A Study of Dead Data Members in C4++ Applications

Peter F. Sweeney and Frank Tip

IBM Thomas J. Watson Research Center
P.O. Boz 704, Yorktown Heights, NY 10598
{pfs,tip}@watson.ibm.com

Abstract

Object-oriented applications may contain data members
that can be removed from the application without affecting
program behavior. Such “dead” data members may occur
due to unused functionality in class libraries, or due to the
programmer losing track of member usage as the application
changes over time. We present a simple and efficient algo-
rithm for detecting dead data members in C++ applications.
This algorithm has been implemented using a prototype ver-
sion of the IBM VisualAge C++ compiler, and applied to a
number of realistic benchmark programs ranging from 600
to 58,000 lines of code. For the non-trivial benchmarks, we
found that up to 27.3% of the data members in the bench-
marks are dead (average 12.5%), and that up to 11.6% of
the object space of these applications may be occupied by
dead data members at run-time (average 4.4%).

1 Introduction

Object-oriented applications may contain data members (in-
stance variables) that can be removed from the applica-
tion without affecting program behavior. Such “dead” data
members may occur for several reasons:

o When an application uses a class library, it typically
uses only part of the library’s functionality. Certain
members may be accessed only from the unused parts.

o The expected use of a class at design time may differ
from the actual use of that class at coding time.

e Programmers may lose track of which members are
used, due to the growing complexity of an application
and its class hierarchy as the application changes over
time.

This paper presents a simple and efficient algorithm that
performs a whole-program analysis of a C+-+ application
and identifies dead data members. The algorithm has been
implemented in the context of the IBM VisualAge C++
compiler (version 4.0) [18], and has been applied to a set of
medium-sized C++ applications ranging from 600 to 58,000

To appear in the Proceedings of the 1998 ACM Confer-
ence on Programming Language Design and Implementa-
tion. Montreal, Canada, June 17-19, 1998.

lines of code. For the non-trivial benchmarks, we found that
up to 27.3% of the data members can be identified as dead,
and that up to 11.6% of the object space is occupied by
dead data members at run-time. On the average, we found
that 12.5% of the data members are dead, and that 4.4% of
object space is occupied by dead data members.

Elimination of unused data members is interesting from
an optimization perspective because it reduces the amount
of memory consumed by an application. An application’s
execution time may also be reduced, through reduced object
creation/destruction time, and caching/paging effects. The
detection of dead data members may also be useful in an
integrated development environment, by providing feedback
to the programmer, or by filtering out unimportant artifacts
from an application.

The remainder of this paper is organized as follows. In
Section 2, we define what it means for a data member to be
live or dead. Section 3 presents our algorithm for detecting
dead data members. Section 4 evaluates the algorithm on a
set of medium size benchmarks. Section 5 presents related
work and Section 6 presents our conclusions and future work.

2 Defining Liveness and Deadness

In the remainder of this paper, we will use the following
intuitive definitions of “liveness” and “deadness” of data
members. We call a data member m live if there is an object
o in the program that contains m such that the value of m in
o may affect the program’s observable behavior (i.e., output
or return value). If there is no such object o, we call m dead.

Note that, according to this definition, data members
that are only accessed from unreachable code are classified
as dead. More interestingly, data members that are assigned
a value that is subsequently never used in the program are
classified as dead as well. We are particularly interested in
detecting situations of this kind, since in real-life C++ pro-
grams, data members are typically initialized with a value
in a constructor. Otherwise, the initialization of data mem-
bers would lead to liveness, and very few dead data members
would be dead.

Figure 1 shows an example C++ program. The following
observations can be made about the data members in the
class hierarchy of this program:

e A::mal and N::mnl are lsve because the accesses to
these data members affect the program’s return value.

e A::ma2 and N: :mn2 are dead, because there are no ac-
cesses to these data members in the program.

class ¥ {
public: int mnl;freturnublnt

=000~ Oy OF i 03 T

procedure DetectUnusedDataMembers(Program P)
begin
mark all data members in P initially as “dead”;
mark all classes in P initially as “not visited”;
construct the call graph G of program P;
for each statement s in each function f in call graph G do
call ProcessStatement(s);
end for
for each union construct U in P do
if (at least one of the members of U is marked “live”) then
call MarkAllContainedMembers(U);
end if
end for
end;

procedure ProcessStatement(Statement s)
begin
for each expression e in statement s do
if (e is not a call to the system functions delete or free) then
if (e is an expression of the form e’.m and is a read-access) or
(e is a expression of the form &e’.m) then
/* access to data member from ezpression. similar for => expressions. */
let X be the type of e/;
let C = Lookup(X, m); /* m may occur in a base class of X */
mark data member C::im “live”;
else if (e is an expression of the form e’.Y ::m and is a read-access) or
(e is a expression of the form &e’.Y::m) then
/* access to data member from ezpression using “:’ operator. similar for => expressions. */
let ¢ = Lookup(Y, m); /* m may occur in a base class of Y */
mark data member C::im “live”;
else if (e is an expression of the form &Z::m) then
/* pointer-to-member expression. */
let C = Lookup(Z, m); /* m may occur in a base class of Z */
mark data member C::im “live”;
else if (e is an unsafe type cast expression of the form (T)(e’), for some type T') then
let S be the type of /;
call MarkAllContainedMembers(S);
end if
end if
end for
end;

procedure MarkAllContainedMembers(Class C');
begin
if class C was marked “not visited” then
mark class C' as “visited”;
for each data member m of C' do
mark data member C::m “live”;
if the type of data member m is a class N then
call MarkAllContainedMembers(N);
end if
end for
for each direct base class B of C' do
call MarkAllContainedMembers(B);
end for
end if
end;

Figure 2: Algorithm for detecting unused data members.

accesses of data members using the -> operator are
treated similarly. For “address-taken” expressions of
the form &e'.m, we conservatively assume that the data
member may be read through some pointer in the pro-
gram if its address is taken—we do not attempt to
trace the use of such addresses. We make no assump-
tions about the method used to implement Lookup;
an efficient member lookup algorithm for C++ was
recently presented in [16]. Qualified read-accesses of
data members are handled in a similar manner.

o If e is an expression of the form &Z::m (i.e., the off-
set of member m within class Z is computed), func-
tion Lookup is invoked to determine data member
C::m that is accessed, and this C::m is marked “live”
(lines 26-28). Expressions of the form &Z::m are typi-
cally used in conjunction with pointers to members, a
somewhat obscure C++ feature for indirectly access-
ing members from a specified object. We do not at-
tempt to trace where a pointer-to-member expression
is used, and simply assume that any member whose
offset is computed may be accessed somewhere in the
program.

e If e is an unsafe? type cast expression of the form
(T)(e"), for some type T that is not necessarily a class
(lines 29-32), the type S of subexpression e’ is deter-
mined, and all members contained within type S are
marked “live”. We make this conservative assump-
tion because a read access to type T’ implies a read-
access to some member of S. The data members of §
are marked “live” by calling procedure MarkAllCon-
tainedMembers for type S. MarkAllContainedMem-
bers (lines 36-50) marks all directly or indirectly con-
tained data members of a class C; see Figure 2 for de-
tails. In order to prevent duplication of work, a class
C is marked “visited” if MarkAllContainedMembers
is called for C, and all actions in MarkAllContained-
Members are only performed for classes that were not
yet visited (see line 38). All classes are initially marked
“not visited” on line 4.

After processing the statements, the union constructs
in P are examined. If a union U contains at least one
data member that is marked “live”, all other members that
are directly or indirectly® contained in U are marked “live”
(lines 9-11) by calling MarkAllContainedMembers. This
conservative assumption is required because the value of a
live union data member might otherwise depend on a write-
access to a dead union member.

3.1 Example

We will now study how our algorithm analyzes the example
program of Figure 1. Initially, all data members of the pro-
gram are marked “dead”. If we assume that the algorithm of
[5] is used to construct a call graph, the call graph consists
of the methods A::f, B::f, and C::f in addition to main.

*For the purposes of this paper, a type cast from type S to type T'
is considered “unsafe” if T is a derived class of S and the object being
cast cannot be guaranteed to be a of type T at run-time. We have
verified that all down-casts in our benchmarks are safe. In general,
unsafe type casts are unlikely to occur, but this is something the user
of the tool has to verify.

SA union construct may contain data members whose type is a
class (although there are restrictions on such classes [1]), and these
classes may contain data members, or have base classes that contain
data members.

Analysis of the statements in the functions in the call graph
proceeds as follows:

e A::mal, B::mbil, and C: :mcl are marked live, because
their value is is read in the return statements of A: : £,
B::f, and C: : f, respectively.

e Since data member B: :mb3 is read in main(), it is clas-
sified as “live”,

e The expression b.mb2.mnl in main’s return statement
reads the values of both B::mb2 and N::mnl. There-
fore, both B: :mb2 and N: :mn1 are marked live.

e Since the address of data member B: :mb4 in object b
is taken in the return expression of main, B::mb4 is
classified as live.

Note that, although A: :ma3 is accessed in main(), it is writ-
ten to, not read. Therefore, A::ma3 is not classified as live.
Due to the conservativeness of the algorithm, three dead
data members are marked “live”. B::mb3is classified as live
because it is read, even though it does not affect the pro-
gram’s return value. B::mbl and C::mcl are marked live
because methods B::f and C::f are identified as reachable
functions.

However, if a more accurate call graph is used, we can
achieve better results. For example, a simple alias/points-to
analysis algorithm [7, 15, 20, 17] can determine that pointer
ap never points to a C object. This fact can be used to ex-
clude method C: : £ from the call graph, so that the reference
to C: :mc1l can be disregarded, and data member C: :mc1 can
be marked “dead”.

An even more ambitious approach would be to eliminate
dead code prior to running our algorithm. For example,
constant propagation [24] can be used to determine that the
else-branch of the if statement is unreachable, enabling us
to remove method B::f from the call graph, which would
result in B: :mb1 being classified as “dead”. Program slicing
[25, 21] may also be used to remove useless code from an
application prior to running the algorithm.

3.2 The sizeof operator

The sizeof operator, which returns the size of an object or
type as a number of bytes, can be used in different ways, and
may or may not affect the program’s observable behavior.
If program behavior is affected, all data members in the
affected classes must be marked live, otherwise the use of
sizeof can be ignored. Since the effects of sizeof cannot
easily be determined automatically, our approach is that the
user must specify which uses of sizeof can be ignored; by
default, sizeof is treated conservatively.

In the current set of benchmarks, sizeof is only used
for storage allocation purposes, and does not affect the pro-
gram’s observable behavior. Therefore, we do not mark any
data members as live due to use of sizeof.

3.3 Dealing with Library Usage

Situations where the source code and class hierarchy for
parts of the program are unavailable due to library usage
require special care. In general, it is not possible to classify
a data member in a library class as “dead” or “live” un-
less the complete source code for the library is available. In
particular, it is not possible to classify the data members of
a library class C for which header information and method

Benchmark | Description LOC Classes Data

total (used) | Members
jikes IBM Java to byte code translator 58,296 268 (246) 1052
idl SunSoft IDL compiler + demo back end 30,288 85 (82) 118
npic Framework for alias analysis 22,728 198 (184) 290
lcom ”L” hardware description language compiler | 17,278 78 (73) 287
taldict Taligent’s synthetic dictionary benchmark 11,854 55 (13) 22
ixx IDL specification to C++ code generator 11,157 101 (81) 343
simulate Simulation class library + example 6,672 42 (27) 46
sched RS/6000 instruction timing simulator 5,712 46 (44) 186
hotwire Scriptable graphical presentation builder 5,355 37 (21) 166
deltablue Incremental dataflow constraint solver 1,250 10 (8) 23
richards Simple operating system simulator 606 12 (12) 28

Table 1: Benchmark programs used to evaluate the dead data member detection algorithm. The columns of this table show the name

of the application, a brief description of the application, the size of the application (in lines of source code), the number of classes in the
application’s class hierarchy; the number between brackets is the number of “used” classes (i.e., classes for which a constructor is called

in user code), and the number of data members that occurs in used classes, respectively.

bodies are available if we do not have access to all library
source code in which C’s data members may be accessed.

