
161

Test Generation for Higher-Order Functions

in Dynamic Languages

MARIJA SELAKOVIC, TU Darmstadt, Germany

MICHAEL PRADEL, TU Darmstadt, Germany

REZWANA KARIM, California, USA
FRANK TIP, Northeastern University, USA

Test generation has proven to provide an effective way of identifying programming errors. Unfortunately,

current test generation techniques are challenged by higher-order functions in dynamic languages, such as

JavaScript functions that receive callbacks. In particular, existing test generators suffer from the unavailability

of statically known type signatures, do not provide functions or provide only trivial functions as inputs, and

ignore callbacks triggered by the code under test. This paper presents LambdaTester , a novel test generator

that addresses the specific problems posed by higher-order functions in dynamic languages. The approach

automatically infers at what argument position a method under test expects a callback, generates and iteratively

improves callback functions given as input to this method, and uses novel test oracles that check whether

and how callback functions are invoked. We apply LambdaTester to test 43 higher-order functions taken from

13 popular JavaScript libraries. The approach detects unexpected behavior in 12 of the 13 libraries, many of

which are missed by a state-of-the-art test generator.

CCS Concepts: • Software and its engineering→ Software testing and debugging; Dynamic analysis;

Additional Key Words and Phrases: Higher-order functions, differential testing, dynamic analysis, JavaScript

ACM Reference Format:

Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip. 2018. Test Generation for Higher-Order

Functions in Dynamic Languages. Proc. ACM Program. Lang. 2, OOPSLA, Article 161 (November 2018), 27 pages.

https://doi.org/10.1145/3276531

1 INTRODUCTION

Testing is widely accepted as one of the most effective techniques for detecting bugs. To reduce
the human effort required for testing, various test generation approaches have been proposed,
including feedback-directed random testing [Pacheco and Ernst 2007; Pacheco et al. 2008], symbolic
execution [Cadar et al. 2008; King 1976], concolic execution [Godefroid et al. 2005; Sen et al.
2005], bounded exhaustive testing [Boyapati et al. 2002], evolutionary test generation [Fraser and
Arcuri 2011], UI-level test generation [Memon 2007; Mesbah and van Deursen 2009; Selakovic et al.
2017], and concurrency testing [Pradel and Gross 2012; Samak and Ramanathan 2014]. Many of
these approaches have discovered previously unknown bugs in mature and well-tested software,
demonstrating the usefulness of test generation.
Higher-order functions are a programming language feature that has not yet received much

attention from the test generation community. Such functions receive as arguments other functions,

Authors’ addresses: Marija Selakovic, TU Darmstadt, Germany, m.selakovic89@gmail.com; Michael Pradel, TU Darmstadt,

Germany, michael@binaervarianz.de; Rezwana Karim, California, USA, rezwanak@acm.org; Frank Tip, Northeastern

University, USA, f.tip@northeastern.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART161

https://doi.org/10.1145/3276531

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276531
https://doi.org/10.1145/3276531

161:2 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

which are later called back. Higher-order functions are particularly common for functional-style
programming, e.g., using the popular map or reduce APIs, and in dynamic languages, e.g., to
compose behavior via synchronous or asynchronous callbacks. For example, in JavaScript, the use
of asynchronous callbacks is particularly common due to the single-threaded execution model of
the language.

Despite the prevalence of higher-order functions, generating effective tests for them is a largely
unsolved problem. Testing a higher-order function requires the construction of tests that invoke the
function with values that include callback functions. To be effective, these callback functions must
interact with the tested code, e.g., by manipulating the program’s state. Existing test generators do
either not address the problem of higher-order functions at all or pass very simple callback functions
that do not implement any behavior or return random return values [Claessen and Hughes 2011].

The problem of generating higher-order functions is further compounded for dynamically typed
languages, such as JavaScript, Python, or Ruby. For these languages, in addition to the problem of
creating an effective callback function, a test generator faces the challenge of determining where to
pass a function as an argument. Addressing this challenge is non-trivial in the absence of static
type signatures.
This paper tackles the problem of automatically testing higher-order functions in dynamic

languages by presenting a novel test generation framework called LambdaTester . In this framework,
test generation proceeds in two phases. The discovery phase is concerned with discovering, for a
given method1 under testm, at which argument position(s) the method expects a callback function.
To this end, the framework generates tests that invokemwith callback functions that report whether
or not they are invoked. Then, the test generation phase creates tests that consist of a sequence of
calls that invokem with randomly selected values, including function values at argument positions
where the previous phase discovered that functions are expected. Both phases take as input setup
code that creates a set of initial values, which are used as receivers and arguments in subsequently
generated calls.

We present several instantiations of the LambdaTester framework that differ in the way in which
callback functions are constructed during the test generation phase. These instantiations include
the use of: (i) empty functions, (ii) functions that return random values [Claessen and Hughes 2011],
(iii) callbacks mined from a corpus of existing code, and (iv) a novel feedback-directed technique
that generates callbacks using guidance from a dynamic analysis. Technique (iv) observes memory
locations that are read during the execution of previously generated tests and generates function
bodies that write to those locations.
We implement our ideas in a test generation tool for JavaScript. In an empirical evaluation,

we use LambdaTester to generate tests for 43 higher-order functions in 13 popular JavaScript
libraries. These libraries provide so-called polyfills, i.e., JavaScript implementations of APIs that
may not be provided natively by all execution environments of the JavaScript language. We apply
LambdaTester to polyfills for array APIs, including the es5-shim,mozilla, and polyfill.io libraries, and
to polyfills of the promise APIs, including bluebird, Q, and when. To evaluate the effectiveness of the
generated tests, we execute the tests both with the library implementation and the corresponding
native implementation of the tested API, and detect situations where their behaviors differ. Here,
behavioral differences are detected using an automated test oracle that compares execution behavior,
e.g., the values being returned by the methods under test, the invocations of callback functions
passed as arguments, the output written by the tested code, and whether the methods under test
terminate.

1We use the terms łfunctionž and łmethodž interchangeably in this paper because our approach tests methods while the

term łhigher-order functionž is well established.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

Test Generation for Higher-Order Functions in Dynamic Languages 161:3

Our experimental results show that LambdaTester reveals various behavioral differences between
polyfills and their corresponding native implementations, including previously unknown bugs in
popular polyfills. Overall, the approach detects differences in 12 of 13 libraries. Comparing the
different techniques for creating callback functions shows that callbacks that modify program state
in non-obvious ways are more effective than simpler approaches. The most effective technique
for creating callbacks is our novel feedback-directed technique, exposing differences missed by all
other techniques.

The problem of testing higher-order functions is orthogonal to other challenges in test generation.
We believe that by exploring different approaches to address this problem, our work not only
provides a novel technique by itself, but will also provides guidance on tackling this problem in
other test generators.
The remainder of this paper is organized as follows. Section 2 presents several motivating

examples that illustrate the challenges associated with generating tests for higher-order functions.
Section 3 presents our test generation approach. Section 4 discusses the test oracles used the evaluate
the effectiveness of our approach, including novel callback-related oracles. The implementation of
LambdaTester is discussed in Section 5. An evaluation of our approach is presented in Section 6.
Finally, we discuss related work in Section 7 and conclude in Section 8.

2 CHALLENGES AND MOTIVATING EXAMPLES

This sections presents and illustrates challenges associated with generating effective tests for
programs with higher-order functions in the context of dynamically typed languages. Given one
or more methods under testm that expect a callback function cb as an argument, we identify five
challenges for testingm:

(C1) Determining wherem expects a callback function as an argument.
(C2) Generating callback functions cb that modify memory locations in such a way that it influ-

ences the behavior ofm.
(C3) Generating callback functions cb that return values that influence the behavior ofm, or that

modify properties of objects passed intom as the receiver or as arguments.
(C4) Generating tests that chain multiple calls to higher-order functions.
(C5) Detecting callback-related behavioral differences during the execution ofm.

The above challenges are relevant for any code that uses higher-order functions in a dynamically
typed language. We now illustrate these challenges using two examples. Both examples are con-
cerned with generating tests that expose bugs in polyfills for JavaScript, i.e., code that implements
a feature that is unavailable in cases where a user is running an application using an outdated
version of a browser or JavaScript engine.

2.1 Array.prototype.map

Figure 1 shows the implementation of Array.prototype.map from polyfill.io version 3.25.1. This
code provides an implementation of the mapmethod for use on platforms that predate JavaScript 1.6,
where the method was introduced. A brief review of the code reveals that lines 2ś4 check that the
receiver is an object and throw a TypeError otherwise, and that lines 5ś7 check that the callback
is a function and throw a TypeError otherwise. On lines 9ś12, several variables are initialized. If
the function is invoked on an array, the variables arraylike and length contain the array and
the array’s length, respectively. If the receiver object is a string value, then variable arraylike is
initialized to an array of which the elements contain the string’s characters. Variable result is
initialized to an empty array. The loop on lines 14ś18 visits each index in the original array, looks

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

161:4 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

1 Array.prototype.map = function map(callback) {

2 if (this === undefined || this === null) {

3 throw new TypeError(this + ' is not an object');

4 }

5 if (typeof callback !== 'function') {

6 throw new TypeError(callback + ' is not a function');

7 }

8

9 var object = Object(this), scope = arguments[1],

10 arraylike = object instanceof String ? object.split('') : object,

11 length = Math.max(Math.min(arraylike.length, 9007199254740991), 0) || 0,

12 index = -1, result = [];

13

14 while (++index < length) {

15 if (index in arraylike) {

16 result[index] = callback.call(scope, arraylike[index], index, object);

17 }

18 }

19

20 return result;

21 };

Fig. 1. Implementation of Array.prototype.map from polyfill.io.

