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Abstract
Many JavaScript programs are written in an event-driven
style. In particular, in server-side Node.js applications, op-
erations involving sockets, streams, and files are typically
performed in an asynchronous manner, where the execution
of listeners is triggered by events. Several types of program-
ming errors are specific to such event-based programs (e.g.,
unhandled events, and listeners that are registered too late).
We present the event-based call graph, a program represen-
tation that can be used to detect bugs related to event han-
dling. We have designed and implemented three analyses for
constructing event-based call graphs. Our results show that
these analyses are capable of detecting problems reported on
StackOverflow. Moreover, we show that the number of false
positives reported by the analysis on a suite of small Node.js
applications is manageable.

Categories and Subject Descriptors F3.2 [Semantics of
Programming Languages]: Program Analysis

Keywords event based-systems; static analysis; JavaScript

1. Introduction
JavaScript has rapidly become one of the most popular pro-
gramming languages1 and is now being used in several ar-
eas beyond its original domain of client-side scripting. For
example, Node.js2 is a popular platform for building server-
side web applications written in JavaScript, and JavaScript
is one of the primary languages used for application devel-
opment in the Tizen Operating System3 for mobile devices.
As a testament to the popularity of Node.js, the npm pack-

1 See http://langpop.com/.
2 See http://www.nodejs.org/.
3 See https://www.tizen.org/.

age repository has recently surpassed Maven Central and
RubyGems with more than 132,000 available packages and
over 250 packages added every day.

As a result of JavaScript’s increasing popularity, there has
been a growing demand for tools that assist programmers
with tasks such as program understanding and maintenance
[23, 31], bug detection and localization [3, 17], refactoring
[6, 7], and detecting and preventing security vulnerabilities
[9, 26, 33]. Many such tools rely on static analysis to approx-
imate a program’s behavior. One program representation that
is commonly used in static analysis is the call graph, which
associates with each call site in a program the set of func-
tions that may be invoked from that site. For example, a tool
for finding security vulnerabilities might use a call graph to
detect possible data flows from tainted inputs to security-
sensitive operations, and a refactoring tool may rely on a call
graph to determine how to inline a function call.

However, a traditional call graph reflects only the inter-
procedural flow of control due to function calls, and ignores
the event-driven flow of control in many JavaScript applica-
tions. For example, interactive applications that access the
HTML Document Object Model (DOM) typically do so by
associating event listeners with DOM nodes that correspond
to fragments of an HTML document in a browser. Similarly,
server-side applications based on Node.js are typically writ-
ten in an event-driven style which heavily relies on callbacks
that are invoked when an asynchronously executed opera-
tion has completed. Several new types of bugs may arise
in event-driven programs. For example, an application may
emit events for which no listener has been registered yet, or
an event listener may be unreachable code because an event
name was mis-spelled or the event listener was registered on
the wrong object. In Section 2, we discuss a few examples of
such errors that were reported on StackOverflow4, a popular
discussion forum for programming-related problems.

Our goal in this paper is to detect errors in event-driven
Node.js JavaScript programs using static analysis. We ob-
serve that traditional call graphs are not suitable in this con-
text, because they do not reflect the flow of control that is
implied by the registration of event listeners and the emis-
sion of events. Therefore, we propose the event-based call

4 http://www.stackoverflow.com/
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graph, an extension of the traditional notion of a call graph
with nodes and edges that reflect the flow of control due to
event handling.

We show how event-based call graphs can be used as the
basis for detecting several types of errors, and present a fam-
ily of analyses for computing event-based call graphs with
varying cost and precision. Specifically, we extend the λJS
calculus [10] with constructs for event listener registration
and event emission. Based on this extended calculus, we
present an analysis framework and three instantiations that
we will refer to as the baseline, event-sensitive and listener-
sensitive analysis. The event- and listener sensitive analyses
compute separate dataflow facts based on what events have
been emitted and what listeners are registered, respectively.
We implement these variants in a static analysis tool called
RADAR. We experimentally evaluate RADAR by applying it
to buggy Node.js programs from the StackOverflow website
and to programs from the Node.js documentation [5] and the
Node.js in Action book [4].

In summary, our paper makes the following contributions:

• We identify errors that may arise in event-based JavaScript
programs.
• We extend the λJS calculus with constructs for event

listener registration and event emission.
• We define the notion of an event-based call graph, which

extends the traditional notion of a call graph with nodes
and edges that reflect the flow of control due to events,
and show how this graph can be used to detect errors.
• We demonstrate that event-based call graphs are useful

for finding errors by applying them to several buggy
Node.js programs from the StackOverflow website.
• We present three analyses, with varying cost and preci-

sion, for constructing event-based call graphs. For con-
venience, we will refer to these as the baseline, event-
sensitive and listener-sensitive analysis.

2. Motivating Examples
In this section, we examine a few examples of buggy Node.js
programs (taken from StackOverflow) that reflect actual
problems experienced by Node.js developers. Our goal is
to develop a static analysis that can detect these bugs, pin-
point their location to the programmer, and report few to
none spurious warnings. We chose to focus on these Stack-
Overflow examples because they reflect real bugs that real
programmers are struggling with. While they are small, they
still reveal that existing techniques that assume a single event
loop (e.g., TAJS [13] and JSAI [18]) are unable to avoid spu-
rious warnings (on corrected programs).

2.1 StackOverflow Question 19167407
Consider the program of Figure 1. Here, the programmer’s
goal is to write an application that reads an mp4 stream from
YouTube, and write its contents to a local file. To this end,

1 var writing = fs.createWriteStream(’video.mp4’);

2 var stream =

3 ytdl(’https :// www.youtube.com/

4 watch?v=jofNR_WkoCE ’,

5 { filter: function(format) {

6 return format.container

7 === ’mp4’; },

8 quality: "lowest" });

9 stream.pipe(writing );

10
11 var completed_len = 0;

12 var total_len = 0;

13
14 writing.on(’data’, function(chunk) {

15 console.log(’received data!’);

16 completed_len += chunk.length;

17 });

18
19 writing.on(’close ’, function () {

20 console.log(’close ’);

21 res.send(’completed!’);

22 });

Figure 1. A Node.js program in which the programmer
registers a listener with the wrong stream. See http://

stackoverflow.com/questions/19167407/.

the programmer relies on the ytdl() function provided by
the YouTube downloader module for Node.js.

The program first creates a stream where the contents are
to be written, on line 1. Then, on lines 2–8 a stream is created
for reading the contents from YouTube. Next, on line 9, the
contents of the latter stream are piped into the former. After
initializing some counters on lines 11 and 12, two listeners
are registered with the write-stream. First, on lines 14–17 a
listener is associated with data events to update the log and
counter. Second, on lines 19–22, a listener is associated with
close events to write a message to the log, and create an
appropriate response.

The programmer reports that “Weirdly enough, even
though ‘close’ fires whenever the download is done, I’m not
getting any logs from the ‘data’ event. The video is written
correctly.” The problem (correctly diagnosed on StackOver-
flow) is that data events are only associated with readable
streams, and not with writable streams. On lines 14–17, the
programmer inadvertently bound the event listener to the
wrong stream.

Our static analysis tool can detect this type of “dead
listener” bug and report that the data event is never emitted
on the writable stream object.

