
A Study of Dead Data Members in C�� Applications

Peter F� Sweeney and Frank Tip

IBM Thomas J� Watson Research Center

P�O� Box ���� Yorktown Heights� NY ���	

fpfs�tipg�watson�ibm�com

Abstract

Object�oriented applications may contain data members
that can be removed from the application without a�ecting
program behavior� Such �dead� data members may occur
due to unused functionality in class libraries� or due to the
programmer losing track of member usage as the application
changes over time� We present a simple and e�cient algo�
rithm for detecting dead data members in C		 applications�
This algorithm has been implemented using a prototype ver�
sion of the IBM VisualAge C		 compiler� and applied to a
number of realistic benchmark programs ranging from
��
to ����� lines of code� For the non�trivial benchmarks� we
found that up to ����� of the data members in the bench�
marks are dead �average ������� and that up to ���
� of
the object space of these applications may be occupied by
dead data members at run�time �average ������

� Introduction

Object�oriented applications may contain data members �in�
stance variables� that can be removed from the applica�
tion without a�ecting program behavior� Such �dead� data
members may occur for several reasons�

� When an application uses a class library� it typically
uses only part of the library�s functionality� Certain
members may be accessed only from the unused parts�

� The expected use of a class at design time may di�er
from the actual use of that class at coding time�

� Programmers may lose track of which members are
used� due to the growing complexity of an application
and its class hierarchy as the application changes over
time�

This paper presents a simple and e�cient algorithm that
performs a whole�program analysis of a C		 application
and identi�es dead data members� The algorithm has been
implemented in the context of the IBM VisualAge C		
compiler �version ���� ���� and has been applied to a set of
medium�sized C		 applications ranging from
�� to �����

To appear in the Proceedings of the ��� ACM Confer�
ence on Programming Language Design and Implementa�
tion� Montreal� Canada� June ������ ����

lines of code� For the non�trivial benchmarks� we found that
up to ����� of the data members can be identi�ed as dead�
and that up to ���
� of the object space is occupied by
dead data members at run�time� On the average� we found
that ����� of the data members are dead� and that ���� of
object space is occupied by dead data members�

Elimination of unused data members is interesting from
an optimization perspective because it reduces the amount
of memory consumed by an application� An application�s
execution time may also be reduced� through reduced object
creation�destruction time� and caching�paging e�ects� The
detection of dead data members may also be useful in an
integrated development environment� by providing feedback
to the programmer� or by �ltering out unimportant artifacts
from an application�

The remainder of this paper is organized as follows� In
Section �� we de�ne what it means for a data member to be
live or dead� Section � presents our algorithm for detecting
dead data members� Section � evaluates the algorithm on a
set of medium size benchmarks� Section � presents related
work and Section
 presents our conclusions and future work�

� De�ning Liveness and Deadness

In the remainder of this paper� we will use the following
intuitive de�nitions of �liveness� and �deadness� of data
members� We call a data memberm live if there is an object
o in the program that contains m such that the value ofm in
o may a�ect the program�s observable behavior �i�e�� output
or return value�� If there is no such object o� we call m dead�

Note that� according to this de�nition� data members
that are only accessed from unreachable code are classi�ed
as dead� More interestingly� data members that are assigned
a value that is subsequently never used in the program are
classi�ed as dead as well� We are particularly interested in
detecting situations of this kind� since in real�life C		 pro�
grams� data members are typically initialized with a value
in a constructor� Otherwise� the initialization of data mem�
bers would lead to liveness� and very few dead data members
would be dead�

Figure � shows an example C		 program� The following
observations can be made about the data members in the
class hierarchy of this program�

� A��ma� and N��mn� are live because the accesses to
these data members a�ect the program�s return value�

� A��ma� and N��mn� are dead� because there are no ac�
cesses to these data members in the program�

�

class N f
public� int mn��freturnubl5nt

��� procedure DetectUnusedDataMembers�Program P �
��� begin
�	� mark all data members in P initially as
dead��
�� mark all classes in P initially as
not visited��
��� construct the call graph G of program P �
��� for each statement s in each function f in call graph G do
��� call ProcessStatement�s��
��� end for
��� for each union construct U in P do
���� if �at least one of the members of U is marked
live�� then
���� call MarkAllContainedMembers�U��
���� end if
��	� end for
��� end�

���� procedure ProcessStatement�Statement s�
���� begin
���� for each expression e in statement s do
���� if �e is not a call to the system functions delete or free� then
���� if �e is an expression of the form e��m and is a read�access� or

�e is a expression of the form �e��m� then
�� access to data member from expression� similar for �� expressions� ��

���� let X be the type of e��
���� let C � Lookup�X�m�� �� m may occur in a base class of X ��
���� mark data member C��m
live��
��	� else if �e is an expression of the form e��Y ��m and is a read�access� or

�e is a expression of the form �e��Y ��m� then
�� access to data member from expression using ���� operator� similar for �� expressions� ��

��� let C � Lookup�Y � m�� �� m may occur in a base class of Y ��
���� mark data member C��m
live��
���� else if �e is an expression of the form �Z��m� then

�� pointer�to�member expression� ��
���� let C � Lookup�Z� m�� �� m may occur in a base class of Z ��
���� mark data member C��m
live��
���� else if �e is an unsafe type cast expression of the form �T ��e��� for some type T � then
�	�� let S be the type of e��
�	�� call MarkAllContainedMembers�S��
�	�� end if
�		� end if
�	� end for
�	�� end�

�	�� procedure MarkAllContainedMembers�Class C��
�	�� begin
�	�� if class C was marked
not visited� then
�	�� mark class C as
visited��
��� for each data memberm of C do
��� mark data member C��m
live��
��� if the type of data memberm is a class N then
�	� call MarkAllContainedMembers�N��
�� end if
��� end for
��� for each direct base class B of C do
��� call MarkAllContainedMembers�B��
��� end for
��� end if
���� end�

Figure �� Algorithm for detecting unused data members�

�

accesses of data members using the 	
 operator are
treated similarly� For �address�taken� expressions of
the form �e��m� we conservatively assume that the data
member may be read through some pointer in the pro�
gram if its address is taken�we do not attempt to
trace the use of such addresses� We make no assump�
tions about the method used to implement Lookup�
an e�cient member lookup algorithm for C		 was
recently presented in ��
�� Quali�ed read�accesses of
data members are handled in a similar manner�

� If e is an expression of the form �Z��m �i�e�� the o��
set of member m within class Z is computed�� func�
tion Lookup is invoked to determine data member
C��m that is accessed� and this C��m is marked �live�
�lines �
���� Expressions of the form �Z��m are typi�
cally used in conjunction with pointers to members� a
somewhat obscure C		 feature for indirectly access�
ing members from a speci�ed object� We do not at�
tempt to trace where a pointer�to�member expression
is used� and simply assume that any member whose
o�set is computed may be accessed somewhere in the
program�

� If e is an unsafe� type cast expression of the form
�T ��e��� for some type T that is not necessarily a class
�lines ������� the type S of subexpression e� is deter�
mined� and all members contained within type S are
marked �live�� We make this conservative assump�
tion because a read access to type T implies a read�
access to some member of S� The data members of S
are marked �live� by calling procedure MarkAllCon�
tainedMembers for type S� MarkAllContainedMem�
bers �lines �
���� marks all directly or indirectly con�
tained data members of a class C� see Figure � for de�
tails� In order to prevent duplication of work� a class
C is marked �visited� if MarkAllContainedMembers
is called for C� and all actions in MarkAllContained�
Members are only performed for classes that were not
yet visited �see line ��� All classes are initially marked
�not visited� on line ��

After processing the statements� the union constructs
in P are examined� If a union U contains at least one
data member that is marked �live�� all other members that
are directly or indirectly� contained in U are marked �live�
�lines ����� by calling MarkAllContainedMembers� This
conservative assumption is required because the value of a
live union data member might otherwise depend on a write�
access to a dead union member�

��� Example

We will now study how our algorithm analyzes the example
program of Figure �� Initially� all data members of the pro�
gram are marked �dead�� If we assume that the algorithm of
��� is used to construct a call graph� the call graph consists
of the methods A��f� B��f� and C��f in addition to main�

�For the purposes of this paper� a type cast from type S to type T
is considered �unsafe� if T is a derived class of S and the object being
cast cannot be guaranteed to be a of type T at run	time� We have
veri�ed that all down	casts in our benchmarks are safe� In general�
unsafe type casts are unlikely to occur� but this is something the user
of the tool has to verify�

�A union construct may contain data members whose type is a
class �although there are restrictions on such classes ���� and these
classes may contain data members� or have base classes that contain
data members�

Analysis of the statements in the functions in the call graph
proceeds as follows�

� A��ma�� B��mb�� and C��mc� are marked live� because
their value is is read in the return statements of A��f�
B��f� and C��f� respectively�

� Since data member B��mb� is read in main��� it is clas�
si�ed as �live��

� The expression b�mb��mn� in main�s return statement
reads the values of both B��mb� and N��mn�� There�
fore� both B��mb� and N��mn� are marked live�

� Since the address of data member B��mb� in object b
is taken in the return expression of main� B��mb� is
classi�ed as live�

Note that� although A��ma� is accessed in main��� it is writ�
ten to� not read� Therefore� A��ma� is not classi�ed as live�
Due to the conservativeness of the algorithm� three dead
data members are marked �live�� B��mb� is classi�ed as live
because it is read� even though it does not a�ect the pro�
gram�s return value� B��mb� and C��mc� are marked live
because methods B��f and C��f are identi�ed as reachable
functions�

However� if a more accurate call graph is used� we can
achieve better results� For example� a simple alias�points�to
analysis algorithm ��� ��� ��� ��� can determine that pointer
ap never points to a C object� This fact can be used to ex�
clude method C��f from the call graph� so that the reference
to C��mc� can be disregarded� and data member C��mc� can
be marked �dead��

An even more ambitious approach would be to eliminate
dead code prior to running our algorithm� For example�
constant propagation ���� can be used to determine that the
else�branch of the if statement is unreachable� enabling us
to remove method B��f from the call graph� which would
result in B��mb� being classi�ed as �dead�� Program slicing
���� ��� may also be used to remove useless code from an
application prior to running the algorithm�

��� The sizeof operator

The sizeof operator� which returns the size of an object or
type as a number of bytes� can be used in di�erent ways� and
may or may not a�ect the program�s observable behavior�
If program behavior is a�ected� all data members in the
a�ected classes must be marked live� otherwise the use of
sizeof can be ignored� Since the e�ects of sizeof cannot
easily be determined automatically� our approach is that the
user must specify which uses of sizeof can be ignored� by
default� sizeof is treated conservatively�

In the current set of benchmarks� sizeof is only used
for storage allocation purposes� and does not a�ect the pro�
gram�s observable behavior� Therefore� we do not mark any
data members as live due to use of sizeof�

��� Dealing with Library Usage

Situations where the source code and class hierarchy for
parts of the program are unavailable due to library usage
require special care� In general� it is not possible to classify
a data member in a library class as �dead� or �live� un�
less the complete source code for the library is available� In
particular� it is not possible to classify the data members of
a library class C for which header information and method

�

Benchmark Description LOC Classes Data
total �used� Members

jikes IBM Java to byte code translator ����
 �
 ���
� ����
idl SunSoft IDL compiler 	 demo back end ���� � ��� ��
npic Framework for alias analysis ����� �� ���� ���
lcom �L� hardware description language compiler ����� � ���� ��
taldict Taligent�s synthetic dictionary benchmark ����� �� ���� ��
ixx IDL speci�cation to C		 code generator ������ ��� ��� ���
simulate Simulation class library 	 example
�
�� �� ���� �

sched RS�
��� instruction timing simulator ����� �
 ���� �

hotwire Scriptable graphical presentation builder ����� �� ���� �

deltablue Incremental data ow constraint solver ����� �� �� ��
richards Simple operating system simulator
�
 �� ���� �

Table �� Benchmark programs used to evaluate the dead data member detection algorithm� The columns of this table show the name
of the application� a brief description of the application� the size of the application �in lines of source code�� the number of classes in the
application�s class hierarchy� the number between brackets is the number of
used� classes �i�e�� classes for which a constructor is called
in user code�� and the number of data members that occurs in used classes� respectively�

bodies are available if we do not have access to all library
source code in which C�s data members may be accessed�

A data member in a user class derived from a library
class can be classi�ed� assuming that the execution of the
library code cannot result in an access to that data member�
This implies that conservative assumptions must be made
during the construction of the call graph in the presence of
libraries� since a library may make calls to virtual methods
in the user�s code� similar precautions must be taken if the
library calls methods indirectly through function pointers
�callbacks�� Such situations can be dealt with conservatively
as follows� If a virtual method f is de�ned in a library class�
and f is overridden in a class C in the application code� we
assume C �� f to be reachable� In addition� if the address of
a function f is taken in reachable code� we assume f to be
reachable�

��� Complexity Analysis

Our algorithm requires the construction of a call graph� and
relies on an algorithm for performing member lookup� Us�
ing the Rapid Type Analysis algorithm of ���� a call graph
can be constructed in linear time in practice ����� for more
sophisticed call graph construction algorithms� we refer the
reader to �����

Using the member lookup algorithm of ��
�� all member
lookups can be computed in time O�M � �C 	 I��� where C
is the number of classes in the hierarchy� I the number of
inheritance relations among these classes� and M the num�
ber of distinct member names �assuming that the program
contains no ambiguous member lookups��

Assuming that the call graph and all member lookups
have been pre�computed� our algorithm requires a single
traversal of the expressions that occur in reachable func�
tions� All actions performed for each expression can be
performed in unit time� with the exception of calls to pro�
cedure MarkAllContainedMembers� The total amount of
time spent in all calls to this procedure is O�C �M�� as�
suming that all members in all classes are eventually vis�
ited and marked� This implies that� excluding the cost of
pre�computing member lookups and construction of the call
graph� the total cost of our algorithm is O�N 	 �C �M���
where N is the number of expressions in the program�

� Results

The algorithm of Section � has been implemented in the
context of the IBM VisualAge C		 compiler �version ����
that is currently being developed jointly by IBM Research
and IBM Toronto� We use a slightly modi�ed version of the
Program Virtual Call Graph �PVG� algorithm ��� to build
a call graph of a C		 application� For resolving member
lookups� we rely directly on the information provided by
the compiler� Unfortunately� there is no linguistic means to
detect whether or not a class occurs in a library� Therefore�
we rely on the user to indicate which classes are library
classes�

We applied the dead data member detection algorithm
to a small set of medium�sized C		 benchmarks in order
to answer the following questions�

�� What percentage of data members in an application
can be determined to be dead!

�� What percentage of object space is occupied at run�
time by dead data members!

The �rst question is answered directly by our algorithm� as
will be discussed below in Section ���� The answer to the
second question is obtained by analyzing the objects cre�
ated during program execution� and measuring the amount
of space in these objects occupied by dead data members�
this is done by a combination of code instrumentation and
analysis of a dynamic trace of the execution ����� The dy�
namic measurements will be discussed in Section ����

��� Benchmark Characteristics

Table � shows the set of benchmark programs that were used
to evaluate the dead data member detection algorithm� The
columns of the table show for each benchmark� the name of
the application� a short description� the size �number of lines
of source code�� the total number of classes� and the number
of �used� classes �i�e�� classes for which a constructor call
occurs in the application�� and the number of data members
that occur in used classes�

Several of these benchmarks have been studied previ�
ously in the literature for other purposes �e�g�� experimen�
tation with virtual function�call elimination algorithms� ���
�� �
� ��� ��� The programs of Table � range from
�
 to
����
 lines of code� and contain between �� to �
 classes�

�

and between �� and ���� data members� Some benchmarks
�e�g�� taldict� simulate� and hotwire� use class libraries
that have been developed independently from the applica�
tion� Several other benchmarks �e�g�� idl� lcom� ixx� and
sched� use classes that were custom�built for the applica�
tion� The code for all of these classes is available for analy�
sis� and the results presented below only apply to application
code for which the full source code is available� In addition�
all benchmarks rely on low�level libraries �e�g�� iostream�h��
for which the source code is unavailable or only partially
available� In the computation of the numbers below� classes
and data members in such libraries are ignored�

Besides being of di�erent sizes� the benchmark programs
also cover a wide range of programming styles� The sched
benchmark� for example� is not written in a very object�
oriented style� and contains very little inheritance� most of
the classes are structs� On the other hand� idl is a highly
object�oriented application with a complex class hierarchy
and heavy use of virtual functions and virtual inheritance�

��� Static Measurements

Figure � shows the percentage of dead data members in the
used classes for the benchmark programs� The percentages
shown in this �gure are unweighted in the sense that they
do not take into account the size of each data member� We
believe that taking the size of data members into account
for the static measurements is not meaningful� because there
is no way to take into account statically how many times
each class is instantiated� Data members in unused classes
are ignored in the computation of the percentages� since
eliminating such members does not a�ect the size of any
objects that are created at run�time�

In the smallest two of the benchmarks� deltablue and
richards� no dead data members were found� For the other
benchmarks� the percentage of dead data members varies
from ���� to ������ Not surprisingly� the largest percentage
of unused data members is found in the programs that use
class libraries� taldict� simulate� and hotwire� However�
our measurements indicate that even in applications with a
custom�built class hierarchy� the amount of redundancy can
be considerable�

��� Dynamic Measurements

Table � shows the relevant execution characteristics for each
of the benchmark programs� The columns in the table show
the amount of space occupied by objects throughout pro�
gram execution� � the amount of space occupied by dead data
members in these objects� the maximum amount of space oc�
cupied by objects at a single point in time during execution
�the �high water mark��� and the high water mark if dead
data members are eliminated from objects� Note that� in
general� these two high water marks may occur at di�erent
execution points�

Figure � shows the percentage of object space occupied
by dead data members at run�time for each of the bench�
marks� The �gure shows two percentages for each bench�
mark�

� The leftmost �light grey� bar indicates the number of
bytes in objects occupied by dead data members� as a
percentage of the total number of bytes occupied by
objects�

�We assume that the heap allocator always allocates the exact
number of bytes that is requested�

� The rightmost �dark grey� bar indicates a percentage
of the reduction in size of the original high water mark�
if all dead data members were to be eliminated�

Both �gures take into account the size of each data member�
as well as the number of times an object is created�

Interestingly enough� there is no strong correlation be�
tween a high percentage of dead data members in Figure ��
and a high percentage of object space occupied by those
data members in Figure �� Another point to note is that�
for a number of benchmarks� the high water mark numbers
are �nearly� identical to the numbers for total object space�
This situation occurs when an application heap�allocates
most objects� and does not deallocate them until the end
of program execution�

��� Evaluation

Although the number of benchmarks we used is relatively
small� some interesting observations can be made�

� The smallest two of the benchmarks� richards and
deltablue� do not contain any dead data members�
This is in line with our expectation that it is unlikely
that many dead data members will occur in small pro�
grams�

� The benchmarks that use a class library not specif�
ically built for the application� taldict� simulate�
and hotwire� have the highest percentage of dead data
members� This con�rms our intuition that dead data
members may arise due to unused library functionality�

� For some benchmarks with a high percentage of dead
data members� the space occupied by these data mem�
bers at run�time is relatively small� In such cases�
classes with dead data members are instantiated in�
frequently�

� Even in applications with custom�built class hierar�
chies� the amount of dead data members is non�
negligible�

� Unfortunately� we have limited data on the develop�
ment history of our benchmarks� Nevertheless� we be�
lieve that applications that have a long maintenance
history and�or have multiple successive or concurrent
developers could accumulate many dead data mem�
bers�

For the nine nontrivial benchmarks� the average percent�
age of dead data members is ������ resulting in an average
space savings of ���� at run�time if these members are re�
moved ����� for the high water mark number�� Given the
simplicity of the algorithm� we believe that this optimization
should be incorporated in any optimizing compiler�

� Related Work

Agesen and Ungar ��� describe an algorithm for the Self lan�
guage that eliminates unused slots from objects �a slot cor�
responds to either a data member or a method�� This algo�
rithm computes� for each message send �method call� that
may be executed� a set of slots that is needed to preserve
that send�s behavior� and produces a source �le in which
redundant slots have been eliminated� In spirit� this work is
very closely related to ours� although the details of the lan�
guages under consideration are very di�erent� Self is a dy�
namically typed language without an explicit class hierarchy

3.0
%

5.8
% 6.6

%

12
.1%

27
.3%

3.8
%

24
.4%

8.6
%

20
.5%

0.0
%

0.0
%

jikes
idl

npic
lcom

taldict
ixx

simulate
sched

hotwire
deltablue

richards
0%

5%

10%

15%

20%

25%

30%

35%
pe

rc
en

ta
ge

 d
ea

d
da

ta
 m

em
be

rs

Figure �� Percentage of dead data members detected in the benchmark programs of Table ��

Benchmark Object Space Dead Data Member Space High Water Mark High Water Mark w�o
dead data members

jikes ��������� ������ ��������� ���������
idl ������ ���� �������
���
npic ������ ����
 ������ �����
lcom ��������
 ������� ��
���� ��������
taldict ���� �
 ����
����
ixx �����
� ������ ������
 �
�����
simulate ���
� �� ����� ������
sched ������
�
 �������� ������
�
 �������
hotwire ����� �� ����� �����

deltablue ��
��
� � ��
���� ��
����
richards ��� � ��� ���

Table �� Execution characteristics of the benchmark programs of Table �� The table shows for each benchmark� the space occupied
by objects created during execution� the space occupied by dead data members in objects created during execution� the high water mark
�i�e�� maximum amount of space occupied by objects at a single point in time during execution�� and the high water mark if dead data
members are eliminated from objects� All measurements are in bytes�

2.4
%

2.2
%

4.5
%

9.8
%

0.5
%

9.9
%

0.4
%

11
.6%

2.6
%

0.0
%

0.0
%

1.9
%

2.2
%

4.8
%

10
.6%

0.5
%

5.4
%

0.1
%

11
.6%

2.6
%

0.0
%

0.0
%

jikes
idl

npic
lcom

taldict
ixx

simulate
sched

hotwire
deltablue

richards
0%

5%

10%

15%

20%

p
er

ce
n

ta
g

e
d

ea
d

 o
b

je
ct

 s
p

ac
e

Figure �� Percentage of object space occupied by dead data members for each of the programs of Table �� Light grey bars indicate
the percentage of space occupied by dead data members throughout program execution� Dark grey bars indicate the reduction of the
maximum amount of space �high water mark� required at a single point in time by each program�

�

in which objects are obtained by cloning other objects� In
statically typed languages such as C		� objects are created
by instantiating classes� In addition� C		 is a much larger
language than Self with a number of features that require
special attention when determining dead instance variables�

In the context of C		� previous research has focused on
the issue of determining and eliminating unused methods�
and the usefulness of these optimizations has been demon�
strated ��� ����

The work described in the present paper was motivated
in part by previous work for removing unused data mem�
bers and inheritance relations from C		 class hierarchies
���� ���� Class hierarchy slicing ���� is capable of eliminat�
ing unused inheritance relations in addition to classes� data
members and methods� For the example program of Fig�
ure �� class hierarchy slicing would be able to eliminate the
unnecessary inheritance relation between class C and class A�
This would result in the elimination of the A�subobject that
contains data member ma� from object c� Class hierarchy
slicing relies on alias�points�to information ��� ��� ��� ��� to
resolve the potential receivers of virtual method calls� Class
hierarchy specialization ���� is capable of making �ner dis�
tinctions than class hierarchy slicing by constructing a new
class hierarchy in which variables that previously had the
same type X may obtain di�erent types� As a result� data
members may be excluded from certain X�objects while be�
ing retained in other X�objects� Like class hierarchy slicing�
class hierarchy specialization requires alias�points�to infor�
mation� Class hierarchy specialization is also capable of sim�
plifying complex inheritance structures� in particular elim�
inating virtual inheritance� Virtual inheritance is typically
implemented by using indirections in objects� which increase
member access time� and which may increase object size�
depending on the object model that is used� Unfortunately�
neither class hierarchy slicing nor class hierarchy specializa�
tion have been implemented yet� It would be interesting to
compare the results of these algorithms to the results pre�
sented in this paper�

Live variable analysis is a data ow analysis technique
for determining if the value of a variable along any path is
read before it is re�written ����� This analysis is typically
used to eliminate redundant writes� if a write to a variable
is never read� then the write can be removed� The analysis
described in this paper operates in a completely di�erent
domain� the removal of dead components from objects� and
requires no ow�analysis�

In their study of abstract models of memory manage�
ment� Morrisett et al� ���� provide a semantic de�nition
of reachable garbage that is similar in spirit to our notion
of liveness� Speci�cally� they observe that certain reach�
able heap�values cannot a�ect program behavior� Based on
this observation� Morrisett et al� propose a type�inference
algorithm that infers a type for each heap location� if an
unconstrained type variable is inferred� that location can be
replaced by an arbitrary value �i�e�� �collected��� Our anal�
ysis for �nding data members that are accessed �reachable�
but dead is trivial� A data member is dead if it is only writ�
ten to� We consider the combination of our algorithm with
more advanced techniques for eliminating useless code �e�g��
program slicing� a promising direction for future work�

	 Conclusions

We have presented a simple and e�cient algorithm for de�
tecting dead data members in C		 applications� This al�
gorithm can be used as the basis for a space optimization

performed by an optimizing compiler� or as a component of
a program maintenance�understanding tool�

The algorithm has been evaluated using a set of realistic
benchmark programs ranging from
�� to ����� lines of
code� We found that in the nontrivial benchmarks� up to
����� of data members is dead� and that up to ���
� of the
object space of these applications may be occupied by dead
data members at run�time� On the average� ����� of the
data members are dead� and ���� of object space is occupied
by dead data members� Evaluation of these measurements
is in agreement with our belief that the use of selected parts
of a general class library may give rise to redundant data
members in objects�

Acknowledgements

We would like to thank David Bacon� Michael Burke� John
Field� David Grove� Michael Karasick� G� Ramalingam� and
Mark Wegman for many helpful comments and suggestions�

References

��� Accredited Standards Committee X�� I� P� S�
Working paper for draft proposed international stan�
dard for information systems�programming language
C		� Doc No X�J�
��
�����R�� Draft of � december
���
�

��� Agesen� O�� and Ungar� D� Sifting out the gold�
Delivering compact applications from an exploratory
object�oriented programming environment� In Proceed�
ings of the ���� ACM Conference on Object Oriented
Programming Systems� Languages� and Applications
�OOPSLA���	 �Portland� OR� Oct� ������ pp� ��������

��� Aigner� G�� and H�olzle� U� Eliminating virtual func�
tion calls in C		 programs� In Proceedings of the Tenth
European Conference on Object�Oriented Programming

 ECOOP��� �Linz� Austria� July ���
�� vol� ��� of
Lecture Notes in Computer Science� Springer�Verlag�
pp� �����

�

��� Bacon� D� F� Fast and E�ective Optimziation of Stat�
ically Typed Object�Oriented Languages� PhD thesis�
University of California at Berkeley� Dec ����� Forth�
coming�

��� Bacon� D� F�� and Sweeney� P� F� Fast static
analysis of C		 virtual function calls� In Proceed�
ings of the ���� ACM Conference on Object Oriented
Programming Systems� Languages� and Applications
�OOPSLA���	 �San Jose� CA� Oct� ���
�� pp� ��������

�
� Calder� B�� and Grunwald� D� Reducing indirect
function call overhead in C		 programs� In Conference
Record of the Twenty�First ACM Symposium on Princi�
ples of Programming Languages �POPL���	 �Portland�
Oregon� Jan� ������ pp� �������

��� Carini� P� R�� Hind� M�� and Srinivasan� H� Flow�
sensitive type analysis for C		� Tech� Rep� RC ���
��
IBM T�J� Watson Research Center� �����

�� Dean� J�� DeFouw� G�� Grove� D�� Litvinov� V��
and Chambers� C� Vortex� An optimizing compiler for
object�oriented languages� In Proceedings of the ����
ACM Conference on Object Oriented Programming Sys�
tems� Languages� and Applications �OOPSLA���	 �San
Jose� CA� Oct� ���
�� pp� ������

��� Driesen� K�� and H�olzle� U� The direct cost of vir�
tual function calls in C		� In Proceedings of the ����
ACM Conference on Object Oriented Programming Sys�
tems� Languages� and Applications �OOPSLA���	 �San
Jose� CA� Oct� ���
�� pp� ��
�����

���� Fischer� C� N�� and Richard J� LeBlanc� J� Craft�
ing A Compiler� The Benjamin�Cummings Series in
Computer Science� Benjamin�Cummings� Menlo Park�
CA� ���

���� Grove� D�� DeFouw� G�� Dean� J�� and Cham�
bers� C� Call graph construction in object�oriented
languages� In Proceedings of the ��� ACM Conference
on Object Oriented Programming Systems� Languages�
and Applications OOPSLA �Oct� ������ pp� �������

���� Lee� Y��F�� and Serrano� M� J� Dynamic measure�
ments of C		 program characteristics� Tech� Rep�
ADTI���������� IBM Santa Teresa Laboratory� Jan�
�����

���� Morrisett� G�� Felleisen� M�� and Harper� R�
Abstract models of memory management� In Func�
tional Programming and Computer Architecture �La
Jolla� CA� June ������ ACM� pp�

����

���� Nair� R� Pro�ling IBM RS�
��� applications� Inter�
national Journal of Computer Simulation �� � ����
��
��������

���� Pande� H� D�� and Ryder� B� G� Static type determi�
nation and aliasing for C		� Report LCSR�TR�����A�
Rutgers University� October �����

��
� Ramalingam� G�� and Srinivasan� H� A member
lookup algorithm for C		� In Proceedings of the ACM
SIGPLAN�� Conference on Programming Language
Design and Implementation �Las Vegas� NV� ������
pp� �����

���� Shapiro� M�� and Horwitz� S� Fast and accu�
rate ow�insensitive points�to analysis� In Conference
Record of the Twenty�Fourth ACM Symposium on Prin�
ciples of Programming Languages �Paris� France� ������
pp� �����

��� Soroker� D�� Karasick� M�� Barton� J�� and
Streeter� D� Extension mechanisms in Montana� In
Proceedings of the �th IEEE Israeli Conference on Soft�
ware and Systems �Herzliya� Israel	 �June ������ IEEE
Computer Society� pp� �������

���� Srivastava� A� Unreachable procedures in object�
oriented programming� ACM Letters on Programming
Languages and Systems �� � �December ������ �����
��

���� Steensgaard� B� Points�to analysis in almost linear
time� In Proceedings of the Twenty�Third ACM Sym�
posium on Principles of Programming Languages �St�
Petersburg� FL� January ���
�� pp� ������

���� Tip� F� A survey of program slicing techniques� Journal
of Programming Languages �� � ������� �������

���� Tip� F�� Choi� J��D�� Field� J�� and Ramalingam�
G� Slicing class hierarchies in C		� In Proceedings of
the ���� ACM Conference on Object Oriented Program�
ming Systems� Languages� and Applications �OOP�
SLA���	 �San Jose� CA� Oct� ���
�� pp� ��������

���� Tip� F�� and Sweeney� P� F� Class hierarchy special�
ization� In Proceedings of the Eleventh Annual Confer�
ence on Object�Oriented Programming Systems� Lan�
guages� and Applications �OOPSLA��	 �Atlanta� GA�
������ pp� ������� ACM SIGPLAN Notices �������

���� Wegman� M�� and Zadeck� F� Constant propagation
with conditional branches� ACM Transactions on Pro�
gramming Languages and Systems ��� � ������� ���
����

���� Weiser� M� Program slices� formal� psychological� and
practical investigations of an automatic program ab�
straction method� PhD thesis� University of Michigan�
Ann Arbor� �����

�

