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Abstract
We present an analysis for identifying determinate variables and
expressions that always have the same value at a given program
point. This information can be exploited by client analyses and
tools to, e.g., identify dead code or specialize uses of dynamic
language constructs such as eval, replacing them with equiva-
lent static constructs. Our analysis is completely dynamic and only
needs to observe a single execution of the program, yet the deter-
minacy facts it infers hold for any execution. We present a formal
soundness proof of the analysis for a simple imperative language,
and a prototype implementation that handles full JavaScript. Fi-
nally, we report on two case studies that explored how static ana-
lysis for JavaScript could leverage the information gathered by dy-
namic determinacy analysis. We found that in some cases scalabil-
ity of static pointer analysis was improved dramatically, and that
many uses of runtime code generation could be eliminated.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis

Keywords static analysis; dynamic analysis; JavaScript

1. Introduction
Most modern programming languages offer support for reflective
programming. For instance, Java programs can inspect an object’s
class at runtime to discover or access its fields and methods, and
they can dynamically load classes by name, or even create new
classes from scratch. Modern dynamic languages such as Ruby or
JavaScript are even more liberal and permit almost arbitrary reflec-
tive changes to a running program’s state. JavaScript, for example,
provides for-in loops to discover an object’s properties, and dy-
namic property accesses to read, write or even delete properties ref-
erenced by a computed name. Finally, the notorious eval function
can execute arbitrary text as code, which can access or even declare
local variables of the enclosing scope.

While cherished by many programmers for their conciseness
and expressiveness, these features make any form of sound pro-
gram analysis very hard. As an extreme example, a program could
evaluate arbitrary user input as program code, thus defeating any
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attempts to obtain useful analysis results. In practice, however, pro-
grammers tend to use reflective features in a more disciplined fash-
ion. For instance, Bodden et al. [5] found that Java programs using
reflective class loading tend to always load the same classes, so by
observing the classes loaded on some test runs, an analysis can gain
a fairly complete picture of the program’s reflective behavior. Simi-
larly, Furr et al. [13] report that while dynamic features in Ruby are
used pervasively, most uses are “highly constrained” and can be re-
placed with static alternatives, and Jensen et al. [17] show similar
results for uses of eval in JavaScript.

This paper proposes a general approach for soundly identifying
such constrained uses of dynamic language features. The basic
concept behind our approach is determinacy.1 Roughly speaking,
a variable x is determinate at a program point p if x must have the
same value, say v, whenever program execution reaches p. In that
case, we will also say that x determinately has value v at p. We
allow the program point p to be qualified by a calling context c to
account for cases where x is only guaranteed to have value v if p
is reached while executing inside calling context c. By extension,
an expression is determinate at at program point p if its value is
computed only from variables that are determinate at p.

Determinacy information can be used by a client to reason
about reflective code. For instance, if for some use of eval the
argument is known to determinately have some string value s, then
a static analysis can analyze the code represented by s and maintain
soundness. Type checkers, program transformation tools, and static
optimizers could also benefit from this kind of specialization.

Determinacy information is not only useful for dealing with dy-
namic features. For example, in JavaScript it is not uncommon for
highly polymorphic functions to behave very differently depend-
ing on the type and number of arguments they are passed. Figure 1
shows a short, highly simplified excerpt from the popular jQuery
library,2 which defines a utility function $ that performs different

1 Determinacy should not be confused with the notion of determinism in
concurrent programming.
2 See http://www.jquery.com

1 function $(selector) {
2 if(typeof selector === "string") {
3 if(isHTML(selector))
4 // parse as HTML and return DOM tree
5 else
6 // interpret as CSS query
7 } else if(typeof selector === "function") {
8 // install as event handler for document ready
9 } else {

10 return [selector];
11 }
12 }

Figure 1. Example of polymorphic function in JavaScript



tasks depending on its argument. If the argument is a string (line 2),
it is either parsed as HTML and the corresponding DOM fragment
is returned (line 3), or it is interpreted as a CSS selector and all
matching elements are returned (line 5). If the argument is a func-
tion (line 7), it is installed as an event handler to be executed once
the HTML document has finished loading. Otherwise (line 9), the
argument is wrapped in a single-element array and returned.

Individual call sites of $ tend to be monomorphic, i.e., they only
exercise one particular functionality of the function, so the condi-
tions of the if statements become determinate for that site. For
instance, under a call $(function() { ... }), the conditional
expression on line 2 must be false, whereas line 7 must evaluate
to true. A flow-insensitive static analysis can use this information
to identify code that is unreachable for this particular invocation of
$, thereby gaining a degree of flow sensitivity. Similarly, a partial
evaluator could use determinacy information to complement bind-
ing time analysis for specializing a program with respect to deter-
minate input, and an optimizer could use it to detect dead code.

Statically computing determinacy information, however, is very
challenging, especially for dynamic languages like JavaScript,
where even a call graph is hard to construct without an effective
approach to dealing with dynamic language features [30], the very
problem determinacy analysis is supposed to help with.

In this paper, we propose a dynamic determinacy analysis that
analyzes one or more concrete executions to infer determinacy facts
that are guaranteed to hold in any execution. Our analysis is similar
in spirit to dynamic information flow analysis [32], in the sense
that we consider indeterminate program inputs to be “tainted” and
track the flow of this taint. Any value that is not tainted must then
be determinate. As in dynamic information flow, our analysis must
consider how indeterminate inputs can influence other values both
directly (by participating in computations) and indirectly (e.g., by
being used as an if condition).

Since our determinacy analysis is dynamic, it can only observe
one execution at a time and has to carefully account for the possible
effects of code that was not exercised in this execution, but may be
exercised in another. Determinacy information itself can help here:
if the conditional expression of an if statement is determinate,
for instance, the dynamic analysis only has to explore one branch,
since the other branch is definitely not run in any execution. To
handle indeterminate conditionals, we introduce the technique of
counterfactual execution, where we explore both the branch that
would ordinarily be executed, and the other branch that would not
normally be run. In this way, we can more precisely account for the
behavior of other executions and infer more determinacy facts.

We have formalized our analysis for a simple imperative lan-
guage with records and higher-order functions and proved its cor-
rectness: variables marked as determinate by the analysis at a cer-
tain program point will in fact have the predicted value any time
an execution reaches that point. We have implemented a prototype
determinacy analysis that handles all of JavaScript, and obtained
promising results on two case studies where we combined the de-
terminacy analysis with a static analysis: first, we extended the
static points-to analysis for JavaScript implemented in WALA [30]
to make use of determinacy facts, dramatically increasing precision
and scalability in some cases; second, we further extended the static
analysis to use determinacy facts for eliminating uses of eval.

In summary, this paper makes the following main contributions:

• We introduce a dynamic determinacy analysis, which ana-
lyzes one or more concrete executions to identify variables and
expressions that have the same value at a given program point
in any execution. (Section 2).
• We give a formalization and a correctness proof of our deter-

minacy analysis for a simple imperative language. (Section 3).

