Dynamic Dependencein Term Rewriting Systems and its
Application to Program Slicing

John Field! and Frank Tip?*

1 |BM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY, 10598, USA; jfieldewatson.ibm. com
2
CwiI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands; t ip@cwi .nl

Abstract. Program slicing is a useful technique for debugging, testing, and an-
alyzing programs. A program slice consists of the parts of a program which
(potentially) affect the values computed at some point of interest. With rare ex-
ceptions, program dices have hitherto been computed and defined in ad-hoc and
language-specific ways. The principal contribution of this paper is to show that
general and semantically well-founded notions of slicing and dependence can be
derived in asimple, uniform way from term rewriting systems (TRSs). Our slicing
techniqueisapplicableto any language whose semanticsis specifiedin TRSform.
Moreover, we show that our method admits an efficient implementation.

1 Introduction

1.1 Overview

Program slicing is a useful technique for debugging, testing, and analyzing programs.
A program slice consists of the parts of a program which (potentially) affect the values
computed at some point of interest, referred to as the slicing criterion. As originally
defined by Weiser [19], a dlicing criterion was the value of a variable at a particular
program point and a slice consisted of an “executable” subset of the program’s original
statements. Numerous variations on the notion of slice have since been proposed, as
well as many different techniques to compute them [16], but all reduce to determining
dependence relations among program components. Unfortunately, with rare exceptions,
the notion of “dependence” has been defined in an ad-hoc and |anguage-specific manner,
resulting in a gorithmsfor computing slices that are notoriously difficult to understand,
especialy in the presence of pointers, procedures, and unstructured control flow. The
contributions of this paper are as follows:

We define a general notion of slice that appliesto any unconditional term rewriting
system (TRS). Our definition uses arelation on contexts derived from the reduction rela-
tion on terms. This relation makes precise the dynamic dependence of function symbols
in terms in a reduction sequence on symbols in previous terms in that sequence. Our

* Supported in part by the European Union under ESPRIT project # 5399 (Compiler Generation
for Parallel Machines—CoMPARE). Part of this work was done when the second author was at
IBM.

notion of dependence does not require labeled terms[2, 3, 13, 14], and is distinguished
by its ability to treat (normally problematic) TRSs with left-nonlinear rules.

Our notion of glicing subsumes most of those defined in previous work on program
dlicing. Thedistinctiontraditionally madebetween “ static” and“ dynamic” slicing canbe
model ed by reduction of open or closed terms, respectively. Partial instantiation of open
terms yields a useful intermediate notion of constrained dlicing. Although Venkatesh
definesasimilar notion abstractly [17], he does not indicate how to compute such slices.

We describe an algorithm by which dlices can be efficiently computed in practice
by systematically transforming the original TRS to gather dependenceinformation. The
overhead required to compute thisinformationis linear in the size of theinitia term.

In [9], we present proofs that our definitions yield minimal (with respect to the
reduction) and sound slices which have been omitted here because of space limitations.
In aforthcoming companion paper, we will show how our techniques can be applied to
standard programming languages, and compare these techniques to other algorithmsin
the literature. Here, we will concentrate primarily on technical foundations.

1.2 Motivating Examples

Consider the program in Figure 1A below, written in a tiny imperative programming
language, P. The semantics of P are similar to those of many imperative programming
languages with pointers. A do construct is executed by evaluating its statement list, and
using the computed valuesto evaluate itsin expression. Expressionsof theform ‘'z’ are
atoms, and play the dual role of basic values and addresses which may be assigned to
using ‘:=". Addresses are explicitly dereferenced using ‘1’ The distinguished atoms ¢
and f represent boolean values.

program program
doz:=a, w:=7, z:=b doz:=e W=7, z:=e,
ifwl! =21 ifwl! =217
then y:=z 1 then y:=z 1
dse 7:=0 gsceo
in g1 =71 iny1 =71
A: Original Program B: Minimal Slice

Fig. 1. Example P Program.

We evaluate P programs by applying the rewriting rules of Figure 2 to the term
consisting of the program’s syntax tree until no further rules are applicable. This reduc-
tion process produces a sequence of terms ending with a normal form that denotes the
result of the evaluation. The program in Figure 1A reduces to the normal form ‘result
t'. Figure 1B depictsthe slice of the example program with respect to this normal form.
The symbol ‘e’ represents subterms of the program that do not affect its result.

It should be clear that a program slice is valuable for understanding which program
components depend critically on the dicing criterion—even in the small example of
Figure 1, thisis not immediately obvious. Slicing information can be used to determine

what statements might have to be changed in order to correct an error or to alter the
value of the criterion. The techniqueswe describe also all ow the programmer the option
of binding various inputs to values or leaving them undefined, allowing the effects of
various initial conditionsto be precisely traced. This significant capability is uniqueto
our approach, and derives from its generality. In addition, by defining different (TRS-
based) semantics for the same language, different sorts of dices can be derived. For
instance, by using variants of the semantics in [7], we can compute both traditional
“static” and “dynamic” [16] slices for the same language.

[P]] X=X -1

[P2] 2=0 . for al constants a, b such that @ # b

[P3] iftthen X elseY - X

[P4] if fthen X elseY Y

[P5] doXinY Y

[P6] doXinY =Z — (doXinY)=(doXinZ)

[P7] doX;A:=Fin(BY) —if (doX;A:=FEinB)=(doXinA)
then (doX in E)
edsedoX in((doA:=FEinB)1)

[P8] doA:=FEin(B1) —if (doA:=FinB)=A

then £
edse((doA:=FEinB)1)
[P9] doX;if Athen BelseCinE — if (doX in A)
then (doX;BinE)
ese(doX;CinE)
[P10] doif AthenBelseCinE — if Athen(doBinE)édse(doCinE)
[P11] do X inif Athen BelseC — if (do X in A) then (do X in B) else(do X in C)
[P12] program X — result X

Fig. 2. Rewriting Semantics of P.

We believe that our notion of a slice should also prove useful as an adjunct to
theorem-proving systems, since it yields certain universally quantified equations from
derivations of equations on closed terms. Consider, for example, the simple TRS B in
Figure 3, which definesafew booleanidentities(* A’ denotesconjunction, ‘ @’ exclusive-
or). Figure 4 shows how B-term ff A (tt & tt) can be reduced to ff. Observe that in
deriving the theorem ff A (tt @ tt) = ff, we actually derive the more general theorem
PA(ttott) = ff, for arbitrary P. Fromthe point of view of dlicing, theslicewith respect
to the normal form ff isthe subcontext e A (tt @ tt) of theinitial term. To determine such
adice, we must pay careful attention to the behavior of non-linear rules such as [B4]
and [P1], which many authors on reduction-theoretic properties of TRSs do not treat.
In the sequel, we show how minimal slices can be obtained by examining the manner
in which rules create new function symbols, and residuate, or “move around” old ones.

[B1] XAYaZ2)— (XAY)® (X AZ) [B3] X AN ff— ff
[B2] XAtt— X [B4] XX —ff

Fig. 3. Boolean TRSB.

Note that the reduction of Figure 4 is not the only one which yields the normal form
‘ff’. In this case, the same dlice will be computed for any B-reduction starting with
To. For orthogonal TRSs [12], it can be shown that slices are always independent of
the order in which rules are applied. However, in general, slices may depend on the
particular reduction used.

[B2]

ffAtatt) =T, 25 Hat)a (ffAat) =70 E5 o (ffat) =T

[B2]

LA ffaf) =13 =T,

Fig. 4. A B-reduction; redexes are underlined.

1.3 D#finition of a Slice

In general, we will define a slice as a certain context contained in the initial term of
some reduction. Intuitively, a context may be viewed as a connected (in the sense of a
tree) subset of function symbols taken from aterm. For instance, if f(g(a,b), ¢) =T
is a term, then one of severa contexts contained in 7' is g(e,b) = C. C contains an
omitted subterm, or hole?, denoted by ‘ e’. This hole results from deleting the subterm
‘a’ of T'. We denote the fact that C' is a subcontext of 7' by C C T'; contexts aswell as
terms may contain subcontexts.

Inasdlice, holesdenote subtermsthat areirrelevant to the computation of thecriterion.
Figure 1B depicts the minimal subcontext of the original program that yields the slicing
criterion via a *‘subreduction” of the original reduction. Informally, the holes in the
slice could be replaced by any P-expression and the same criterion could be produced
by a P-reduction.

Definition 1.1 below makes precise our notion of slice. We will formalize the notion
of “subreduction” of a sequence of reduction steps p using a set Project«”, which is a
collection of triples of the form (C, p’, C"). Informally, such a triple denotes the fact
that context C' reduces to context C' by a reduction p’ derived from rule applications
that also occur in p. We discuss Project«” further in Section 6 and provide a complete
definitionin[9].

Definition 1.1 (Slice) Let p : T'—* T" be a reduction. Then a slice with respect to a
subcontext C’ of T” is a subcontext C' of T with the property that there exists a reduction
p' such that p’ : C —* D' for some D' 1 C' and (C, p’, D') € Project«”. Slice C
is minimal if there is no slice with respect to criterion C’ that contains fewer function
symbols.

Definition 1.1 is rendered pictorially in Figure 5.

The notion of TRS-based slice we define in the sequel can be used for any language
whose operational semantics is defined by a TRS. Many languages whose semantics
are traditionally defined via extended lambda-calculi or using structural operational
semantics also have corresponding rewriting semantics [1, 7]. In [8], it is shown how
many traditional program constructs may be modeled by an appropriate TRS.

! Some authors require that contexts contain exactly one hole; we will not.

Fig. 5. Depiction of the definition of adlice.

2 Basic Definitions

In this section, we make precise the notion of a context introduced informally in the
previous section. This notion will be the cornerstone of our formalization of slicing and
dependence. Instead of deriving contexts from the usual definition of aterm, we view
terms as a specia class of contexts. Contextswill be defined as connected fragments of
trees decorated with function symbols and variables. We begin with afew preliminary
definitions, most of which are standard.

2.1 Signatures, Paths, Context Domains

A signature X' isafinite set of function symbols; associated with each function symbol
f € X isanatural number arity(f), itsnumber of arguments. Wewill useadenumerable
set of variables V such that ¥ NV = (. By convention, for each variable X € V,
arity(X) = 0. Lower-case |etters of theform f, g, h, - - - will denote function symbols
and upper-case letters of theform X, Y, Z, - - - will represent variables.

A path isasegquence of positiveintegersthat designatesa particular function symbol
or subtree by encoding a walk from the tree's root. The empty path, ‘()’, designates
the root of a tree; path (i1 i>- - -4,,) designates the i!" subtree (counted from left to
right) of the subtree indicated by path (i1 i2 - - i(,—1)). The operation ‘- denotes path
concatenation. Path p is a prefix of path g if there existsan r suchthat ¢ = p - r; thisis
notated p < q. If r = () then p < ¢. A context domain P isaset of paths designating a
connected fragment of atree. Thismeansthat P must (i) possess auniqueroat, root(P),
such that for al p € P, root(P) < p, and (ii) have no “gaps,” i.e., for dl p, ¢, such
thatp < ¢ < randp,r € P it must bethecasethat q € P.

2.2 Contexts

We can now define a context as a total mapping from a context domain to function
symbols and variables:

Definition 2.1 (Context) Let X' be a signature,)V be a set of variables, and P be a
context domain. Let . be a total mapping from P to (X' U V) and p be a path. Then a
pair (p, u) is a X'V-context if and only if:

(i) Forallg € Pands € X UV suchthat u(q) = s, g - ¢ € P for some i implies that
i < anity(s).
(i) 1f P £ 0, then p = root(P).

Clause (i) of Definition 2.1 ensures that a child of a function symbol f must have an
ordinal number less than or equal to the arity of f. Clause (ii) ensures that the root of
the context is the same as the root of its underlying domain, except when the domain
is empty; in the latter case, we will say that the context is empty. The definition is
specifically designed to admit empty contexts, which will beimportant in the sequel for
describing the behavior of collapse rules, i.e., rewriting ruleswhose right hand sides are
single variables. Given context C' = (p, u}, root(C') denotes the path p, and O(C) the
domain of u. The path corresponding to a“missing child” in a context will be referred
to as a hole occurrence; an empty context is also a hole. We will use Cont(X, V) to
denotethe set of all X'V-contexts.

For any context C' and a path p, p < C denotes an isomorphic context rooted at
p obtained by rerooting C. This notation is used to represent contexts textually; e.g.,
p — f(e,g(a,®)) representsacontext rooted at p with two holes (* "), binary function
symbols f and g and a constant a. p < e represents an empty context rooted at p.

A context C is aterm if: (i) C has no hole occurrences, and (ii) root(C') = ().
Although the restriction of root(C') to be () is not strictly necessary, it resultsin a defi-
nition that agrees most closely with that used by other authors. We will use Term(X') to
denotethe set of termsover signature X LettersC, D, - - - will generally denote arbitrary
contexts, and S, T, - - - terms. Whenever convenient, we ignore the distinction between
avariable X and the term consisting of that variable. Some convenient operations on
contexts are introduced next in an informal way; formal definitions can be foundin [9].

For a context C, and S a subset of ¥ U V, Os(C) denotes the set of paths to
elementsof S in C; Oy, (C) isabbreviated by O, (C). The set of variable occurrences
inaXV-context C,i.e., Oy (C), isdenoted vars(C'), and vars; (C) isthe set of variables
which occur exactly oncein C.

Two contexts are compatible if all paths common to both of their domains are
mapped to the same symboal. If C and D are compatible, C isasubcontext of D, notated
C C D, if and only if one of the following holds:; (i) C and D are nonempty and
O(C) C O(D), (ii)C and D areempty and C = D, or (iii) C isempty, D is nonempty,
root(C') = q-1 € O(D), and ¢ € O(D). Thethird clause states that an empty context
C is a subcontext of a nonempty context D only if its root is “sandwiched” between
adjacent nodesin D. This property will greatly simplify a number of definitionsin the
sequel. Contexts D and E are disjoint if and only if there exists no context C' such that
CC DandC C E.If C and D are contexts such that root(D) € O(C'), C[D] denotes
the context C' where the subcontext at root(D) isreplaced by D.

A context forest isaset of mutually digjoint contexts. Forest S isasubforest of forest
T,notated S C 7, if and only if for al contexts C € S, there existsa context D € T
suchthat C C D. Some convenient set-like operations on context forests can be defined

asfollows: Let S and 7 be compatible context forests. Then their union, notated SLI 7,
isthe smallest forest ¢/ suchthat S T ¢/ and 7 C U; their difference, notated S — 7, is
the smallest forest &/ suchthat i C Sand S C (7 U U). If P isaset of paths, C / P
is the forest containing subcontexts of C' rooted at paths in 7. The notion of context
replacement is easily generalized to aforest S. We will feel freeto refer to a singleton
forest {C'} by its element C' when no confusion arises; e.g., “C' LI D”.

3 Term Rewriting and Related Relations

In this section, weformalize standard term rewriting-related notions using operationson
contexts; we then define the important related ideas of creation and residuation, which
are derived from the rewriting relation. We will first consider only left-linear TRSs; this
restriction will be removedinin Section 5.

3.1 Substitutionsand Term Rewriting Systems

A substitution is a finite partial map from V to Cont(X, V), where X' is a signature
and V a set of variables. Applying a substitution o to a context C' corresponds to
replacing each subcontext Cx C C consisting solely of a variable X by the context
(root(Cx) « o(X)), for al X on which o is defined. A term rewriting system R
over asignature X' is any set of pairs (L, R) such that L and R are terms over X, and
vars(R) C vars(L); (L, R) is called arewrite rule and is commonly notated L — R.
Fora =L — R € RwedefineL, = L and R, = R. A rewriterule « is left-linear if
vars(Ly) = varsi(Ly). If R isaTRS, then we define an R-contraction A to be atriple
(p, a, 0}, wherep isapath, a isarule of R, and o is asubstitution.

