
An Evaluation of Change-Based Coverage Criteria

Marc Fisher II
Virgina Tech

∗
Blacksburg, VA, USA
fisherii@google.com

Jan Wloka
IBM Rational Research Lab

Zurich, Switzerland
jan_wloka@ch.ibm.com

Frank Tip
IBM Research

Yorktown Heights, NY, USA
ftip@us.ibm.com

Barbara G. Ryder
Virginia Tech

Blacksburg, VA, USA
ryder@cs.vt.edu

Alexander Luchansky
Vanguard Group, Inc.

Malvern, PA, USA
alexander_luchansky@vanguard.com

ABSTRACT
Various coverage criteria are commonly used to assess the quality
of test suites, but achieving full coverage according to these criteria
is often impossible or impractical. Our research starts from the pop-
ular assumption that a disproportionate number of faults is likely to
reside in recently changed code. Based on this assumption, we
propose several change-based coverage criteria that reflect to what
extent changes with respect to a previous program version are exer-
cised by a test suite. In a set of experiments on programs from the
SIR repository, we found change-based criteria to reveal faults bet-
ter than traditional criteria, and to enable the construction of much
smaller test suites with similar fault detection effectiveness. We
also report on a case study that shows that achieving 100% cov-
erage according to a change-based criterion is feasible and that by
doing so we were able to find additional faults, including one fault
that was not intentionally seeded in the subject program.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and debugging

General Terms
Measurement, Reliability

1. INTRODUCTION
Software evolves throughout its lifetime as developers fix faults,

adapt applications to changing requirements and add new function-
ality. By running a test suite after their edits, developers can expose
faults and ensure that there are no unexpected consequences intro-
duced by their changes. A high quality test suite should support this
validation of developer changes. If a test suite runs successfully af-
ter an edit, this may not suffice, because a successful test does not
imply the absence of erroneous program behavior, but rather its in-
ability to expose any faults. Therefore, there is a need to assess

∗Current Affiliation: Google, Mountain View, CA, USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’11, September 5, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0849-6/11/09 ...$10.00.

the quality of a test suite with regard to exposing possible faults
introduced by program changes.

Traditional code coverage criteria measure the percentage of spe-
cific code constructs (e.g., statements, methods, or branches [10])
executed by a particular test or test suite. The use of code coverage
was an early systematic software testing technique [9]. The basic
assumption is that a test suite is effective at revealing faults if it
exercises the code where the fault is located. Therefore, increased
code coverage is expected to correlate with more revealed faults.

Two important properties are desirable for a practical coverage
criterion for a test suite: fault detection ability and usability. A
criterion’s fault detection ability is a measure of the strength of the
correlation between the coverage achieved and the number of faults
exposed under that criterion. A criterion’s usability refers to how
feasible it is for developers to add tests that cover program con-
structs that are uncovered according to that criterion. Given a crite-
rion with both properties, raising the level of coverage indicates a
higher quality test suite and increases developer confidence in the
correctness of the code.

While in practice various criteria are good at fault detection, they
often lack the usability property. Traditional criteria consider cov-
erage across the entire program for which high coverage is difficult
to achieve. This forces developers to estimate the importance of
covering certain constructs rather than others, especially in the con-
text of unfamiliar code. Moreover, since 100% coverage is consid-
ered infeasible, organizations often select some arbitrary coverage
level (e.g., 70%) as their target [4].

Because developers are concerned with testing the effects of code
changes, a coverage criterion should focus on the changes a devel-
oper has made, and indicate which tests are needed to exercise those
changes, including all their possible program behavior effects. In
this work we define a family of change-based coverage criteria,
that incorporate semantic knowledge about the impact of an edit on
a program’s behavior.

The research in this paper makes the following contributions:
• Formal definition of several change-based code coverage cri-

teria for object-oriented applications.

• The first comparison of change-based coverage criteria for
object-oriented applications with respect to the ability of dif-
ferent test suites to reveal regression faults. Empirical results
using three programs from the SIR repository [5] indicate
that change-based criteria reveal faults better than traditional
criteria, and result in smaller test suites with similar fault de-
tection properties.

21

Figure 1: Original and Edited Version of the Example Pro-
gram with Edits and Atomic Changes (Textual edits are shown
with shaded boxes. Atomic changes (CM, LC) are indicated by
framed boxes. The original version of the program excludes all
shaded code fragments, and the edited version can be constructed
by adding these fragments to the program.)

• A case study on one of the benchmarks demonstrates that a
change-based criterion can define an achievable testing goal
of 100% coverage.

2. COVERAGE CRITERIA
Code coverage is a white-box testing technique to measure how

much of a program is exercised by a test suite. Each test in the suite
uses assertions to specify expected program behavior. A run of a
test suite tries to verify that the program works as expected. Each
run computes the degree to which the program is covered by tests
as measured by a specific coverage criterion, which is defined in
terms of a measurable unit, such as a method, statement, or branch.
In this section, we give an overview of all the coverage criteria
compared in our empirical study.