22 p = ["a", "b", "c"];

23 q1 = p.map(function(v){ return v+v; });

24 q2 = p.map(function(v){ p.length = false; return v+v; });

Fig. 2. Examples of map method.

up the value at that index, computes a new value by invoking the callback function, and stores the
result at the corresponding index in the result array.
The code in Figure 1 computes the expected results on most but not all inputs. For exam-

ple, consider the call to map on line 23 in Figure 2. The function in Figure 1 assigns to q1 an
array ["aa", "bb", "cc"] as expected. However, the result of the second map call on line 24 is
equal to ["aa"], whereas the native implementation of Array.prototype.map assigns to q2 an array
["aa", undefined, undefined].
Detecting this behavioral difference requires a test that passes a callback function as the first

argument (see C1) and this callback function should manipulate the length property of the array
p on which the map method is invoked (see C2). While existing test generators for JavaScript are
able to generate simple callback functions, we are not aware of a previous technique that generates
callback functions that modify specific properties of objects passed in as arguments, which is
necessary to expose the bug in the map method in Figure 1. In this paper, we explore a technique
that identifies object properties, such as arraylike.length, that are read in the method under test,
and that generates callbacks that deliberately manipulate these properties.

2.2 Promises

Promises are a mechanism for asynchronous programming that was introduced in the ECMAScript 6
specification. A promise represents the value of an asynchronous computation, and it is in one
of three states: pending, fulfilled, or rejected. Initially, a promise is in the pending state, and it

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

polyfill.io

Test Generation for Higher-Order Functions in Dynamic Languages 161:5

25 var p0 = new Promise(function(resolve,reject){ resolve(undefined) });

26 var p1 = p0.then(function(v){ return p1; });

27 var p2 = p1.then(function(v){ console.log("Value: " + v); });

28 var p3 = p2.catch(function(e){ console.log("Error: " + e); });

(a) Example of the circular promise chain.

29 var p0 = new Promise(function(resolve,reject){ resolve(7) });

30 var p1 = p0.then(undefined);

31 var p2 = p1.then(function(v){

32 console.log(v);

33 return v+1;

34 });

(b) Repeated calls to then.

35 var p = Promise.reject(17);

36 p.catch(function (){ console.log("hello"); },null,false);

(c) Call to catch with multiple arguments.

Fig. 3. Examples of promise calls.

transitions to the fulfilled or rejected state when functions resolve or reject are invoked, passing
a value as an argument. To enable programmers to associate reactions with a promise, promises
define higher-order functions then and catch, which receive callback functions that execute asyn-
chronously when that promise is resolved or rejected. These operations enable programmers to
create a chain of asynchronous computations and propagate errors from one asynchronously
executed function to the next.

At the time of writing this paper, a popular web site2 lists 76 polyfill implementations of JavaScript
promises that aim at conforming to the Promises/A+ specification3 upon which the ECMAScript 6
specification is based. Testing these implementations is a challenging task for several reasons:

• then and catch can be invoked with arguments that are functions but also with non-function
values,

• then and catch return another promise, thus enabling programmers to create a chain of asyn-
chronous computations, and

• then can be invoked with one argument to define a fulfill reaction, or with two arguments, to
define both a fulfill reaction and a reject reaction, and

• the behavior of reactions defined using then and catch depends on the fact whether or not the
returned value is a promise.

As we discuss in Section 6, our test generation technique finds numerous test cases that expose
situations where polyfill implementations behave differently from the native implementation. For
example, consider the example in Figure 3a. When this test is executed using Node.js 8.5.0, i.e., the
native implementation, then it prints:

Error: TypeError: Chaining cycle detected for promise #<Promise>

The bluebird promise polyfill4 prints a slightly different message:

Error: TypeError: circular promise resolution chain

2https://promisesaplus.com/implementations
3http://wiki.commonjs.org/wiki/Promises/A
4 https://github.com/petkaantonov/bluebird.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

https://promisesaplus.com/implementations
http://wiki.commonjs.org/wiki/Promises/A
https://github.com/petkaantonov/bluebird

161:6 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

These messages allude to the fact that the value being returned by the callback function on line 26 is
the same value that is being returned by the call to then on the same line. However, the Q promise
polyfill5 fails to perform a circularity check and goes into an infinite loop that never terminates,
which is clearly undesired behavior. Exposing this bug in Q requires generating a function that
returns the same promise p1 that is returned by the first call to then at line 26 (see C3). We are
unaware of previous test generation techniques for JavaScript that are capable of generating such
tests.
The example in Figure 3b illustrates some of the other complexities that arise in generating

effective tests in the presence of higher-order functions. Here, a chain of promises is constructed
using repeated calls to then. Note that, on line 30, the value undefined is passed to then instead of
a function value. According to the specification, this should be equivalent to passing the identity
function function(v){ return v; }, and executing the code using the native promises implemen-
tation prints ł7ž. However, the polyfills provided by Q and When6 print ł[Function]ž instead. Note
that, to expose these errors, it was necessary to generate a test that contains a chain of function
calls (see C4), and that it requires the test generator to generate calls to then with arguments that
are both functions and non-function values.

As a final example, consider the test case in Figure 3c. In this example, the native implementation
of promises executes without any errors and prints łhellož. However, bluebird throws an uncaught
exception

Unhandled rejection TypeError: Cannot read property 'apply'of null

without printing any output. Further investigation reveals that, in this case, the callback is not
invoked by bluebird (see C5).

3 FRAMEWORK FOR TESTING HIGHER-ORDER FUNCTIONS

This section presents our LambdaTester framework for testing higher-order functions. Given a
set of methods under test and, optionally, some setup code required to test these methods, the
framework generates tests that invoke the methods under test. The key novelty of LambdaTester is
to effectively test methods that receive other functions, i.e., callbacks, as arguments. To support
testing of such higher-order functions, the framework consists of two phases. The first phase, called
discovery phase, infers for each method under test at what argument positions the method expects
a callback argument (Section 3.1). The second phase, called test generation phase, creates tests that
pass callback functions and other argument values to the methods under test (Section 3.2). The test
generation phase uses a form of feedback-directed, random testing [Pacheco and Ernst 2007] to
incrementally extend and execute tests. We augment feedback-directed, random testing with four
techniques to create callback arguments.

Before presenting the details of LambdaTester , we define our terminology. Each tests begins with
a piece of user-provided setup code:

Definition 3.1 (Setup code). Setup code setup is a sequence of pairs (var, exp), where var is a
variable name and exp is the expression assigned to var .

The purpose of the setup code is to create a set of values to be used as receivers or arguments of
method calls. For example, to test methods on promises, the user needs to provide setup code that
creates some initial promise objects. For the test in Figure 3a, the first line shows the setup code of
the test.
The basic ingredient of generated tests are method calls:

5 See https://github.com/kriskowal/q.
6 See https://github.com/cujojs/when.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

https://github.com/kriskowal/q
https://github.com/cujojs/when

Test Generation for Higher-Order Functions in Dynamic Languages 161:7

Infer callback

position
Generate

method call

Execute

generated test

Store test

Methods under test + Setup code

Feedback

Fig. 4. Overview of the approach.

Definition 3.2 (Method call). A method call c is a tuple (m, varrec, vararд1 · · · vararдn , varreturn),
wherem is a method name, varrec is the name of the variable used as the receiver object of the call,
vararд1, ..., vararдk are the names of variables used as arguments and varreturn is the name of the
variable to which the call’s return value is assigned.

Finally, the overall goal of the approach is to generate tests:

Definition 3.3 (Test). A test test is a sequence (setup, ci , ..., cn) where setup is the setup code and
ci , ..., cn are generated method calls.

Figure 4 illustrates the process of test generation. For each method under test, the approach
attempts to infer the positions of callback arguments. Afterwards, the approach repeatedly generates
new method calls and executes the growing test. During each test execution, the approach collects
feedback that guides the generation of the next method call. Finally, the approach stores the
generated tests, which can then be used for bug finding (Section 4).

3.1 Discovery Phase: Inferring Callback Positions

In dynamic languages, the expected number and types of method parameters are generally unknown.
In particular, our test generator cannot rely on static type signatures to decide where to pass a
callback argument. To find out at which argument positions a method under test expects a callback,
the discovery phase of our approach explores all possible callback positions. To this end, the approach
creates tests that pass callbacks at each argument position, while leaving the number and types of
the other arguments unconstrained. The approach then collects feedback from executing these tests
to determine which callbacks are executed, allowing the approach to infer the argument positions
where callbacks are expected.

Algorithm 1 illustrates our technique for finding callback positions for a given setM of methods
and setup code setup. The output of the algorithm is a map C that maps each method name to a set
of possible callback positions. As receiver objects and arguments of method calls the algorithm
considers two sets of variables. First, we use a set Vrand of variables that store randomly generated
values. To initialize this set, LambdaTester randomly generates values for primitive types, such as
strings, booleans, and numbers, as well as common object types, such as arrays and objects. Moreover,
we add null and undefined to the Vrand set. Second, we use the set Vsetup of variables assigned to
in the setup code. To obtain this set, the approach statically analyzes the setup code and extracts
all declared variables. For example, after parsing the setup code in the first line of Figure 3a, Vsetup
contains the variable p0.

The main loop of the algorithm repeatedly invokes each method under test until exceeding the
testing budget, e.g., a fixed number of method invocations. For each method call, the algorithm
passes max_params arguments such that callback functions are passed at different argument
positions. In our experiments, we setmax_params to five because the higher-order functions we
analyze do not expect more than five arguments. In many dynamic languages, such as JavaScript,

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

161:8 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

Algorithm 1 Algorithm to infer callback position

Input: SetM of names of methods under test, setup code setup
Output: Map C that maps each method name to a set of Pcb of callback positions

1: Initialize C[m] with an empty set for eachm ∈ M
2: V ← Vsetup ∪Vrand
3: for eachm ∈ M do

4: while testing budget not exceeded do

5: test ← new test starting with setup
6: for each poscb < max_params do

7: varr ec ← selectReceiver(V ,m)

8: arдs ← empty sequence
9: for each pos < max_params do

10: if pos = poscb then

11: varcb ← callback function that logs calls to it
12: Append varcb to arдs
13: else

14: vararд ← randomChoice(V)

15: Append vararд to arдs

16: Append (m,varr ec ,arдs, _) to test
17: feedback ← execute(test)

18: if feedback has non-empty log then

19: Add poscb to C[m]

20: return C

if a method is called with more arguments than expected, the redundant arguments are simply
ignored. For every argument position poscb , the algorithm creates a new method call that passes
a callback function as the argument at position poscb and randomly selected values from V at all
other argument positions.

When creating a call to a methodm, the algorithm selects the receiver object from those elements
in V that have a property namedm. This selection, indicated by selectReceiver in the algorithm,
is based on feedback from executing the setup code and the code that initializes the values in
Vrand . During this initial execution, the approach gathers type information about all variables in V ,
including which properties the values stored in these variables provide.
For example, to generate a call to the catch method of promises based on the setup code in the

first line of Figure 3a, the algorithm may select p0 as the receiver variable because it provides a
method named catch. Likewise, to generate a call to the reduce method, the algorithm may select a
receiver from a randomly generated array in Vrand because arrays provide a reduce property.

After preparing all variables involved in a method call, the algorithm creates and then executes a
test that contains the setup code followed by the call. During the execution of the test, the algorithm
gathers feedback on its execution. Specifically, the algorithm keeps track of whether the callback
function passed at position poscb gets invoked. If the callback function gets invoked, the algorithm
infers that a function argument is expected at this position and updates the map C accordingly.
Finally, after calling the methods under test with various different arguments, the algorithm

returns the inferred callback positions.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

Test Generation for Higher-Order Functions in Dynamic Languages 161:9

37 function callback() {

38 };

(a) Empty callback (łCb-Emptyž).

39 function callback() {

40 return null;

41 };

(b) Callback generated by QuickCheck (łCb-
QuickCheckž).

42 function callback() {

43 return Math.floor(10.8) +

44 Math.floor(20.4) +

45 Math.min(3, 5);

46 };

(c) Callback mined from existing code
(łCb-Minedž).

48 function callback(a,b) {

49 receiver.foo = "abc"

50 b = null;

51 return {x: 23};

52 };

(d) Callback generated based on dynamically analyzing
the method under test (łCb-Writesž).

Fig. 5. Examples of generated callbacks.

3.2 Test Generation Phase

After inferring at what argument positions the methods under test expect a callback argument, the
second phase of LambdaTester creates tests that pass different kinds of callbacks to the methods
under test. The approach combines feedback-directed, random test generation with different
techniques for creating callback functions. In the following, we first present how LambdaTester

creates callback functions (Section 3.2.1) and then describe the overall test generation algorithm
(Section 3.2.2).

3.2.1 Generation of Callback Functions. Effectively testing higher-order functions requires callback
functions to be passed as arguments to the methods under test. The LambdaTester framework
currently supports four techniques for generating callback functions, which we present below.

Empty callbacks. The most simple approach for creating callbacks is to simply create an empty
function that does not perform any computation and that does not explicitly return any value.
Figure 5a gives an example of an empty callback. We consider this approach as a baseline for
comparison with the following approaches.

Callbacks by QuickCheck. QuickCheck [Claessen and Hughes 2011] is a state-of-the-art test
generator originally designed for functional languages. To test higher-order functions, QuickCheck
is capable of generating functions that return random values, but the functions that it generates
do not perform additional computations and do not modify the program state. There are several
re-implementations of QuickCheck for dynamic languages. We integrated an implementation for
JavaScript7 into LambdaTester . Integrating other existing testing tools that generate callbacks into
our framework would be straightforward.
Figure 5b gives an example of a callback generated by QuickCheck.

Existing callbacks. Given the huge amount of existing code written in popular languages, one
way to obtain callback functions is to extract them from already written code. To find existing
callbacks for a methodm, the approach statically analyzes method calls in a corpus of code and
extracts function expressions passed to methods with a name equal tom. For example, to test the
map function of arrays in JavaScript, we search for callback functions given to map. The rationale for

7The supported implementation of QuickCheck is available at https://quickcheckjs.readme.io/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

https://quickcheckjs.readme.io/

161:10 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

extracting callbacks specifically for a each methodm is that callbacks for a specific API method
may follow common usage patterns, which may be valuable for testing these API methods.
To extract existing callbacks, we consider JavaScript code provided by a popular code cor-

pus [Raychev et al. 2016]. We analyze this code with an AST-based analysis that extracts all
function expressions that are passed as an argument to a function. For each extracted function,
the analysis stores the name of the called function along with the callback function. During test
generation, LambdaTester then random selects from those extracted callbacks that match the current
method under test. Figure 5c gives an example of an existing callback.

Callbacks generation based on dynamic analysis. The final and most sophisticated technique to
create callbacks uses a dynamic analysis of the method under test to guide the construction of a
suitable callback function. The technique is based on the observation that callbacks are more likely
to be effective for testing when they interact with the tested code. To illustrate this observation,
consider the following method under test:

53 function testMe(callbackFn, bar) {

54 // code before calling the callback

55

56 // calling the callback

57 var ret = callbackFn();

58

59 // code after calling the callback

60 if (this.foo) { ... }

61 if (bar) { ... }

62 if (ret) { ... }

63 }

To effectively test this method, the callback function should interact with the code executed
after invoking the callback. Specifically, the callback function should modify the values stored in
this.foo, ret, and bar. The challenge is how to determine the memory locations that the callback
should modify.
We address this challenge through a dynamic analysis of memory locations that the method

under test reads after invoking the callback. We apply the analysis when executing tests, and
feed the resulting set of memory locations back to the test generator to direct the generation of
future callbacks. The basic idea behind the dynamic analysis is to collect all memory locations that
(i) are read after the first invocation of the callback function and that (ii) are reachable from the
callback body. The reachable memory locations include memory reachable from the receiver object
and the arguments of the call to the method under test, the return value of the callback, and any
globally reachable state. To gather the relevant memory locations, the dynamic analysis performs
the following actions during the execution of the method under test:

• Store arguments and receiver object at method entry.When the execution of the method under
test starts, the analysis stores the method arguments and the receiver object.

• Track calls to callback function. The analysis observes when the callback function is invoked and
then starts to track memory reads.

• Track callback-reachable variable reads.When the analysis observes a read to a variable, it checks
whether the variable is transitively reachable from the receiver object or the arguments of the
call of the method under test, from the return value of the callback, or from the global object.
If the value is reachable from one of these starting points, the analysis stores its access path to
retrieve the value, i.e., a sequence of property accesses applied to the starting point object. For

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

Test Generation for Higher-Order Functions in Dynamic Languages 161:11

example, consider the reads of ret and bar in the above example. Because both happen after the
callback invocation and are memory locations reachable from the callback body, the analysis
reports the access paths ret and arg2, where arg2 refers to the second argument passed to the
method under test.

• Track callback-reachable property reads. Similar to variable reads, the analysis checks for every
property read whether the read value is reachable from the callback body. For example, consider
the read of this.foo in the above example. As this refers to the receiver object of the call to
testMe, the value can be reached via the foo property of the receiver object, i.e., the stored access
path is receiver.foo. The callback function could modify this value before the read by writing
to receiver.foo, where receiver is the variable in the test that refers to the receiver object.

For the above example, the set of dynamically detected memory locations is: { receiver.foo,
arg2, ret }.
Based on the dynamically detected memory locations, LambdaTester generates a callback body

that interacts with the function under test. To this end, the approach infers how many arguments a
callback function receives by first executing the method under test with a callback that inspects
arguments.length. Then, LambdaTester generates callback functions that write to the locations read
by the method under test and that are reachable from the callback body. The approach randomly
selects a subset of the received arguments and of the detected memory locations, and assigns a
random value to each element in the subset.

Figure 5d shows a callback function generated for the above example, based on the assumption
that the callback function receives two arguments. As illustrated by the example, the feedback from
the dynamic analysis allows LambdaTester to generate callbacks that interact with the tested code
by writing to memory locations that are relevant for the method under test.

3.2.2 Feedback-Directed Test Generation. The callback functions generated by one of the four
techniques presented in Section 3.2.1 are the core of LambdaTester . We now describe how the
framework uses these callbacks and other values to generate tests in a feedback-directed, random
manner. For methods under tests that expect function arguments according to the discovery phase
of LambdaTester , the approach generates sequences of method calls that probabilistically pass
callback arguments. For methods that do not expect callbacks, the approach generates sequences of
calls with an unconstrained list of arguments.

Algorithm 2 illustrates our test generation approach. For a given setM of methods, the approach
generates tests that contain sequences of calls to methods inM . The inputs to the algorithm are: (i)
the set of methods M , (ii) user-provided setup code setup, and (iii) the map C, which maps each
method name to a set of callback positions. The output of the algorithm is the set T of generated
tests.
During test generation, the algorithm maintains two sets of values. First, it maintains the set V

of variables, which ś as for Algorithm 1 ś comprises variables initialized in the setup code and in
the generated tests, as well as randomly initialized variables. Second, the algorithm maintains a
set R of memory locations, which are the output of the dynamic analysis of memory reads in the
method under test. These locations serve as feedback that helps the test generator create effective
callbacks (Section 3.2.1).

The algorithm incrementally generates method calls until a maximum number of calls max_calls

per test is reached. To generate a method call, the algorithm randomly picks a name from M and
a callback position index from C. The approach selects the receiver object from the variables V
by randomly choosing only from elements in V that provide a method called m. For the callback
argument, the algorithm invokes generateCallback, which implements one of the four techniques
discussed in Section 3.2.1. Values of other non-function arguments are selected from the pool V.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

161:12 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

Algorithm 2 Test generation algorithm

Input: SetM of names of methods under test, setup code setup, map C
Output: Generated tests T

1: T ← ∅

2: R ← ∅

3: V ← Vsetup ∪Vrand
4: while testing budget not exceeded do

5: test ← New test starting with setup
6: while max_calls not reached do

7: m ← randomChoice(M)

8: poscb ← randomChoice(C[m])

9: varr ec ← selectReceiver (V ,m)

10: n ← randomChoiceInRanдe(poscb ,max_arдs)
11: arдs ← empty sequence
12: for each pos ≤ n do

13: if pos == poscb and random() ≤ use_callback_prob then

14: vararд ← дenerateCallback(R,V)

15: Append vararд to arдs
16: else

17: vararд ← randomChoice(V)

18: Append vararд to arдs

19: Create fresh variable varr et and add it to V

20: Append (m,varr ec ,arдs,varr et) to test
21: f eedback ← execute(test)

22: if f eedback indicates a crash then

23: Add test to T
24: break

25: Update R with f eedback

26: Add test to T
27: return T

The algorithm adds the variable varr et , which stores the return value a newly added calls, to the
set of variables V. That is, the test generator considers return values as a potential receiver objects
or arguments in future calls.

After creating a method call, the algorithm adds the call to the current test, executes the test and
collects feedback from the test’s execution. The feedback consists of two kinds of information. First,
the algorithm observes whether the generated test crashes by throwing an exception. In this case,
further extending this test is not useful and the algorithm breaks out of the inner loop that appends
further calls. Second, the algorithm receives feedback from the dynamic analysis of the memory
locations read during the test execution and updates the set R by adding these locations to the set.

The main loop of the algorithm continues to create tests until the given testing budget has been
exceeded.

4 TEST ORACLE: DIFFERENTIAL TESTING OF POLYFILLS

The primary goal of test generation techniques is to detect bugs. To assess the effectiveness of our
testing framework in finding bugs we generate tests for polyfills that accept callback arguments.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

Test Generation for Higher-Order Functions in Dynamic Languages 161:13

In JavaScript parlance, a polyfill is a user-defined implementation of an API that provides a
method’s functionality in older execution environments that do not natively support it. For example,
before ECMAScript 6 added native support for promises, the Promise object had been available in
JavaScript through third-party libraries such as bluebird and Q. However, polyfills are non-trivial to
implement because approximating all possible behaviors supported by the native implementation
is sometimes very challenging. To find bugs in polyfills we use differential testing [McKeeman
1998] and consider the output of the native implementation as the ground truth.

When testing higher-order functions, it is often insufficient to determine whether the native
implementation and the polyfill produce the same output state given the same input state. For
example, two implementations can produce the same output for some inputs but invoke callback
functions a different number of times, which clearly indicates that these implementations are
not equivalent. In this section, we define test oracles relevant for testing higher-order functions,
including novel callback-related oracles.

To compare test executions of native and polyfill implementations and find behavioral differences
we define the notion of an execution summary.

Definition 4.1 (Execution summary). An execution summary captures the result of a test execution.
It contains the following information:

• The state of receiver objects and return values of calls.
• The state of arguments passed to callback functions.
• The number of invocations of callback functions.
• Output written to the standard output stream.
• Output written to the standard error stream.

To record the state of an object in the execution summary, LambdaTester serializes the object.
LambdaTester also serializes the arguments passed to callback functions for every callback in-
vocation. For primitive types, serialization is straightforward: we simply store the values. When
serializing objects not created by a constructor, e.g., arrays, we rely on the JSON serialization API for
converting an object to its string representation. In contrast, if an object is created by a constructor
(e.g., promises) the internal object representation depends on the constructor implementation, and
this representation may vary across polyfills. In this case, we do not serialize the object, but record
only the constructor name. Hence, if two promise libraries have the same behavior but use different
representations for promise objects, then we consider them equivalent.
To compare two implementations, LambdaTester also considers output written to the standard

output and standard error streams. Standard output contains the output produced by the test’s
execution, and standard error contains error messages thrown during the test’s execution. A
challenge when comparing output written to these streams is that different implementations of a
polyfill tend to produce different warning messages and error messages. For example, bluebird and
the native implementation produce different error messages when an attempt is made to construct
a circular promise chain, as we discussed in Section 2.2. To avoid false positives due to different
warning messages, we consider two implementations as different only if one implementation
produces an empty message while the other produces a non-empty message.
Based on the definition of execution summary, LambdaTester considers the following eight

oracles:

• Standard error - two implementations produce different standard error. Here we distinguish two
sub-categories:
• Error messages - indicates a situation when one implementation reports an error message and
the other does not.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

161:14 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

• Warnings - similar to the previous sub-category but this compares warning messages.
• Non-termination - a situation where one implementation terminates and the other does not.
• Standard output - two implementations produce different standard output.
• State of receiver objects - differences in the state of receiver objects.
• State of return values - differences in the state of return values.
• Callback arguments - differences in the state of callback arguments.
• Callback invocations - differences exposed by the number of callback invocations.

The last two oracles are callback-related oracles. Our experimental evaluation (Section 6) shows
that many behavioral differences would be missed if callback-related oracles were not considered.

5 IMPLEMENTATION

We implemented our approach in LambdaTester , a testing tool for JavaScript programs. The imple-
mentation is freely available for download.8 The dynamic analysis is based on source-to-source
instrumentation and builds on top of the dynamic analysis framework Jalangi [Sen et al. 2013].
We integrated the QuickCheck implementation available at https://quickcheckjs.readme.io.9 This
QuickCheck implementation provides interfaces for the generation of various JavaScript types,
including functions, and we configure QuickCheck so that the functions that it generates may
return a value of any type. Currently, this can be boolean, string, real, integer, array, object, and
undefined. To mine existing callback arguments, we implement an AST-based analysis based on
the acorn parser10 and on estraverse11. Finally, to measure the coverage we use the Istanbul tool12.

6 EVALUATION

We evaluate LambdaTester on 43 higher-order functions taken from 13 popular libraries. This
section reports on experiments that aim to answer the following research questions:

RQ1: How effective are the different variants of LambdaTester in finding behavioral differences?
RQ2: What kinds of behavioral differences are detected by LambdaTester?
RQ3: How effective are different variants of LambdaTester in increasing code coverage?
RQ4: How efficient is LambdaTester?

6.1 Experimental Setup

Benchmarks. Weevaluate our approach on higher-order functions taken from 13 popular JavaScript
libraries listed in Table 1. Polyfill.io, mozilla, and es5-shim implement polyfills for eight array meth-
ods indicated in the table. The other ten libraries implement JavaScript promises. For the promise
libraries, we select the most popular13 implementations of promises that aim to be compatible
with the ECMAScript 6 standard. To test promise polyfills, we consider two methods that expect
callbacks as arguments: then and catch.

Test generation approaches. We compare the effectiveness of several variants of our testing
approach as summarized in Table 2. The Base approach generates tests that call a single method
with randomly selected arguments. It is unaware of callback arguments and never generates
callbacks as arguments. The following four approaches correspond to the callback generation

8https://github.com/sola-da/LambdaTester
9Other JavaScript implementations of QuickCheck exist, e.g., JSVerify http://jsverify.github.io/, which could be integrated

into LambdaTester as well.
10https://github.com/acornjs/acorn
11https://github.com/estools/estraverse
12https://istanbul.js.org/
13 According to the star rating on github.com.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

https://quickcheckjs.readme.io
https://github.com/sola-da/LambdaTester
http://jsverify.github.io/
https://github.com/acornjs/acorn
https://github.com/estools/estraverse
https://istanbul.js.org/
github.com

Test Generation for Higher-Order Functions in Dynamic Languages 161:15

Table 1. Benchmarks used for the evaluation.

Name Version LoC API methods

Polyfill.io 3.25.1 189 filter, find, every, some, forEach, map, reduce, reduceRight

Mozilla polyfills - 199 filter, find, every, some, forEach, map, reduce, reduceRight

es5-shim 4.5.10 2098 filter, find, every, some, forEach, map, reduce, reduceRight

Q 1.5.1 1235 then, catch

bluebird 3.5.1 5188 then, catch

when 3.7.8 1844 then, catch

then/promise 8.0.1 567 then, catch

rsvp.js 4.8.2 963 then, catch

native-promise-only 0.8.1 292 then, catch

lie 3.3.0 309 then, catch

pacta 0.9.0 403 then, catch

es6-promises 1.0.10 274 then, catch

bloodhound-promises 1.4.14 652 then, catch

Table 2. Test generation approaches used for the evaluation.

Approach Description Feedback-

directed

Infer callback

positions

Callback functions

Base Random test generator that is

unaware of callbacks. It never

passes any callback function

as an argument.

No No Ð

Cb-Empty A callback-aware test gener-

ator that infers arguments

that expect callbacks, and that

passes empty callback func-

tions as arguments.

Yes Yes Empty functions

Cb-Quick Like Cb-Empty but with call-

back functions generated by

QuickCheck.

Yes Yes QuickCheck-generated

functions

Cb-Mined Like Cb-Empty but with call-

back functions mined from ex-

isting code.

Yes Yes Mined functions

Cb-Writes Like Cb-Empty but with

callback functions generated

based on a dynamic analysis

of memory reads.