A data member in a user class derived from a library
class can be classified, assuming that the execution of the
library code cannot result in an access to that data member.
This implies that conservative assumptions must be made
during the construction of the call graph in the presence of
libraries, since a library may make calls to virtual methods
in the user’s code; similar precautions must be taken if the
library calls methods indirectly through function pointers
(callbacks). Such situations can be dealt with conservatively
as follows. If a virtual method f is defined in a library class,
and f is overridden in a class C in the application code, we
assume C :: f to be reachable. In addition, if the address of
a function f is taken in reachable code, we assume f to be
reachable.

3.4 Complexity Analysis

Our algorithm requires the construction of a call graph, and
relies on an algorithm for performing member lookup. Us-
ing the Rapid Type Analysis algorithm of [5], a call graph
can be constructed in linear time in practice [11]; for more
sophisticed call graph construction algorithms, we refer the
reader to [11].

Using the member lookup algorithm of [16], all member
lookups can be computed in time O(M x (C' + 1)), where C
is the number of classes in the hierarchy, I the number of
inheritance relations among these classes, and M the num-
ber of distinct member names (assuming that the program
contains no ambiguous member lookups).

Assuming that the call graph and all member lookups
have been pre-computed, our algorithm requires a single
traversal of the expressions that occur in reachable func-
tions. All actions performed for each expression can be
performed in unit time, with the exception of calls to pro-
cedure MarkAllContainedMembers. The total amount of
time spent in all calls to this procedure is O(C x M), as-
suming that all members in all classes are eventually vis-
ited and marked. This implies that, excluding the cost of
pre-computing member lookups and construction of the call
graph, the total cost of our algorithm is O(N + (C' x M)),

where N is the number of expressions in the program.

4 Results

The algorithm of Section 3 has been implemented in the
context of the IBM VisualAge C++ compiler (version 4.0)
that is currently being developed jointly by IBM Research
and IBM Toronto. We use a slightly modified version of the
Program Virtual Call Graph (PVG) algorithm [4] to build
a call graph of a C++ application. For resolving member
lookups, we rely directly on the information provided by
the compiler. Unfortunately, there is no linguistic means to
detect whether or not a class occurs in a library. Therefore,
we rely on the user to indicate which classes are library
classes.

We applied the dead data member detection algorithm
to a small set of medium-sized C+-+ benchmarks in order
to answer the following questions:

1. What percentage of data members in an application
can be determined to be dead?

2. What percentage of object space is occupied at run-
time by dead data members?

The first question i1s answered directly by our algorithm, as
will be discussed below in Section 4.2. The answer to the
second question i1s obtained by analyzing the objects cre-
ated during program execution, and measuring the amount
of space in these objects occupied by dead data members;
this is done by a combination of code instrumentation and
analysis of a dynamic trace of the execution [14]. The dy-
namic measurements will be discussed in Section 4.3.

4.1 Benchmark Characteristics

Table 1 shows the set of benchmark programs that were used
to evaluate the dead data member detection algorithm. The
columns of the table show for each benchmark: the name of
the application, a short description, the size (number of lines
of source code), the total number of classes, and the number
of “used” classes (i.e., classes for which a constructor call
occurs in the application), and the number of data members
that occur in used classes.

Several of these benchmarks have been studied previ-
ously in the literature for other purposes (e.g., experimen-
tation with virtual function-call elimination algorithms) [5,
9, 8, 6, 12, 3]. The programs of Table 1 range from 606 to

58,296 lines of code, and contain between 10 to 268 classes,

and between 22 and 1052 data members. Some benchmarks
(e.g., taldict, simulate, and hotwire) use class libraries
that have been developed independently from the applica-
tion. Several other benchmarks (e.g., idl, lcom, ixx, and
sched) use classes that were custom-built for the applica-
tion. The code for all of these classes is available for analy-
sis, and the results presented below only apply to application
code for which the full source code is available. In addition,
all benchmarks rely on low-level libraries (e.g., iostream.h),
for which the source code is unavailable or only partially
available. In the computation of the numbers below, classes
and data members in such libraries are ignored.

