
Dynamic Dependence in Term Rewriting Systems and its
Application to Program Slicing

John Field1 and Frank Tip2�

1 IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY, 10598, USA; jfield@watson.ibm.com

2 CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands; tip@cwi.nl

Abstract. Program slicing is a useful technique for debugging, testing, and an-
alyzing programs. A program slice consists of the parts of a program which
(potentially) affect the values computed at some point of interest. With rare ex-
ceptions, program slices have hitherto been computed and defined in ad-hoc and
language-specific ways. The principal contribution of this paper is to show that
general and semantically well-founded notions of slicing and dependence can be
derived in a simple, uniform way from term rewriting systems (TRSs). Our slicing
technique is applicable to any language whose semantics is specified in TRS form.
Moreover, we show that our method admits an efficient implementation.

1 Introduction

1.1 Overview

Program slicing is a useful technique for debugging, testing, and analyzing programs.
A program slice consists of the parts of a program which (potentially) affect the values
computed at some point of interest, referred to as the slicing criterion. As originally
defined by Weiser [19], a slicing criterion was the value of a variable at a particular
program point and a slice consisted of an “executable” subset of the program’s original
statements. Numerous variations on the notion of slice have since been proposed, as
well as many different techniques to compute them [16], but all reduce to determining
dependence relations among program components. Unfortunately, with rare exceptions,
the notion of “dependence” has been defined in an ad-hoc and language-specific manner,
resulting in algorithms for computing slices that are notoriously difficult to understand,
especially in the presence of pointers, procedures, and unstructured control flow. The
contributions of this paper are as follows:

We define a general notion of slice that applies to any unconditional term rewriting
system (TRS). Our definition uses a relation on contexts derived from the reduction rela-
tion on terms. This relation makes precise the dynamic dependence of function symbols
in terms in a reduction sequence on symbols in previous terms in that sequence. Our

� Supported in part by the European Union under ESPRIT project # 5399 (Compiler Generation
for Parallel Machines—COMPARE). Part of this work was done when the second author was at
IBM.



notion of dependence does not require labeled terms [2, 3, 13, 14], and is distinguished
by its ability to treat (normally problematic) TRSs with left-nonlinear rules.

Our notion of slicing subsumes most of those defined in previous work on program
slicing. The distinction traditionally made between “static” and “dynamic” slicing can be
modeled by reduction of open or closed terms, respectively. Partial instantiation of open
terms yields a useful intermediate notion of constrained slicing. Although Venkatesh
defines a similar notion abstractly [17], he does not indicate how to compute such slices.

We describe an algorithm by which slices can be efficiently computed in practice
by systematically transforming the original TRS to gather dependence information. The
overhead required to compute this information is linear in the size of the initial term.

In [9], we present proofs that our definitions yield minimal (with respect to the
reduction) and sound slices which have been omitted here because of space limitations.
In a forthcoming companion paper, we will show how our techniques can be applied to
standard programming languages, and compare these techniques to other algorithms in
the literature. Here, we will concentrate primarily on technical foundations.

1.2 Motivating Examples

Consider the program in Figure 1A below, written in a tiny imperative programming
language, P. The semantics of P are similar to those of many imperative programming
languages with pointers. A do construct is executed by evaluating its statement list, and
using the computed values to evaluate its in expression. Expressions of the form ‘x’ are
atoms, and play the dual role of basic values and addresses which may be assigned to
using ‘:�’. Addresses are explicitly dereferenced using ‘�’. The distinguished atoms t
and f represent boolean values.

program
do x :� a; w :� x; z :� b;

if w � � � x �
then y :� x �

else y :� b

in y � � x �

program
do x :� �; w :� x; z :� �;

if w � � � x �
then y :� x �
else �

in y � � x �

A: Original Program B: Minimal Slice

Fig. 1. Example P Program.

We evaluate P programs by applying the rewriting rules of Figure 2 to the term
consisting of the program’s syntax tree until no further rules are applicable. This reduc-
tion process produces a sequence of terms ending with a normal form that denotes the
result of the evaluation. The program in Figure 1A reduces to the normal form ‘result
t’. Figure 1B depicts the slice of the example program with respect to this normal form.
The symbol ‘�’ represents subterms of the program that do not affect its result.

It should be clear that a program slice is valuable for understanding which program
components depend critically on the slicing criterion—even in the small example of
Figure 1, this is not immediately obvious. Slicing information can be used to determine

2



what statements might have to be changed in order to correct an error or to alter the
value of the criterion. The techniques we describe also allow the programmer the option
of binding various inputs to values or leaving them undefined, allowing the effects of
various initial conditions to be precisely traced. This significant capability is unique to
our approach, and derives from its generality. In addition, by defining different (TRS-
based) semantics for the same language, different sorts of slices can be derived. For
instance, by using variants of the semantics in [7], we can compute both traditional
“static” and “dynamic” [16] slices for the same language.