We use Py, au, L, R4, and o 4 to denote p, «, L(a4), R(as), and o, respec-
tively. Moreover, L 4 and R4 will denote the contexts (P4 « L) and (P4 «— R4),
respectively. The R-contraction relation, — % , isdefined by requiringthat T — » T"
if and only if a contraction A existssuch that T = T[oa(L4)] and T' = T[oa(R4)]
The subcontext o 4 (L 4) of C isan a 4-redex, and the context o 4 (R4) is an a4 -reduct;
these contexts are abbreviated respectively by Redex, and Reduct . As usual, —*
is the reflexive, transitive closure of — . A reduction p is a sequence of contractions
A1A> ... A, suchthat if p is nonempty, there exist terms Ty, 11, . . . , T,, where:

o n 2.1, M,
Thisreduction is abbreviated by p : To — T’,. A reduction p is areduction of term T’
if thereexists T’ suchthat p : T'—* T". The reduction of length O is denoted by ¢; for
al terms T', we adopt the conventionthat e : T —* T'.

Given the definitions above, the B-reduction depicted in Figure 4 may be described
formally by the following sequence of contractions:

(0,[B1, [X =1,V :=tt, Z:=t]); ((1),[B2],[X :=ff]); ((2),[B2],[X :=ff]);
(0, [B4], [X :=ff])

Most of the new relations defined in the sequel are parameterized with areduction
pA, inwhichthefinal contractionis highlighted. Several definitionsare concerned with

thelast contraction .4 only; however, when our definitions are generalized in Section 5,
the“history” contained in p will becomerelevant. Whenever we define atruly inductive
relation on p. A, wewill append a‘*’ to the name of therelation.

3.2 Residuation and Creation

In order to formalize our notion of slice, we must first reformulate the standard notion
of residual and the somewhat |ess standard notion of creation in terms of contexts. Each
of thesewill use Definition 3.1, which formalizes how an application of acontraction A
hasthe effect of “copying,” “moving,” or “deleting” contextsbound to variableinstances
in L4 when R4 isinstantiated. The elements of the set VarPairg’* are pairs (S, S,) of
context forests, such that contexts C; € S; and C;, € S, are corresponding subcontexts
of the context bound to some variablein a 4.

Definition 3.1 (VarPairs) Let pA be a reduction. Then

VarPairg* £ { (81,8) | X €V, CC(() « ou(X)), ¢ = root(C),
S1={(p -9 —C) | pL € Ox(La)},
S2={(pr ¢+ C) | pr € Ox(RA)} }

In left-linear systems, for any pair (S1,S,) € VarPaire*, S is always a singleton.
Thiswill not, however, be the case when we generalize the definition for left-nonlinear
systems.

Definition 3.2isthe standard notion of residual, in relational form. For acontraction
A : C — (', Resid associates each subcontext of C' that is not affected by .A with the
corresponding subcontext of C'. Moreover, for each (S1,S2) € VarPaird, C; € S,
and C, € Sy, Cy isrelated to Cs. If S, is empty, this will have the effect that no pairs
are added to Resid?*.

Definition 3.2 (Resid) Let p.A be a reduction. Then

ResicdPA & { (D1, D,) | D1 € 81, D3 € Sz, (S1,S2) € VarPaird } U
{(D,D) | D and Redex 4 are disjoint }

Figure 6 depicts Resid and several other definitionswe will encounter in the sequel,
asthey apply to theinitial and final contractions of the reductionin Figure 4, involving
the left-linear rule [B1] and the left-nonlinear rule [B4] of TRS B, respectively.

Definition 3.3 describes the creating and the created contexts associated with a
contraction A. Intuitively, if contraction A is applied to term T', the creating context
is the minimal subcontext of T' needed for the left-hand side of .A’s rule to match; the
created context is the corresponding minimal context “constructed” by the right-hand
side of therule. Theformer is defined as the context derived by subtracting from Redex 4
all contexts D; € S; such that (S1, Sz) € VarPairg’*. The latter is the context derived
by subtracting from Reduct 4 all contexts D, € S, such that (S1,S2) € VarPairs’A.

Creating . Created
[B4] <{

,,,,,,,,,, connects components of Resid pairs
,,,,,,,,,,,,,,,, connects components of ExactSlice* pairs|

Fig. 6. lllustration of selected relations and contexts derived from B-reduction of Figure 4.

Definition 3.3 (Creating and Created) Let p.A be a reduction. Then

Creating’* £ {RedexA —LH{S1 | (S1,52) € VarPairg} when La ¢V
Py—o otherwise

Createc?” 2 {Red“CtA — {82 | (S1,82) € VarPairg'} when Ry ¢V
Pypeo otherwise

While Creating’” and Created®” could have been defined in a more direct way from
the structure of L 4, R4, and P4 without using VarPairg’* at all, the approach we take
here will be much easier to generalize when we consider left-nonlinear systems.

Combining Definitions 3.2 and 3.3, we arrive at therelation CreateResid, formalized
in Definition 3.4. Every pair of terms (T',T') € CreateResid has the property that
T—T.

Definition 3.4 (CreateResid) Let p.A be a reduction. Then

CreateResid* 2 { (C1,C5) | R C ResidP”,
C1 = Creating* U| |{ C | (C,C") € R},
C, = Created?* LI | |{C" | (C,C"Y € R} }

Notethat itisimpossible to haveboth (C1, D) € Resid” and (C», D) € CreateResid’*,
forany C1, C>, D.
4 A Dynamic Dependence Relation

In this section, we will derive our dynamic dependence relation, Slicex, using the con-
cepts introduced in Section 3. We first consider the somewhat more restrictive relation
ExactSlice, which is the union of ResicP” and CreateResidP™.

Definition 4.1 (ExactSlice) Let p.A be a reduction. Then
ExactSlice” £ Resid’* U CreateResid’

Thenameof ExactSlicecomesfromthefact that itstransitiveclosureisasubrelation
of relation Slicex shown below. For the empty reduction, Slicex isdefined astheidentity
relation. For a criterion D, the inductive case determines the minimal super-context
D' 1 D forwhichthereisaC suchthat (C, D) € ExactSlice’; then the slice for this
C inreduction p is determined. Operation * -’ in Definition 4.2 denotes relational join.

Definition 4.2 (Slicex) Let p.A be a reduction. Then
Slicex* 2 {(C,C) | C € Cont(%)}
Slicex”* £ Slicex” - { (C, D) | there exists aminimal D' 3 D
such that (C, D') € ExactSlice’* }
4.1 Example

Consider the following B-reduction p:

S=(FfAFA)) AL Z5 FFAF) AL Z5 ALt 25 ff=T

Definition 4.2 yields the following rel ations between subcontexts of .S and 7
Slices” = {{(1) — e A(ffAtt),()), (() < o,() < @) }

Thus, the slice with respectto () «— ff C T'is (1) «— e A (ff Att) C S. Thisisthe
minimal context for which there exists a subreduction of p that yields the criterion. In
this case, the projection consists of the first two contractions.

The above example also illustrates why Slicex is defined on contexts rather than on
context domains: collapse rules require special treatment in order to produce minimal
slices. Note that the example exhibits two applications of collapse rule [B2]. Intuitively,
the first one created the criterion, whereas the second one merely affected its location.
We achieve this differentiation by: (i) having a collapse rule create an empty context
P, «— e instead of the context consisting of the function symbol at path P4 (the
approach of [12]), and (ii) defining an empty context p < e to be a subcontext of a
nonempty context only if the latter “surrounds” the former.

5 Nonlinear Rewriting Systems

Unfortunately, our previous definitions do not extend trivially to left-nonlinear TRSs,
because they do not account for the fact that non-linearities in the left-hand side of a
rule constrain the set of contexts for which the rule is applicable. For example, when
rule [B4] of TRS B of Figure 3 is applied to ff & ff, this results in a contraction
A:T =ffaff — ff = T". Our previous definitionsyieldC = () < (e ¢ @) C T as
the slice with respect to criterion D = () « ff C 7". Thisis not avalid slice, because
some ‘instantiations’ of C' do not reduce to a context containing D, e.g., () « tt & ff

10

does not. A related problem is that multiple contexts may be related to acriterion in the
presence of left-nonlinear rules; this conflicts with our objectivethat aslice with respect
to acontext consists of a single context.