2.1 Illustrating Example
Figure 1 shows two versions of a small example program that we

will use to illustrate several traditional and change-based coverage
criteria. The original version contains the lines of code that lie
outside of the shaded areas. The edited version can be obtained
by adding all code in the shaded boxes. Edit 1 adds a new print
statement, Edit 2 adds a test to the or condition in the if statement,
Edit 3 adds a new print statement to the else branch, and Edit 4
adds a method Bar.zap() that overrides Foo.zap(). The four
atomic changes computed from the textual edits and labeled on the
right side of Figure 1 are defined in Section 2.3. For each coverage
criterion, we discuss how a test suite can be constructed that attains
full coverage of the program, summarizing each test suite simply
by the set of method calls that it performs.

2.2 Traditional Coverage Criteria
These criteria are measured with respect to the complete pro-

gram. Method, statement and branch coverage are commonly used.

Method Coverage.
Method (or function) coverage [25] is commonly used to mea-

sure which methods (functions) in the program are invoked during
test execution. It indicates whether at least one statement within a
method is executed at least once during a test suite run. Method
coverage does not differentiate the individual statements actually
executed. If we consider the edited version of the example pro-
gram, 100% method coverage can be achieved by running a test
suite containing the following method calls:

new Foo().zip(""); new Foo().zap();
new Bar().zap();

Statement Coverage.
Another common coverage measure is statement (or line) cover-

age [10]. Statement coverage reports all statements that are invoked
at least once during a test suite run. Statement coverage subsumes
method coverage, (i.e., a test suite with 100% statement coverage
will have 100% method coverage). A test suite with the following
method calls reports 100% statement coverage in the example pro-
gram

new Foo().zip(""); new Foo().zip("a");
new Foo().zap(); new Bar().zap();

The extra call to new Foo().zip("a") exercises the statement on
the then branch of the if statement, which was not covered by the
previous test suite for method coverage.

Branch Coverage.
Branch coverage [10] requires that each outcome (e.g., true and

false) of each branch in a logical expression controlling an if, loop,
or switch statement be covered. For practical reasons (we use in-
strumentation tools that operate at the bytecode level), we assume
that composite logical expressions are decomposed into a sequence
of lower-level branches. For example, using short circuit execution,
full branch coverage of a logical or expression a or b can be ob-
tained with: (i) a ==T, (ii) a==F, b==T and (iii) a==F, b==F. Note
that the last case is required to be covered, but the settings a==T,
b==F and a==T, b==T are not.

As usually defined, branch coverage subsumes statement cover-
age [14]. To maintain this constraint, in our implementation we
require branch coverage to cover all methods in addition to all de-
cisions within these methods. A set of method calls that achieves
100% branch coverage on the example is:

new Foo().zip(""); new Foo().zip("a");
new Foo().zip("ab"); new Bar().zap();
new Foo().zap();

2.3 Change-based Coverage Criteria
The basis for the change-based coverage criteria used in our em-

pirical study is a previously developed change impact analysis im-
plemented in the tool CHIANTI [19, 15, 23]. This analysis com-
putes an abstract representation of a textual difference between two
program versions and decomposes it into a set of atomic (or small-
est) changes to a program. The resulting representation enables a
classification of different kinds of changes and their dependences,
making textual edits amenable to program analysis. Various change
categories are supported, such as change method (CM), add field
(AF), and lookup change (LC) (i.e., a change to dynamic dispatch)
[15]. However, in this paper we use a simplified version of the
change model including only change method (CM) changes and
lookup (LC) changes.

22

Atomic Change Coverage.
The atomic change coverage criterion reflects the CM and LC

atomic changes that are exercised by a test suite. CM changes cor-
respond to methods whose code has changed. CM changes also
summarize other changes; for example, adding a new instance field
to a class implicitly changes the constructor method for that class to
initialize an additional field. Note that we generate one CM change
per method regardless of the number of changed statements within
the respective method’s body, (e.g., CM1 in the example represents
Edits 1 – 3 as a single CM change).

A lookup change (LC) represents the effect of an edit on dynamic
dispatch. It is represented as a pair of the form <C, f ()> indicating
that the behavior of invoking a method f () on an object of runtime
type C has changed. Many kinds of edits may alter the existing
dynamic dispatch behavior of a Java program, such as adding the
overriding method zap() to class Foo in our example (LC1, LC2),
or changing method visibility from private to public [15, 19, 23].
A test suite with the following method calls covers all CM and LC
changes and achieves 100% atomic change coverage on the exam-
ple program:

new Foo().zip(""); new Foo().zap();
new Bar().zap();

Changed Method Coverage.
The changed method coverage criterion reports how many of

the CM changes are covered by a test suite. It uses the same ap-
proach as atomic change coverage but is restricted to CM changes.
As such, changed method coverage is subsumed by atomic change
coverage. The following method calls within a test suite result in
100% changed method coverage:

new Foo().zip(""); new Foo().zap();

Changed Statement Coverage.
A test suite’s changed statement coverage reflects the set of state-

ments that were changed or added since the previous version and
exercised by at least one test in the suite. A test suite with the fol-
lowing method calls reports 100% changed statement coverage:

new Foo().zip(""); new Foo().zap();
A change impact analysis at the level of individual statements (or
lines) implemented by JDIFF [1] is used to compute changed state-
ment coverage. Two different versions of a program are compared
and both differences and correspondences at statement-level are
identified to capture all the changed statements in a Java program.