1 (function() {
2 function checkf(p) {
3 // J p.f<32 K 16→4 = true; J p.f<32 K 25→4 = ?
4 if(p.f < 32)
5 setg(p, 42);
6 }
7
8 function setg(r, v) {
9 r.g = v;

10 } // J r.g K 18→5→10 = 42
11
12 var x = { f : 23 },
13 y = { f : Math.random()*100 };
14 // J x.f K 14 = 23, J y.f K 14 = ?
15
16 checkf(x);
17 // J x.f K 17 = 23, J x.g K 17 = 42
18 checkf(y);
19 // J y.g K 19 = ?
20
21 (y.f > 50 ? checkf : setg)(x, 72);
22 // J x.g K 22 = ?
23
24 var z = { f: x.g - 16, h: true };
25 checkf(z);
26 })();

Figure 2. Example program for illustrating dynamic determinacy
analysis. Some key determinacy facts are given in comments.

• We present a prototype implementation of the analysis for
JavaScript. (Section 4).
• We report on two case studies, demonstrating that the infor-

mation gathered by our dynamic determinacy analysis can sig-
nificantly improve the precision of static pointer analysis and
identify many uses of eval that can be eliminated. (Section 5).

Finally, Section 6 surveys related work, and Section 7 concludes.

2. Overview
This section provides a high-level overview of determinacy and its
applications. First, we introduce some terminology and informally
explain how determinacy facts can be computed using dynamic
analysis, using a small JavaScript example that was carefully con-
trived to demonstrate the key issues involved. Then, we illustrate
the usefulness of determinacy analysis by showing how determi-
nacy facts can be used to improve static pointer analysis for Java-
Script and eliminate common uses of the eval function.

2.1 Determinacy
To illustrate key challenges for determinacy analysis, consider the
example program in Figure 2. It consists of two functions checkf
(lines 2–6) and setg (lines 8–10), and a sequence of statements
(lines 12–25). These functions and statements are wrapped into an
anonymous function call to provide lexical scope.

Running the example program. Program execution starts with
the call on line 26, which invokes the anonymous function defined
on lines 1–26. Executing its body, we first encounter the function
definitions for checkf and setg. Then, when line 12 is reached,
variables x and y are initialized to object literals, both containing a
single property f. While property x.f is set to the constant value
23, property y.f is initialized to Math.random()*100, a random
floating point number between 0 and 100; let us assume that it
evaluates to 31.4 in our concrete execution.

Execution then proceeds by calling checkf twice, on lines 16
and 18, passing x and y as the argument, respectively. If the condi-



tion on line 4 evaluates to true, checkf calls setg, which assigns
the value 42 to the g property of the argument. In our example ex-
ecution, the condition evaluates to true for both calls, so x.g and
y.g both hold the value 42 after line 18. Then, line 21 invokes a
function whose name is determined by the conditional expression
(y.f > 50 ? checkf : setg). Since y.f holds the value 31.4
at this point, setg is called, with arguments x and 72, causing the
value 72 to be assigned into x.g. Next, on line 24, a third local
variable z is initialized to an object literal with properties f and h
containing values 56 and true, respectively. Finally, when checkf
is called with z as an argument on line 25, the condition on line 4
evaluates to false so that setg is not called.

Determinacy facts. The goal of determinacy analysis is to iden-
tify situations where a variable or expression must hold the same
value at a given location in any execution of the program.

For example, x.f is determinate on line 14: it must always have
the value 23 here because its initialization does not depend in any
way on program input, or on values in the environment. On the
other hand, y.f is indeterminate on line 14, because the value
returned by Math.random may vary in different executions. We
express these observations using the following determinacy facts:

J x.f K 14 = 23

J y.f K 14 = ?

Likewise, variables x and y are both determinate at line 14.3

Sometimes, determinacy facts only hold under a given calling
context. For instance, for the call to checkf on line 16, the condi-
tion p.f < 32 on line 4 will evaluate to true in any program exe-
cution, but this is not the case for the calls to checkf on lines 18
and 25. We express this as a qualified determinacy fact

J p.f < 32 K 16→4 = true

stating that the condition p.f < 32 is determinately true on line 4
if this line is reached from the call at line 16. Determinacy facts in-
ferred by our dynamic analysis are always qualified with a complete
call stack reaching all the way back to the program’s entrypoint.

Dynamic determinacy analysis. To infer determinacy facts, we
instrument the program to compute not only the values of variables,
properties and other expressions, but also whether they are deter-
minate at the current program point. This is done using techniques
reminiscent of dynamic information flow analysis, where instead of
high and low security levels we track indeterminacy.

Program inputs (including, for JavaScript, the DOM) are con-
sidered indeterminate, as are the results of certain functions like
Math.random. Constants, on the other hand, are determinate, so
the analysis marks x and x.f as determinate on line 12.

Starting from these sources, indeterminacy (like high-security
annotations in information flow) propagates both directly and in-
directly: a variable becomes indeterminate when it is assigned an
expression involving other indeterminate variables, but also when
it is modified in code that is control dependent on an indeterminate
condition and hence not necessarily run in every execution.

Direct propagation of indeterminacy is easy to track by com-
puting a compound expression’s determinacy from its constituent
expressions: e.g., Math.random()*100 is indeterminate, so y.f is
indeterminate at line 13. To track indirect flow of indeterminacy,
the dynamic analysis has to carefully reason about conditionals.

Conditionals and counterfactual execution. Conditionals where
the condition is itself determinate are easy to handle, since any
other execution will take the same branch as the one we are ob-
serving. This case arises in the call to checkf on line 16, where the

3 While y.f is indeterminate, y itself must hold the object literal assigned
to it at line 13.

condition p.f < 32 is determinately true, so by simply continuing
execution we can infer the fact J x.g K 17 = 42.

Indeterminate conditions require a more careful treatment. For
the second call to checkf (line 18), the condition p.f < 32 on
line 4 is indeterminate, but happens to be true. In another execution
it may well be false, causing the branch not to be executed. To
account for this possibility, we execute the branch as usual, but
record any variable or property write. After the branch has finished
executing, we mark all written variables and properties (in this case
only y.g) as indeterminate, giving J y.g K 19 = ?.

By marking variables indeterminate only after the branch has
finished executing, we can infer more determinacy facts inside it.
Note that both arguments to setg are determinate at line 5 when
checkf is invoked from line 18. So, we infer J r.g K 18→5→10 = 42,
even though y.g is later marked indeterminate. Of course, x.f and
x.g stay determinate, as they are not written to in the branch.

The third, and most difficult, case arises with conditions that are
indeterminate and happen to be false, as is the case for p.f < 32
in the third call to checkf on line 25. Here, we have to account for
the fact that the condition may evaluate to true in another execution,
causing the branch to be taken.

A simple approach would be to statically examine the code
to determine which local variables it could write to (none in this
case) and mark them indeterminate. However, this does not account
for possible heap writes by functions called within the branch.
Since a dynamic analysis does not have access to a static call
graph, a conservative approach is to “flush” the heap, marking
every property of every object as indeterminate.

This is clearly very imprecise, so our analysis takes another
approach, which we refer to as counterfactual execution. Even
though the condition is false, we still (counterfactually) execute the
branch, recording any determinacy facts that may arise. After it has
finished executing, we (i) undo the effect of any writes to variables
or properties (since the branch was not originally meant to execute),
and (ii) mark any written variables and properties as indeterminate
(since other executions may not perform these writes). In our case,
this leads to z.g being marked indeterminate after the conditional,
while, for instance, z.h is still determinate.

Indeterminate calls. Since JavaScript functions are first-class,
the target of a function call must itself be computed as a value,
which may be indeterminate. An example is the call on line 21,
where the callee is computed by the indeterminate expression y.f
> 50 ? checkf : setg. In the concrete execution we are con-
sidering, it evaluates to setg, which is then invoked to set x.g to
72. However, the value of the callee expression is indeterminate
since y.f is indeterminate at line 21, so another execution may
well invoke checkf instead, which would result in x.g being 42.

To account for this, we conservatively flush the heap, marking
all properties as indeterminate after every indeterminate call. In our
example, this means that x.f, x.g, y.f and y.g are indeterminate
at line 22. While this is overly conservative (x.f is, in fact, still
determinate), it is the best thing we can do, since we do not track
alternative values for indeterminate expressions. Note that x and y
need not be made indeterminate, since they are local variables and
cannot possibly be written by any called function.

2.2 Improving pointer analysis
We now show how determinacy facts can be used to improve
static pointer analysis for JavaScript. Static analysis of JavaScript
is very challenging [18, 27, 30], due to pervasive use of reflective
constructs in JavaScript programs and the absence of of static types.
Determinacy facts can be used to rewrite uses of reflection into
more verbose code that is easier to analyze, as we illustrate below.



1 function Rectangle(w, h) {
2 this.width = w;
3 this.height = h;
4 }
5
6 Rectangle.prototype.toString = function() {
7 return "["+this.width+"x"+this.height+"]";
8 };
9

10 String.prototype.cap = function() {
11 return this[0].toUpperCase()+this.substr(1);
12 };
13
14 function defAccessors(prop) {
15 Rectangle.prototype["get" + prop.cap()] =
16 function() { return this[prop]; };
17
18 Rectangle.prototype["set" + prop.cap()] =
19 function(v) { this[prop] = v; };
20 }
21
22 var props = ["width", "height"];
23 for (var i=0; i < props.length; i++)
24 defAccessors(props[i]);
25
26 var r = new Rectangle(20, 30);
27 r.setWidth(r.getWidth()+20);
28 alert(r.toString()); // [40x30]

Figure 3. Example program illustrating the use of determinacy
facts for improving a static pointer analysis

Example. Consider the example program in Figure 3, which is
loosely modeled after code seen in jQuery and other commonly-
used JavaScript frameworks. The program defines a Rectangle
constructor function on lines 1–4, which initializes properties
width and height to the values passed in parameters w and h, re-
spectively. A toString() method is defined on the Rectangle.
prototype object (lines 6–8), thereby making it available on all
objects created by Rectangle. Similarly, a utility method cap for
performing string capitalization is defined on String.prototype
(line 10), which means that it can be invoked on any string object.

We now use a standard trick employing dynamic property ac-
cesses to concisely define getter and setter methods for the width
and height properties. We iterate over the array ["width",
"height"] using the for loop on lines 23–24, invoking the
defAccessors function twice, first with prop set to "width",
then to "height". Function defAccessors (lines 14–20) defines
a getter function (line 15–16) and a setter function (line 18–19),
and stores them into Rectangle.prototype. The names of these
accessor methods are computed dynamically, capitalizing the prop-
erty name using cap and prepending "get" and "set", respec-
tively. Thus, the getter methods end up in properties getWidth and
getHeight, and similar for the setters. Lines 26–28 illustrate how
these getter and setter methods can be used: Executing these lines
will bring up an alert box that reads [40x30].

Applying static pointer analysis. Now let us consider how a
standard static pointer analysis algorithm such as 0-CFA [29]
would analyze this program. Since such algorithms typically
do not track string values, they would conservatively treat the
writes on lines 15 and 18 as possibly writing to any property of
Rectangle.prototype. From this, they would conclude that the
call to getWidth on line 27 could invoke either of these functions,
and that the call to toString on line 28 could invoke the getter,
the setter, or the actual toStringmethod, which is very imprecise.
Even a recent, more advanced analysis that reasons about correlated

dynamic property accesses [30] is unable to determine the result of
applying cap to the property name, yielding the same result.

Static string analyses [8] can reason abstractly about string op-
erations, but are expensive and rely on a call graph. If, as in this ex-
ample, such reasoning is required to construct a precise call graph
to begin with, an iterative scheme interleaving call graph construc-
tion and string analysis would have to be devised. By contrast, a
context-sensitive static analysis can be adapted to leverage deter-
minacy facts in a fairly straightforward manner, as we now show.

Using determinacy facts. Our determinacy analysis produces
facts that can help the static pointer analysis handle complex string
operations. For example:

• The analysis shows that the prop argument to defAccessors
is determinate in the first iteration of the loop at lines 23–24:

J prop K 240→15 = "width"

Here, 240 denotes the first time execution reaches line 24.
• Within the defAccessors call, the result of the prop.cap()

call is also determinate:

J this[0].toUpperCase()+... K 240→15→11 = "Width"

which makes the result of the string concatenation determinate:

J "get" + prop.cap() K 240→15 = "getWidth"

Similar facts hold for the second loop iteration, and since
props.length is determinate at line 23, the determinacy ana-
lysis can also show that the loop executes at most two times. Given
these determinacy facts, the pointer analysis can use loop unrolling
and context sensitivity to precisely handle the property writes at
lines 15 and 18. First, the analysis unrolls the loop at lines 23–24
twice, using the iteration bound given by the determinacy analysis.
Then, via context sensitivity, each call site of defAccessors in the
unrolled loop is treated as invoking a function specialized by the
corresponding determinacy facts. For example, the first call site,
corresponding to the loop iteration with props[i] == "width",
invokes the following specialized function:

function defAccessors(prop) {
Rectangle.prototype.getWidth =
function() { return this.width; };

Rectangle.prototype.setWidth =
function(v) { this.width = v; };

}

For this specialized code, the pointer analysis can easily prove that
only the getter function is written into property getWidth, and that
only the setter function is written into property setWidth, thus
enabling precise resolution of the function call at line 27.

Besides replacing dynamic property accesses with static ones,
determinacy facts can also be used to eliminate conditionals where
the condition is determinate, helping to analyze cases like that
shown in Figure 1. In Section 5.1, we shall show how our imple-
mentation of these techniques achieved large speedups when ana-
lyzing certain versions of jQuery.

2.3 Eliminating eval
JavaScript’s eval function transforms text into executable code
at run time. Although strongly discouraged by leading practition-
ers [11], it is pervasively used in practice [26], leaving static anal-
yses with a stark choice: if eval is not handled, soundness is com-
promised; if it is handled conservatively, analysis results will be-
come extremely imprecise, and thus useless for most applications.

Recent research suggests that many uses of eval could, in fact,
be replaced by equivalent eval-free code [17, 23]. For example,



1 ivymap = window.ivymap || {};
2 function showIvyViaJs(locationId) {
3 var _f = undefined;
4 var _fconv = "ivymap[\’"+locationId+"\’]";
5 try {
6 _f = eval(_fconv);
7 if (_f!=undefined) {
8 _f();
9 }

10 } catch(e) {
11 }
12 }
13
14 showIvyViaJs(’pc.sy.banner.tcck.’);
15 showIvyViaJs(’pc.sy.banner.duilian.’);

Figure 4. Program (taken from [17]) for which determinacy ana-
lysis can show that all calls to eval have a determinate argument.

consider the code in Figure 4, taken from Jensen et al. [17], who
extracted it from a real-world website.

Clearly, the strings passed to eval are determinate in both
invocations of showIvyViaJS:

J _fconv K 14→6 = "ivymap[’pc.sy.banner.tcck.’]"

J _fconv K 15→6 = "ivymap[’pc.sy.banner.duilian.’]"

Using the same approach as in the previous subsection, a static
analysis can specialize each call to showIvyViaJS, replacing calls
to eval with the code obtained by (statically) parsing the string
values found by the determinacy analysis, thus eliminating the calls
to eval altogether. Section 5.2 presents encouraging results from
an initial experiment using this approach, which showed that eval
elimination via determinacy facts can complement existing purely-
static approaches like that of TAJS [17].

3. Formalization
In this section, we formalize the dynamic determinacy analysis
from Section 2 on a simple imperative language µJS with records,
dynamic property accesses and first-order functions. µJS contains
most of the features that make determinacy analysis for JavaScript
challenging. We exclude prototypes, constructors and other fea-
tures usually modeled in JavaScript-based core calculi [15], since
they are orthogonal to determinacy analysis. For simplicity, we also
exclude unstructured control flow.

We start out by formalizing the syntax and (concrete) semantics
of µJS. Then, the analysis is formalized as an instrumented seman-
tics over values with determinacy annotations ·! and ·?. Finally, we
show soundness of the analysis: if a variable has a value v! at some
program point p in some instrumented execution, it has value v at
the same point in every concrete execution.

3.1 Syntax and semantics of µJS
Figure 5 presents the syntax of µJS, which is mostly a subset of
that of JavaScript, except that we abbreviate the keyword function
as fun. Instead of the complex statement and expression syntax of
JavaScript, µJS only allows simple statements reminiscent of three
address code. In particular, conditionals have only a single branch
and their conditional expression must be a variable.

Values in µJS are either primitive values, closures, or heap-
allocated records. Primitive values are taken from an unspecified
set PrimVal containing a special value undefined. We assume that
all primitive values are silently coerced to strings or Boolean val-
ues where necessary. When viewed as a Boolean value, addresses
and records evaluate to true. We also assume a set PrimOp of
binary operators on primitive values. Closures are represented as

l ∈ Literal ::= pv primitive value
| fun(x) { function value

var y; s; return z;
}

| {} empty record

s ∈ Stmt ::= x = l literal load
| x = y variable copy
| x = y[z] property load
| x[y] = z property store
| x = y � z primitive operator
| x = f(y) function call
| if(x){s} conditional
| while(x){s} loop

x, y, z, f ∈ Name; � ∈ PrimOp; pv ∈ PrimVal; a ∈ Address
v ∈ Value ::= pv | a | (fun(x) {b}, ρ)
r ∈ Rec ::= {x : v}
ρ ∈ Env := Name⇀ Value
h ∈ Heap := Address⇀ Rec

Figure 5. Syntax and semantic domains of µJS; b abbreviates
function bodies

e ∈ Event ::= x = v variable write
| a[x] = v heap write
| if(v){t} conditional
| fun(v){t}ρ function call

t ∈ Trace := e

Figure 6. Concrete execution traces

a function value plus an environment, as usual. Record literals are
always empty, but property load and store statements can be used
to add more properties; we do not model property deletion. Note
that the name of the property accessed by these statements is itself
a variable, and hence can be computed at runtime, just as in Java-
Script. There is no designated prototype property, since µJS does
not model JavaScript’s prototype system. For convenience, we treat
records r as total functions from names to values: if r = {x : v},
then r(xi) = vi, and r(y) = undefined for y 6∈ x.

Our semantics for µJS is big-step. While a small-step seman-
tics would allow more direct reasoning about individual program
points, it makes it hard to match up control flow forks and joins,
which play a crucial role in computing determinacy information.
To be able to speak about intermediate states, we use a trace-
based semantics [22] with an evaluation judgement of the form
(h, ρ, s) ↓ (h′, ρ′, t): h and ρ are the initial heap and environment,
s is the statement to evaluate; h′ and ρ′ are the resulting heap and
environment, and t is a trace recording all assignments, condition-
als and function calls executed during evaluation of s.

Figure 6 gives the grammar of trace events and traces; the envi-
ronment ρ in a function call event denotes the closure environment
of the called function. Figure 8 lists the evaluation rules, which are
mostly standard, except that they each add an event to the trace. We
assume that the semantics of built-in primitive operators � is given
by a partial function J�K. If this function is undefined on the pro-
vided arguments, execution gets stuck, as is the case when access-
ing undefined local variables or trying to invoke a non-function. In
full JavaScript, these situations give rise to elaborate implicit con-
versions or exceptions, which we do not model.

Local variables have to be declared before use (hence the pre-
condition x ∈ dom(ρ) in most rules), and we do not model globals.



d ∈ D := {!, ?}
v̂ ∈ V̂alue ::= pvd | ad | (fun(x) {b}, ρ̂)d

r̂ ∈ R̂ec ::= {x : v̂} | {x : v̂, . . .}
ĥ ∈ Ĥeap := Address⇀ R̂ec

ρ̂ ∈ Ênv := Name⇀ V̂alue

ê ∈ Êvent ::= x = v̂ | ad[xd
′
] = v̂ | if(v̂){t̂}

| (fun(v̂){t̂})dρ̂
t̂ ∈ T̂race := ê

Figure 7. Instrumented semantic domains and traces

While local variables can be modified, their semantics is quite id-
iosyncratic: updates are only visible inside the updating function,
so updating a closure variable will not have the desired effect. A
more standard semantics can be achieved by modeling local vari-
ables that are accessed in a nested functions as immutable refer-
ences to records with a single property, and accessing that property
instead.

Given a trace t, we can reconstruct what effects the execution
that produced it had on the heap and the environment. Its variable
domain vd(t) is the set of all variables written during the execution;
it consists of all variables x such that t or one of its sub-traces
(excluding sub-traces inside function calls4) contains an event x =
v. The property domain pd(t) contains all address-property name
pairs 〈a, p〉 such that property p of the record at a was modified
during the execution, which is the case iff t or one of its sub-
traces (including sub-traces inside function calls) contains an event
a[p] = v. We also define the variable domain of a sequence of
statements, vd(s), to contain all variables x such that one of the
statements in s (without nested functions) is an assignment to x.

Clearly, if 〈h, ρ, s〉 ↓ 〈h′, ρ′, t〉, then ∀x 6∈ vd(t).ρ(x) =
ρ′(x), and similarly ∀(a, p) 6∈ pd(t).h(a)(p) = h′(a)(p).5

3.2 Instrumented semantics
We formalize determinacy analysis via an instrumented semantics
of µJS where variables and properties are bound to annotated val-
ues of the form v! and v?, representing determinate and indetermi-
nate values, respectively.

Instrumented values, records, heaps, environments and traces
are defined in Figure 7. An instrumented value of the form v!

represents the single concrete value v, whereas v? represents any
concrete value. For records, a closed record of the form {x : v̂}
represents all records that have precisely the properties x with
values represented by the corresponding instrumented values v̂; an
open record of the form {x : v̂, . . .}, on the other hand, represents
all records that have at least the properties x (again with the same
restrictions on their values), but may have more.

Like their concrete counterparts, we also interpret instrumented
records as functions; looking up a non-existent property on a closed
record yields undefined!, and on an open record undefined?.

For an instrumented value v̂, we define v̂? as v̂ with all ·!
annotations replaced by ·?. For records r̂, r̂? additionally turns r̂
into an open record. For heaps, we let ĥ? be the heap resulting
from ĥ by replacing every record r̂ with r̂?, which corresponds to a
heap flush. We also define v̂! := v̂, r̂! := r̂, ĥ! := ĥ i.e., the extant
determinacy annotations are retained.

4 Function calls need not be considered, since callees cannot update their
caller’s local variables.
5 These equalities should be considered to hold if either both sides are
undefined, or both are defined and equal.

x ∈ dom(ρ)
(LDLIT)

〈h, ρ, x = pv〉 ↓ 〈h, ρ[x 7→ pv ], x = pv〉

F ≡ fun(y) { var y; s; return z; } x ∈ dom(ρ)
(LDCLOS)

〈h, ρ, x = F 〉 ↓ 〈h, ρ[x 7→ (F, ρ)], x = (F, ρ)〉

x ∈ dom(ρ) a 6∈ dom(ρ)
(LDREC)

〈h, ρ, x = {}〉 ↓ 〈h[a 7→ {}], ρ[x 7→ a], x = a〉

x ∈ dom(ρ) ρ(y) = v
(ASSIGN)

〈h, ρ, x = y〉 ↓ 〈h, ρ[x 7→ v], x = v〉

x ∈ dom(ρ) ρ(y) = a ρ(z) = z′ h(a) = r r(z′) = v
(LD)

〈h, ρ, x = y[z]〉 ↓ 〈h, ρ[x 7→ v], x = v〉

ρ(x) = a ρ(y) = y′ h(a) = r ρ(z) = v
(STO)

〈h, ρ, x[y] = z〉 ↓ 〈h[a 7→ r[y′ 7→ v]], ρ, a[y′] = v〉

x ∈ dom(ρ) ρ(y) = pv1 ρ(z) = pv2 pv1J�Kpv2 = pv3(PRIMOP)
〈h, ρ, x = y � z〉 ↓ 〈h, ρ[x 7→ pv3], x = pv3〉

x ∈ dom(ρ) ρ(f) = (fun(z) {var x′; s; return y′; }, ρ′) ρ(y) = v

〈h, ρ′[z 7→ v, x′ 7→ undefined], s〉 ↓〈h′, ρ′′, t〉 ρ′′(y′) = v′
(INV)

〈h, ρ, x = f(y)〉 ↓ 〈h′, ρ[x 7→ v′], (fun(v){t}ρ′ ;x = v′)〉

ρ(x) = v v = true 〈h, ρ, s〉 ↓〈h′, ρ′, t〉
(IF1)

〈h, ρ, if(x){s}〉 ↓ 〈h′, ρ′, if(v){t}〉

ρ(x) = v v = false
(IF2)

〈h, ρ, if(x){s}〉 ↓ 〈h, ρ, if(v){}〉

〈h, ρ, if(x){s; while(x){s}}〉 ↓ 〈h′, ρ′, t〉
(WHILE)

〈h, ρ,while(x){s}〉 ↓ 〈h′, ρ′, t〉

〈hi, ρi, si〉 ↓ 〈hi+1, ρi+1, ei〉
(SEQ)

〈h0, ρ0, s〉 ↓〈hn, ρn, e〉

Figure 8. Concrete semantics of µJS

An instrumented trace looks like a concrete trace, except that
it contains instrumented values instead of concrete ones. For a
function call event (fun(v̂){t̂})dρ̂, for instance, v̂ is the argument
value, ρ̂ is the closure environment of the callee, and t̂ is the trace
resulting from the call. The annotation d indicates whether the
callee is determinate or not. The variable and property domains
vd(t̂) and pd(t̂) are defined exactly as for concrete traces, simply
disregarding determinacy annotations.

As described in Section 2, after executing a branch guarded
by an indeterminate but true condition, the analysis marks every
variable written in the branch as indeterminate. Similarly, after
counterfactually executing a branch, every written variable is reset
to its previous value and marked indeterminate.

To model this in our semantics, we use the notation ρ̂′[V := ρ̂d],
where ρ̂, ρ̂′ are instrumented environments, V is a set of variable
names, and d is a determinacy flag. Roughly, this means that ρ̂′ is
updated so that every variable x ∈ V is reset to the value it had in
ρ̂, and marked as indeterminate if d =?. More precisely, we define

ρ̂′[V := ρ̂d](x) :=

{
ρ̂(x)d if x ∈ dom(ρ̂) ∩ V
ρ̂′(x) otherwise



Thus, for a trace t̂, ρ̂′[vd(t̂) := ρ̂′?] marks every variable x
written by ĥ as indeterminate, and ρ̂′[vd(t̂) := ρ̂?] additionally
resets its value to ρ̂(x).

For records r̂, r̂′, we define r̂′[V := r̂d] as for environments.
For heaps ĥ, ĥ′, a set A ⊆ Address × Name of address-property
name pairs and a determinacy flag d, we define

ĥ′[A := ĥd](a) :=


ĥ′(a)[Aa := ĥ(a)d] if a ∈ dom(ĥ′) ∩

dom(ĥ)

ĥ′(a) otherwise

where Aa := {p | (a, p) ∈ A}.
Given these technical preliminaries, we can now define the eval-

uation judgement 〈ĥ, ρ̂, s〉 ↓̂
n
〈ĥ′, ρ̂′, t̂〉 of the instrumented seman-

tics as shown in Figure 9. The index n is used to bound the nesting
depth of counter-factual executions, to be discussed shortly.

We omit ( ̂LDCLOS), (L̂DREC), (ÂSSIGN), (ŴHILE) and (ŜEQ),
which are straightforward adaptations of their concrete counter-
parts. In ( ̂PRIMOP), the determinacy flags d1 and d2 of both
operands are applied to the result, so it will be indeterminate if
at least one of the operands is. Similarly in (L̂D), the result of a
property load is only determinate if both the address and the prop-
erty name are. Rule (ŜTO) applies the determinacy flag d of the
address to be accessed to the whole heap: if d =?, the heap is
flushed. Similarly, the flag d′ of the property name is applied to
the record being accessed: if d′ =?, all properties are made inde-
terminate and it becomes an open record, since any of the existing
properties may be written, or a new one added.

The most interesting rules are the ones concerning condition-
als. (ÎF1) handles the case where the condition is (determinate or
indeterminate) true by simply executing the branch, and afterwards
marking all written properties and variables as indeterminate if the
condition is indeterminate. ( ̂IF2-DET) applies when the condition
is determinate false; in this case, the conditional is a no-op.

(ĈNTR) initiates counterfactual execution if the condition is in-
determinate false, executing the branch while increasing the coun-
terfactuality level to n+1. After the branch has finished executing,
(ĈNTR) reverts to the heap and environment before the counterfac-
tual (i.e., assignments performed by the counterfactually executed
branch are not visible), and marks any variable or property possibly
written by counterfactual code as indeterminate.

In general, counterfactually executing branches may lead to
non-termination, so we introduce a cut-off: when the number of
nested counterfactual executions is about to exceed some fixed
number k, the pre-condition n < k prevents the (ĈNTR) from
applying; instead, rule ( ̂CNTRABORT) shortcuts evaluation and
conservatively flushes the heap and marks any variable that may
possible be assigned anywhere in the branch indeterminate.

3.3 Soundness
To show soundness, we will now prove that the instrumented trace
generated by an execution under the instrumented semantics cor-
rectly predicts any concrete trace produced by an execution under
the normal semantics: where the instrumented trace has v!, a con-
crete trace must have v; where the instrumented trace has v?, we
cannot predict the corresponding value in the concrete trace.

Obviously, however, this can only hold if instrumented and con-
crete execution start in compatible states. To formalize this notion,
we inductively define a modeling relation · |=µ · relating instru-
mented values, environments, records, heaps and traces to their
concrete counterparts (Figure 10). The mapping µ : Address →
Address maps addresses of the concrete execution to correspond-
ing addresses of the instrumented execution, since the choice of a

x ∈ dom(ρ̂)
(L̂DLIT)

〈ĥ, ρ̂, x = pv〉 ↓̂
n
〈ĥ, ρ̂[x 7→ pv !], x = pv !〉

x ∈ dom(ρ̂) ρ̂(y) = ad ρ̂(z) = z′
d′

ĥ(a) = r̂ r̂(z′) = v̂
(L̂D)

〈ĥ, ρ̂, x = y[z]〉 ↓̂
n
〈ĥ, ρ̂[x 7→ (v̂d)d

′
], x = (v̂d)d

′
〉

ρ̂(x) = ad ρ̂(y) = y′
d′

ĥ(a) = r̂ ρ̂(z) = v̂
(ŜTO)

〈ĥ, ρ̂, x[y] = z〉 ↓̂
n
〈(ĥ[a 7→ (r̂[y′ 7→ v̂])d

′
])d, ρ̂, ad[y′d

′
] = v̂〉

x ∈ dom(ρ̂) ρ̂(y) = pvd11 ρ̂(z) = pvd22 pv1J�Kpv2 = pv3
( ̂PRIMOP)

〈ĥ, ρ̂, x = y � z〉 ↓ 〈ĥ, ρ̂[x 7→ (pvd13 )d2 ], x = (pvd13 )d2〉

x ∈ dom(ρ̂) ρ̂(f) = (fun(z) {var x′; s; return z′; }, ρ̂′)d ρ̂(y) = v̂

〈ĥ, ρ̂′[z 7→ v̂, x′ 7→ undefined!], s〉 ↓̂
n
〈ĥ′, ρ̂′′, t̂〉 ρ̂′′(z′) = v̂′

(ÎNV)
〈ĥ, ρ̂, x = f(y)〉 ↓̂

n
〈ĥ′d, ρ̂[x 7→ v̂′d], (fun(v̂) {t̂}dρ̂′ ;x = v̂′d)〉

ρ̂(x) = vd v = true 〈ĥ, ρ̂, s〉 ↓̂
n
〈ĥ′, ρ̂′, t̂〉

(ÎF1)
〈ĥ, ρ̂, if(x){s}〉 ↓̂

n
〈ĥ′[pd(t̂) := ĥ′d], ρ̂′[vd(t̂) := ρ̂′d], if(vd){t̂}〉

ρ̂(x) = v! v = false
( ̂IF2-DET)

〈ĥ, ρ̂, if(x){s}〉 ↓ 〈ĥ, ρ̂, if(v!){}〉

ρ̂(x) = v? v = false n < k 〈ĥ, ρ̂, s〉 ↓̂
n+1
〈ĥ′, ρ̂′, t̂〉

(ĈNTR)
〈ĥ, ρ̂, if(x){s}〉 ↓̂

n
〈ĥ′[pd(t̂) := ĥ?], ρ̂′[vd(t̂) := ρ̂?], if(v?){t̂}〉

ρ̂(x) = v? v = false n ≥ k
( ̂CNTRABORT)

〈ĥ, ρ̂, if(x){s}〉 ↓̂
n
〈ĥ?, ρ̂[vd(s) := ρ̂?], if(v?){}〉

Figure 9. Instrumented semantics for determinacy analysis.

v? |=µ v′ pv ! |=µ pv µ(a)! |=µ a
F ≡ fun(y) {b} ρ̂ |=µ ρ

(F, ρ̂)! |=µ (F, ρ)

∀x ∈ dom(ρ).ρ̂(x) |=µ ρ(x)
ρ̂ |=µ ρ

∀a ∈ dom(h).ĥ(µ(a)) |=µ h(a)
ĥ |=µ h

∀x.r̂(x) |=µ r(x)
r̂ |=µ r

v̂ |=µ v
x = v̂ |=µ x = v

ad |=µ a′ pd
′
|=µ p′ v̂ |=µ v

ad[pd
′
] = v̂ |=µ a′[p′] = v

v̂ |=µ v t̂ |=µ t
if(v̂){t̂} |=µ if(v){t}

v′ = false
if(v?){t̂} |=µ if(v′){}

v̂ |=µ v
(fun(v̂){t̂})?ρ̂ |=µ fun(v){t}ρ

t̂ |=µ t v̂ |=µ v ρ̂ |=µ ρ
(fun(v̂){t̂})!ρ̂ |=µ fun(v){t}

Figure 10. Modeling relations between instrumented values, envi-
ronments, records, heaps, traces and their concrete counterparts

in (LDREC) is not constrained enough to require both executions to
choose precisely the same addresses.

The rules for values, environments, records and heaps are fairly
straightforward. For traces, note that the instrumented and concrete
traces of the branches of a conditional need not match if the con-
dition variable is indeterminate false. Similarly, for a function call
event we do not require the traces of the called function to corre-
spond if the called function is not determinate.

We can now state the soundness of the instrumented semantics:



Theorem 1. If 〈ĥ, ρ̂, s〉 ↓̂
n
〈ĥ′, ρ̂′, t̂〉 and 〈h, ρ, s〉 ↓ 〈h′, ρ′, t〉

where ĥ |=µ h and ρ̂ |=µ ρ for some µ that is injective on dom(h),
then ĥ′ |=µ′ h′, ρ̂′ |=µ′ ρ′, and t̂ |=µ′ t for some µ′ that is injective
on dom(h′), and agrees with µ and dom(h).

A proof of this theorem and its mechanization in Coq are avail-
able online at http://github.com/xiemaisi/determinacy.

To relate this result to our intuitive description of a determinacy
analysis, note that every event in a (concrete or instrumented)
trace corresponds to a statement in the program being executed
under a certain call stack. The soundness result essentially shows
that the instrumented heap and environment at some position p
in an instrumented trace correctly model all concrete heaps and
environments that may be encountered by a concrete execution at
p, provided its initial heap and environment are correctly modeled
by the initial instrumented heap and environment.

4. Implementation
We have implemented a prototype dynamic determinacy analysis
for JavaScript, which instruments a program to track determinacy
flags as in the instrumented semantics of the previous section.
Instrumented programs can run in a browser or atop Node.js, using
ZombieJS for DOM emulation.6

For instrumentation, the program is first translated into a form
similar to µJS with a small number of additional statement forms.
Almost all of the ECMAScript 5.1 standard is handled, except
implicit conversions using toString and valueOf; getters and
setters are partially supported. To handle unstructured control flow,
the instrumented program adjusts determinacy information at every
control flow merge point, not just after ifs.

To implement heap flushes, we keep a global epoch counter.
Every property has a recency annotation, and is only considered
determinate if this annotation equals the current epoch. Thus, in-
crementing the epoch counter flushes the heap.

Native functions from the standard library cannot be instru-
mented. For some of them, we provide hand-written models that
conservatively approximate their effects on determinacy informa-
tion; e.g., most string handling functions do not affect the determi-
nacy of heap objects. Calling a native function without a model,
however, yields an indeterminate result and causes a heap flush.

For DOM functions, we assume that they can only modify DOM
data structures, so calling them does not affect the determinacy of
other heap locations. Return values of DOM functions, however,
are always considered indeterminate, as is any value that is read
from a DOM data structure. This is very conservative, and could
be improved by providing a more detailed model of the DOM.
Since DOM events can fire in any order, we perform a heap flush
immediately upon entering an event handler. In practice, this means
that few useful determinacy facts can be derived for them.

If counterfactual execution encounters a call to a native function
that is not known to be side effect-free, we immediately abort
the counterfactual execution and flush the heap. Exceptions during
counterfactual execution are handled similarly.

Finally, note that eval is easy to handle in a dynamic analysis:
calls to eval are instrumented to recursively instrument any code
loaded at runtime, flushing the heap if the code is not determinate.

Currently, our instrumentation is not optimized, so instrumented
code is expected to run slower. In typical applications, however, the
main focus of the analysis is on the program’s initialization phase,
which for most JavaScript programs tends to be fairly short.

6 See http://nodejs.org and http://zombie.labnotes.org.

jQuery Version Baseline Spec Spec+DetDOM
1.0 7 3 (82) 3 (2)
1.1 7 7 (107) 3 (4)
1.2 3 3 (>1000) 3 (0)
1.3 7 7 (>1000) 7 (>1000)

Table 1. Comparison of pointer analysis scalability on several
jQuery versions; the number of heap flushes is given in parentheses.

5. Case Studies
This section reports on two case studies combining determinacy
analysis with static analysis to improve pointer analysis scalability
and to eliminate calls to eval as suggested in Section 2.

5.1 Improving pointer analysis
We enhanced the points-to analysis of WALA [30] to exploit deter-
minacy facts computed by our dynamic analysis. This is done by
creating clones of functions based on the full call stacks present in
determinacy facts to enable specialization, extending the baseline
context sensitivity policy used in [30], as discussed in Section 2.
We perform three kinds of specializations: (i) removing branches
guarded by determinately false conditions; (ii) making dynamic
property accesses with determinate property names static; (iii) un-
rolling loops with a determinate maximum number of iterations if
this enables other specializations.

We compared our specializing analysis (Spec) to the analysis of
[30] (Baseline) on several versions of jQuery, as shown in Table 1.
For each version, we analyzed an HTML file that includes the
jQuery library itself with no additional client code; this is not trivial
due to jQuery’s complex initialization code [30]. In all cases, the
static analysis either completed in less than 5 seconds, indicated by
3 in the table,7 or it did not complete within a 10-minute timeout,
indicated by 7. We also give the number of heap flushes performed
by the dynamic analysis in parentheses; note that we stop the
dynamic analysis after 1000 heap flushes, since at this point it is
unlikely to detect new determinacy facts.

Since the DOM model used by the dynamic analysis is very
limited, we also ran the dynamic analysis with the additional (un-
sound) assumption that all properties of DOM objects are deter-
minate, and that operations on the DOM return determinate val-
ues (column Spec+DetDOM). This avoids many heap flushes and
yields more determinacy facts, effectively specializing the code to
one particular browser and one HTML document. While unsound
in general, this configuration is an indicator of possible improve-
ments to be gained from a richer DOM model.

The results show that determinacy facts can dramatically en-
hance the scalability of a static pointer analysis: while Baseline
fails to analyze jQuery 1.0 in 10 minutes, Spec analyzes it in a
matter of seconds. All specializations listed above were necessary
to make this version analyzable; in particular, one loop had to be
unrolled 21 times to enable specialization of two critical property
writes (similar in style to Figure 3) to make the pointer analysis
terminate. The additional context sensitivity needed to make use
of determinacy facts is moderate: up to four levels of calling con-
text are required, but only for call sites where a determinacy fact
is available; this additional effort pays for itself, since the special-
ized functions are much easier to analyze than their unspecialized
counterparts.

For jQuery 1.1, the determinacy facts were insufficient to make
our specializing analysis terminate. Further investigation suggested

7 As measured on a Lenovo ThinkPad W520 with a 2.20 GHz Intel Core
i7-2720QM processor and 8GB RAM running Linux 3.2.0-32, using the
OpenJDK 64-Bit Server VM, version 1.7.0_09, with a 5GB maximum heap.



that our imprecise DOM model was to blame, and indeed assuming
a determinate DOM makes this version analyzable as well. Again,
adding determinacy facts required no more than four levels of
context sensitivity and made the analysis dramatically faster.

Interestingly, jQuery 1.2 is easy to analyze for all analysis con-
figurations, even the baseline. This is due to a change that made
complex initialization code execute lazily; without client code, this
code is dead and need not be analyzed.

jQuery 1.3 (and later versions) are not yet analyzable, even us-
ing a determinate DOM. We suspect this is due to more complex
event handlers being installed during initialization. Some handlers
are not exercised by the dynamic analysis, but even for the ones
that are we need to perform a heap flush on entry (see Section 4).
Nonetheless, it is clear from our experiments that determinacy ana-
lysis has the potential for significantly improving the scalability of
pointer analysis of complex JavaScript frameworks such as jQuery.

5.2 Eliminating calls to eval
We further enhanced our analysis to also specialize calls to eval
where eval is the only call target and its argument string is deter-
minate. We ran this analysis on the benchmark suite used by Jensen
et al. [17]. As they note, there are some difficulties in eliminating
uses of eval even with constant arguments. Many of these issues
do not arise in our case, since we perform specialization on an in-
termediate representation with fully resolved name bindings.

Jensen et al. report that their unevalizer tool could eliminate all
uses of eval in 19 of 28 benchmarks. Our dynamic analysis needs
to be able to run the program, so we had to disregard 3 benchmarks
that are missing required code, and one that cannot be run in
ZombieJS. On 14 out of the remaining 24 programs, our analysis
could specialize all uses of eval. Interestingly, this includes six
programs that unevalizer cannot handle, including the code shown
in Figure 4. In this program, the code to be evaluated results from
a string concatenation, but their analysis requires the concatenation
to be a syntactic part of the eval argument expression, which is
not the case here. Other cases involve for-in loops: if the set of
properties to iterate over is determinate, our analysis assumes that
the iteration order is also determinate. This is true for all major
JavaScript implementations, but unevalizer does not assume this.