2.2 StackOverflow Question 19081270
Figure 2 shows another problematic Node.js code fragment
taken from StackOverflow, which relies on the restlr li-
brary to facilitate interaction with HTTP servers. Lines 4–8
assign a function to variable restlerHtmlFile. The call
rest.get(Url) within this function creates a GET request
to obtain the contents of a URL. The call .on(’complete’,

http://stackoverflow.com/questions/19167407/
http://stackoverflow.com/questions/19167407/


1 var fs = require(’fs’);

2 var rest = require(’restler ’);

3
4 var restlerHtmlFile = function(url) {

5 rest.get(url).on(’complete ’, function(res) {

6 fs.writeFileSync(’file.html’, res);

7 });

8 };

9
10 if (require.main == module) {

11 restlerHtmlFile(’http :// obscure -refuge -7370.

12 herokuapp.com/’);

13 fs.readFileSync(’file.html’);

14 } else {

15 exports.checkHtmlFile = checkHtmlFile;

16 }

Figure 2. A Node.js program in which the programmer
is incorrectly combining synchronous and asynchronous
calls. See http://stackoverflow.com/questions/

19081270/.

...) on line 5 serves to write the page contents to file.html
when the request completes. Then, on line 11, the function
bound to restlerHtmlFile is invoked to read the contents
of the URL http://obscure-refuge-7370.herokuapp-

.com/ into the file file.html, and on line 13, this file is
read by calling fs.readFileSync(’file.html’). The
programmer reports on StackOverflow that the program
crashes with an error message “no such file or directory
’file.html’ at Object.fs.openSync (fs.js:427:18)”.

The problem here has to do with the fact that the func-
tion passed in the call .on(’complete’, ...) on line 5
is invoked asynchronously, when the GET request has
completed. However, line 13, in which the generated file
file.html is written, executes immediately after line 11,
without making sure that the file creation has completed.

There are various ways in which the code can be fixed.
One solution, which is suggested on StackOverflow, is to
move the call fs.readFileSync(’file.html’) inside
the definition of the asynchronous event listener, so that it
will not execute before the writing of the file has completed.

The question at this point is how the programmer could
have observed that the code is buggy. Here, the key issue
is that the programmer implicitly assumed that the read-
operation on line 13 will always execute after the write-
operation on line 6. The static analyses that we present in
this paper can determine that no such ordering exists in this
case, and can be used in the context of a bug-finding tool to
alert programmers early to this kind of problem.

2.3 Limitations of Current Static Analyses
Figure 3 is an example taken from the online Node.js doc-
umentation that shows how to correctly sequence asyn-
chronous operations. The top part of the program performs
rename and stat operations, but although the rename call
appears before the stat call, there is no guarantee that the

1 // incorrect sequencing

2 fs.rename(’a.txt’, ’b.txt’);

3 fs.stat(’b.txt’, function (err , stats) {

4 console.log(’size: ’ + stats.size);

5 });

1 // correct sequencing

2 fs.rename(’a.txt’, ’b.txt’, function () {

3 fs.stat(’b.txt’, function (err , stats) {

4 console.log(’size: ’ + stats.size);

5 });

6 });

Figure 3. An example of incorrect (top) and correct (bot-
tom) sequencing of asynchronous operations in Node.js.

two operations will be executed in that order. The bottom
part shows the corrected program where the stat call is
nested inside a callback for the rename operation.

Current state-of-the-art static analyzers for JavaScript
such as TAJS [13] and JSAI [18] model events in a way that
allows them to detect the error in the top program. However,
when these tools are applied to the corrected program at the
bottom they will still produce a spurious warning! This is
because TAJS and JSAI use a simple event model where the
event loop is implemented as “... a non-deterministic execu-
tion of event-handling functions.” [18]. However, in order to
accurately capture the behaviour of the program in the bot-
tom part of Figure 3 it is crucial that the analysis can prove
that the outer callback is always executed before the inner
callback. That is, if there is only a single non-deterministic
event-loop then the analysis cannot rule out the spurious be-
haviour that the stat may happen before the rename. In
this paper we develop static analyses that can rule out such
behaviour by an appropriate unfolding of the event loop.

3. Language
The focus of this paper is to develop program representa-
tions and analyses that are useful for understanding the be-
havior of event-based JavaScript programs. JavaScript is a
complex language with features such as prototype-based in-
heritance, dynamic property access, implicit coercions and
on-the-fly code evaluation with eval. Much recent research
effort has been invested in studying these features [7, 13, 14,
18, 21, 25]. However, surprisingly little research has focused
on the event-driven nature of control flow in JavaScript ap-
plications. We wish to provide a formalization of how events
interact with JavaScript, but without having to deal with the
complicated features mentioned above. Therefore, we ex-
tend a minimal JavaScript calculus [10] with constructs for
event handling.

3.1 Design Choices
We highlight some important design choices that were made
when formalizing the semantics of events and listeners.

http://stackoverflow.com/questions/19081270/
http://stackoverflow.com/questions/19081270/


These choices reflect similar choices made by the Node.js
developers and of JavaScript in general.

• Execution is single-threaded and non-preemptive. An
event listener must run to completion before another
event listener may begin execution.
• An object may have multiple event listeners registered

for the same event. The event listeners are executed in
registration order, if that event is emitted.
• If the execution of an event listener f for an event τ

registers an event listener f ′ for the same event τ then
f ′ is not executed until τ is emitted again.
• Event names are drawn from a known finite set.5

3.2 Syntax of λε
Guha et al. describe a core calculus for JavaScript called
λJS [10]. The syntax of this language is shown in Figure 4.
The reduction semantics are provided in their paper and are
largely unchanged, except as noted below. The language λJS
has primitive values, objects, functions and references. The
primitive values are booleans, numbers, strings, null and
undefined. Values are primitive values, heap locations, ob-
jects or functions. Objects are immutable maps from fields to
values. Functions are lambda expressions. The expressions
are standard except for two operations that manipulate the
heap: The ref expression evaluates its argument to a value,
stores that value in memory and returns the address of where
it was stored. The deref expression evaluates its argument
to an address and retrieves the value of that address from
memory. JavaScript features that are not in λJS are compi-
lable from JavaScript into λJS as shown in [10]. Thus λJS
provides a minimal calculus which is still sufficiently ex-
pressive to model all aspects of JavaScript (except the eval
expression).

We turn λJS into an event-based language λε by intro-
ducing events and listeners into the syntax and semantics.
Specifically, we introduce three new terms:

Listen: e1.listen(τ, e2): An expression that registers a lis-
tener for when τ is emitted on the receiver object. The ex-
pression e1 is the address of the receiver object on which
the listener is registered, the expression e2 is the event
listener (i.e., a function value), and τ is the event name.

Emit: e1.emit(τ, e2): Emits (i.e., triggers) an event on an
object, which results in scheduling all event listeners
registered for that event on that object. If multiple event
listeners are registered for the same event then they are
scheduled in registration order. The expression e1 is the
address of the receiver object, τ is the event name and e2
is the argument passed to the event listener(s).