[P1] X � X � t

[P2] a � b � f for all constants a, b such that a �� b

[P3] if t thenX else Y � X

[P4] if f thenX else Y � Y

[P5] doX in Y � Y

[P6] doX in Y � Z � �doX in Y � � �doX in Z�
[P7] doX;A :� E in �B �� � if �doX;A :� E inB� � �doX inA�

then �doX inE�
else doX in ��doA :� E inB� ��

[P8] doA :� E in �B �� � if �doA :� E inB� � A

thenE
else ��doA :� E inB� ��

[P9] doX; ifA thenB else C inE � if �doX inA�
then �doX;B inE�
else �doX;C inE�

[P10] do ifA thenB else C inE � ifA then �doB inE� else �do C inE�
[P11] doX in ifA thenB else C � if �doX inA� then �doX inB� else �doX in C�
[P12] program X � resultX

Fig. 2. Rewriting Semantics of P.

We believe that our notion of a slice should also prove useful as an adjunct to
theorem-proving systems, since it yields certain universally quantified equations from
derivations of equations on closed terms. Consider, for example, the simple TRS B in
Figure 3, which defines a few boolean identities (‘�’ denotes conjunction, ‘�’ exclusive-
or). Figure 4 shows how B-term ff � �tt � tt� can be reduced to ff. Observe that in
deriving the theorem ff � �tt � tt� � ff, we actually derive the more general theorem
P ��tt� tt� � ff, for arbitraryP . From the point of view of slicing, the slice with respect
to the normal form ff is the subcontext �� �tt� tt� of the initial term. To determine such
a slice, we must pay careful attention to the behavior of non-linear rules such as [B4]
and [P1], which many authors on reduction-theoretic properties of TRSs do not treat.
In the sequel, we show how minimal slices can be obtained by examining the manner
in which rules create new function symbols, and residuate, or “move around” old ones.

[B1] X � �Y � Z��� �X � Y �� �X � Z� [B3] X � ff�� ff
[B2] X � tt��X [B4] X �X �� ff

Fig. 3. Boolean TRS B.

3



Note that the reduction of Figure 4 is not the only one which yields the normal form
‘ff’. In this case, the same slice will be computed for any B-reduction starting with
T0. For orthogonal TRSs [12], it can be shown that slices are always independent of
the order in which rules are applied. However, in general, slices may depend on the
particular reduction used.

ff � �tt� tt� � T0
[B1]
�� �ff � tt�� �ff � tt� � T1

[B2]
�� ff� �ff � tt� � T2

[B2]
�� �ff� ff� � T3

[B4]
�� ff � T4

Fig. 4. A B-reduction; redexes are underlined.

1.3 Definition of a Slice

In general, we will define a slice as a certain context contained in the initial term of
some reduction. Intuitively, a context may be viewed as a connected (in the sense of a
tree) subset of function symbols taken from a term. For instance, if f�g�a� b�� c� � T
is a term, then one of several contexts contained in T is g��� b� � C. C contains an
omitted subterm, or hole1, denoted by ‘�’. This hole results from deleting the subterm
‘a’ of T . We denote the fact that C is a subcontext of T by C v T ; contexts as well as
terms may contain subcontexts.

In a slice, holes denote subterms that are irrelevant to the computation of the criterion.
Figure 1B depicts the minimal subcontext of the original program that yields the slicing
criterion via a “subreduction” of the original reduction. Informally, the holes in the
slice could be replaced by any P-expression and the same criterion could be produced
by a P-reduction.

Definition 1.1 below makes precise our notion of slice. We will formalize the notion
of “subreduction” of a sequence of reduction steps � using a set Project��, which is a
collection of triples of the form hC� ��� C �i. Informally, such a triple denotes the fact
that context C reduces to context C � by a reduction �� derived from rule applications
that also occur in �. We discuss Project�� further in Section 6 and provide a complete
definition in [9].

Definition 1.1 (Slice) Let � : T ��� T � be a reduction. Then a slice with respect to a
subcontextC � of T � is a subcontextC of T with the property that there exists a reduction
�� such that �� : C ���D� for some D� w C � and hC� ��� D�i � Project��. Slice C
is minimal if there is no slice with respect to criterion C� that contains fewer function
symbols.

Definition 1.1 is rendered pictorially in Figure 5.
The notion of TRS-based slice we define in the sequel can be used for any language

whose operational semantics is defined by a TRS. Many languages whose semantics
are traditionally defined via extended lambda-calculi or using structural operational
semantics also have corresponding rewriting semantics [1, 7]. In [8], it is shown how
many traditional program constructs may be modeled by an appropriate TRS.

1 Some authors require that contexts contain exactly one hole; we will not.

4



D�

�

��

C

C

T

T �

C�

C�

D�

Fig. 5. Depiction of the definition of a slice.

2 Basic Definitions

In this section, we make precise the notion of a context introduced informally in the
previous section. This notion will be the cornerstone of our formalization of slicing and
dependence. Instead of deriving contexts from the usual definition of a term, we view
terms as a special class of contexts. Contexts will be defined as connected fragments of
trees decorated with function symbols and variables. We begin with a few preliminary
definitions, most of which are standard.

2.1 Signatures, Paths, Context Domains

A signature � is a finite set of function symbols; associated with each function symbol
f � � is a natural number arity�f�, its number of arguments. We will use a denumerable
set of variables V such that � 	 V � 
. By convention, for each variable X � V ,
arity�X� � 0. Lower-case letters of the form f� g� h� � � � will denote function symbols
and upper-case letters of the form X�Y� Z� � � � will represent variables.