Changed Branch Coverage.
There are multiple possible ways to define a changed branch

coverage criterion. For example, one could focus only on those
branches where the condition has changed, or one could also in-
clude branches where the body has changed. Since we are not
aware of any existing definition or approach for identifying a set of
changed branches within an application, we define a simple, con-
servative notion of changed branch coverage based on the set of
CMs identified by CHIANTI. Our changed branch coverage cri-
terion requires that all branches within each changed method are
covered, even if none of the edits affected the corresponding control
statement. In addition, the criterion requires that all CM changes
are covered, in order to ensure that changed branch coverage sub-
sumes changed statement coverage. According to this criterion, a
test suite with the following method calls achieves 100% changed
branch coverage:

Figure 2: Subsumption relationships between the criteria.

new Foo().zip(""); new Foo().zip("a");
new Foo().zip("ab"); new Foo().zap();

2.4 Subsumption Relationships
Figure 2 shows the subsumption relationships that hold between

the coverage criteria discussed in this section. The presence of an
arrow from a criterion A to a criterion B in the figure means that
100% coverage according to criterion A implies 100% coverage
according to criterion B. Note that atomic change coverage is not
subsumed by any other coverage type as it is the only criterion to
consider the coverage of (changed) method dispatch behaviors.

3. EXPERIMENTAL EVALUATION
In order to better understand the properties of the different cov-

erage criteria, we conducted a study that compares these criteria by
answering the following research questions:

RQ1 How well do the different coverage criteria predict the rela-
tive quality of test suites?

RQ2 How do test suites constructed according to the different cov-
erage criteria compare in terms of size and number of regres-
sion faults exposed?

3.1 Coverage Criteria
Our empirical study compares the effectiveness of the seven dif-

ferent code coverage criteria defined in Section 2: method cover-
age, statement coverage, branch coverage, changed method cov-
erage, changed statement coverage, changed branch coverage and
atomic change coverage. The first three of these are traditional code
coverage metrics in common use. To identify the set of changed
statements empirically for each program version, we used the JDIFF

tool [1]. COBERTURA, version 1.9 [6] was used to run each test
suite and to measure method, statement, branch, changed state-
ment, and changed branch coverage. We used JUNITMX [23] to
identify atomic changes, run each test suite, and calculate changed
method and atomic change coverage as well as the faults exposed
by each suite.

3.2 Benchmarks
To evaluate our technique, we used three existing Java appli-

cations, JMeter, JTopas, and NanoXML, available from the SIR
repository [5]. The SIR repository contains between four and six
versions for each of these applications, with an associated test suite
for each version, and with associated seeded faults for most ver-
sions. Since this study is focused on changes to the software, we
used successive version pairs of each application from the SIR
repository as shown in column 2 of Table 1, resulting in 12 dif-
ferent version pairs.1

1Version 4 of NanoXML did not include any seeded faults so we
were unable to use the v3/v4 version pair of this application

23

meths stmts brchs chg meths chg stmts chg brchs atomic chgs
benchmark version all cov all cov all cov all cov all cov all cov all cov

JMeter

v0/v1 3082 1222 16993 6865 7042 2059 897 337 5761 2451 2701 641 1974 534
v1/v2 3033 1192 16948 7036 7186 2029 281 119 2408 1276 1156 236 1209 401
v2/v3 3650 1591 18412 7720 8541 2598 1530 874 8605 4760 4121 1320 5294 2483
v3/v4 3767 1666 19038 8050 8635 2679 370 145 3163 1462 1062 253 1046 331
v4/v5 3849 1701 20519 8571 8677 2735 159 74 2069 766 826 204 247 101

JTopas
v0/v1 199 164 796 683 625 434 30 27 185 157 60 46 55 49
v1/v2 213 178 878 744 726 490 46 41 223 175 154 90 79 70
v2/v3 490 349 2181 1620 1692 1025 360 245 1404 984 1242 732 797 549

NanoXML

v0/v1 120 98 925 717 552 376 68 52 645 471 416 266 110 85
v1/v2 177 106 1100 745 625 394 126 69 684 428 411 260 242 97
v2/v3 214 126 1391 921 810 487 78 54 651 446 334 204 187 115
v4/v5 229 134 1509 981 876 508 64 50 590 375 420 279 84 59

Table 2: Criteria Details

tests faults
benchmark version all used all rev

JMeter

v0/v1 77 77 20 5
v1/v2 80 80 21 5
v2/v3 78 77 20 8
v3/v4 78 75 13 1
v4/v5 97 80 13 2

JTopas
v0/v1 126 126 10 7
v1/v2 128 128 12 6
v2/v3 209 206 17 8

NanoXML

v0/v1 214 214 7 7
v1/v2 214 214 7 6
v2/v3 216 216 11 10
v4/v5 216 216 9 9

Table 1: Benchmark Details

Column 3 of Table 1 indicates the number of tests available for
the most recent version of each version pair. COBERTURA required
that each test be run in isolation from the rest of the tests in the
test suite; however, some tests for JMeter v3, v4, and v5 could
only be successfully executed when run as part of the entire test
suite. Therefore, we removed these tests from the test suites that
we used for this study; column 4 shows the number of tests actu-
ally used. The faults columns of Table 1 show the total number of
seeded faults for each version pair (all) and the number revealed by
the pool of tests we used for each version (rev). Table 2 provides
the number of coverable elements (all) and the number of those
elements covered by the test suite used (cov) for each of the test
coverage criteria we considered.