5 This assumption is only made to simplify the presentation of the seman-
tics rules. In practice, event names are ordinary strings that may be com-
puted at run-time. Our implementation, described in Section 6, handles such
cases by using a string analysis to track computed event names.

c ∈ Cst = bool | num | str | null | undef [constant]

v ∈ Val = c [literal]
| a [address]
| {str : v · · · } [object]
| λ (x · · · ) e [function]

e ∈ Exp = v [value]
| x [variable]
| e = e [assignment]
| let (x = e) e [binding]
| e (e · · · ) [call]
| e.f [field load]
| e.f = e [field store]
| ref e [address of]
| deref e [value at]

x ∈ Var = is a finite set of variable names.
f ∈ Fld = is a finite set of field names.
a ∈ Addr = is an infinite set of memory addresses.
λ ∈ Lam = is the set of all lambda expressions.

Figure 4. Syntax of λJS.

e ∈ Exp = • [event loop]
| e.listen (τ, e) [attach listener]
| e.emit (τ, e) [emit event]

τ ∈ Event = is a finite set of event names.

Figure 5. Syntax of λε.

E = �

| E.listen (τ, e) | v.listen (τ, E)

| E.emit (τ, e) | v.emit (τ, E)

Figure 6. Evaluation Contexts for λε. The � symbol repre-
sents the hole in the evaluation context.

Loop: •: An expression which represents the “event-loop”,
i.e., the situation when the call stack is empty and sched-
uled event listeners are extracted from the event queue
and executed. We assume, by transformation if neces-
sary, that the last expression of the “top-level” function
is a single •. Intuitively, the purpose of • is to explicitly
represent when event listeners are allowed to execute.

We call the extended language λε. The syntax of the new
terms is shown in Figure 5.



σ ∈ Heap = Addr→ Val
ϑ ∈ Listener = Addr× Event→ Lam?

π ∈ Queue = Addr× Event→ (Lam× Val)?

s ∈ State = Heap× Listener× Queue× Exp

Figure 7. Runtime of λε.

〈σ, ϑ, π, e〉 ↪→? 〈σ′, ϑ′, π′, e′〉
〈σ, ϑ, π,E[e]〉 ↪→ 〈σ′, ϑ′, π′, E[e′]〉

[E-CTX]

o ∈ Addr f = λ (x · · · ) e
ϑ′ = ϑ[(o, τ) 7→ f :: ϑ(o, τ)]

〈σ, ϑ, π, o.listen(τ, f)〉 ↪→ 〈σ, ϑ′, π, undef〉
[E-LISTEN]

o ∈ Addr ϑ(o, τ) = λ1 :: · · · :: λn

π′ = π[(o, τ) 7→ (λ1, v) :: · · · :: (λn, v) :: π(o, τ)]

〈σ, ϑ, π, o.emit(τ, v)〉 ↪→ 〈σ, ϑ, π′, undef〉
[E-EMIT]

o ∈ Addr π(o, τ) = (λ1, v1) :: · · · :: (λn, vn)
e = λn(vn); . . . ;λ1(v1) π′ = π[(o, τ) 7→ Nil]

〈σ, ϑ, π, •〉 ↪→ 〈σ, ϑ, π′, e; •〉
[E-LOOP]

Figure 8. Semantics of λε. Here the notation x :: xs is cons
and Nil denotes the empty list.

3.3 Runtime of λε
The runtime of λε consists of (1) a heap σ, which is a partial
map from addresses to values, (2) a map of registered event
listeners ϑ, which is a map from addresses and event names
to a list of event listeners, and (3) a queue of scheduled func-
tions π, which is also a map from addresses and event names
to an ordered list of functions calls. (The calls are not evalu-
ated until they are executed.) The runtime environment of
λε is depicted in Figure 7. The queue π must maintain a
separate list of listeners for each address and event name
because no total ordering exists on the event listener exe-
cutions. However, for each object and event, the order of lis-
tener executions is defined, so a single global unordered set
of pending listener executions would be imprecise. A con-
figuration is a 4-tuple c = 〈σ, ϑ, π, e〉 consisting of the heap,
the event listeners, the queue and the current expression.

3.4 Semantics of λε
The semantics of λε is defined by adding four new rules to
those in [10]. As in [10], we use evaluation contexts [8] to
specify the order in which sub-expressions are evaluated in
expressions.

An evaluation context is a tree with a hole. The hole
is denoted by � and represents where in the expression
evaluation should proceed. The evaluation contexts for the

new constructs are shown in Figure 6. The semantics for the
new terms are in Figure 8 and explained further below:

[E-CTX] : This rule uses the evaluation context to evaluate
sub-terms and re-compose them. That is, if some term e1
can evaluate to e2 in one or more steps, and e1 occurs in
the hole according to the evaluation context, then we can
plug the hole with e2. This rule is adapted from [10].

[E-LISTEN] o.listen(τ, f): Registers f as an event lis-
tener for event τ on the object pointed-to by o, if o is
an address and f is a function value.

[E-EMIT] o.emit(τ, v): Adds all event listeners which are
registered for event τ on the object pointed-to by o to the
event queue. The v value is used as argument to each of
the event listeners.6

[E-LOOP] •: Non-deterministically chooses an address o
and an event τ and executes all event listeners scheduled
for that object and event by moving them from the queue
into the current expression as a sequence of statements.
Notice that listeners are executed in registration order
(since π is maintained in reverse-registration order).

3.5 Other Event Features
Asynchronous Callbacks. Asynchronous callbacks, as
shown in Figure 3, can be expressed in terms of the prim-
itives that we have defined for λε. To express a function f
that asynchronously executes another function g, we make f
allocate a fresh object, register function g on that object as a
listener for some event, and emit that event on the object:

1 function f(g) {

2 var x = new Object (); // fresh object

3 x.listen("e", g); // register g for event e

4 x.emit("e"); // emit "e" on the object

5 }

Listener Unregistration. Node.js supports unregistration
of event listeners. However, this feature is used rarely be-
cause event listeners typically follow the lifetime of an ob-
ject by being registered immediately after the object is cre-
ated and then never removed. In all code we have looked at,
we have not yet encountered a situation where unregistering
listeners was needed. If necessary, this could be supported
by a straightforward extension to the λε semantics.

4. Beyond Call Graphs
A (traditional) call graph is a directed graph that connects
call sites with call targets (i.e., function declarations). Call
graphs are useful for debugging, refactoring, and many
other applications. In languages with polymorphism and/or
higher-order functions, the call graph is not immediately
available from the source code, but must be statically ap-
proximated, e.g., using points-to analysis. Traditionally, a
call graph helps the programmer answer two key questions:

6 A typo has been fixed in this rule after publication (corrected April 2016.)



• Who are the callers of a function? (i.e., “who calls me”)
• Who are the callees of a function? (i.e., “who do I call?”)

However, in languages with asynchronous callbacks and
event listeners a traditional call graph provides incomplete
information because it does not reflect precisely how events
give rise to indirect calls.

In a traditional call graph, the callers of function λ are
the functions that may invoke it. However, in event-based
systems, control flow is also determined by: (i) functions
that may register a function λ as a listener, and (ii) functions
that may emit an event that causes λ to be scheduled for
execution. In traditional call graphs, this correlation between
events and listeners is lost, and functions that are invoked
due to event-handling are typically modeled as “roots” of a
call graph (i.e., call-backs from a runtime environment).

4.1 Event-Based Call Graphs
We overcome the limitations of traditional call graphs by
introducing the event-based call graph, a directed graph
whose nodes are expressions and lambdas from the source
code, and which has four kinds of edges. In Section 5 we
present three analyses to compute an over-approximation of
the event-based call graph.

A call edge connects a call expression to a function dec-
laration λ:

{e (e · · · )→ λ | if the call may invoke λ}

As stated earlier, call edges answer the questions: (i) which
functions directly invoke a function? and (ii) which func-
tions are directly invoked by a function? A listen edge con-
nects a listen expression to a function λ:

{e1.listen(τ, e2)
τ→ λ | if the listen-expression

may register function λ
}

From such listen edges, the following questions can be an-
swered: (i) Which functions does a given listen expression
register as listeners for a given event? (ii) Which listen ex-
pressions may register a given function λ as a listener for an
event? An emit edge connects an emit expression to a func-
tion declaration λ:

{e.emit(τ) τ→ λ | if event τ may schedule λ}

From the emit edges in an event-based call graph, the fol-
lowing questions can be answered: (i) which functions does
an emit expression schedule for execution by emitting the
event τ? and (ii) which emit expressions may cause a given
function to be scheduled for execution?

Finally, we introduce may-happen-before edges between
expressions:

{(e1, e2) | if e1 may happen before e2.}

where e1 and e2 are either listen or emit expressions.
Here, e1 may possibly execute before e2 only if there is an

1 let (x = {})

2 let (y = {})

3 let (f = λ0() x.listen(τ3, λ3 () ...))

4 x.listen(τ1, λ1() y.emit(τ2));
5 y.listen(τ2, λ2() f());

6 x.emit(τ1)

Figure 9. A small λε program. The program contains three
event listeners λ1, λ2 and λ3 which are registered for the
events τ1, τ2 and τ3, respectively.

edge (e1, e2). If, at the same time, there is the edge (e2, e1)
then e1 and e2 may execute in any order. Crucially, if there
is no (e1, e2) edge then e1 cannot be executed before e2.
Thus, the may-happen-before relationship reflects a tempo-
ral relationship between event listener registration and event
emission.

We can use these edges to decide whether an event lis-
tener can be executed. Specifically, in order for an event lis-
tener λ to be executed, three edges must be present:

1. There must be a listen edge, for an event τ , from a
listen expression to λ.

2. There must be an emit edge, for an event τ , from an emit
expression to λ.

3. A may-happen-before edge must exist from the listen

expression to the emit expression.

If any of these three edges is missing, for any listener λ,
then that listener can never be executed by the event system.
Note that the above definition implicitly requires that the
emit and listen expressions themselves can be executed,
otherwise they would not participate in a may-happen-before
relation.

Example. Figure 9 shows a small program with calls, lis-
ten and emit expressions. Figure 10 shows the event-based
call graph for this program. It has a single call edge from the
call site f() on line 5 to λ0 on line 3. It has two emit edges:
one from the emit on line 4 to λ2 on line 5 and one from the
emit on line 6 to λ1 on line 4. It has three listen edges: one
from line 3 to λ3, one from line 4 to λ1, and one from line
5 to λ2. The event-based call graph of Figure 10 also con-
tains several may-happen-before edges that are implied by
the order in which the various expressions are executed. For
instance, the listen on line 4 may-happen-before the emit
on line 6, since the lines 4, 5 and 6 are executed in sequence.

4.2 Bug Finding
The event-based call graph enables us to discover a range of
interesting program behaviors and potential bugs:

Dead Listeners: We can detect situations where an event
listener is registered for an event τ on an object o, but the
event τ is never emitted on o. This can happen for several
reasons: (a) the event listener could be registered on the
wrong object, (b) the event listener might be registered



emit τ1 

listen τ1

emit τ2 

listen τ2

calllisten τ3

happens – 
before

happens – 
before

e6 ʎ1

l4 

e4 ʎ2

l5

c5 ʎ0 l3 ʎ3 

Figure 10. The event-based call graph for the λε program in
Figure 9. The call graph shows that λ1 and λ2 are executed
due to the events τ1 and τ2, respectively. Furthermore, λ0
is executed due to a regular function call, and λ3 is never
executed since the event τ3 is never emitted.

for the wrong event, (c) the event might be emitted before
the event listener is registered, and never emitted again.

Dead Emits: We can detect situations where an event τ is
emitted on an object, but where that object has no event
listener for τ . Such an event might be emitted by the
application code or by a framework such as Node.js. If
the event is emitted by the application, then the absence
of a listener would seem unintentional and potentially
indicates the presence of a bug. If, on the other hand, the
event is emitted by the framework, then whether the event
must be handled depends on the semantics of the event.
In Node.js, some events are informational and can safely
be ignored. However, an event such as the connection

event on TCP sockets should never be ignored, if the
socket is to accept connections.

Mismatched Synchronous/Asynchronous Calls: Most I/O
operations are asynchronous in Node.js, but for some op-
erations synchronous variants are also provided. For in-
stance, reading a file can be done asynchronously with
readFile and synchronously with readFileSync. If a
file is accessed both synchronously and asynchronously
there is likely a race condition. We can detect such races
by inspecting the may-happen-before relation together
with auxiliary information about the shared resource
(e.g., the name of the file being accessed).

Unreachable Functions: We can detect functions that are
unreachable, i.e., never executed directly or indirectly by
the event system. This can help the programmer remove
unused functions from the source code, or to detect func-
tions which were actually supposed to be used, but for-
gotten at some point.

We observe that many of these properties require flow-
sensitivity to determine the presence (or rather the absence)
of a bug. For instance, an event listener is dead if the listen
statement happens after the emit statement.

Example. Figure 11 shows a buggy λε program. Figure 12
shows the event-based call graph for the program of Fig-
ure 11. The graph reveals several bugs in the program: First,
λ1 has an incoming listen edge, but no incoming emit edge,
thus it is a dead listener. Second, the emit expression e4 has
no outgoing emit edge(s), thus it is a dead emit. Third, λ2 has
both incoming listen and emit edges, but the emit e3 happens
before the listen l5, thus e3 is a dead emit and l5 is dead lis-
tener.

1 let (x = {})

2 x.listen(τ1, λ1 () ...);

3 x.emit(τ2);
4 x.emit(τ3);
5 x.listen(τ2, λ2 () ...)

Figure 11. A buggy λε program.

listen τ1

emit τ2 

listen τ2happens – 
before

ʎ1

l2 

e3 ʎ2

l5e4

Figure 12. An event-based call graph for Figure 11.

5. Analysis Framework
This section presents three analyses for computing event-
based call graphs. These analyses were designed after study-
ing a number of examples from the Node.js documentation
and a few examples from StackOverflow. In Section 6 we
evaluate these analyses on additional subject programs and
report on their relative cost and precision.

Static Analysis. The exact call graph of a given program
is uncomputable in general. We evaluate a static analysis
framework for λε that soundly over-approximates the ex-
act event-based call graph. If a call, listener registration, or
event emission occurs in some concrete execution, then the
call graph must include it. However, the call graph may be
conservative and contain spurious behaviour that does not
actually occur in any execution. An analysis is said to be
more precise than another if its output contains less spurious
behaviour. In the case of analyses that construct event-based
call graphs, this means that an analysis is more precise than
another if it produces a call graph with fewer edges. For ex-
ample, two emit edges emit1 ↪→ λ and emit2 ↪→ λ in a
generated call graph indicate that either emit1 or emit2 may
cause λ to be scheduled. However, a call graph that contains
only emit1 ↪→ λ guarantees that only emit1 causes λ to be
scheduled.



σ̂ ∈ Ĥeap = Âddr→ V̂al

ϑ̂ ∈ L̂istener = Âddr× Event→ P(Lam)

π̂ ∈ Q̂ueue = Âddr× Event→ P(Lam× V̂al)

ŝ ∈ Ŝtate = Ĥeap× L̂istener× Q̂ueue× Exp

` ∈ Lattice = Ctx× Loc→ Ŝtate

c ∈ Ctx = is a set of contexts.

l ∈ Loc = is a set of source code locations.

Figure 13. Abstract runtime of λε.

Design Motivation. Based on our experience with Node.js
programs, we make three general observations that guide the
design of the analysis framework:

Observation 1: It is common for one event listener to reg-
ister another. A very common pattern is to perform some
asynchronous I/O operation first. Then, when that opera-
tion completes, another I/O operation is performed, and
so on, until the entire computation is complete.

Observation 2: It is common for event names to overlap
between different objects. For example, in Node.js, the
event names connection, data and finished occur in
many contexts.

Observation 3: It is uncommon for a single object to have
multiple event listeners registered for the same event.

Abstract Semantics. The static analysis framework is
based on a parameterized abstraction of the concrete se-
mantics of λε presented in Figure 7. The abstract semantics
is shown in Figure 13. The abstractions of runtime addresses
Addr and primitive values Val are parameters that can be
instantiated with different abstract domains. Our implemen-
tation uses the allocation site abstraction to abstract memory
addresses and the constant propagation lattice to abstract
values. Further details are provided in Section 6.

The most interesting aspect of the design space is how
to abstract the map of registered listeners and the event
queue. Recall that the map of registered listeners maintains,
for every object and event, the order in which the listeners
were added. Similarly, the event queue map maintains, for
every object and event, which listeners are scheduled for
execution. We choose a pragmatic abstraction that replaces
both sequences by sets, forgetting the order in which event
listeners were registered, or listeners should be scheduled
for the same event and on the same object. However, we
do maintain separation between different event listeners (and
their associated events) and their execution.

Discussion. We sketch a few alternative abstractions and
discuss why we ultimately decided on the current one. A
more precise alternative would maintain the two sequences
up to some bound, e.g., the order of the first k event listeners
to be scheduled or executed. Such an abstraction would be

more precise, since it can distinguish between the order in
which event listeners are executed for the same object and
event. On the other hand, it is less common in practice to
have multiple listeners registered for the same event and ob-
ject. A less precise abstraction could ignore on what specific
object or event an event listener is registered. However, this
would immediately lead to imprecision since different ob-
jects commonly share the same event names in Node.js.

Context-Sensitivity Policies. In a Node.js program, after
the execution of initialization code, the runtime enters an
event loop that repeatedly identifies events that have been
emitted, schedules and executes corresponding listeners. To
understand the temporal behavior of a Node.js program, it
is important to understand how the event loop behaves in
different contexts. For example, suppose that in a given pro-
gram, listener A registers listener B for an event. A simplis-
tic understanding would be that the event loop can call both
listeners at any time. To identify that A must execute first,
the analysis must consider the event loop first in the context
before B has been registered, and separately in the context
after B has been registered. To evaluate the precision of dif-
ferent context abstractions, the analysis framework is param-
eterized by a context-sensitivity policy. Context selection is
driven by emitted events and registered event listeners. We
have evaluated the following three policies:

1. Baseline Analysis. The baseline analysis ignores any
dependencies between registered event listeners and emitted
events. It collapses the event loop into a single program
point where all dataflow is merged. In effect, this analysis
assumes that listeners can run at any time, in an arbitrary
order, and any number of times. The baseline analysis has
only a single context Ctx = ◦. This analysis approach is
inexpensive, but the precision benefits of flow sensitivity are
lost. The baseline analysis corresponds to what is currently
used in state-of-the-art static analyzers such as TAJS [13]
and JSAI [18].

2. Event-Sensitive Analysis. The event-sensitive analysis
separates dataflow based on which listeners have executed
so far due to emitted events. This analysis captures the order
in which event listeners, for different objects/events, are
extracted from the (abstract) event queue π̂ and executed.
In the event-sensitive analysis, a context consists of a set of
object and event pairs:

c = {(o, τ) | τ has been emitted and executed on o}

For example, the context {(τ1, o1), (τ1, o2), (τ2, o2)} indi-
cates that event τ1 was emitted (and its event listeners exe-
cuted) on objects o1 and o2, that τ2 was emitted on o2, and
that no other events were emitted. The event sensitive con-
text is given by the power set:

Ctx = P(Âddr× Event)

where the initial context is the empty set.



1 let (x = {})

2 x.listen(τ1, λ1 () x.emit(τ2));
3 x.listen(τ2, λ2 () . . .);
4 x.emit(τ1)

Figure 14. A small λε program which illustrates the in-
creased precision due to event sensitivity.

Example. Figure 14 shows a small λε program that illus-
trates the increased precision due to event sensitivity. Here,
two event listeners λ1 and λ2 are registered for events τ1
and τ2 on some object. The evaluation of λ1 emits an event
that causes λ2 to be scheduled. Thus, all side-effects of λ1
precede λ2. In the baseline analysis, this correlation is lost
but the event sensitive analysis preserves the correlation by
returning to the event loop in the context: {(τ1, o1)}.

Remark: A critical reader may observe that the event-
sensitive algorithm has a worst case exponential running
time, and be concerned about its performance. As we shall
see in Section 6, such exponential behavior does appear
to arise in practice. The reason for proposing the event-
sensitive analysis here is that it can be seen as the “obvi-
ous” solution” for capturing dataflow dependencies between
event listeners.

3. Listener-Sensitive Analysis. The listener-sensitive anal-
ysis separates dataflow based on which listeners have been
registered. In the listener-sensitive analysis, a context is a set
of triples of an object o, an event τ , and a listener λ that is
registered on that object and for that event:

c = {(o, τ, λ) | λ is registered on object o for event τ}

The listener sensitive context is given by the power set:

Ctx = P(Âddr× Event× Lam)

where the initial context is the empty set.
The strength of the listener-sensitive analysis is its abil-

ity to track listeners that register other listeners as part of
their execution. But in general the precision of the event-
and listener-sensitive analyses is incomparable. As will be
shown later, the listener-sensitive policy avoids many spuri-
ous warnings for dead emits and dead listeners since it pre-
cisely separates dataflow based on what listeners are regis-
tered.

Example. Figure 15 shows an example demonstrating the
benefits of listener-sensitive analysis. Here, two listeners for
the same event τ , are registered, one following the other.
The execution of λ1 causes λ2 to be registered for the same
event, and on the same object, as λ1. The baseline and event-
sensitive analyses cannot capture the fact that λ1’s execution
is known to precede λ2’s. This correlation, however, is cap-
tured by listener sensitivity: The event loop is unfolded into
the two contexts: {(o1, τ, λ1)} and {(o1, τ, λ1), (o1, τ, λ2)}

1 let (x = {})

2 x.listen(τ , λ1 ()

3 x.listen(τ , λ2 () . . .);
4 x.emit(τ )
5 );

6 x.emit(τ )

Figure 15. A small λε program which illustrates the in-
creased precision due to listener sensitivity.