A path is a sequence of positive integers that designates a particular function symbol
or subtree by encoding a walk from the tree’s root. The empty path, ‘��’, designates
the root of a tree; path �i1 i2 � � � im� designates the ithm subtree (counted from left to
right) of the subtree indicated by path �i1 i2 � � � i�m�1��. The operation ‘�’ denotes path
concatenation. Path p is a prefix of path q if there exists an r such that q � p � r; this is
notated p � q. If r 
� �� then p � q. A context domain P is a set of paths designating a
connected fragment of a tree. This means that P must (i) possess a unique root, root�P ��
such that for all p � P , root�P � � p, and (ii) have no “gaps,” i.e., for all p� q� r such
that p � q � r and p� r � P it must be the case that q � P .

2.2 Contexts

We can now define a context as a total mapping from a context domain to function
symbols and variables:

5



Definition 2.1 (Context) Let � be a signature, V be a set of variables, and P be a
context domain. Let � be a total mapping from P to �� � V� and p be a path. Then a
pair hp� �i is a �V-context if and only if:

(i) For all q � P and s � � � V such that ��q� � s, q � i � P for some i implies that
i � arity�s�.

(ii) If P 
� 
, then p � root�P�.

Clause (i) of Definition 2.1 ensures that a child of a function symbol f must have an
ordinal number less than or equal to the arity of f . Clause (ii) ensures that the root of
the context is the same as the root of its underlying domain, except when the domain
is empty; in the latter case, we will say that the context is empty. The definition is
specifically designed to admit empty contexts, which will be important in the sequel for
describing the behavior of collapse rules, i.e., rewriting rules whose right hand sides are
single variables. Given context C � hp� �i, root�C� denotes the path p, and O�C� the
domain of �. The path corresponding to a “missing child” in a context will be referred
to as a hole occurrence; an empty context is also a hole. We will use Cont���V� to
denote the set of all �V-contexts.

For any context C and a path p, p � C denotes an isomorphic context rooted at
p obtained by rerooting C. This notation is used to represent contexts textually; e.g.,
p� f��� g�a���� represents a context rooted at p with two holes (‘�’), binary function
symbols f and g and a constant a. p� � represents an empty context rooted at p.

A context C is a term if: (i) C has no hole occurrences, and (ii) root�C� � ��.
Although the restriction of root�C� to be �� is not strictly necessary, it results in a defi-
nition that agrees most closely with that used by other authors. We will use Term��� to
denote the set of terms over signature�. LettersC�D� � � �will generally denote arbitrary
contexts, and S� T� � � � terms. Whenever convenient, we ignore the distinction between
a variable X and the term consisting of that variable. Some convenient operations on
contexts are introduced next in an informal way; formal definitions can be found in [9].

For a context C, and S a subset of � � V , OS�C� denotes the set of paths to
elements of S in C; Ofsg�C� is abbreviated by Os�C�. The set of variable occurrences
in a �V-contextC, i.e.,OV�C�, is denoted vars�C�, and vars1�C� is the set of variables
which occur exactly once in C.

Two contexts are compatible if all paths common to both of their domains are
mapped to the same symbol. If C and D are compatible,C is a subcontext of D, notated
C v D, if and only if one of the following holds: (i) C and D are nonempty and
O�C� � O�D�, (ii) C and D are empty andC � D, or (iii) C is empty,D is nonempty,
root�C� � q � i � O�D�, and q � O�D�. The third clause states that an empty context
C is a subcontext of a nonempty context D only if its root is “sandwiched” between
adjacent nodes in D. This property will greatly simplify a number of definitions in the
sequel. Contexts D and E are disjoint if and only if there exists no context C such that
C v D and C v E. If C and D are contexts such that root�D� � Ō�C�, C�D� denotes
the context C where the subcontext at root�D� is replaced by D.

A context forest is a set of mutually disjoint contexts. Forest S is a subforest of forest
T , notated S v T , if and only if for all contexts C � S, there exists a context D � T
such that C v D. Some convenient set-like operations on context forests can be defined

6



as follows: Let S and T be compatible context forests. Then their union, notated S tT ,
is the smallest forest U such that S v U and T v U ; their difference, notated S � T , is
the smallest forest U such that U v S and S v �T t U�. If P is a set of paths, C �P
is the forest containing subcontexts of C rooted at paths in P . The notion of context
replacement is easily generalized to a forest S. We will feel free to refer to a singleton
forest fCg by its element C when no confusion arises; e.g., “C tD”.

3 Term Rewriting and Related Relations

In this section, we formalize standard term rewriting-related notions using operations on
contexts; we then define the important related ideas of creation and residuation, which
are derived from the rewriting relation. We will first consider only left-linear TRSs; this
restriction will be removed in in Section 5.

3.1 Substitutions and Term Rewriting Systems

A substitution is a finite partial map from V to Cont���V�, where � is a signature
and V a set of variables. Applying a substitution � to a context C corresponds to
replacing each subcontext CX v C consisting solely of a variable X by the context
(root�CX� � ��X�), for all X on which � is defined. A term rewriting system R
over a signature � is any set of pairs hL�Ri such that L and R are terms over �, and
vars�R� � vars�L�; hL�Ri is called a rewrite rule and is commonly notated L � R.
For � � L� R � R we define L� � L and R� � R. A rewrite rule � is left-linear if
vars�L�� � vars1�L��. If R is a TRS, then we define an R-contractionA to be a triple
hp� �� �i, where p is a path, � is a rule of R, and � is a substitution.