Besides being of different sizes, the benchmark programs
also cover a wide range of programming styles. The sched
benchmark, for example, is not written in a very object-
oriented style, and contains very little inheritance: most of
the classes are structs. On the other hand, idl is a highly
object-oriented application with a complex class hierarchy
and heavy use of virtual functions and virtual inheritance.

4.2 Static Measurements

Figure 3 shows the percentage of dead data members in the
used classes for the benchmark programs. The percentages
shown in this figure are unweighted in the sense that they
do not take into account the size of each data member. We
believe that taking the size of data members into account
for the static measurements is not meaningful, because there
is no way to take into account statically how many times
each class is instantiated. Data members in unused classes
are ignored in the computation of the percentages, since
eliminating such members does not affect the size of any
objects that are created at run-time.

In the smallest two of the benchmarks, deltablue and
richards, no dead data members were found. For the other
benchmarks, the percentage of dead data members varies
from 3.0% to 27.3%. Not surprisingly, the largest percentage
of unused data members is found in the programs that use
class libraries: taldict, simulate, and hotwire. However,
our measurements indicate that even in applications with a
custom-built class hierarchy, the amount of redundancy can
be considerable.

4.3 Dynamic Measurements

Table 2 shows the relevant execution characteristics for each
of the benchmark programs. The columns in the table show
the amount of space occupied by objects throughout pro-
gram execution®, the amount of space occupied by dead data
members in these objects, the maximum amount of space oc-
cupied by objects at a single point in time during execution
(the “high water mark”), and the high water mark if dead
data members are eliminated from objects. Note that, in
general, these two high water marks may occur at different
execution points.

Figure 4 shows the percentage of object space occupied
by dead data members at run-time for each of the bench-
marks. The figure shows two percentages for each bench-
mark:

o The leftmost (light grey) bar indicates the number of
bytes in objects occupied by dead data members, as a
percentage of the total number of bytes occupied by
objects.

We assume that the heap allocator always allocates the exact
number of bytes that is requested.

o The rightmost (dark grey) bar indicates a percentage
of the reduction in size of the original high water mark,
if all dead data members were to be eliminated.

Both figures take into account the size of each data member,
as well as the number of times an object is created.

Interestingly enough, there is no strong correlation be-
tween a high percentage of dead data members in Figure 3,
and a high percentage of object space occupied by those
data members in Figure 4. Another point to note is that,
for a number of benchmarks, the high water mark numbers
are (nearly) identical to the numbers for total object space.
This situation occurs when an application heap-allocates
most objects, and does not deallocate them until the end
of program execution.

4.4 Evaluation

Although the number of benchmarks we used is relatively
small, some interesting observations can be made.

e The smallest two of the benchmarks, richards and
deltablue, do not contain any dead data members.
This is in line with our expectation that it is unlikely
that many dead data members will occur in small pro-
grams.

e The benchmarks that use a class library not specif-
ically built for the application, taldict, simulate,
and hotwire, have the highest percentage of dead data
members. This confirms our intuition that dead data
members may arise due to unused library functionality.

e For some benchmarks with a high percentage of dead
data members, the space occupied by these data mem-
bers at run-time is relatively small. In such cases,
classes with dead data members are instantiated in-
frequently.

e Even in applications with custom-built class hierar-
chies, the amount of dead data members is non-
negligible.

o Unfortunately, we have limited data on the develop-
ment history of our benchmarks. Nevertheless, we be-
lieve that applications that have a long maintenance
history and/or have multiple successive or concurrent
developers could accumulate many dead data mem-
bers.

For the nine nontrivial benchmarks, the average percent-
age of dead data members is 12.5%, resulting in an average
space savings of 4.4% at run-time if these members are re-
moved (4.9% for the high water mark number). Given the
simplicity of the algorithm, we believe that this optimization
should be incorporated in any optimizing compiler.