Soundness. The baseline, event- and listener-sensitive
analyses are all sound in the following sense: given a sound
analysis of λε, i.e., a sound analysis for λJS extended with
the event constructs defined in this paper, the three context
sensitivity policies are special cases of the trace partitioning
framework of Rival and Mauborgne [24]. Intuitively, separa-
tion of data flow in the event loop cannot cause the analysis
to miss any error, since if there is an error, it must occur in at
least one of the contexts. Furthermore, if the separation, i.e.,
the trace partition, is finite, then the analysis is guaranteed
to terminate.

6. Evaluation
In this section, we discuss a tool that implements the anal-
yses described in Section 5, and report on experiments in
which the tool is applied to small Node.js programs.

6.1 Implementation
We have implemented a static analysis tool, RADAR, for
Node.js applications written in JavaScript. RADAR can de-
tect errors such as the ones discussed in Section 2 and sup-
ports most of the JavaScript language, including higher-
order functions, prototype inheritance and dynamic property
access. Similar to other work on static analysis of JavaScript,
RADAR does not support the with and eval constructs.

The implementation consists of approximately 27,000
lines of Scala code, of which around 2,000 lines are re-
lated to the event system. The implementation has been used
in previous work on dynamic field access [21] and sparse
dataflow analysis [22]. All experiments were performed on
an Intel Core i5-4300U 2.5GHz CPU with 2GB memory al-
located for the JVM.

Analysis Details. In essence, our analysis is a flow-sensitive
dataflow analysis. Flow-sensitivity means that the order of
statements is respected, which is important for determin-
ing may-happen-before relationships between, e.g., emit

and listen statements. The analysis incorporates a field-
sensitive subset-based points-to analysis. Field-sensitivity
means that the points-to analysis distinguishes between the
values of fields with different names. The points-to analy-
sis models the (potentially) unbounded heap using the al-
location site abstraction, meaning that objects allocated at
the same location in the source code are represented using
the same abstract summary object. The analysis constructs
the event-based call graph on-the-fly due to both indirect



Module Lines Functions listen emit

Filesystem 508 73 31 31
Http 321 45 24 13
Network 328 39 31 36
Stream 111 12 2 19

Total 1,268 169 86 96

Table 1. The Node.js model. The four columns show, for
each module, the number of lines of code, functions, and
listen and emit statements in the stub model.

calls and events. Specifically, the base object(s) of emit and
listen statements are not known ahead-of-time, but gradu-
ally discovered as the points-to graph is resolved.

Node.js Model. We model the Node.js framework with
JavaScript stubs that use the listen and emit constructs.
This has three consequences: First, it demonstrates that our
framework is sufficiently powerful to capture the semantics
of Node.js. Second, it makes the analysis simpler to imple-
ment since events in the application and the library can be
treated uniformly. Third, it makes it easy to model other
event-based libraries such as socket.io and async.js.

The Node.js core consists of around thirty modules. Of
these, we have modeled filesystem, http, network and
stream, which make the most heavy use of events; Mod-
eling other modules is straightforward. We stress that only
core modules (and other native modules implemented in
C++) require modeling. Specifically, if a Node.js module is
implemented in pure JavaScript it can be directly fed to the
analysis. Table 1 shows some statistics about the models. In
total, the four modules define 169 functions containing 86
listen and 96 emit statements.

6.2 Research Questions
We evaluate RADAR based on two research questions:

Q1: Is the tool useful for finding and understanding event-
related bugs?

Q2: What is the precision and performance of the tool?

Sections 6.3 and 6.4 address these research questions in
detail, for each of the baseline, event-sensitive and listener-
sensitive analyses.

6.3 Q1: Finding and Understanding Bugs
In order to determine whether RADAR can help the program-
mer find event-related bugs, we apply it to buggy program
fragments obtained from StackOverflow, a popular question-
and-answer forum for software developers. In each case, the
programmer supplied a program fragment and a description
of the intended behavior. We selected twelve StackOverflow
questions based on the criterion that the program had to con-
tain a single bug, and that this bug was related to the way
events are emitted and listeners are registered. We used all

BASELINE EVENT LISTENER

Question Orig. Fixed Orig. Fixed Orig. Fixed

11790224 3 7 3 3 3 3

13338350 3 7 3 3 3 3

16903844 3 3 3 3 3 3

17894000 3 3 3 3 3 3

18295923 3 3 3 3 3 3

19081270 3 7 3 3 3 3

19167407 3 3 3 3 3 3

19171045 3 3 3 3 3 3

19342910 3 3 3 3 3 3

23437008 3 3 3 3 3 3

25650189 3 7 3 3 3 3

26061335 3 7 3 3 3 3

Table 2. Twelve buggy program fragments from the Stack-
Overflow. A 3 in the Orig. column means that the analy-
sis correctly reported the bug for the original program. A 7
in the Fixed column means that the analysis still reported
a (spurious) warning for the fixed (corrected) program. All
analyses completed in less than a second.

StackOverflow code fragments that we could find that fit this
criterion. We evaluate each analysis by applying it to the pro-
gram and observing:

1. Does the analysis report a warning? How useful is the
warning for finding the bug?

2. Does the warning disappear once the program has been
corrected? If the warning remains, due to analysis impre-
cision, then that may confuse the programmer.

Table 2 shows the results for each analysis. The most inter-
esting program fragments are discussed further below:
• In Q13338350, entitled “NodeJS writeStream empty

file”, the programmer wants to write the content of a buffer
to a file stream. The programmer opens the file stream, calls
write passing the buffer and calls end to close the file
stream. However, the call to end immediately closes the
stream and does not wait for the write operation to com-
plete. As a result, an empty file is produced. The fixed pro-
gram listens for the end event to be emitted on the stream
(signifying that there is no more data to be read from the
buffer) and then calls close on the stream. All three anal-
yses report that the close operation possibly happens be-
fore the write operation. On the fixed program, the baseline
analysis still spuriously reports that the close operation may
happen before the write operation completes. The event- and
listener sensitive analyses report no spurious warning.
• In Q17894000, entitled “event handling not working as

expected nodejs”, the programmer creates a socket, registers
a listener for the data event and inside that listener regis-
ters another listener for the close event. The programmer
then expects the listener for the close event to be executed.
However, it is permissible for a socket to be closed before



BASELINE EVENT-SENSITIVE LISTENER-SENSITIVE

Program Lines Nodes D. Listener Mhb Time D. Listener Mhb Time D. Listener Mhb Time

Filesystem 60 186 1 3 0.8s 0 2 0.9s 0 2 0.9s
Http 250 618 10 66 2.5s – – – 0 41 3.0s
Network #1 200 546 8 61 2.2s – – – 1 38 3.7s
Network #2 170 463 6 54 1.7s 0 33 22.1s 0 33 1.6s
Node in Action, ch. 3 330 668 8 49 2.5s – – – 1 27 6.0s
Node in Action, ch. 4 390 873 10 81 3.5s – – – 3 66 17.0s

Table 3. Analysis results for six programs; four from the Node.js documentation [5] and two from the book Node.js in
Action [4]. The Lines and Nodes columns show the number of source code lines and nodes in the control-flow graph. The
D. Listener, Mhb and Time columns show, for each analysis, the number of dead listeners reported, the number of may-
happen-before relations and the total analysis time. The double dashed line, –, indicates that the analysis timed out after 60
seconds.

any data is transmitted, and thus there is no guarantee that
the close listener is ever registered. Each of the three anal-
yses identifies the problem by warning that close may be
emitted before the listener is registered. Moving the listener
registration for the close event out of the listener for the
data event fixes the problem, and none of the three analyses
report any spurious warnings after the fix.
• In Q18295923, entitled “nodejs stdin readable event

not triggered”, the programmer registers a listener for the
readable event on the standard-in process.stdin stream.
The programmer then expects the listener to be executed
when the user writes to standard-in. However, the process.
stdin stream is by default in a paused mode where the pro-
grammer must call resume() before the readable events
are emitted. All three analyses report a dead listener, and no
spurious warning on the fixed program.
• In Q19081270, entitled “Why my fs.readFileSync does

not work”, the program writes a file asynchronously, but
then immediately reads back the file synchronously, before
the asynchronous operation has had a chance to complete.
(Node.js provides both asynchronous and synchronous vari-
ants of many operations, and it is easy for programmers to
get confused and make mistakes such as this one). The anal-
yses do not have any knowledge of the external world (e.g.,
the file system), so they cannot directly pinpoint the error.
They can, however, report that the read always occurs be-
fore the write, which can help the programmer understand
the problem. The recommended fix is to register an asyn-
chronous listener that executes when the write completes.
This solves the problem, but the baseline analysis still re-
ports that the read may execute before the write, since it can-
not accurately track the may-happen-before dependencies.
• In Q19167407, with the title “Data event not firing

NodeJS”, the programmer creates a readable stream and a
writable stream, and pipes data from the readable stream to
the writable stream. The programmer registers listeners for
the data and close events on the writable stream. However,
the listener for the data event is never executed. The prob-
lem is that only the readable stream emits data events, not

the writable stream: The programmer has registered the lis-
tener on the wrong object. All three analyses report a dead
listener and report no spurious warnings when applied to the
fixed program.
• In Q19342910, entitled “when is the connect event

in nodejs net module emitted?”, the programmer creates a
TCP server object passing in a listener function. Inside that
function the programmer registers a listener for the connect
event. However, the inside listener is never executed. The
problem is that function, which is passed during the con-
struction of the TCP server object, is implicitly registered
for the connect event. Thus, once the connect event is
emitted, the outer function executes, which then registers a
listener for the very same event. Since the connect event
is only emitted once (per connection), the inner listener is
never executed. All three analyses report the inner listener
as dead and no spurious warnings on the fixed program.

We conclude that the analyses appear to be useful for
finding event-related bugs in small Node.js programs. How-
ever, the baseline analysis reports many spurious warnings.
The event- and listener-sensitive analyses each provide suf-
ficient precision to avoid reporting any spurious warnings on
these small programs.

6.4 Q2: Precision and Performance
To answer this question, we apply each analysis to 6 pro-
grams; 4 from the online Node.js API documentation and
2 from the book: Node.js in Action. The programs from the
Node.js documentation illustrate the filesystem, http and
network modules. The Node.js in Action programs show
how to perform a HTTP request and create a small HTTP
server. Although these programs are small7, their sizes are
consistent with benchmarks used in recent literature on flow-

7 We selected small programs due to the scalability challenges faced by any
flow-sensitive pointer analysis. Our implementation is based on [21, 22]
in which progress was made, but scalability challenges remain. However,
it should be noted that our event-based techniques do not depend on a
particular analysis framework and should remain applicable in the future,
when better JavaScript analysis frameworks become available.



sensitive, subset-based points-to analysis for JavaScript [13,
18, 22].

We report, for each analysis, the number of warnings for
dead listeners, the number of may-happen-before relations
and the analysis time. The results, shown in Table 3, expose
significant differences in the scalability and precision of the
three analyses.

As an example, the “Filesystem” example is 60 lines
of code (for the program and relevant parts of the Node.js
model). The baseline analysis spuriously reports one dead
listener and three may-happen-before edges in 0.8 seconds,
both the event-sensitive and listener-sensitive analyses report
no dead listeners and two may-happen-before edges in 0.9
seconds. Thus, these two analyses avoid the spurious warn-
ing reported by the baseline analysis.

The event-sensitive analysis times out on 4 benchmarks
and runs slowly on another. An explanation for the poor
performance, compared to the listener-sensitive analysis, is
that it unnecessarily separates abstract states. E.g., if the
event queue contains {τ1, τ2}, the event-sensitive analysis
may separate dataflow for the states {τ1}, {τ2} and {τ1, τ2},
even if the same listeners are present in each case. This
can lead to an exponential blow-up in the number of states.
The event-sensitive analysis, although conceptually simple,
is too inefficient in practice.

The listener-sensitive analysis offers a compelling alter-
native. Compared to the baseline analysis, the number of
may-happen-before edges decreases from 314 to 207, show-
ing that flow-sensitive precision is increased significantly,
resulting in a reduction in the number of (spurious) warn-
ings from 43 to 8. Analysis times increase by a factor from
1.0x to 5.0x. Thus, for a reasonable increase in analysis time,
the number of spurious warnings is reduced significantly.

We examined the remaining spurious warnings reported
by the listener-sensitive analysis, and found two causes:

• We model asynchronous callbacks by creating a fresh
object, registering the callback on that object for some
fixed event τ , and then emitting τ . In some cases this
object became summarized and the analysis was unable
to determine that the registration happened before the
emit. We believe this problem could be overcome with
heap sensitivity, i.e. by splitting allocation sites based on
the current context.
• We chose to abstract the listener ordering for event listen-

ers registered on the same object and for the same event
with a set. Thus, if λ1 is registered for some event τ and
λ2 is later registered for the same event, we lose the or-
dering between λ1 and λ2. In a single instance this caused
a loss of precision.

In summary, the listener-sensitive analysis is preferable
to the baseline- and event-sensitive analyses; the baseline
analysis produces too many spurious warnings whereas the
event-sensitive analysis has poor performance.

7. Discussion
Thus far, we have presented a technique for detecting er-
rors related to event-handling and demonstrated its effective-
ness for the specific case of the Node.js event model. While
Node.js is a highly popular and rapidly growing platform,
the reader may wonder about the applicability of our tech-
nique beyond this limited setting. In this section, we briefly
consider the issues that arise other settings.

7.1 JavaScript in the Browser Environment
The original and dominant use of JavaScript remains web
applications that run inside a web browser. Here, events are
emitted in response to user actions (e.g., mouse clicks or
keyboard presses) and internal browser events (e.g., the com-
pletion of network requests). Events are propagated along
the structure of the HTML document using the event captur-
ing and event bubbling propagation strategies8 and listeners
are attached to HTML elements and can cancel (i.e., stop
propagation) of events programmatically.

We believe that the browser environment poses three dis-
tinct research challenges for any static analysis:

1. How to model the structure of the HTML document and
its associated operations?

2. How to model the event propagation strategies: event
bubbling and event capturing?

3. How to capture the data– and control-flow dependencies
between event listener registrations and event emissions?

The first of these challenges, precise modeling of the DOM
data structure that reflects the current HTML document,
remains a significant hurdle in practice, although some
progress has been made in [13]. We expect that the sec-
ond challenge, modeling the event propagation strategies,
can be handled by way of new listen and emit constructs
possibly in combination with the model of [19]. The third
challenge is exactly the same as in the case of Node.js, so
we expect our technique to be directly applicable to tradi-
tional JavaScript web applications in combination with suit-
able solutions for the first two challenges, as these become
available.