We use PA, �A, LA, RA, and �A to denote p, �, L��A�, R��A�, and �, respec-
tively. Moreover, LA and RA will denote the contexts �PA � LA� and �PA � RA�,
respectively. TheR-contraction relation, ��R , is defined by requiring that T ��R T �

if and only if a contraction A exists such that T � T ��A�LA�� and T � � T ��A�RA��
The subcontext �A�LA� of C is an �A-redex, and the context �A�RA� is an �A-reduct;
these contexts are abbreviated respectively by RedexA and ReductA. As usual, ���

is the reflexive, transitive closure of �� . A reduction � is a sequence of contractions
A1A2 	 	 	An such that if � is nonempty, there exist terms T0� T1� 	 	 	 � Tn where:

T0
A1�� T1

A2�� T2 � � �Tn�1
An�� Tn

This reduction is abbreviated by � : T0�� Tn. A reduction � is a reduction of term T
if there exists T � such that � : T ��� T �. The reduction of length 0 is denoted by 
; for
all terms T , we adopt the convention that 
 : T ��� T .

Given the definitions above, the B-reduction depicted in Figure 4 may be described
formally by the following sequence of contractions:

h��� �B��� �X :� ff� Y :� tt� Z :� tt�i; h�1�� �B��� �X :� ff�i; h�2�� �B��� �X :� ff�i;
h��� �B��� �X :� ff�i

Most of the new relations defined in the sequel are parameterized with a reduction
�A, in which the final contraction is highlighted. Several definitions are concerned with

7



the last contractionA only; however, when our definitions are generalized in Section 5,
the “history” contained in � will become relevant. Whenever we define a truly inductive
relation on �A, we will append a ‘�’ to the name of the relation.

3.2 Residuation and Creation

In order to formalize our notion of slice, we must first reformulate the standard notion
of residual and the somewhat less standard notion of creation in terms of contexts. Each
of these will use Definition 3.1, which formalizes how an application of a contractionA
has the effect of “copying,” “moving,” or “deleting” contexts bound to variable instances
in LA when RA is instantiated. The elements of the set VarPairs�A are pairs hS1�S2i of
context forests, such that contexts C1 � S1 and C2 � S2 are corresponding subcontexts
of the context bound to some variable in �A.

Definition 3.1 (VarPairs) Let �A be a reduction. Then

VarPairs�A � f hS1�S2i j X � V � C v ��� � �A�X��� q � root�C��
S1 � f�pL � q � C� j pL � OX�LA�g�
S2 � f�pR � q � C� j pR � OX �RA�g g

In left-linear systems, for any pair hS1�S2i � VarPairs�A, S1 is always a singleton.
This will not, however, be the case when we generalize the definition for left-nonlinear
systems.

Definition 3.2 is the standard notion of residual, in relational form. For a contraction
A : C �� C �, Resid associates each subcontext of C that is not affected by A with the
corresponding subcontext of C �. Moreover, for each hS1�S2i � VarPairs�A, C1 � S1,
and C2 � S2, C1 is related to C2. If S2 is empty, this will have the effect that no pairs
are added to Resid�A.

Definition 3.2 (Resid) Let �A be a reduction. Then

Resid�A � f hD1� D2i j D1 � S1� D2 � S2� hS1�S2i � VarPairs�A g �
f hD�Di j D and RedexA are disjoint g

Figure 6 depicts Resid and several other definitions we will encounter in the sequel,
as they apply to the initial and final contractions of the reduction in Figure 4, involving
the left-linear rule [B1] and the left-nonlinear rule [B4] of TRS B, respectively.

Definition 3.3 describes the creating and the created contexts associated with a
contraction A. Intuitively, if contraction A is applied to term T , the creating context
is the minimal subcontext of T needed for the left-hand side of A’s rule to match; the
created context is the corresponding minimal context “constructed” by the right-hand
side of the rule. The former is defined as the context derived by subtracting from RedexA
all contexts D1 � S1 such that hS1�S2i � VarPairs�A. The latter is the context derived
by subtracting from ReductA all contexts D2 � S2 such that hS1�S2i � VarPairs�A.

8



.

.

.

Resid pairsconnects components of

ExactSlice* pairsconnects components of

[B4]

ff

tt tttttt ff ff

Creating Created

[B1]

typical CreateResid pair

ff

ff ff

Creating Created

Fig. 6. Illustration of selected relations and contexts derived from B-reduction of Figure 4.

Definition 3.3 (Creating and Created) Let �A be a reduction. Then

Creating�A �
�

RedexA �
F
fS1 j hS1�S2i � VarPairs�Ag when LA 
� V

PA � � otherwise

Created�A �

�
ReductA �

F
fS2 j hS1�S2i � VarPairs�Ag when RA 
� V

PA � � otherwise

While Creating�A and Created�A could have been defined in a more direct way from
the structure of LA, RA, and PA without using VarPairs�A at all, the approach we take
here will be much easier to generalize when we consider left-nonlinear systems.

Combining Definitions 3.2 and 3.3, we arrive at the relation CreateResid, formalized
in Definition 3.4. Every pair of terms hT� T �i � CreateResid has the property that
T �� T �.

