
this in our refactoring tool by issuing a warning if a potential
use of such code is detected to alert the user of possible
changes to the behavior of the program.

Finally, our pointer analysis does not currently model
ECMAScript 5 getter and setter properties on object literals,
but these are not used in the benchmarks anyway.

These shortcomings of the analysis, however, do not seri-
ously jeopardize the validity of our approach, since we have
been careful to introduce a clean separation between anal-
ysis and refactoring by means of the framework described
in Section 3. This makes it easy to plug in a more powerful
pointer analysis without having to change the specifications
or implementations of the refactorings themselves.

As a final threat to validity, one might question the se-
lection of targets on which to apply our refactoring tool.
We have based our evaluation on exhaustively applying the
refactorings to as many targets in the code as possible to
avoid selection bias. Many of these applications would most
likely not make sense in an actual development context; it
is hence not clear what percentage of spurious rejections a
user of our tool would experience in practice. However, the
overall percentage of spurious rejections in our experimental
evaluation is so low as to make it seem likely that our tool
would behave reasonably in practice.

7. Related Work
Two broad categories of related work can be distinguished:
previous work on refactoring in general, and work on static
analysis of JavaScript programs.

7.1 Refactoring
The field of refactoring started in the early 1990s with the
Ph.D. theses of Opdyke [23] and Griswold [11]. Since then,
the refactoring community has focused on developing au-
tomated refactoring tools for both dynamically typed lan-
guages (e.g., [22, 24]), and for statically typed languages
(e.g., [10, 27, 28]). The discussion below will focus on pre-
vious work on refactoring for dynamically typed languages.

Work by Roberts et al. on the Refactoring Browser [24]
targets Smalltalk, a dynamically typed language in which
some of the same challenges addressed in this paper arise.
For method renaming, e.g., it becomes difficult or impossible
to determine statically which call sites need to be updated
in the presence of polymorphism and dynamically created
messages. Unlike our approach, which is based on static
pointer analysis, Roberts et al. adopt a dynamic approach to
this problem, in which renaming a method involves putting
a method wrapper on the original method. As the program
runs, the wrapper detects sites that call the original method
and rewrites those call sites to refer to the renamed method
instead. The main drawback of this approach is that it relies
on a test suite that exercises all call sites to be rewritten.

The Guru tool by Moore [22] provides automatic refac-
toring for the Self programming language. Guru takes a col-
lection of objects, which need not be related by inheritance,
and restructures them into a new inheritance hierarchy in
which there are no duplicated methods, in a way that pre-



serves program behavior. Moore’s algorithm is based on a
static analysis of the relationship between objects and meth-
ods in the system. Unlike our work, Moore’s approach does
not involve the programmer in deciding what refactorings to
apply and where to apply them.

Refactoring support in IDEs for JavaScript appears to be
in its infancy. Eclipse JSDT [6] and the JetBrains JavaScript
Editor [21] aim to provide refactoring support for JavaScript,
but the current implementations are fairly naive. RENAME in
the JavaScript Editor, for instance, seems to essentially just
perform search-and-replace on the AST. Renaming property
x in Circle in the example of Figure 1, for instance, would
also rename all properties with name x in the jsDraw2D
library that the program uses.

Two projects at the IFS Institute for Software focused
on developing JavaScript refactoring plug-ins for Eclipse
JSDT [2, 3], but their results do not seem to have been
published and are not currently available.

7.2 Analysis for JavaScript
Several authors have pursued forms of static program anal-
ysis for JavaScript. The TAJS analysis tool by Jensen et
al. [18–20] aims at detecting common programming errors in
JavaScript programs. Anderson et al. [1] define a type sys-
tem for a core calculus based on JavaScript along with an
associated constraint-based type inference algorithm. Jang
and Choe [17] use a constraint-based analysis for optimiz-
ing programs written in a restricted variant of JavaScript.
The Gatekeeper tool by Guarnieri and Livshits [12] and the
Actarus tool by Guarnieri et al. [13] use static analysis to
enforce security policies in JavaScript programs, e.g., that
a program may not redirect the browser to a new location
or that untrusted information cannot flow to sensitive opera-
tions. Guha et al. [15] describe a core calculus for JavaScript
and use that formalism to design a type system that stati-
cally ensures a form of sandboxing. Other work by Guha
et al. [14] involves a k-CFA analysis for extracting mod-
els of client behavior in AJAX applications. The Kudzu
tool by Saxena et al. [25] performs symbolic execution on
JavaScript code and uses the results to identify vulnerability
to code injection attacks.

Like our work, many of these analyses rely heavily on the
results of a pointer analysis. For example, the TAJS tool per-
forms a pointer analysis as part of its analysis, the optimiza-
tion technique by Jang and Choe relies directly on pointer
analysis, and Gatekeeper’s security policies are expressed
in terms of a Datalog-based pointer analysis. In all of these
instances, the pointer analysis provides may-point-to infor-
mation, similar to the underlying analysis in our refactoring
framework. However, as we have illustrated in Sections 2
and 3, may-point-to information does not directly provide
a useful abstraction for sound refactorings in JavaScript,
which has motivated the higher-level concepts that appear as
queries in our framework, such as the notions of relatedness
and well-scopedness.

8. Conclusion
We have presented a principled approach for tool-supported
refactoring for JavaScript programs. The key insight of our
work is that—despite the challenging dynamic features of
the JavaScript language—it is possible to capture fundamen-
tal correctness properties of JavaScript refactorings using a
small collection of queries in a framework based on pointer
analysis. With this framework, we have demonstrated that
the complex preconditions of refactorings, such as RENAME,
ENCAPSULATE PROPERTY and EXTRACT MODULE, can be
expressed in a concise manner. Our experiments show that
the refactoring preconditions we formulate have high accu-
racy. Most importantly, if a programmer’s request to perform
a refactoring is rejected by the tool, it is usually because the
refactoring would in fact change the behavior of the pro-
gram.

In future work, we will focus on advancing the scalability
of the underlying pointer analysis, and we plan to provide
specifications and implementations of other refactorings by
way of our framework. Another direction of work is to adapt
our techniques to other dynamically typed languages.
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