5 Related Work

Agesen and Ungar [2] describe an algorithm for the Self lan-
guage that eliminates unused slots from objects (a slot cor-
responds to either a data member or a method). This algo-
rithm computes, for each message send (method call) that
may be executed, a set of slots that is needed to preserve
that send’s behavior, and produces a source file in which
redundant slots have been eliminated. In spirit, this work is
very closely related to ours, although the details of the lan-
guages under consideration are very different. Self is a dy-
namically typed language without an explicit class hierarchy

35%
v 200 S°
g 30% v -
W
0E> 25% v S
E S
g ®
3 20%
-f% \q
S 15% =
o % N
o) o
g 10% 0\0 6’\“ | c)ob
) > <}
o o o (g\Q
g 5% [- N - |
N S°
Qr Q-
0%
jikes npic taldict simulate hotwire richards
idl Ilcom iXX sched deltablue
Figure 3: Percentage of dead data members detected in the benchmark programs of Table 1.
Benchmark | Object Space | Dead Data Member Space | High Water Mark | High Water Mark w/o
dead data members
jikes 2,921,490 55,112 2,232,472 2,179,730
idl 708,249 15,388 701,273 685,885
npic 115,248 5,516 24,972 23,840
lcom 2,274,956 241,435 1,652,828 1,491,048
taldict 7,080 36 7,008 6,972
ixx 551,160 29,745 299,516 269,775
simulate 54,869 41 11,585 11,544
sched 9,032,676 1,049,148 9,032,676 7,983,528
hotwire 10,780 284 10,780 10,496
deltablue 276,364 0 196,212 196,212
richards 4,880 0 4,880 4,880
Table 2: Execution characteristics of the benchmark programs of Table 1. The table shows for each benchmark: the space occupied

by objects created during execution, the space occupied by dead data members in objects created during execution, the high water mark
(i.e., maximum amount of space occupied by objects at a single point in time during execution), and the high water mark if dead data
members are eliminated from objects. All measurements are in bytes.

20%
[N
o
©
Q
© 15%
s &*
o N <g\

>
8 10%
°
o
g S &°
5 5% \ > _b
o NN b?c ol oo
9] \9 Vv '1:‘]/ '1:'1/
Q Qg\o 00\0 QQ\Q QQ\Q
QO O INREEENY
0%
jikes npic taldict simulate hotwire richards
idl Icom XX sched deltablue
Figure 4: Percentage of object space occupied by dead data members for each of the programs of Table 1. Light grey bars indicate

the percentage of space occupied by dead data members throughout program execution. Dark grey bars indicate the reduction of the
maximum amount of space (high water mark) required at a single point in time by each program.

in which objects are obtained by cloning other objects. In
statically typed languages such as C++, objects are created
by instantiating classes. In addition, C++ is a much larger
language than Self with a number of features that require
special attention when determining dead instance variables.

In the context of C++, previous research has focused on
the issue of determining and eliminating unused methods,
and the usefulness of these optimizations has been demon-
strated [5, 19].

The work described in the present paper was motivated
in part by previous work for removing unused data mem-
bers and inheritance relations from C-4+4 class hierarchies
[22, 23]. Class hierarchy slicing [22] is capable of eliminat-
ing unused inheritance relations in addition to classes, data
members and methods. For the example program of Fig-
ure 1, class hierarchy slicing would be able to eliminate the
unnecessary inheritance relation between class C and class A.
This would result in the elimination of the A-subobject that
contains data member mal from object c. Class hierarchy
slicing relies on alias/points-to information [7, 15, 20, 17] to
resolve the potential receivers of virtual method calls. Class
hierarchy specialization [23] is capable of making finer dis-
tinctions than class hierarchy slicing by constructing a new
class hierarchy in which variables that previously had the
same type X may obtain different types. As a result, data
members may be excluded from certain X-objects while be-
ing retained in other X-objects. Like class hierarchy slicing,
class hierarchy specialization requires alias/points-to infor-
mation. Class hierarchy specialization is also capable of sim-
plifying complex inheritance structures, in particular elim-
inating virtual inheritance. Virtual inheritance is typically
implemented by using indirections in objects, which increase
member access time, and which may increase object size,
depending on the object model that is used. Unfortunately,
neither class hierarchy slicing nor class hierarchy specializa-
tion have been implemented yet. It would be interesting to
compare the results of these algorithms to the results pre-
sented in this paper.

Live variable analysis is a data flow analysis technique
for determining if the value of a variable along any path is
read before it is re-written [10]. This analysis is typically
used to eliminate redundant writes: if a write to a variable
is never read, then the write can be removed. The analysis
described in this paper operates in a completely different
domain, the removal of dead components from objects, and
requires no flow-analysis.

In their study of abstract models of memory manage-
ment, Morrisett et al. [13] provide a semantic definition
of reachable garbage that is similar in spirit to our notion
of liveness. Specifically, they observe that certain reach-
able heap-values cannot affect program behavior. Based on
this observation, Morrisett et al. propose a type-inference
algorithm that infers a type for each heap location; if an
unconstrained type variable is inferred, that location can be
replaced by an arbitrary value (i.e., “collected”). Our anal-
ysis for finding data members that are accessed (reachable)
but dead is trivial: A data member is dead if it is only writ-
ten to. We consider the combination of our algorithm with
more advanced techniques for eliminating useless code (e.g.,
program slicing) a promising direction for future work.

6 Conclusions

We have presented a simple and efficient algorithm for de-
tecting dead data members in C++ applications. This al-
gorithm can be used as the basis for a space optimization

performed by an optimizing compiler, or as a component of
a program maintenance/understanding tool.

The algorithm has been evaluated using a set of realistic
benchmark programs ranging from 600 to 58,000 lines of
code. We found that in the nontrivial benchmarks, up to
27.3% of data members is dead, and that up to 11.6% of the
object space of these applications may be occupied by dead
data members at run-time. On the average, 12.5% of the
data members are dead, and 4.4% of object space is occupied
by dead data members. Evaluation of these measurements
is in agreement with our belief that the use of selected parts
of a general class library may give rise to redundant data
members in objects.

Acknowledgements

We would like to thank David Bacon, Michael Burke, John
Field, David Grove, Michael Karasick, G. Ramalingam, and

Mark Wegman for many helpful comments and suggestions.

References

[1] ACCREDITED STANDARDS CoMMITTEE X3, I. P. S.
Working paper for draft proposed international stan-
dard for information systems—programming language
C++. Doc No X3J16/96-0219R1. Draft of 2 december
1996.

[2] AcesEN, O., AND UNGAR, D. Sifting out the gold.
Delivering compact applications from an exploratory
object-oriented programming environment. In Proceed-
ings of the 1994 ACM Conference on Object Oriented
Programming Systems, Languages, and Applications

(OOPSLA’94) (Portland, OR, Oct. 1994), pp. 355-370.

[3] AiGNER, G., AND HOLZLE, U. Eliminating virtual func-
tion calls in C++ programs. In Proceedings of the Tenth
European Conference on Object-Oriented Programming
- ECOOP’96 (Linz, Austria, July 1996), vol. 1098 of
Lecture Notes in Computer Science, Springer-Verlag,
pp. 142-166.

[4] Bacon, D. F. Fast and Effective Optimziation of Stat-
scally Typed Object-Oriented Languages. PhD thesis,
University of California at Berkeley, Dec 1997. Forth-
coming.

[5] Bacon, D. F., aNnD SwgENEY, P. F. Fast static
analysis of C++ virtual function calls. In Proceed-
ings of the 1996 ACM Conference on Object Oriented
Programming Systems, Languages, and Applications

(OOPSLA’96) (San Jose, CA, Oct. 1996), pp. 324-341.

[6] CALDER, B., AND GRUNWALD, D. Reducing indirect
function call overhead in C++ programs. In Conference
Record of the Twenty-First ACM Symposium on Princi-
ples of Programming Languages (POPL’'94) (Portland,
Oregon, Jan. 1994), pp. 397-408.

[7] Carini, P. R., HiNnD, M., AND SRINIVASAN, H. Flow-
sensitive type analysis for C++. Tech. Rep. RC 20267,
IBM T.J. Watson Research Center, 1995.