Definition 3.4 (CreateResid) Let �A be a reduction. Then

CreateResid�A � f hC1� C2i j R � Resid�A�
C1 � Creating�A t

F
f C j hC�C �i � R g�

C2 � Created�A t
F
f C � j hC�C �i � R g g

Note that it is impossible to have both hC1� Di � ResidA and hC2� Di � CreateResid�A,
for any C1� C2� D.

4 A Dynamic Dependence Relation

In this section, we will derive our dynamic dependence relation, Slice�, using the con-
cepts introduced in Section 3. We first consider the somewhat more restrictive relation
ExactSlice, which is the union of Resid�A and CreateResid�A.

9



Definition 4.1 (ExactSlice) Let �A be a reduction. Then

ExactSlice�A � Resid�A � CreateResid�A

The name of ExactSlice comes from the fact that its transitive closure is a subrelation
of relation Slice� shown below. For the empty reduction, Slice� is defined as the identity
relation. For a criterion D, the inductive case determines the minimal super-context
D� w D for which there is a C such that hC�D�i � ExactSlice�A; then the slice for this
C in reduction � is determined. Operation ‘ �’ in Definition 4.2 denotes relational join.

Definition 4.2 (Slice�) Let �A be a reduction. Then

Slice�� � f hC�Ci j C � Cont��� g

Slice��A � Slice�� � f hC�Di j there exists a minimal D� w D

such that hC�D�i � ExactSlice�A g

4.1 Example

Consider the following B-reduction �:

S � �ff � �ff � tt�� � tt
[B2]
�� �ff � ff� � tt

[B3]
�� ff � tt

[B2]
�� ff � T

Definition 4.2 yields the following relations between subcontexts of S and T :

Slice�� � f h�1� � � � �ff � tt�� �� � ffi� h�� � �� �� � �i g

Thus, the slice with respect to �� � ff v T is �1� � � � �ff � tt� v S. This is the
minimal context for which there exists a subreduction of � that yields the criterion. In
this case, the projection consists of the first two contractions.

The above example also illustrates why Slice� is defined on contexts rather than on
context domains: collapse rules require special treatment in order to produce minimal
slices. Note that the example exhibits two applications of collapse rule [B2]. Intuitively,
the first one created the criterion, whereas the second one merely affected its location.
We achieve this differentiation by: (i) having a collapse rule create an empty context
PA � � instead of the context consisting of the function symbol at path PA (the
approach of [12]), and (ii) defining an empty context p � � to be a subcontext of a
nonempty context only if the latter “surrounds” the former.

5 Nonlinear Rewriting Systems

Unfortunately, our previous definitions do not extend trivially to left-nonlinear TRSs,
because they do not account for the fact that non-linearities in the left-hand side of a
rule constrain the set of contexts for which the rule is applicable. For example, when
rule [B4] of TRS B of Figure 3 is applied to ff � ff, this results in a contraction
A : T � ff� ff�� ff � T �. Our previous definitions yield C � �� � ��� �� v T as
the slice with respect to criterion D � �� � ff v T �. This is not a valid slice, because
some ‘instantiations’ of C do not reduce to a context containing D, e.g., �� � tt � ff

10



does not. A related problem is that multiple contexts may be related to a criterion in the
presence of left-nonlinear rules; this conflicts with our objective that a slice with respect
to a context consists of a single context.

A simple solution to deal with nonlinear TRSs consists of restricting VarPairs to
variables which occur at most once in the left-hand side of a rule. However, this would
yield non-minimal slices. For instance, for the reduction of Figure 4 the non-minimal
slice ff � �tt � tt� would be computed. The immediate cause for this inaccuracy is the
fact that the subcontexts �1� � ff and �2� � ff of T3 are deemed responsible for the
creation of term T4. However, in this case, they are reducts of the same subcontext
C � �1� � ff v T0. This being the case, C may be replaced by an arbitrary context
without affecting the applicability of the left-nonlinear rule.

We can account for this fact by modifying the VarPairs relation as follows. If, for
a rule �, all occurrences of a variable X in L� are matched against reducts of some
subcontext C, this gives rise to residuation (if X occurs in R�). All other cases cause
creation: the subcontexts matched against X in L� are creating, and the subcontexts
matched against X in R� are created. Note that the former situation occurs trivially for
all variables that occur exactly once in L�. The notion of contexts being ‘reducts’ of the
same context is formalized by way of the transitive and reflexive closure ExactSlice� of
relation ExactSlice. The revised definition of VarPairs is shown below.

Definition 5.1 (VarPairs for non-linear TRSs) Let �A be a reduction. Then

VarPairs�A � f hS1�S2i j X � V � C v ��� � �A�X��� q � root�C��
there exists a unique D such that for all pL � OX�LA��

hD� �pL � q � C�i � ExactSlice���
S1 � f�pL � q � C� j pL � OX�LA�g�
S2 � f�pR � q � C� j pR � OX�RA�g g

(where ExactSlice� is the transitive and reflexive closure of relation ExactSlice.)

In Figure 6, certain pairs in the ExactSlice� relation are depicted using dotted lines.
Note that the two ‘ff’ subterms in the term matched by left-nonlinear rule [B4] have the
same ExactSlice� “origin” in the initial term. Definition 5.1 thus implies that the ‘ff’
subterms are components of VarPairs. Consequently, the Creating context for the [B4]
contraction does not include the ‘ff’ subterms. Taken together, these facts allow us to
conclude that the final term of the reduction of Figure 6 does not depend on the ‘ff’
subterm of the initial term of the reduction.