3.3 Experimental Methodology
For each version pair, Vold and Vnew, we created faulty versions

of Vnew by enabling a single fault within Vnew. Then, we computed
coverage and fault detection matrices by executing each test case
t in the test suite on each faulty version of Vnew as well as on the
correct version of Vnew. For each t, we created coverage and fault
detection matrices that indicated the coverable elements covered
by t and the faults exposed by t, respectively. We considered an
element covered by the execution of t if for at least one version of
Vnew (correct or faulty) that element was covered. A fault f was
exposed by test t if t failed on the version of Vnew with that fault
f enabled. The coverage values for a test suite were calculated by
unioning the matrix entries for their constituent test cases.

3.4 RQ1
The goal of RQ1 was to determine which of our coverage criteria

most accurately measures the relative quality of different test suites
with respect to exposing regression faults. To answer this question,
we needed to study the effect of varying coverage on fault expo-
sure by measuring the coverage and fault exposure on several test
suites for each VUT (i.e., version pair under test). Since we only
were supplied with a single test suite for each version, we needed
to construct additional test suites. This was accomplished by ran-
domly selecting 100,000 different subsets of the original test suite
for each VUT. Note that we only needed to run each test in the orig-
inal test suite once. After randomly constructing new test suites, we
used the previously collected coverage and fault exposure data to
calculate the coverage and exposed faults for each test suite.

Table 3 shows the correlation coefficients computed for cover-
age vs. fault detection for each of the coverage criteria on each
of the VUTs. The coefficients were computed using the Kendall τ
method [8]. Kendall τ is a standard test that computes the correla-
tion between the ranks of the values for two variables. Kendall τ
is 1 if the ranks of the values for the two variables exactly match,
-1 if the ranks of the values are in exactly the opposite order, and
near 0 if the variables are not related. The correlation coefficients
of different coverage criteria can be compared to determine which
criterion more accurately predicts the relative strengths of the dif-
ferent test suites at exposing faults. Specifically, if criterion C1
correlates more strongly with fault detection (i.e., has a higher cor-
relation coefficient) than criterion C2, then C1 is the better criterion
for predicting which of two test suites is more likely to reveal re-
gression faults. It should be noted, however, that this says nothing
about whether a particular test suite with high C1 coverage is more
likely to reveal regression faults than another test suite with equally
high C2 coverage.

For 7 of the 12 version pairs, changed branch coverage showed
the strongest correlation with fault exposure. These seven cases
included all version pairs of JMeter and two of the three JTopas
pairs. Looking at the cases where changed branch coverage was
not the winner, the primary difference seems to be the percentage
of all of the branches that were identified as changed. For exam-
ple, on JTopas v2/v3, where changed statement coverage won, 73%
of all of the branches were identified as changed. In contrast, on
JTopas v1/v2, where changed branch coverage won, only 21% of
the branches were identified as changed. In general, the five runs
where changed branch coverage was not the best had a higher pro-
portion of changed branches (and changed methods and changed
statements) than the seven runs where changed branch coverage

24

benchmark version meths stmts brchs chg meths chg stmts chg brchs atomic chgs

JMeter

v0/v1 0.5180 0.5237 0.5241 0.5075 0.5203 0.5439 0.5073
v1/v2 0.4762 0.4685 0.4798 0.5438 0.5284 0.5922 0.4801
v2/v3 0.5350 0.5326 0.5415 0.5392 0.5336 0.5449 0.5211
v3/v4 0.4386 0.4417 0.4451 0.5073 0.4389 0.5416 0.4359
v4/v5 0.5183 0.5200 0.5276 0.5740 0.5669 0.6767 0.5884

JTopas
v0/v1 0.6767 0.7081 0.6631 0.7443 0.7343 0.7826 0.7376
v1/v2 0.6110 0.6783 0.6931 0.6637 0.7516 0.7968 0.6903
v2/v3 0.6487 0.6728 0.6634 0.6555 0.6799 0.6453 0.6472

NanoXML

v0/v1 0.5450 0.6516 0.5917 0.5078 0.7422 0.6534 0.5078
v1/v2 0.7509 0.6792 0.7040 0.7353 0.6821 0.7095 0.7529
v2/v3 0.8093 0.7693 0.7917 0.7313 0.7792 0.7736 0.7976
v4/v5 0.5505 0.5697 0.5430 0.3286 0.7254 0.5137 0.3286

Table 3: Correlation Coefficients (bold indicates best value for row, all values were statistically significant (p < 0.05))

was the best (although there was some overlap in the ranges). This
suggests that the size of the change as a proportion of the entire
application is an important component in determining the effec-
tiveness of using a change-based coverage criterion. This is not un-
expected as the main purpose of change-based criteria is to focus
attention on testing the changed portions of the application, and,
in cases where large portions of the code have changed, it is rea-
sonable to expect that such a focus would be less effective. How-
ever, it should be noted that in four of the five cases where changed
branch coverage was not the best, another change-based criterion
performed the best, suggesting that even with large sets of changes
a change-based criterion could be useful in guiding testing effort.