Yes Yes Functions with targeted

writes

techniques introduced in Section 3.2.1. The Cb-Empty approach infers which arguments expect
callbacks, generates tests as sequences of function calls and passes empty callbacks to functions
that expect them. Cb-Mined is like Cb-Empty, but with callback functions mined from existing code.
Cb-Quick is also like Cb-Empty, but with callback functions generated by QuickCheck. Finally,
Cb-Writes uses a dynamic analysis to determine relevant memory locations that are read by the
method under test, and attempts to generate callbacks that write to those locations.

6.2 Effectiveness in Finding Behavioral Differences

Table 3 compares the different test generation approaches in terms of the number of behavioral
differences exposed by 1,000 generated tests. The table includes the differences detected with test

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

161:16 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

Table 3. Comparison of different test generation approaches in terms of the number of behavioral differences
exposed by 1,000 generated tests. We show results only for those mozilla.js and polyfill.io polyfills where at
least one of the testing approaches finds a behavioral difference.

Benchmark Base Cb-Empty Cb-Quick Cb-Mined Cb-Writes

Polyfill.io (map) 0 0 0 0 28

Polyfill.io (find) 0 0 0 0 19

Mozilla (filter) 0 0 0 7 36

es5-shim 0 0 0 0 0

Bluebird 0 475 423 264 409

Q 0 3 1 60 151

when 0 374 331 49 309

then/promise 0 0 0 57 122

rsvp.js 0 21 15 23 164

native-promise-only 0 41 30 100 184

lie 0 28 24 82 135

pacta 0 0 0 57 120

es6-promises 0 0 0 57 149

bloodhound-promises 0 63 51 153 183

oracles listed in Section 4, except for differences in the warning messages reported by libraries (as
discussed in more detail in Section 6.3).

In total, we find behavioral differences in 12 out of 13 libraries. The Base approach does not find
any difference in any polyfill. Cb-Empty and Cb-Quick find differences in 7 libraries, Cb-Mined

in 11 libraries, and Cb-Writes in 12 libraries. Overall, the Cb-Writes approach outperforms all
other approaches. The average number of differences found by Cb-Writes is the largest across
all libraries. The largest number of differences per single library is found in Bluebird, which is
perhaps surprising as it is the most popular promise implementation14. Furthermore, we consider
differences in warning messages as benign differences and exclude them as errors in Table 3.

6.3 Classification of Behavioral Differences

We are aware that some of the behavioral differences we find are likely to be due to the same root
cause. To better understand the types of behavioral differences, we classify each of them into one or
more categories based on the oracles defined in Section 4. In the following, we show a breakdown
of differences based on the way they manifest.
Tables 4 and 5 show how many behavioral differences are found in each category for each

feedback-directed testing approach. Based on these results we can draw the following conclusions:

• Warnings, error messages, and differences in execution summaries are the dominant kinds of
behavioral differences. Because the exact warning messages are not specified, these differences
can likely be considered as false positives.

• For the promise libraries, several differences arise from different states of callback arguments,
showing that considering callback-related oracles helps identify more behavioral differences.
Whether a callback is called or not is an important behavioral property and polyfills should agree
with the native implementation.

• Many promise libraries show equivalent behavior regarding their standard output and standard
error. Because we test all libraries with the same generated tests, this is the reason for several
identical numbers in the łErrž and łWarnž columns in Tables 4 and 5.

14 According to the star rating on github.com.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

github.com

Test Generation for Higher-Order Functions in Dynamic Languages 161:17

Table 4. Behavioral differences found by Cb-Empty and Cb-Quick approaches in 1,000 generated tests per
benchmark. Err = Error messages, Warn = Warning messages, NT = Non-termination errors, St.out = Standard
output, Rec = Receiver objects, Ret = Return values, C.arg = Callback arguments, C.inv = Callback invocations.

Benchmark Cb-Empty Cb-Quick

Err Warn NT St.out Rec Ret C.arg C.inv Err Warn NT St.out Rec Ret C.arg C.inv

Polyfill.io 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mozilla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

es5-shim 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bluebird 381 0 0 0 0 0 296 255 317 0 0 0 0 0 269 227

Q 0 394 0 0 0 0 3 0 0 377 0 0 0 0 1 0

when 297 69 0 0 0 0 177 141 245 67 0 0 0 0 171 137

then/promise 0 394 0 0 0 0 0 0 0 377 0 0 0 0 0 0

rsvp.js 0 394 0 0 0 0 21 0 0 377 0 0 0 0 15 0

native-

promise-

only

0 394 0 0 0 0 41 0 0 377 0 0 0 0 30 0

lie 0 394 0 0 0 0 28 0 0 377 0 0 0 0 24 0

pacta 0 394 0 0 0 0 0 0 0 377 0 0 0 0 0 0

es6-promises 0 394 0 0 0 0 0 0 0 377 0 0 0 0 0 0

bloodhound-

promises

0 394 0 0 0 0 63 0 0 377 0 0 0 0 51 0

• Non-termination errors in promise libraries are detected by Cb-Writes only. The reason is that
Cb-Writes uses objects created by previous method calls as possible return values for callbacks.
This causes it to attempt to create circular promise chains, thus triggering non-termination errors.
Since non-termination certainly is an undesirable property, the polyfills should not diverge from
the native implementations w.r.t. this behavioral property.

• The Cb-Writes approach detects significantly more differences in array polyfills than other testing
approaches. This result shows that using a more sophisticated approach for creating callbacks
that interact with the method under test via shared state is worth the effort.

6.4 Array Polyfills Generated by Mimic

As another benchmark, in addition to the human-written libraries considered so far, we also
apply LambdaTester to array polyfills generated by Mimic [Heule et al. 2015]. Mimic is a tool for
synthesizing models for a variety of array-manipulating functions. The current implementation
provides models for JavaScript’s built-in array methods, including higher-order functions such as
filter, find, every, some, forEach, map, reduce and reduceRight.

We evaluate the effectiveness of LambdaTester on all Mimic-synthesized array polyfills. Table 6
shows the number of behavioral differences found by each testing approach. Interestingly, all
tests generated by Base approach show errors in mimic polyfills. This is because Mimic’s polyfill
implementations do not throw errors when a non-function argument is passed at positions where a
callback is expected. Furthermore, all tests generated by Cb-Empty expose errors in Mimic’s every
and some polyfills. The reason is that these polyfills are supposed to return a boolean value, but
when receiving an empty callback, they always return undefined.

In general, the polyfills generated by Mimic have significantly more differences from the native
implementation than the human-written polyfill libraries. Since we are not aware of any use of
synthesized mimic models in real-world applications, we exclude these polyfills as a point of
comparison in Table 3.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

161:18 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

Table 5. Behavioral differences found by Cb-Mined and Cb-Writes approaches in 1,000 generated tests per
benchmark. Err = Error messages, Warn = Warning messages, NT = Non-termination errors, St.out = Standard
output, Rec = Receiver objects, Ret = Return values, C.arg = Callback arguments, C.inv = Callback invocations.

Benchmark Cb-Mined Cb-Writes

Err Warn NT St.out Rec Ret C.arg C.inv Err Warn NT St.out Rec Ret C.arg C.inv

Polyfill.io

(map)

0 0 0 0 0 0 0 0 0 0 0 0 6 27 7 0

Polyfill.io

(find)

0 0 0 0 0 0 0 0 0 0 0 0 0 9 19 19

Mozilla

(filter)

0 0 0 0 5 7 5 0 0 0 0 0 17 35 16 0

es5-shim 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bluebird 7 0 0 1 1 1 262 252 211 0 0 0 0 0 316 276

Q 57 870 0 0 0 0 3 0 149 504 68 0 0 0 2 0

when 5 2 0 1 1 1 45 17 207 123 0 0 0 0 165 112

then/promise 57 870 0 0 0 0 0 0 149 504 0 0 0 0 1 0

rsvp.js 57 870 0 0 0 0 23 0 149 504 0 0 0 0 21 0

native-

promise-

only

57 870 0 0 0 0 47 0 149 504 0 0 0 0 48 0

lie 57 870 0 0 0 0 27 0 149 504 0 0 0 0 22 0

pacta 57 870 0 0 0 0 0 0 149 504 0 0 0 0 0 0

es6-promises 57 870 0 0 0 0 0 0 149 504 0 0 0 0 0 0

bloodhound-

promises

57 870 0 0 0 0 106 1 149 504 0 0 0 0 51 0

Table 6. Behavioral differences in array polyfills generated by Mimic [Heule et al. 2015].

Polyfill Base Cb-Empty Cb-Quick Cb-Mined Cb-Writes

Every 1,000 1,000 999 437 992

Some 1,000 1,000 993 195 974

ForEach 1,000 0 0 0 0

Filter 1,000 0 0 0 7

Map 1,000 0 0 0 28

Reduce 1,000 797 794 758 526

ReduceRight 1,000 797 794 783 809

Future work might combine a test generator for higher-order functions, such as LambdaTester ,
with an approach for synthesizing polyfills, such as Mimic, so that the behavioral differences found
with generated tests provide feedback on weaknesses of the synthesized code.

6.5 Examples of Bugs and Other Inconsistencies

To illustrate the behavioral differences detected by LambdaTester , we discuss a few representative
examples. For space reasons, we only include the relevant fragments of the generated tests that
expose errors.

Unexpected types and number of arguments. Figure 6a illustrates a test case that exposes a
behavioral difference found in the when library caused by passing a non-function value as the
second argument to the catch method. The buggy polyfill implementation is given in Figure 6b.
The library throws a TypeError because it tries to execute the call method on a non-function

object at line 83. In contrast, the native implementation ignores the second argument and executes

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

Test Generation for Higher-Order Functions in Dynamic Languages 161:19

64 var p1 = Promise.resolve(18);

65 var p2 = Promise.reject(17);

66 p2.catch(function(){

67 return p1;

68 }, p1);

(a) LambdaTester-generated test.