5.1 Example: Slicing in a non-linear system

Definitions 4.2 and 5.1 yield the following dependences for the example of Figure 4:

Slice�� � f h�� � �� �� � �i� h�� � � � �tt� tt�� �� � ffi g

Consequently, the minimal slice���tt�tt� v T0 is computed for criterion ��� ff v T4.

11



6 Formal Properties of Slices

In this section, we state some important formal properties of slices. We begin with
further details of our notion of “subreduction”.

6.1 Projections

Recall from Section 1.3 that we use the set Project�� to formalize subreductions of �.
Project�� is a collection of triples of the form hC� ��� C �i, each of which denotes the
fact that context C reduces to context C � by a reduction �� composed of contractions
derived from those in �. Although we defer a full definition of this notion to [9], the idea
is illustrated by the followingB-reduction:

T0 � �ff � ff� � �tt � tt�
A[B1]
�� ��ff � ff� � tt�� ��ff � ff� � tt�

A[B3]
�� � ff � tt�� � �ff � ff� � tt� � T2

As usual, we have underlined each redex. We use A[B1] and A[B3] to denote the con-
tractions that use rules [B1] and [B3], respectively. Some typical elements of the set
Project�A[B1]A[B3] are:

h �1� � ff � ff � A[B1]A[B3] � �2 1� � ff � ff i h �1� � ff � ff � A[B1]A[B3] � �1 1� � ff i

These triples correspond to the two “paths through the reduction” taken by the boxed
subterm of T0. One residual is contracted in a subsequent step, the other is not. The final
elements of the projection triples corresponding to subterms in T2 are also boxed.

6.2 Context Rewriting

In the discussion above, we were rather cavalier about extending the rewriting relation to
contexts. To be more precise, we need the following definitions: A variable instantiation
of a context C is a term T that can be obtained from C by replacing each hole with a
variable that does not occur inC, and rerooting it to ��. A variable instantiation is a linear
instantiation if each hole is replaced by a distinct variable. A context C rewrites to a
contextC �, notatedC ��� C �, if and only if T ��� T �, where T is a linear instantiation
of C and T � is a variable instantiation of C �. Note that we do not require that C and
C � have the same roots. Also note that context reduction is not defined as the transitive
closure of a single-step contraction relation on contexts; this is necessary to correctly
account for the way in which a reduction causes distinct holes to be moved and copied,
particularly in the case of left-nonlinear rules.

6.3 Theorems

We can now state some theorems describing the most important properties of slices. In
[9], we provide full proofs; most of the proofs take the form of induction on the length
of reductions with (sometimes tedious) case analyses in the single-step case. We first
show that the slicing relation is single-valued, i.e., that Slice� is one-to-one mapping
from contexts to contexts:

12



Theorem 1 (Uniqueness of Slices). Let � : T ��� T � be a reduction, and let D v T �.
Then there exists a unique C v T such that hC�Di � Slice��.

Given Theorem 1, we will be able to writeC � Slice���D� instead of hC�Di � Slice��.
The next theorem demonstrates that slices effectively preserve the topology of their

corresponding criteria. This is important in showing that slices are minimal projections.

Theorem 2 (Inclusion Theorem). Let � : T ��� T � be a reduction, and letD� v D v
T �. Then Slice���D�� v Slice���D�.

The following theorem states that a slice is the minimal initial component of some
projection triple whose final component contains the slicing criterion:

Theorem 3 (Minimality). If hC�Di � Slice�� for some reduction �, then C is a mini-
mal (with respect to ‘v’) element of the set fC� j D v D�� hC �� ��� D�i � Project�� g.

Our last theorem shows that slices are sound, in the sense that they reduce to a
supercontext of the slicing criterion (by a reduction derived from the original reduction
by projection).

Theorem 4 (Soundness). If hC�Di � Slice�� for some reduction �, then there exists a
context D� w D such that C ���D�.

Together, Theorems 3 and 4 imply that our construction of slices agrees with Defini-
tion 1.1.

7 Implementation

In principle, one could implement slicing by storing information about every step of a
reduction �, and then computing Slice�� based on this information. In practice, such
an approach is infeasible since it would require space and time proportional to the
length of � for each choice of criterion. Since our reasons for investigating dependence
relations are eminently practical, we will use an alternate method that allows slices to
be computed as a “side-effect” of the reduction process, in a way that efficiently yields
slices with respect to any chosen criterion. During the reduction process, our method
will maintain (i) the slices for all function symbols in a term, and (ii) for every pair
of adjacent function symbols, the difference between their individual slices, and the
slice with respect to their (context) union. In [9], we will show that this is sufficient
information to derive slices with respect to any non-empty criterion. An important issue
is that the difference information for two adjacent function symbols is not necessarily
equal to the slice with respect to the empty context ‘between’ them. The implementation
method discussed below is based on the following starting-points:

– Information about slices is coded into terms by surrounding every function symbol
with a special ‘wrapper’ symbol. If P is the slice associated with f��� � � � � ��, and
Q is the difference information for this ‘node’ and its parent, this will be notated
hf��� � � � � ��� P�Qi.

13



– The computation of slices is coded into TRSs by transforming the rules such that:
(i) the original behavior of the TRS can be reproduced, and (ii) the ‘slice’ and
‘difference’ arguments of the wrappers are manipulated in accordance with Slice�.

Figure 7 below sketches the global organization of our approach. For any reduction
� : C ���D, and hC1� D1i� hC2� D2i � Slice��, we will transform C into an equiv-
alent context C � where each symbol is surrounded by a wrapper with the appropriate
information. In the transformed TRS, a reduction �� : C ����D� will exist. The steps
in �� are either rewrite steps equivalent to steps in �, or ‘administrative’ steps for ma-
nipulating slice and difference information. Context D can be extracted from D � using
a simple transformation. More important is the fact that for every subcontext of D, its
slice can be extracted from the corresponding subcontext of D �.

transform

��

transform

D�

1 D�

2

D1 D2C2C1

extract slice

extract slice

C D

C� D�

�

Fig. 7. Global organization of the implementation of Slice�.

Slices and difference information are represented by context domains (i.e. sets of
paths). Details of the requisite administrative functions for manipulating this information
depend on the actual set representation, and are irrelevant for the purposes of this paper.
Although sets can be represented as terms, and the administrative steps as rewrite steps,
recent experiments show that implementing these steps by non-rewriting means is more
efficient.

Figure 8 shows the transformed version B� of system B of Figure 3. In this system,
Union, Add, Collect, and Strip perform administrative steps: Union denotes set union
on context domains, Add updates the difference information of the root of a term,
Merge merges the information in the bindings of a non-linearly matched variables,
Collect recursively collects the information in such variables, and Strip derives the
corresponding B-term from a B�-term by removing all slice information. Details of
these operations are discussed in [9].

14



[B1�] X h�� V���W��i �Y h�� V�2��W�2�i Z���
�X h�� G�Gi Y � h�� G�Gi �X h�� G�Gi Z�
where G � Union�Union�V��� V�2��� W�2��

[B2�] X h�� V���W��i htt� V�2��W�2�i�� Add�X� Union�V��� Union�V�2�� W�2����
[B3�] X h�� V���W��i hff� V�2��W�2�i�� hff�Union�V��� Union�V�2�� W�2����W��i
[B4�] X h�� V���W��i X

��� hff�Union�V��� Collect�X� X�� V��� V�����W��i
when Strip�X� � Strip�X ��

Fig. 8. Transformed Boolean TRS B�.

The B-term ff � �tt � tt� will be transformed to the B�-term:

hff� f �1� g� 
i h�� f �� g� 
i �htt� f �2 1� g� 
i h�� f �2� g� 
i htt� f �2 2� g� 
i�

Reduction of this term according to system B� results in the term:

hff� f ��� �2�� �2 1�� �2 2� g� 
i

The “context” domain of this result corresponds to the slice � � �tt � tt� we computed
previously. In general, the domain of a slice with respect to a context is equal to the
union of the function symbol domains and the difference domains for each node in the
criterion, except that the difference domain at the root node of the criterion is omitted.

For each reduction step in the untransformed TRS, there is a corresponding non-
administrative step in the transformed TRS. Administrative steps are bounded by the
size of domain sets, which are in turn bounded by the size of the initial term. Each union
operation can be implemented efficiently using bit vectors, whose size is proportional
to the size of the initial term. The number of unions per reduction step is bounded by
the number of function symbols that need to be matched. Consequently, the overhead
is linear in the size of the initial term. We have implemented dependence tracking in
the ASF+SDF system [11]; the overhead required to compute slices has proved quite
tolerable in practice.

8 Related Work

The term “slice” was first coined by Weiser [19], and defined for imperative pro-
gramming languages using dataflow analysis. Subsequent work, beginning with that
of Ottenstein and Ottenstein [15], has focused on use of program dependence graphs
[6] for computing slices. Cartwright and Felleisen [4] and Venkatesh [17] discuss the
denotational foundations of dependence and slicing, respectively for similar classes of
languages; however, they do not provide an operational means to compute slices. [16]
provides a survey of current work on program slicing.

A number of authors have considered various “labeling” or “tracking” schemes
which propagate auxiliary information in conjunction with reduction systems; these
schemes are similar in some respects to the method we will use to implement slicing.
Bertot [2, 3] defines an origin function, which is a generalization of the classic notions
of residual and descendant in the lambda-calculus and TRSs. He applies this idea to the
implementation of source-level program debuggers for languages implemented using
natural semantics [10]. Van Deursen, Klint and Tip [5], addressing similar problems,

15



define a slightly expanded class of “origin” information for the larger class of conditional
TRSs. However, slicing is not considered in these papers, nor do these “tracking”
algorithms propagate information appropriate for computing slices.

In [12] (page 85), Klop presents a “tracing relation” which is very similar to our
dynamic dependence notion, and observes that it can be used to distinguish the needed
prefix and the non-needed part of a term. In our terminology, the needed part is the
slice with respect to the entire normal form, and the non-needed parts correspond to
the “holes” in this slice. In other words, replacing the non-needed parts by arbitrary
subterms will result in the same normal form. There are two main differences with our
work. First, Klop’s tracing relation is only defined for orthogonal TRSs. This ensures
that the normal form resulting from replacing non-needed parts is exactly the same as
the normal form of the original term. Second, for collapse rules the top symbol of the
reduct is considered to be “created”. As we discussed earlier, this gives rise to slices
being non-minimal. Finally, Klop does not study the use of tracing relations for program
slicing, nor does he give an algorithm to compute his relation efficiently in practice.

In certain respects, our technique is the dual of strictness analysis in lazy functional
programming languages, particularly the work of Wadler and Hughes [18] using pro-
jections. Strictness analysis is used to characterize those subcomponents of a function’s
input domain that are always needed to compute a result; we instead determine sub-
components of a particular input that are not needed. However, there are significant
differences: strictness analysis is concerned with domain-theoretic approximations of
values, usually requires computation by fixpoint iteration, and rarely addresses more
than a few core functional primitives. By contrast, we perform exact analysis on a
particular input (although we can effectively perform some approximate analyses by re-
duction of open terms), compute our results algebraically, and can address any construct
expressible in TRS form.

Maranget [13, 14] provides a comprehensive study of lazy and optimal reductions
in orthogonal TRSs using labeled terms. Although Maranget’s label information could
in principle be used to compute slices, he does not discuss such an application, nor
does he provide any means by which such labels could be used to implement slicing.
Like Klop, Maranget also only considers orthogonal TRSs. Our approach covers a larger
class of TRSs, and provides a purely relational definition of slice which does not require
labeling.

9 Future Work

An important question for future work is to define classes of TRSs for which slices are
independent of the reduction actually used. While orthogonal systems certainly have
this property, we believe it should be possible to characterize non-orthogonal systems
for which this property also holds.

Acknowledgments

We are grateful to G. Ramalingam and Jan Heering for commenting on earlier drafts of
this paper.

16



References

1. ACETO, L., BLOOM, B., AND VAANDRAGER, F. Turning SOS rules into equations. In Proc.
IEEE Symp. on Logic in Computer Science (Santa Cruz, CA, June 1992), pp. 113–124.

2. BERTOT, Y. Occurrences in debugger specifications. In Proc. ACM SIGPLAN ’91 Conf. on
Programming Language Design and Implementation (Toronto, June 1991), pp. 327–336.

3. BERTOT, Y. Origin functions in �-calculus and term rewriting systems. In Proc. Seventeenth
CAAP (1992), J.-C. Raoult, Ed., pp. 49–64. (Springer-Verlag LNCS 581).

4. CARTWRIGHT, R., AND FELLEISEN, M. The semantics of program dependence. In Proc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation (Portland,
OR, 1989), pp. 13–27.

5. DEURSEN, A. VAN, KLINT, P., AND TIP, F. Origin tracking. J. Symbolic Computation 15
(1993), 523–545.

6. FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. The program dependence graph and
its use in optimization. ACM Trans. on Programming Languages and Systems 9, 3 (July
1987), 319–349.

7. FIELD, J. On laziness and optimality in lambda interpreters: Tools for specification and
analysis. In Proc. Seventeenth ACM Symp. on Principles of Programming Languages (San
Francisco, January 1990), pp. 1–15.

8. FIELD, J. A simple rewriting semantics for realistic imperative programs and its application to
program analysis. In Proc. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (San Francisco, June 1992), pp. 98–107. Published as Yale
University Technical Report YALEU/DCS/RR–909.

9. FIELD, J., AND TIP, F. Dynamic dependence in term rewriting systems and its application to
program slicing. Report CS-R94xx, CWI, Amsterdam, 1994. Forthcoming.

10. KAHN, G. Natural semantics. In Fourth Annual Symp. on Theoretical Aspects of Computer
Science (1987), vol. 247 of LNCS, Springer-Verlag, pp. 22–39.

11. KLINT, P. A meta-environment for generating programming environments. ACM Trans. on
Software Engineering and Methodology 2, 2 (1993), 176–201.

12. KLOP, J. Term rewriting systems. Tech. Rep. CS-R9073, CWI, Amsterdam, The Netherlands,
1990.

13. MARANGET, L. Optimal derivations in weak lambda-calculi and in orthogonal term rewriting
systems. In Proc. Eighteenth ACM Symp. on Principles of Programming Languages (Orlando,
FL, January 1991), pp. 255–269.

14. MARANGET, L. La Stratégie Paresseuse. PhD thesis, Université de Paris VIII, 1992. (in
French).

15. OTTENSTEIN, K. J., AND OTTENSTEIN, L. M. The program dependence graph in a software
development environment. In Proc. ACM SIGPLAN/SIGSOFT Symp. on Practical Program-
ming Development Environments (April 1984), pp. 177–184. SIGPLAN Notices 19(5).

16. TIP, F. A survey of program slicing methods. Forthcoming CWI technical report, 1994.
17. VENKATESH, G. The semantic approach to program slicing. In Proc. ACM SIGPLAN Conf.

on Programming Language Design and Implementation (Toronto, June 1991), pp. 80–91.
18. WADLER, P., AND HUGHES, R. Projections for strictness analysis. In Proc. Conf. on Functional

Programming and Computer Architecture (Portland, OR, September 1987), pp. 385–406.
(Springer-Verlag LNCS 274).

19. WEISER, M. Program slicing. IEEE Trans. on Software Engineering SE-10, 4 (1989),
352–357.

This article was processed using the LATEX macro package with LLNCS style

17