Another way to look at these results is by comparing the corre-
lation coefficient for traditional coverage criteria to those for their
change-based counterparts. Comparing the results for method cov-
erage to those for changed method coverage, we see higher corre-
lation coefficients for the latter on 7 of the 12 version pairs. The
changed statement coverage criterion outperformed the traditional
statement coverage criterion in 10 of 12 cases, and the changed
branch criterion did better than the traditional branch coverage cri-
terion in 9 of 12 cases.

These results suggest that by focusing attention on changes, we
can better indicate the relative quality of test suites in exposing re-
gression faults. This result may not seem surprising as the faults
are in the changed portions of the applications; therefore, execut-
ing these portions of the programs is likely to execute the faulty
statements. However, it is quite possible that the context in which
a fault is executed is just as important as executing the fault it-
self. Therefore, a criterion that emphasizes exercising more of the
program may be a better indicator of the regression fault detection
effectiveness of a test suite.

Summary. We found that:
• change-based criteria provide better predictions about the rel-

ative regression fault detection exposure of test suites than
non-change-based criteria;

• of the change-based criteria, changed branch coverage gen-
erally provided the best prediction.

3.5 RQ2
Our second research question focused on evaluating the trade-

off between test suite size and fault-detection effectiveness, for
test suites created using the different criteria. The ideal evalua-
tion mechanism would have been to generate a variety of adequate
test suites for each of the criteria and compare them. Unfortunately,

doing so in a fashion that allows fair comparisons of the criteria is
expensive and difficult. Therefore, we approached this problem by
minimizing the existing test suite for each VUT using each of the
coverage criteria.

Since the goal of our minimization was to select subsets of the
original test suite without sacrificing coverage, an optimal or near-
optimal minimization technique was not required. Instead, we im-
plemented a simple greedy minimization technique that allowed us
to readily generate different test suites with no completely redun-
dant tests. Our minimization technique begins with an empty test
suite, S. Then, we incrementally add a test to S by randomly select-
ing a test for the VUT that increases the coverage of S. This step
is repeated until the coverage achieved by S equals the coverage of
the entire test suite for the VUT. We then iterate through the tests
in S, identifying and removing any test whose removal does not de-
crease the coverage of S. While this approach does not guarantee a
minimal test suite, in practice we found that it effectively generated
small test suites that varied little in size and included different tests.

For our experiments, we generated 20 unique test suites for each
criterion, VUT pair. For each of these test suites, we calculated the
number of faults exposed and the test suite size. The averages of
these two metrics across the 20 test suites is presented in Table 4.

Although method coverage minimized suites revealed more faults
than changed method coverage minimized suites on eight of the
version pairs, this difference was small, only exceeding one fault
on four of the version pairs. Interestingly, this increase in fault ex-
posure comes at considerable expense. The test suites for method
coverage tended to be significantly larger than the test suites for
changed method coverage, ranging from 1.04 times as large to 5.67
times as large, and exceeding 2.0 times as large on 7 of the 12 ver-
sion pairs. The same pattern was found when comparing statement
coverage minimized suites with changed statement coverage min-
imized suites and branch coverage minimized suites with changed
branch minimized suites, although the differences in number of ex-
posed faults and in test suite size tended to be smaller. These find-
ings show that a significant benefit in efficiency can be gained by
focusing on testing changes while missing few regression faults.

Comparing the different change-based criteria to each other, we
see that changed statement coverage minimized suites reveal more
faults and contain more tests on average than the other change-
based criteria minimized suites and changed method coverage min-
imized suites generally reveal fewer faults and contain fewer tests
than the other minimized suites. There is not a consistent difference
in ranking between changed branch minimized suites and atomic
change minimized suites. Thus, for change-based coverage crite-

25

meths stmts brchs chg meths chg stmts chg brchs atomic chgs
object version size rev size rev size rev size rev size rev size rev size rev

JMeter

v0/v1 21 3.35 36 3 36 3 15 3.1 27 3 22 3.33 17 3.2
v1/v2 23 5 38 5 36 5 11 5 23 5 13 5 16 5
v2/v3 28 8 37.8 8 34 8 27 8 33.8 8 28 8 30 8
v3/v4 26 1 36 1 32 1 9 1 22 1 10 1 9 1
v4/v5 26 2 36 2 33 2 11 1.05 20 2 14.7 1.65 12 2

JTopas
v0/v1 15 7 21 7 21 7 6 5.2 14.1 7 6 7 6 5.3
v1/v2 15 6 22 6 22 6 8 6 12 6 6 5 10 6
v2/v3 30 4.5 45 8 46.65 8 20 4.1 35 7.5 19.6 7 20 4.15

NanoXML

v0/v1 15 5.7 25.5 7 21 6.45 5 3.55 11.95 6.25 10 5.55 5 3.8
v1/v2 16 4.7 25.5 5.25 21 4.3 10.2 4.65 14.55 5.25 11 4.25 10 4.7
v2/v3 17 6.5 29 10 24 9 10 3.6 22 10 15 9 13 6.5
v4/v5 17 7.4 29 9 23 7.7 3 4.25 10.55 6.35 7 7 3 3.5

Table 4: Average Size of and Faults Revealed by Minimized Test Suites

ria, there is the usual trade-off between fault-exposure potential and
test suite size.

Summary. We found that:

• test suites constructed according to change-based criteria found
approximately the same number of faults on average, but
were significantly smaller than test suites constructed accord-
ing to corresponding non-change-based criteria;

• there is a trade-off between fault-exposure potential and test
suite size for test suites constructed according to different
change-based criteria.

4. CASE STUDY: JTOPAS
In this section we report on a case study investigating the feasi-

bility of achieving 100% change coverage using the atomic change
criterion. We chose this criterion for three reasons:

• It provides information (computed using program analysis)
about semantic changes in object-oriented programs that can
guide the developer in writing new tests (e.g., the addition of
a method resulting in a new target of a dynamic dispatch);

• Since this criterion tracks method-level changes, there are
fewer changes to cover than, for example, with statement
coverage, making 100% coverage a more feasible goal; and

• We have a long-standing interest in analyzing the impact of
changes in a object-oriented setting [15, 19, 23].

As the subject program for this case study, we chose JTopas, a
medium-sized Java application for which several versions with as-
sociated test suites are available from the SIR repository [5]. More-
over, the SIR repository provides a set of seeded faults to simulate
regression failures. Our technical report [7] presents a similar case
study on NanoXML, another program from SIR.

To demonstrate the effectiveness of the atomic change criterion,
we ran the test suites for each changed version of JTopas and then
tried to write additional tests to cover all changes reported as uncov-
ered. Although our results are anecdotal, we believe they demon-
strate that the atomic change criterion aided the construction of new
tests and thereby, the achievement of 100% change coverage.

Quantitative Results. Table 5 summarizes our quantitative
results. For each version pair the table shows: (i) the number of
uncovered changes, (ii) the number and LOC of additional tests
written, and (iii) the number of additional seeded and real (i.e., non-
seeded) faults exposed by the additional tests.

uncovered added tests #faults exposed
version changes # LOC seeded non-seeded
v0/v1 5 3 91 1 0
v1/v2 7 2 74 0 0
v2/v3 106 31 104 2 1

Table 5: Quantitative Results of JTopas Case Study

For example, for the v2/v3 version pair of JTopas, 31 additional
tests were written, comprising a total of 104 lines of source code,
in order to cover CM and LC changes reported as uncovered by our
tool. These additional tests revealed 2 additional seeded faults, as
well as a real fault that was accidentally introduced by the develop-
ers as they made their changes (a more detailed discussion follows
below).

For JTopas, newly written tests exercising the uncovered CM
changes usually also covered any reported LC changes. Hence, the
use of the changed method coverage criterion would have produced
similar results in terms of the required effort and the number of ex-
posed faults. To a large extent this is because JTopas is not written
in a very object-oriented style. Therefore, we suspect that different
subject programs with more complex class hierarchies might have
yielded different results.

Test Creation Process. Initially, we were unfamiliar with
the code of JTopas. After some initial experience with trying to
cover methods that were previously not exercised by the test suite,
we quickly realized that developing new test cases “from scratch”
can be quite challenging. As a result, we converged on a process
for deriving new tests from existing ones. Specifically, we search
for a covered method m containing a call to a changed method m′
that we need to cover (if we are unable to do this, we try to find a
covered method m that indirectly calls m′). Presumably, the call to
m′ is not executed because a control condition is not satisfied (e.g.,
the call to m′ is on an unexecuted else-branch of an if-statement).
In such cases, the challenge is to understand how—by changing the
program input—we can persuade the program to select the branch
containing the call to m′. In the absence of automated tool support
for this task, we had to inspect the program state in the debugger
and understand how the conditions that guard the call to m′ depend
on program inputs or constant values. Following this approach,
we were able to cover all but a few of the atomic changes with
relatively little effort.

The use of a change-based criterion helped us to focus on new
tests covering the edited portions of the program. In contrast, to
achieve 100% coverage with a non-change-based criterion, we would

26

have introduced unnecessary tests for portions of the program un-
affected by the edit. Additionally, by reporting changes at the
method-level, the atomic change criterion suggested a natural struc-
ture for the additional tests that statement-based criteria did not.

We estimate that the amount of effort involved in writing the
additional tests was in the order of 2-8 hours per version pair; how-
ever, we conjecture that the original developers could have per-
formed this task in a fraction of the time, given their familiarity
with the code.

Experience with JTopas. For JTopas, most of the changes
were of a trivial nature and could be covered with relatively little
effort. For example, in the JTopas v1/v2 version pair, an uncov-
ered getter method PluginTokenizer.getKeywordHandler()
was tested by adding a simple assertion to a test that already in-
voked the corresponding setKeywordHandler() setter method.

A more interesting case in JTopas v1/v2 was a new uncovered
method AbstractTokenizer. getTextUnchecked(int,int),
which is similar to an existing covered method
AbstractTokenizer.getText (int,int). The new
getTextUnchecked() method does not check to make sure
that its parameters are within range, and if they are not, the
JavaDocs report that “a java.util.IndexOutOfBoundsException
may occur, or uninitialized data may be retrieved”. Cover-
ing this method is a bit involved, because it is not intended
to be invoked directly from a test. However, the getText()
method is invoked by a method current(), a method in
the same class, which is invoked by several tests, includ-
ing TestInputStreamTokenizer.testLineCounting().
We covered getTextUnchecked() by adding: (i) a
currentUnchecked() method, which is similar to current() but
calls getTextUnchecked() instead of getText(), and (ii) a test
testLineCounting2() that is identical to testLineCounting()
except that it calls currentUnchecked() instead of current().
Interestingly, this added test exposed one of the seeded faults
for JTopas that was not exposed by the original test suite, thus
illustrating how the use of a change-based coverage criterion can
help improve software quality.

Another interesting case occurred in the JTopas v2/v3 ver-
sion pair. While adding new tests that exercise the un-
covered changes, we discovered a bug in the newly added
Token.getEndPosition() method (i.e., a non-seeded fault). This
method is currently implemented as:
public int getEndPosition() {
return getLength() - getStartPosition();

}
but it should be:
public int getEndPosition() {
return getLength() + getStartPosition();

}
This newly added method was not covered by any of the existing
test cases, and the use of atomic change coverage as a test adequacy
criterion led us directly to this non-seeded fault.

Discussion. We found the use of atomic change coverage as
a test adequacy criterion feasible in terms of the amount of effort
involved, and useful for pointing programmers at untested changes
that might otherwise be overlooked. The case study revealed 2 pre-
viously unexposed seeded faults and 1 real fault, thus providing
some evidence that using atomic change coverage as a test ade-
quacy criterion may help prevent errors and improve code quality.
We present similar findings for the NanoXML case study in our
technical report [7].

5. THREATS AND LIMITATIONS
There are a wide range of threats and limitations relevant to

our research. The primary threats to validity are external, affect-
ing the generalizability of our results. These include the choice of
benchmarks and the versions, test suites and seeded faults for these
benchmarks. Any of these choices may not be representative of
what is found within the wider software development community
and, therefore, our results may not generalize. To mitigate these
threats, we used benchmarks from the SIR repository that have
been used in the evaluation of a wide variety of testing method-
ologies. The particular selected benchmarks were chosen based on
the ability of the tools we were using to handle them and to cover a
range of different applications.

Our choice of benchmarks and study design also limits the ap-
plicability and interpretation of our results. In particular, we used
sampled subsets of the tests provided for these benchmarks as prox-
ies for different possible test suites. In practice, it is possible that
test designers creating tests for a particular test coverage criteria
would create different types of test suites than those studied. Addi-
tionally, our goal was to study the usefulness of different coverage
criteria in finding regression faults in applications. In practice there
are also likely to be faults left over from earlier versions of the pro-
gram under test, and the use of a change-based criterion actually
may make it more difficult to find these faults.

An additional threat to validity arises from the differences be-
tween the change sets identified by JDIFF and CHIANTI. JDIFF

computes changes by analyzing bytecode, while CHIANTI com-
putes changes by analyzing the source code. This leads to dif-
ferences in the set of methods with changes identified by JDIFF

and CHIANTI, breaking the subsumption relationships discussed in
Section 2.4. To determine how much impact these differences had
on the actual results, we also implemented a changed method cov-
erage based on JDIFF. The differences between the Kendall τ coef-
ficients for the two different changed method implementations were
generally small, exceeding 0.1 in only one case (NanoXML v4/v5)
and 0.01 in 5 other cases, suggesting that the different change anal-
ysis techniques had little effect on the results.

6. RELATED WORK
Several different coverage criteria for measuring the adequacy of

a test suite have been developed (e.g. [12, 14]), including statement
coverage, branch coverage, and various notions of dataflow cover-
age. In this work, we derive three new criteria, changed statement
coverage, changed branch coverage, and changed method cover-
age, from these traditional coverage criteria, and compare these
new criteria to their non-change-based counterpoints.

A number of techniques have been proposed for evaluating dif-
ferent coverage criteria. For example, Weyuker developed a set
of 11 properties that a coverage criteria should possess [22] that
were later applied to evaluating object-oriented coverage criteria
by Perry and Kaiser [13]. Both Wong et al. [24] and Namin and
Andrews [11] present studies comparing the effect of test suite size
and coverage on fault detection that are similar in setup to ours.
Wong et al. find that block coverage correlates better with fault de-
tection than test suite size. Namin and Andrews found that fault de-
tection effectiveness correlated well with block coverage, decision
coverage, and two different dataflow coverage criteria; however a
model that also included test suite size was even more effective.
Unlike our work, these studies are not looking specifically at the
practice of regression testing where it is expected that the faults are
more likely to be in the changed portions of the code.

Regression testing focuses on ensuring that modifications do not
impact pre-existing functionality. Most of the regression testing

27

literature falls into one of two categories: regression test selection
(surveyed in [17]) and regression test prioritization (e.g. [18, 21]).
Regression test selection attempts to select a subset of the entire
test suite of a program that will identify any faults introduced by
the modification into the pre-existing functionalities of the system.
Regression test prioritization uses heuristics to reorder the tests in a
test suite to increase the likelihood that any newly introduced faults
will be revealed earlier in the testing process. These techniques
focus on ways of more efficiently using an existing test suite to
test a modified version of a system while change-based coverage
criteria attempt to evaluate the quality of a test suite relative to a
modification and to indicate portions of the modified application
that may need additional testing.

Bates and Horwitz [3] and Harrold and Rothermel [16] present
techniques for identifying the set of changed dataflow and control-
flow testing requirements for a modified program. Their techniques
support several criteria including statement coverage, branch cov-
erage, and def-use testing. These techniques use program depen-
dence graph or system dependence graph representations for the
original and modified programs to identify the changed testing re-
quirements. While not presented as such, these techniques could
form the basis for additional change-based coverage criteria.