[8] DeaN, J., DeFouw, G., Grovg, D., LitviNnov, V.,
AND CHAMBERS, C. Vortex: An optimizing compiler for
object-oriented languages. In Proceedings of the 1996
ACM Conference on Object Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’96) (San
Jose, CA, Oct. 1996), pp. 83-103.

[9]

[11]

[13]

18]

DRIESEN, K., AND HOLZLE, U. The direct cost of vir-
tual function calls in C++. In Proceedings of the 1996
ACM Conference on Object Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’'96) (San
Jose, CA, Oct. 1996), pp. 306-323.

FiscuER, C. N, AND RicHARD J. LEBLANCG, J. Craft-
ing A Compiler. The Benjamin/Cummings Series in
Computer Science. Benjamin/Cummings, Menlo Park,

CA, 1988.

Grove, D., DeFouw, G., DEeaN, J., AND CHAM-
BERS, C. Call graph construction in object-oriented
languages. In Proceedings of the 1997 ACM Conference
on Object Oriented Programming Systems, Languages,

and Applications OOPSLA (Oct. 1997), pp. 108-124.

LEE, Y.-F., aND SERrANO, M. J. Dynamic measure-
ments of C++ program characteristics. Tech. Rep.
ADTI-1995-001, IBM Santa Teresa Laboratory, Jan.
1995.

MorriseTT, G., FELLEISEN, M., aND HARPER, R.
Abstract models of memory management. In Func-
tional Programming and Computer Architecture (La

Jolla, CA, June 1995), ACM, pp. 66-77.

NaIr, R. Profiling IBM RS/6000 applications. Inter-
national Journal of Computer Simulation 6, 1 (1996),
101-111.

PanDE, H. D., aAND RYDER, B. G. Static type determi-
nation and aliasing for C++. Report LCSR-TR-250-A,
Rutgers University, October 1995.

RamaringaMm, G., AND SRINIVASAN, H. A member
lookup algorithm for C++. In Proceedings of the ACM
SIGPLAN’97 Conference on Programming Language
Design and Implementation (Las Vegas, NV, 1997),
pp. 18-30.

SHAPIRO, M., aND HorwiTz, S. Fast and accu-
rate flow-insensitive points-to analysis. In Conference
Record of the Twenty-Fourth ACM Symposium on Prin-
ciples of Programming Languages (Paris, France, 1997),
pp- 1-14.

SOorROKER, D., Karasick, M., BarrTon, J., AND
STREETER, D. Extension mechanisms in Montana. In
Proceedings of the 8th IEEE Israeli Conference on Soft-
ware and Systems (Herzliya, Israel) (June 1997), IEEE
Computer Society, pp. 119-128.

SrivasTavAa, A. Unreachable procedures in object-
oriented programming. ACM Letters on Programming
Languages and Systems 1, 4 (December 1992), 355-364.

STEENSGAARD, B. Points-to analysis in almost linear
time. In Proceedings of the Twenty-Third ACM Sym-
posium on Principles of Programming Languages (St.

Petersburg, FL, January 1996), pp. 32-41.

Trip, F. A survey of program slicing techniques. Journal
of Programming Languages 3, 3 (1995), 121-189.

Trp, F., Croi, J.-D., FieLD, J., AND RAMALINGAM,
G. Slicing class hierarchies in C++. In Proceedings of
the 1996 ACM Conference on Object Oriented Program-
ming Systems, Languages, and Applications (OOP-
SLA'96) (San Jose, CA, Oct. 1996), pp. 179-197.

(23]

(24]

[25]

Tip, F., AND SWEENEY, P. F. Class hierarchy special-
ization. In Proceedings of the Eleventh Annual Confer-
ence on QObject-Oriented Programming Systems, Lan-

guages, and Applications (OOPSLA'97) (Atlanta, GA,
1997), pp. 271-285. ACM SIGPLAN Notices 32(10).

WEeGMAN, M., AND ZADECK, F. Constant propagation
with conditional branches. ACM Transactions on Pro-
gramming Languages and Systems 18, 2 (1991), 181-
210.

WEISER, M. Program slices: formal, psychological, and
practical investigations of an automatic program ab-
straction method. PhD thesis, University of Michigan,
Ann Arbor, 1979.