In the remaining 10 programs, our analysis fails to specialize
away at least one use of eval. This is either because the evaluated
string is genuinely indeterminate (1 case); the dynamic analysis
does not cover a use that WALA considers reachable (4 cases);
or incomplete DOM modeling causes heap flushes, making the
callee of a use of eval indeterminate (1 case). In the remaining
4 cases, eval occurs inside a loop for which the dynamic analysis
cannot derive a determinate upper bound, and which hence cannot
be specialized. In only one of these cases is the loop bound truly
indeterminate; in the other cases, the imprecision is again caused
by heap flushes due to missing DOM modeling.

We also ran our analysis with the potentially unsound determi-
nate DOM assumption described in Section 5.1. This enabled better
inference of determinate loop bounds and detection of unreachable
code, allowing it to handle 20 benchmarks.

In conclusion, we found that determinacy analysis can be an
effective tool for eliminating calls to eval.

5.3 Discussion
The case studies above show that determinacy facts can be useful
for client analyses like flow-insensitive static analyses. In princi-
ple, the additional context sensitivity needed to take advantage of
the facts could be very expensive, but it seems that, in practice,
scalability problems are often due to a lack of determinacy facts.

A more sophisticated DOM model could help finding more de-
terminacy facts, as could a more precise treatment of event han-

dlers. However, soundly reasoning about all possible interleavings
of event handlers is a challenging task that we leave to future work.

6. Related Work
Constant Propagation Like determinacy analysis, constant prop-
agation aims to discover expressions that have the same value in
every execution. Unlike in determinacy analysis, this value is usu-
ally required to be independent of calling context (though context-
qualified constants have also been considered [24]) and primitive
(i.e., not an object or array). Constant propagation typically relies
on a sound static call graph, which is hard to obtain in dynamic lan-
guages like JavaScript. Our approach does not require a static call
graph, but can only produce fully qualified determinacy facts.

Partial Evaluation Partial evaluation [19] seeks to identify and
evaluate program parts that only depend on designated static inputs,
yielding a residual program that can be run on the remaining
inputs. Online partial evaluation generates the residual program
in one pass, whereas offline evaluation relies on static analysis to
specialize the program. Usually, it first computes a call graph, and
then performs a binding time analysis to determine expressions
whose value only depends on static inputs. A monovariant binding
time analysis assigns a single classification to every expression,
whereas a polyvariant analysis [10] takes contexts into account.

Our determinacy analysis can be viewed as a polyvariant bind-
ing time analysis where static program inputs are considered de-
terminate. Typical binding time analyses are completely static and
hence do not need to know the concrete values of any inputs. On-
line partial evaluators, on the other hand, operate on given concrete
values for the static inputs. By contrast, our analysis is completely
dynamic, and hence requires concrete values for all inputs.

The main advantage of our approach for JavaScript is that it
does not rely on a static analysis. Unlike an online partial evaluator,
we do not need heuristics for ensuring termination: our analysis
can be run as long as desired and aborted at any point without
endangering the soundness of the results.

Symbolic Execution Our counterfactual execution can be viewed
as a very limited form of symbolic execution [20]. Unlike sym-
bolic execution, our analysis performs a merge at control-flow
join points, rather than maintaining two “forked” executions. This
trades precision for performance, since we cannot reason about all
possible values of indeterminate expressions.

Information Flow Analysis Our determinacy analysis is similar
to a dynamic information flow analysis [3, 32] with indeterminate
inputs corresponding to high-security inputs. Since we want to in-
fer determinacy facts even under indeterminate conditionals, we do
not mark constants under such conditionals as indeterminate imme-
diately (as an information flow analysis would), but only after the
branch has finished executing. Counterfactual execution is similar
to faceted execution [4], but rather than creating faceted values at
control-flow merge points, we mark the values as indeterminate.

Self-Adjusting Computation The goal of self-adjusting compu-
tation [1] (a generalization of incremental computation [25]) is to
incrementally update the result of a computation given changes to
some of its inputs. This is achieved using a dynamic dependence
graph tracking computations that depend on changeable inputs.
Earlier systems for self-adjusting computation require programs to
follow a particular programming style, whereas our analysis works
on arbitrary programs. More recent systems [6, 7] automatically
transform appropriately annotated programs into the required form,
using an inference algorithm based on static information flow. Such
a system could be used for static determinacy analysis of typed lan-
guages. Conversely, our analysis (which is similar to dynamic in-
formation flow) may itself be useful for self-adjusting computation.



Trace-Based Abstract Interpretation The instrumented traces in
our formalization are similar to abstract derivation trees used in
trace-based abstract interpretation [28] in that they describe a class
of concrete executions. However, our traces are obtained by dy-
namic analysis, not static abstract interpretation. Our semantics
does not yet cover infinite derivations and infinite traces.

Combinations of Static and Dynamic Analysis Several re-
searchers have proposed using information gathered by a dynamic
analysis to specialize uses of dynamic language constructs. Furr et
al. [13] present a type inferencer for Ruby that uses information
obtained during a profile run to replace dynamic features with stat-
ically analyzable alternatives. While their approach is technically
similar to ours, their dynamic analysis is not sound, so a client has
to account for cases where later runs do not match the profile. Bod-
den et al. [5] use a similar approach to specialize reflective Java
programs, also without soundness guarantees.

Kneuss et al. [21] describe an (unsound) analysis for finding
type errors in PHP that uses a flow-sensitive static analysis starting
from a program state recorded by a dynamic analysis.

Dufour et al. [12] perform static analysis for Java based on a
dynamic call graph, thus essentially analyzing only a single execu-
tion; this suffices for their application area of performance analysis.
Wei et al. [31] apply the same approach to JavaScript, additionally
using dynamic information to eliminate uses of eval. They argue
that this approach, while unsound, can be useful for applications
such as taint analysis where soundness is not always required.

Combining static and dynamic analysis the other way around,
an unsound static analysis can be supplemented with additional
runtime checks to catch cases not covered by the analysis. This
technique has been used to enforce information flow policies [9,
14], and to infer type information for JIT compilation [16].

7. Conclusions
We have presented a purely dynamic analysis for identifying deter-
minate expressions which always have the same value at a given
program point. While the analysis only observes one program ex-
ecution at a time, the facts it derives hold for all executions. We
have proved the analysis correct for a simple imperative language,
implemented it for full JavaScript, and shown how its results can be
used by a static analysis to deal with reflective language features.

While our results are promising, more work is needed for the
combined static-dynamic analysis to realize its full potential. To
generate more determinacy facts, we plan to explore automated test
generation [2] to improve coverage of the dynamic analysis. Run-
ning the determinacy analysis on different inputs yields more facts,
which are all sound and hence can be used together. To generate
better determinacy facts, we will work on inferring determinacy
facts with shallower calling contexts. We will investigate whether
these improvements are enough to make WALA scale to realistic
web applications, or whether more work is needed. Finally, we also
plan to apply determinacy analysis to other problems such as par-
tial evaluation and dead code detection, and explore potential uses
for counterfactual execution outside the setting of determinacy ana-
lysis, for instance in dynamic taint analysis.
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