69 Promise.prototype['catch'] = function(onRejected) {

70 if (arguments.length < 2) {

71 return origCatch.call(this, onRejected);

72 }

73 if (typeof onRejected !== 'function') {

74 return this.ensure(rejectInvalidPredicate);

75 }

76 return origCatch.call(this,

77 createCatchFilter(arguments[1],onRejected));

78 }

79

80 function createCatchFilter(handler, predicate) {

81 return function(e) {

82 return evaluatePredicate(e, predicate) ?

83 handler.call(this, e) : reject(e);

84 }

85 }

(b) Implementation of catch from when library.

Fig. 6. Example of behavioral difference found in the when library.

86 var p1 = Promise.resolve(18);

87 var p2 = Promise.reject(17);

88 var r1 = p1.then(function(){ return null; }, null);

89 var r2 = p2.then(function(){ return r1; });

90 var r3 = r2.catch(function(){ return p2; });

91 var r4 = r1.then(function(){ return p2; });

Fig. 7. Example of LambdaTester-generated test that exposes a behavioral difference in the Q library.

the method call without errors. This example illustrates a situation where a different output is
written to the standard error stream.

Order of executed function calls. The example in Figure 7 illustrates a behavioral difference found
in the Q library. The native implementation first executes calls to the then function at lines 88, 89,
and 91 and then a call to catch at line 90. However, the Q library executes the method calls in the
same order as presented in Figure 7. LambdaTester discovers this difference by inspecting the state
of the callback arguments.
The cause of this bug appears to be in the library’s queuing mechanism used for tracking

unhandled rejections. Due to the complexity of the code, we were not able to fully diagnose the
problem. In general, the complexity of callback-based code is a good reason for extensive testing,
e.g., using our LambdaTester approach.

Changing receiver object inside a callback. Many of the behavioral differences found in the array
polyfills are caused by changes made by the callback to properties of the receiver object or of other
arguments. Figure 8a illustrates a test case that expose this type of problem, with the corresponding
polyfill implementation in Figure 8b. In the test, when the method under test invokes the callback
for the first time, the callback sets the length property of the receiver object to false. At line 106
in Figure 8b, the method under test performs a check to find whether the receiver object has a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

161:20 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

92 var base = ["w", "I", 126];

93 base.find(function(a,b,c){

94 base['length'] = false;

95 return a;

96 });

(a) LambdaTester-generated test

97 function find(callback) {

98 ...

99 var object = Object(this),

100 scope = arguments[1],

101 arraylike = object instanceof String ?

102 object.split('') : object,

103 index = -1;

104

105 while (++index < length) {

106 if (index in arraylike) {

107 element = arraylike[index];

108 if (callback.call(scope, element, index, object) {

109 return element;

110 }

111 }

112 }

113 }

(b) Implementation of Array.prototype.find from
polyfill.io.

Fig. 8. Example of a behavioral difference found in the polyfill.io library.

property named index. After changing the length property, the check always evaluates to false,
which prevents further executions of the callback argument. As a result, the polyfill and the native
implementation return the same value, undefined, but the native implementation executes the
callback three times, whereas the polyfill executes it only once. This example illustrates a situation
where a callback-related oracle helps detect behavioral differences that would be missed otherwise.

Despite the effectiveness of LambdaTester in detecting inconsistencies, we are aware that the
developers of the tested libraries may find some of the generated tests more useful than others. The
reason is that not every generated test represents a realistic usage scenario of the tested libraries.
For example, method invocations with callbacks that change the state of the receiver or of the
argument objects are unlikely to be a common use case. However, testing uncommon behavior
helps finding more bugs that would be missed otherwise.

6.6 Effectiveness in Covering Code Under Test

To assess the effectiveness of LambdaTester in covering code under test we measure statement
coverage. For the array polyfills, we collect coverage data for eachmethod implementation. However,
since it is not straightforward to extract individual method implementations from the promise
libraries, we chose to measure coverage of the entire promise libraries.

Table 7 lists the results for coverage measurements for each benchmark. The statement coverage
of polyfills differs significantly between Base and the feedback-directed approaches, e.g., increasing
from 20% to up to 100% for the filter method from the Mozilla library. Overall, Cb-Writes is the
most effective approach in increasing statement coverage. For all benchmarks, feedback-directed
approaches achieve better statement coverage compared to the baseline approach.
The statement coverage for promise libraries is relatively low, and the reason is that the tested

methods comprise only a subset of the entire library code: In addition to the then and catchmethods,
the promise libraries define other functions not targeted by our generated tests.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

polyfill.io

Test Generation for Higher-Order Functions in Dynamic Languages 161:21

Table 7. Statement coverage for 1,000 generated tests.

Benchmark Base Cb-Empty Cb-Quick Cb-Mined Cb-Writes

Polyfill.io (every) 40.0% 70.0% 80.0% 80.0% 90.0%

Polyfill.io (some) 40.0% 70.0% 80.0% 80.0% 90.0%

Polyfill.io (forEach) 44.4% 77.7% 77.7% 77.7% 88.8%

Polyfill.io (filter) 36.3% 72.7% 81.8% 81.8% 90.9%

Polyfill.io (map) 40.0% 80.0% 80.0% 80.0% 90.0%

Polyfill.io (find) 36.3% 72.7% 81.8% 81.8% 90.9%

Polyfill.io (reduce) 25.0% 81.2% 87.5% 81.2% 87.5%

Polyfill.io (reduceRight) 25.0% 81.2% 87.5% 81.2% 87.5%

Mozilla (every) 35.0% 80.0% 90.0% 90.0% 95.0%

Mozilla (some) 33.3% 75.0% 83.3% 83.3% 91.6%

Mozilla (forEach) 41.1% 88.2% 88.2% 88.2% 94.1%

Mozilla(filter) 20.0% 80.0% 93.3% 93.3% 100%

Mozilla (map) 35.0% 90.0% 90.0% 90.0% 95.0%

Mozilla (find) 40.0% 80.0% 86.6% 86.6% 93.3%

Mozilla (reduce) 19.0% 80.9% 85.7% 80.9% 85.7%

Mozilla (reduceRight) 23.5% 76.4% 82.3% 76.4% 82.3%

es5-shim (every) 56.5% 58.9% 59.6% 59.6% 63.5%

es5-shim (some) 56.5% 58.9% 59.6% 59.6% 63.5%

es5-shim (forEach) 56.4% 60.3% 60.3% 60.3% 64.1%

es5-shim (filter) 56.3% 60.1% 60.9% 60.9% 64.6%

es5-shim (map) 56.0% 60.6% 60.6% 60.6% 64.3%

es5-shim (reduce) 48.8% 58.6% 59.4% 58.6% 62.4%

es5-shim (reduceRight) 48.1% 59.2% 60.0% 59.2% 62.9%

Q 42.2% 43.8% 43.8% 44.2% 43.8%

bluebird 37.2% 39.6% 39.9% 40.0% 41.0%

when 51.5% 52.5% 52.8% 52.8% 53.2%

then/promise 48.9% 59.0% 62.1% 63.6% 64.6%

rsvp.js 41.9% 45.3% 46.5% 47.2% 47.9%

native-promise-only 65.1% 67.4% 68.0% 68.6% 69.1%

lie 41.2% 55.5% 55.5% 57.1% 62.3%

pacta 39.3% 54.3% 55.9% 56.6% 59.0%

es6-promises 58.6% 67.2% 68.8% 68.8% 68.8%

bloodhound-promises 29.9% 33.0% 33.3% 35.3% 36.4%

6.7 Efficiency

To assess the performance of the test generation techniques, Table 8 shows, for each approach,
the time needed to generate and execute 1,000 tests. All experiments are conducted on a 48-core
machine with a 2.2GHz Intel Xeon CPU and 64GB of RAM. We use Node.js 8.5 and provide it with
the default of 1GB of memory. The implementation of LambdaTester is single-threaded and while
running the tool we effectively use a single core.

The execution time of the Base approach is dominated by the time needed to generate tests and
collect their execution summaries. The execution time of the feedback-directed approaches is higher
as they also include the time to generate multiple calls and to collect feedback. In particular, for the
Cb-Writes approach, the time needed for dynamically analyzing each test’s execution dominates
the total execution time. The time spent to generate tests with Cb-Writes takes less than 1 hour on
average, except for the generation of the promise tests, which takes approximately 3 hours. Overall,
since running LambdaTester requires minimal manual intervention and since the generated tests
expose many behavioral differences, we consider the computational effort to be acceptable.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

161:22 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

Table 8. Time to generate 1,000 tests per API.

API Base Cb-Empty Cb-Quick Cb-Mined Cb-Writes

every 6m 50s 27m 6s 27m 5s 33m 35s 53m 35s

forEach 6m 48s 27m 6s 27m 5s 33m 37s 53m 46s

some 6m 48s 27m 6s 27m 6s 33m 37s 53m 26s

filter 6m 47s 27m 6s 27m 6s 33m 34s 53m 7s

map 6m 47s 27m 6s 27m 6s 32m 30s 53m 34s

reduce 6m 46s 27m 5s 27m 7s 33m 1s 54m

reduceRight 6m 46s 27m 5s 27m 7s 33m 39s 53m 54s

find 6m 46s 27m 6s 27m 7s 33m 33s 53m 34s

then,catch 6m 31s 27m 10s 27m 6s 33m 23s 190m

6.8 Summary of Results

We summarize our findings as follows:
RQ1: Effectiveness in finding behavioral differences. LambdaTester finds behavior differences in 12

out of 13 libraries. When comparing the different techniques for creating callbacks, we find that
our novel Cb-Writes approach is the most effective.

RQ2: Kinds of behavioral differences. LambdaTester detects a diverse set of differences, including
clearly undesired behavior, such as non-termination bugs and crashes in polyfills, as well as
differences in the number of times that a callback gets invoked.
RQ3: Effectiveness in increasing code coverage. The Cb-Writes is the most effective approach for

increasing the statement coverage of the array and promise polyfills.
RQ4: Efficiency. The time required by LambdaTester to generate a single test ranges between 0.4

and 12 seconds, making it a practical tool for automatically testing higher-order functions.

7 RELATED WORK

7.1 Test Generation

Random testing has been shown to be surprisingly cost-effective [Duran and Ntafos 1984; Ntafos
2001] and to detect a predictable number of bugs despite its random nature [Ciupa et al. 2011],
providing an effective prelude to more rigorous bug detection techniques [Groce et al. 2007].
Adaptive random testing [Chen et al. 2010, 2004] tries to increase the effectiveness of testing
by equally distributing test inputs across the input domain, but appears to be less cost-effective
than random testing [Arcuri and Briand 2011; Ciupa et al. 2008]. Random test generators include
JCrasher [Csallner and Smaragdakis 2004], which creates random arguments guided by test an-
notations, and Randoop [Pacheco and Ernst 2007; Pacheco et al. 2008], which uses feedback from
executions of previously generated partial tests. LambdaTester , like Randoop, performs a form of
feedback-directed, random test generation, and adds the ability to effectively test higher-order
functions. A test generator by Zheng et al. considers the object fields modified by the code under
test to select which methods to call [Zheng et al. 2010]. Similarly, our Cb-Writes technique analyzes
reads in the code under test, to direct the generation of callback functions toward writing to those
locations.
Some test generators for functional languages address the problem of testing higher-order

functions. QuickCheck [Claessen and Hughes 2011] randomly generates functions that return a
type-correct return value. However, the generated functions do not modify any other state beyond
the return value. Koopman and Plasmeijer propose to improve QuickCheck by systematically
generating functions based on the AST representation of a function argument [Koopman and
Plasmeijer 2006]. The basic idea of their approach is to represent functions as a data type and

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

Test Generation for Higher-Order Functions in Dynamic Languages 161:23

to systematically enumerate elements of this data type. In contrast to the Cb-Writes variant of
LambdaTester , their approach does not generate callback bodies specifically targeted at the code
under test. Instead, the user of the approach needs to provide a generator function for callback
bodies, which, e.g., creates expressions to be used in the body. For an empirical comparison with a
QuickCheck implementation for JavaScript, see Section 6.
Two test generators for Racket tests higher-order functions, either by generating new sub-

classes of existing classes, guided by the types of functions and the environment, and guided by
developer-provided contracts [Klein et al. 2010], or by adopting symbolic execution for higher-order
functions [Nguyen and Horn 2015]. Another line of work generates functions to test a Haskell
compiler [Palka et al. 2011]. Their focus is on generating type-correct functions, whereas we focus
on generating functions that trigger diverse behaviors. All the above test generators are guided
by static type signatures, which are not available in the dynamic languages that we target here.
Another difference is that, in contrast to our Cb-Writes technique, none of the above approaches
guides the generation of functions based on feedback from the code under test.
Symbolic testing [Cadar et al. 2008; King 1976; Visser et al. 2004; Xie et al. 2005] and concolic

testing [Godefroid et al. 2005, 2008; Sen et al. 2005] are another popular form of test generation.
Other test generation techniques include bounded exhaustive test generation guided by pre- and
post-conditions [Boyapati et al. 2002], test generation combined with mining of call sequences from
existing code [Thummalapenta et al. 2009], combining symbolic testing with static analysis [Thum-
malapenta et al. 2011], UI-level test generation [Artzi et al. 2011; Ermuth and Pradel 2016; Marchetto
et al. 2008; Memon 2007; Mesbah et al. 2008], and performance-guided test generation [Burnim
et al. 2009; Pradel et al. 2014]. To the best of our knowledge, none of these approaches addresses
the problem of testing higher-order functions.

7.2 Testing and Analysis for JavaScript

The dynamic nature of JavaScript makes code prone to errors and other undesired code properties.
Several dynamic analyses [Sen et al. 2013] have been proposed to detect such problems, including
analyses to detect type inconsistencies [Pradel et al. 2015], code quality problems [Gong et al.
2015b], JIT compilation-related performance bottlenecks [Gong et al. 2015a], memory leaks [Jensen
et al. 2015], data races [Mutlu et al. 2015], and conflicts between libraries that share the global
namespace [Patra et al. 2018]. Other dynamic analyses help developers understand the dynamic
behavior of callback-heavy JavaScript code [Alimadadi et al. 2014] and to prevent unintended
information flows [Chugh et al. 2009; Hedin et al. 2014]. A recent survey [Andreasen et al. 2017]
provides a comprehensive summary of dynamic analyses for JavaScript. All dynamic analyses rely
on inputs to drive the execution, a problem that test generators such as LambdaTester address.

A recent test generator for JavaScript creates tests that check TypeScript interface declarations
against the corresponding JavaScript implementations [Kristensen and Mùller 2017]. Their ap-
proach provides only rudimentary support for higher-order functions by passing ła simple dummy
functionž [Kristensen and Mùller 2017], similar to our Cb-Empty technique.
Beyond test generation and dynamic analysis, previous research has focused on type sys-

tems [Jensen et al. 2009; Thiemann 2005] and several static analyses for JavaScript, including
points-to analysis [Sridharan et al. 2012], a memory leak detector [Pienaar and Hundt 2013], an
analysis of library clients [Madsen et al. 2013], an analysis of event-driven Node.js code [Madsen
et al. 2015], and checks of JavaScript libraries against their corresponding TypeScript interface
declarations [Feldthaus and Mùller 2014]. Given the difficulties of analyzing an inherently dynamic
language such as JavaScript, dynamic analysis is a viable alternative for which LambdaTester can
provide inputs.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

161:24 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

8 CONCLUSIONS

We present a framework for testing higher-order functions in dynamic programming languages.
The approach consists of two phases: the discovery phase is concerned with discovering at which
argument positions a function is expected, and the test generation phase automatically creates tests
that perform a sequence of method calls. The created method calls pass callbacks at those positions
where they are expected and random values at others. Both phases take as input setup code that
creates a set of initial values that are used as receivers and arguments in subsequently generated
calls.

We have implemented the framework in a tool called LambdaTester , and evaluate several instances
of the framework in which the generated callback functions consist of: (i) empty functions, (ii)
functions that return random values [Claessen and Hughes 2011], (iii) callbacks mined from a
corpus of existing code, and (iv) functions that write to locations that are likely to be read, as
determined using a feedback-directed dynamic analysis technique. We apply LambdaTester to
polyfills for array-related functions taken from the es5-shim, mozilla, and polyfill.io libraries, and
to polyfills of the promise APIs taken from bluebird, Q, and when. Our experimental results show
that LambdaTester reveals various behavioral differences between polyfills and their corresponding
native implementations, including previously unknown bugs in popular polyfills. Overall, the
approach detects differences in 12 of 13 libraries. Comparing the different techniques for creating
callback functions shows that generating callbacks that modify program state in non-obvious ways
is more likely to expose behavioral diferences than the simpler approaches, and that our novel
feedback-directed technique exposes behavioral differences missed by all other techniques.

ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry of Education and Research and by the
Hessian Ministry of Science and the Arts within CRISP, by the German Research Foundation within
the ConcSys and Perf4JS projects, and by the Hessian LOEWE initiative within the Software-Factory
4.0 project. This research was also supported in part by NSF grant CCF-1715153.

REFERENCES

Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. 2014. Understanding JavaScript event-based

interactions. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014.

367ś377.

Esben Andreasen, Liang Gong, Anders Mùller, Michael Pradel, Marija Selakovic, Koushik Sen, and Cristian-Alexandru

Staicu. 2017. A Survey of Dynamic Analysis and Test Generation for JavaScript. Comput. Surveys (2017).

Andrea Arcuri and Lionel Briand. 2011. Adaptive Random Testing: An Illusion of Effectiveness?. In Proceedings of the

2011 International Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY, USA, 265ś275. https:

//doi.org/10.1145/2001420.2001452

Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Mùller, and Frank Tip. 2011. A framework for automated testing of

JavaScript web applications. In ICSE. 571ś580.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat: automated testing based on Java predicates. In

International Symposium on Software Testing and Analysis (ISSTA). 123ś133.

Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. WISE: Automated test generation for worst-case complexity. In ICSE.

IEEE, 463ś473.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation of High-Coverage

Tests for Complex Systems Programs. In Symposium on Operating Systems Design and Implementation (OSDI). USENIX,

209ś224.

Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse. 2010. Adaptive Random Testing: The ART of test case

diversity. Journal of Systems and Software 83, 1 (2010), 60ś66. https://doi.org/10.1016/j.jss.2009.02.022

Tsong Yueh Chen, Hing Leung, and IK Mak. 2004. Adaptive random testing. In Annual Asian Computing Science Conference.

Springer, 320ś329.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

https://doi.org/10.1145/2001420.2001452
https://doi.org/10.1145/2001420.2001452
https://doi.org/10.1016/j.jss.2009.02.022

Test Generation for Higher-Order Functions in Dynamic Languages 161:25

Ravai Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. 2009. Staged Information Flow for JavaScript. In Conference

on Programming Language Design and Implementation (PLDI). ACM, 50ś62.

Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. 2008. ARTOO: adaptive random testing for object-oriented

software. In International Conference on Software Engineering (ICSE). ACM, 71ś80.

I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and B. Meyer. 2011. On the number and nature of faults found by

random testing. Software Testing, Verification and Reliability 21, 1 (2011), 3ś28. https://doi.org/10.1002/stvr.415

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.415

Koen Claessen and John Hughes. 2011. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. SIGPLAN

Not. 46, 4 (May 2011), 53ś64. https://doi.org/10.1145/1988042.1988046

Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: an automatic robustness tester for Java. Software Prac. Experience

34, 11 (2004), 1025ś1050.

Joe W. Duran and Simeon C. Ntafos. 1984. An Evaluation of Random Testing. IEEE Trans. Softw. Eng. 10, 4 (July 1984),

438ś444. https://doi.org/10.1109/TSE.1984.5010257

Markus Ermuth and Michael Pradel. 2016. Monkey See, Monkey Do: Effective Generation of GUI Tests with Inferred Macro

Events. In International Symposium on Software Testing and Analysis (ISSTA). 82ś93.

Asger Feldthaus and Anders Mùller. 2014. Checking correctness of TypeScript interfaces for JavaScript libraries. In Conference

on Object Oriented Programming Systems Languages and Applications (OOPSLA). ACM, 1ś16.

Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation for object-oriented software. In SIGSOFT-

/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European

Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011. 416ś419.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. SIGPLAN Not. 40, 6

(June 2005), 213ś223. https://doi.org/10.1145/1064978.1065036

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated Whitebox Fuzz Testing. In Network and

Distributed System Security Symposium (NDSS).

Liang Gong, Michael Pradel, and Koushik Sen. 2015a. JITProf: Pinpointing JIT-unfriendly JavaScript Code. In European

Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). 357ś368.

Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015b. DLint: Dynamically Checking Bad Coding Practices

in JavaScript. In International Symposium on Software Testing and Analysis (ISSTA). 94ś105.

Alex Groce, Gerard Holzmann, and Rajeev Joshi. 2007. Randomized Differential Testing As a Prelude to Formal Verification.

In Proceedings of the 29th International Conference on Software Engineering (ICSE ’07). IEEE Computer Society, Washington,

DC, USA, 621ś631. https://doi.org/10.1109/ICSE.2007.68

Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow: tracking information flow in JavaScript

and its APIs. In SAC. 1663ś1671.

Stefan Heule, Manu Sridharan, and Satish Chandra. 2015. Mimic: computing models for opaque code. In Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,

2015. 710ś720.

Simon Holm Jensen, Anders Mùller, and Peter Thiemann. 2009. Type Analysis for JavaScript. In Symposium on Static

Analysis (SAS). Springer, 238ś255.

Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish Chandra. 2015. MemInsight: platform-independent memory

debugging for JavaScript. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE

2015, Bergamo, Italy, August 30 - September 4, 2015. 345ś356.

J. C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385ś394.

Casey Klein, Matthew Flatt, and Robert Bruce Findler. 2010. Random testing for higher-order, stateful programs. In Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM, 555ś566.

Pieter Koopman and Rinus Plasmeijer. 2006. Automatic Testing of Higher Order Functions. In Asian Symposium on

Programming Languages and Systems (APLAS). 148ś164.

Erik Krogh Kristensen and Anders Mùller. 2017. Type test scripts for TypeScript testing. PACMPL 1, OOPSLA (2017),

90:1ś90:25.

Magnus Madsen, Benjamin Livshits, and Michael Fanning. 2013. Practical static analysis of JavaScript applications in the

presence of frameworks and libraries. In ESEC/SIGSOFT FSE. 499ś509.

Magnus Madsen, Frank Tip, and Ondrej Lhoták. 2015. Static analysis of event-driven Node.js JavaScript applications. In

Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. 505ś519.

Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. 2008. State-Based Testing of Ajax Web Applications. In ICST. IEEE

Computer Society, 121ś130.

William M. McKeeman. 1998. Differential Testing for Software. Digital Technical Journal 10, 1 (1998), 100ś107.

Atif M. Memon. 2007. An event-flow model of GUI-based applications for testing. Softw. Test., Verif. Reliab. (2007), 137ś157.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

https://doi.org/10.1002/stvr.415
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.415
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1109/TSE.1984.5010257
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1109/ICSE.2007.68

161:26 Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip

Ali Mesbah, Engin Bozdag, and Arie van Deursen. 2008. Crawling Ajax by Inferring User Interface State Changes. In

International Conference on Web Engineering (ICWE). 122ś134.

Ali Mesbah and Arie van Deursen. 2009. Invariant-based automatic testing of Ajax user interfaces. In ICSE. 210ś220.

Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2015. Detecting JavaScript Races that Matter. In European Software

Engineering Conference and International Symposium on Foundations of Software Engineering (ESEC/FSE).

Phuc C. Nguyen and David Van Horn. 2015. Relatively complete counterexamples for higher-order programs. In Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June

15-17, 2015. 446ś456.

S. C. Ntafos. 2001. On comparisons of random, partition, and proportional partition testing. IEEE Transactions on Software

Engineering 27, 10 (Oct 2001), 949ś960. https://doi.org/10.1109/32.962563

Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed Random Testing for Java. In Companion to the

22Nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications Companion (OOPSLA ’07).

ACM, New York, NY, USA, 815ś816. https://doi.org/10.1145/1297846.1297902

Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. 2008. Finding Errors in .Net with Feedback-directed Random Testing.

In Proceedings of the 2008 International Symposium on Software Testing and Analysis (ISSTA ’08). ACM, New York, NY,

USA, 87ś96. https://doi.org/10.1145/1390630.1390643

Michal H. Palka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an Optimising Compiler by Generating

Random Lambda Terms. In Proceedings of the 6th International Workshop on Automation of Software Test (AST ’11). ACM,

New York, NY, USA, 91ś97. https://doi.org/10.1145/1982595.1982615

Jibesh Patra, Pooja N. Dixit, and Michael Pradel. 2018. ConflictJS: Finding and Understanding Conflicts Between JavaScript

Libraries. In ICSE.

Jacques A. Pienaar and Robert Hundt. 2013. JSWhiz: Static analysis for JavaScript memory leaks. In Proceedings of the 2013

IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2013, Shenzhen, China, February 23-27,

2013. 11:1ś11:11.

Michael Pradel and Thomas R. Gross. 2012. Fully Automatic and Precise Detection of Thread Safety Violations. In Conference

on Programming Language Design and Implementation (PLDI). 521ś530.

Michael Pradel, Parker Schuh, George Necula, and Koushik Sen. 2014. EventBreak: Analyzing the Responsiveness of

User Interfaces through Performance-Guided Test Generation. In Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA). 33ś47.

Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic Type Inconsistency Analysis for JavaScript. In

International Conference on Software Engineering (ICSE).

Veselin Raychev, Pavol Bielik, Martin T. Vechev, and Andreas Krause. 2016. Learning programs from noisy data. In Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,

FL, USA, January 20 - 22, 2016. 761ś774.

Malavika Samak and Murali Krishna Ramanathan. 2014. Multithreaded Test Synthesis for Deadlock Detection. In Conference

on Object-Oriented Programming Systems, Languages and Applications (OOPSLA). 473ś489.

Marija Selakovic, Thomas Glaser, and Michael Pradel. 2017. An Actionable Performance Profiler for Optimizing the Order

of Evaluations. In International Symposium on Software Testing and Analysis (ISSTA). 170ś180.

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013. Jalangi: A Selective Record-replay and Dynamic

Analysis Framework for JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering

(ESEC/FSE 2013). ACM, New York, NY, USA, 488ś498. https://doi.org/10.1145/2491411.2491447

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing Engine for C. In Proceedings of the 10th

European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations

of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA, 263ś272. https://doi.org/10.1145/1081706.1081750

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. 2012. Correlation Tracking for Points-To

Analysis of JavaScript. In ECOOP 2012 - Object-Oriented Programming - 26th European Conference, Beijing, China, June

11-16, 2012. Proceedings. 435ś458.

Peter Thiemann. 2005. Towards a Type System for Analyzing JavaScript Programs. In European Symposium on Programming

(ESOP). 408ś422.

Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009. MSeqGen: Object-

oriented unit-test generation via mining source code. In European Software Engineering Conference and International

Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, 193ś202.

Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Zhendong Su. 2011. Synthesizing method

sequences for high-coverage testing.. In OOPSLA. 189ś206.

Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. 2004. Test input generation with Java PathFinder. In International

Symposium on Software Testing and Analysis (ISSTA). ACM, 97ś107.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

https://doi.org/10.1109/32.962563
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1390630.1390643
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/1081706.1081750

Test Generation for Higher-Order Functions in Dynamic Languages 161:27

Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. 2005. Symstra: A Framework for Generating Object-Oriented

Unit Tests Using Symbolic Execution. In Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS). Springer, 365ś381.

Wujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie. 2010. Random Unit-test Generation with MUT-aware Sequence

Recommendation. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE ’10).

ACM, New York, NY, USA, 293ś296. https://doi.org/10.1145/1858996.1859054

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 161. Publication date: November 2018.

https://doi.org/10.1145/1858996.1859054

	Abstract
	1 Introduction
	2 Challenges and Motivating Examples
	2.1 Array.prototype.map
	2.2 Promises

	3 Framework for Testing Higher-Order Functions
	3.1 Discovery Phase: Inferring Callback Positions
	3.2 Test Generation Phase

	4 Test Oracle: Differential Testing of Polyfills
	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Effectiveness in Finding Behavioral Differences
	6.3 Classification of Behavioral Differences
	6.4 Array Polyfills Generated by Mimic
	6.5 Examples of Bugs and Other Inconsistencies
	6.6 Effectiveness in Covering Code Under Test
	6.7 Efficiency
	6.8 Summary of Results

	7 Related Work
	7.1 Test Generation
	7.2 Testing and Analysis for JavaScript

	8 Conclusions
	Acknowledgments
	References