The goal of the MATRIX [2] and MATRIXRELOADED [20]
projects has been to identify testing requirements for changed soft-
ware based on data- and control-flow chains and on the symbolic
state of the program at the beginning and end of these chains. Then,
test inputs are generated to cover these requirements. These cover-
age criteria have been shown to be more effective and sometimes
more cost-effective at identifying changed behavior in the modi-
fied programs than changed statement coverage or weaker changed
dataflow coverages. However, this work has not directly evaluated
the ability of their coverage criteria to expose faults or predict the
fault exposure capabilities of different test suites.

7. CONCLUSIONS
Code coverage criteria are commonly used to assess the quality

of test suites. The basic idea is that a test suite is likely to be ef-
fective at revealing faults if it exercises the code where the fault is
located. Therefore, increased code coverage is expected to corre-
late with more revealed faults. However, achieving full coverage
according to traditional coverage criteria is often impossible or im-
practical when applications contain unreachable code, which may
arise due to programmer carelessness, or when the implementation
of a feature is incomplete.

In this paper, we start from the popular assumption that a dispro-
portionate number of faults is likely to reside in recently changed
code. Based on this assumption, we propose several change-based
coverage criteria that reflect to what extent changes with respect
to a previous program version are exercised by a test suite. In a
set of experiments on programs from the SIR repository, we found
change-based criteria to reveal faults better than traditional criteria,
and to enable the construction of much smaller test suites with simi-
lar fault detection effectiveness than those constructed according to
traditional coverage criteria. We also reported on a case study that
shows that achieving 100% coverage according to a change-based
criterion is feasible and that by achieving 100% we were able to
find additional faults, including one fault that was not intentionally
seeded in the subject program.

8. REFERENCES
[1] T. Apiwattanapong, A. Orso, and M. J. Harrold. JDIFF: A

differencing technique and tool for object–oriented programs.
Automated Software Engineering, 14(1):3–36, 2007.

[2] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A. Orso, and
M. J. Harrold. MATRIX: Maintenance-oriented testing requirements
identifier and examiner. In Proc. Testing: Academic and Industrial
Conference - Practice And Research Techniques, pages 137–146,
2006.

[3] S. Bates and S. Horwitz. Incremental program testing using program
dependence graphs. In Proc. POPL’93, pages 384–396, 1993.

[4] S. Berner, R. Weber, and R. K. Keller. Enhancing software testing by
judicious use of code coverage information. In Proc. ICSE’07, pages
612–620, 2007.

[5] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering, 10(4):405–435,
2005.

[6] M. Doliner. COBERTURA.
http://cobertura.sourceforge.net/.

[7] M. Fisher II, J. Wloka, F. Tip, B. Ryder, and A. Luchansky. An
evaluation of change-based coverage criteria. Technical Report
TR-11-03, Virginia Tech, Mar. 2011.

[8] M. G. Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81–93, 1938.

[9] J. C. Miller and C. J. Maloney. Systematic mistake analysis of digital
computer programs. CACM, 6(2):58–63, 1963.

[10] G. J. Myers. The Art of Software Testing. John Wiley and Sons, Inc,
1979.

[11] A. S. Namin and J. H. Andrews. The influence of size and coverage
on test suite effectiveness. In Proc. ISSTA’09, pages 57–68, 2009.

[12] S. C. Ntafos. On required element testing. IEEE TSE, 10(6):795–803,
1984.

[13] D. E. Perry and G. E. Kaiser. Adequate testing and object-oriented
programming. JOOP, 2(5):13–19, 1990.

[14] S. Rapps and E. J. Weyuker. Selecting software test data using data
flow information. IEEE TSE, 11:367–375, 1985.

[15] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. CHIANTI: A
tool for practical change impact analysis of Java programs. In Proc.
OOPSLA’04, pages 432–448, 2004.

[16] G. Rothermel and M. J. Harrold. Selecting tests and identifying test
coverage requirements for modified software. In Proc. ISSTA’94,
pages 169–184, 1994.

[17] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE TSE, 22:529–551, 1996.

[18] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test case
prioritization. IEEE TSE, 27(10):929–948, 2001.

[19] B. G. Ryder and F. Tip. Change impact analysis for object-oriented
programs. In Proc. PASTE’01, pages 46–53, 2001.

[20] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and
M. J. Harrold. Test-suite augmentation for evolving software. In
Proc. ASE’08, pages 218–227, Sept. 2008.

[21] A. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. Roos. Time-
aware test suite prioritization. In Proc. ISSTA’06, pages 1–12, 2006.

[22] E. J. Weyuker. The evaluation of program-based software test data
adequacy criteria. CACM, 31(6):668–675, 1988.

[23] J. Wloka, B. G. Ryder, and F. Tip. JUNITMX - a change-aware unit
testing tool. In Proc. ICSE’09, pages 567–570, 2009.

[24] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of
test set size and block coverage on the fault detection effectiveness.
In Proc. ISSRE’94, pages 230–238, 1994.

[25] Q. Yang, J. J. Li, and D. M. Weiss. A survey of coverage based
testing tools. In Proc. of the International Workshop on Automation
of Software Test, pages 99–103, 2006.

28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