7.2 Other Languages
In this paper, we have defined the event-based call graph,
which extends of the traditional notion of a call graph with
nodes and edges that reflect the flow of control due to events.
Furthermore, we have defined context-sensitive static anal-
yses for computing approximations of the event-based call
graph, which make use of context-sensitivity policies that
separate data flow based on the set of events that have been
emitted and the set of event listeners that have been reg-
istered. While the work in this paper has been focused on
JavaScript, we believe that our ideas could in principle be

8 http://www.quirksmode.org/js/events order.html



applied to other dynamic languages such as Python [20] and
Ruby [32] where event handling is commonly used. This
would require modeling language-specific idioms for regis-
tering listeners and emitting events in terms of the listen

and emit constructs of Section 3. It should be noted that our
techniques could do not require that event-handling is pro-
vided as a first-class language construct and that they can be
applied to implementations of event-handling that are pro-
vided as a library or API, as appears to be common practice
in the case of both Python and Ruby.

8. Related Work
To our knowledge, little prior work exists on whole-program
static analysis of event-based JavaScript code. We discuss
two categories of related work: static analysis of JavaScript,
and dynamic analysis of event-based JavaScript code.

Static Analysis of JavaScript. Guarnieri et al. present
GATEKEEPER, a tool for enforcing security policies for
JavaScript widgets [9]. GATEKEEPER used one of the first
points-to analyses for JavaScript to discover dataflow disal-
lowed by a security policy.

Jensen et al. present a dataflow analysis, TAJS, for
browser-based JavaScript applications [13]. The focus is on
how to represent the DOM, but events are discussed briefly.
Their analysis conservatively assumes that any browser
event, e.g., onclick, may execute at any time and makes
no attempt, other than for onload, to separate dataflow based
on what listeners are registered. By contrast, our baseline
analysis is more precise, as it only considers events that are
actually emitted. More recently, TAJS was extended to han-
dle certain cases of eval [14] and to analyze the popular
jQuery library [1].

Zheng et al. present a static analysis for detecting race
conditions related to asynchronous AJAX requests [34].
Specifically, a race condition exists when an event listener
may read a global variable, at any time, and an asynchronous
response listener may write to the same global variable. In
relation to our work, Zheng et al. are not concerned about
the specific order in which event listeners are executed, but
the existence of any order that could potentially cause a race.

Dynamic Analysis of Event-Based JavaScript Programs.
There have been several threads of research in which dy-
namic analysis is employed to find data races and asynchrony-
related errors in JavaScript programs.

Lerner et al. present a model of the event mechanism in
the DOM which incorporates the event bubbling and event
capturing propagation strategies together with event cancel-
lation [19]. Based on the model, the authors automatically
construct test cases which are used to detect implementa-
tion inconsistencies across different browsers. A key differ-
ence between between their model and ours is determinism.
Our model, which is motivated by asynchronous events in
Node.js, must be inherently non-deterministic. On the other

hand, the model of Lerner et al. is deterministic since event
dispatch (capturing/bubbling) is deterministic. An interest-
ing venue for future work would be a combination of the two
models, but this is beyond the scope of the present work, and
not required for analysis of Node.js applications.

Artzi et al. present a framework for feedback-directed
random testing of JavaScript applications [2]. This frame-
work keeps track of event-handler registrations and attempts
to increase code coverage by generating sequences of events
to execute unexplored code. Artzi’s work aimed to find ex-
ecution errors and situations where malformed HTML was
created, and did not consider event-handling related errors.

Petrov et al. define a happens-before relationship on the
various kinds of operations performed by web applications
(HTML parsing, access to variables and DOM nodes, event-
handler execution) [28]. A notion of logical memory loca-
tions is defined, to abstract both JavaScript heap locations
and locations in browser-specific native data structures. A
data race is defined as a situation where two operations ac-
cess the same logical memory locations, at least one of these
accesses is a write, and no ordering exists between the oper-
ations. Petrov et al. implemented WebRacer, a dynamic de-
tector for such races, and used WebRacer to find races in
sites of Fortune 500 companies. Petrov’s happens-before re-
lation includes orderings between operations corresponding
to emit and listen edges, and the event-dispatch races de-
tected by WebRacer resemble our StackOverflow examples.

Raychev et al. observe that race detection techniques such
as the one of Petrov et al. report an overwhelming number of
races in cases where event handler execution is coordinated
via shared variables [29]. They reduce the number of false
positives by introducing a notion of race coverage where
a race a covers a race b if treating a as synchronization
eliminates b as a race. Raychev et al. implemented their work
in a tool called EventRacer, and showed that, by focusing the
user’s attention on uncovered races, the number of issues that
need to be considered is reduced dramatically.

The position paper by Mutlu et al. is focused on observ-
able races in web applications that have visually apparent
symptoms (e.g., missing elements in a user-interface) [27].
To this end, Mutlu et al. employ various strategies to in-
strument an application so that delays are inserted at each
XML-HttpRequest. By comparing the screenshots generated
in each case, observable races are detected. Mutlu et al. pro-
pose different strategies for inserting delays—randomly, or
systematically in a way that allows all schedule permutations
to be exercised.

Hong et al. present WAVE, a framework for detecting
various concurrency-related errors in client-side JavaScript
code [11]. Here, an execution is monitored to create an exe-
cution model. From this model, test cases are generated that
permute the order of operations in the original execution. A
problem is reported if a test raises an exception, does not ter-
minate, or produces a result different from that of the origi-



nal execution. Among the types of problems that WAVE de-
tects are data races like the ones found by EventRacer [29],
and atomicity violations.

Static Analysis of Asynchronous Programs. Jhala et al.
present an interprocedural dataflow analysis framework for
asynchronous programs [15]. The framework is based on an
extension of the IFDS framework by Reps et al. [30]. A
key feature of this framework is that calls and returns are
well-matched with the requirement that the transfer func-
tions are distributive. In contrast, the monotone framework
[16], which our analysis is based on, imposes no such re-
quirements, but at the same time may have mismatched cal-
l/returns. As argued by Jensen et al. and Kashyap et al. the
challenges posed by JavaScript require sophisticated lattices
which are rarely distributive and consequently not express-
ible in IFDS [12, 18]. For a concrete example, IFDS assumes
that the call graph is known, whereas JavaScript analyses
such as TAJS, JSAI and the present work construct the call
graph on-the-fly.

9. Conclusion
We have introduced the event-based call graph and shown
that it is useful for finding various event-related bugs in
Node.js applications. The event-based call graph incorpo-
rates information about listener registration and event emis-
sion and can be used to detect dead listeners or dead emits.
We have designed and implemented three sound analyses,
a baseline, an event sensitive and a listener sensitive, to
compute the event-based call graph. The baseline analysis
is equivalent to what has been used in previous work on
static analysis of JavaScript applications. Experimental re-
sults show that the analyses are able to find bugs in small
buggy programs posted on the StackOverflow website. Fur-
thermore, the experiments suggest that the baseline analysis,
used in prior work, produces many false positives. On the
other hand, the listener sensitive analysis, which separates
dataflow based on the set of currently registered listeners,
offers significantly better precision at a modest increase in
analysis time.
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