A simple solution to deal with nonlinear TRSs consists of restricting VarPairs to
variables which occur at most once in the left-hand side of arule. However, thiswould
yield non-minimal slices. For instance, for the reduction of Figure 4 the non-minimal
slice ff A (tt @ tt) would be computed. The immediate cause for this inaccuracy is the
fact that the subcontexts (1) « ff and (2) < ff of T3 are deemed responsible for the
creation of term 1. However, in this case, they are reducts of the same subcontext
C = (1) « ff C Tp. This being the case, C may be replaced by an arbitrary context
without affecting the applicability of the left-nonlinear rule.

We can account for this fact by modifying the VarPairsrelation as follows. If, for
arule a, al occurrences of a variable X in L, are matched against reducts of some
subcontext C, this gives rise to residuation (if X occursin R,). All other cases cause
creation: the subcontexts matched against X in L, are creating, and the subcontexts
matched against X in R, arecreated. Note that the former situation occurstrivialy for
all variablesthat occur exactly oncein L. The notion of contexts being ‘ reducts’ of the
same context is formalized by way of the transitive and reflexive closure ExactSlicex of
relation ExactSlice The revised definition of VarPairsis shown below.

Definition 5.1 (VarPairsfor non-linear TRSs) Let p.A be a reduction. Then

VarPaird* 2 { (51,8:) | X €V, CC(() « aa(X)), ¢ = root(C),
there exists a unique D such that for all p;, € Ox(L4),
(D, (pr, - q — C)) € ExactSlicex*,
S1=A{(pr -9 C) | pr € Ox(LA)},
So={(pr-qC) | pr € Ox(Ra)} }

(where ExactSlicex is the transitive and reflexive closure of relation ExactSlice)

In Figure 6, certain pairsin the ExactSlicex relation are depicted using dotted lines.
Note that the two ‘ff’ subtermsin the term matched by left-nonlinear rule [B4] havethe
same ExactSlicex “origin” in the initial term. Definition 5.1 thus implies that the ‘ff’
subterms are components of VarPairs. Consequently, the Creating context for the [B4]
contraction does not include the ‘ff* subterms. Taken together, these facts allow us to
conclude that the final term of the reduction of Figure 6 does not depend on the ‘ff’
subterm of theinitial term of the reduction.

5.1 Example Slicingin anon-linear system
Definitions 4.2 and 5.1 yield the following dependences for the example of Figure 4:
Slice” = {(() < o,() —), () — o A(tttt), () < ff) }

Consequently, theminimal slice eA(ttdtt) = Tpiscomputed for criterion () « ff C Ta.

11

6 Formal Propertiesof Slices

In this section, we state some important formal properties of dlices. We begin with
further details of our notion of “subreduction”.

6.1 Projections

Recall from Section 1.3 that we use the set Project«” to formalize subreductions of p.
Project«” is a collection of triples of the form (C, p’, C'), each of which denotes the
fact that context C' reduces to context C' by a reduction p’ composed of contractions
derived fromthosein p. Although we defer afull definition of thisnotionto [9], theidea
isillustrated by the following B-reduction:

To=| (ff AT | A (Tt @ tt) oy ((Ff A) A tt) @ ((FF A FF) A tE)

oy (ff]aty e (@A |At) =T

As usual, we have underlined each redex. We use Ay, and Apgg to denote the con-
tractions that use rules [B1] and [B3], respectively. Some typical elements of the set
Project«"eu4e3 gre;

(1) — FEATE, ApyAgy, (21) — FEATE) (1) — AT, ApyAey, (11) — ff)

These triples correspond to the two “ paths through the reduction” taken by the boxed
subterm of Ty. Oneresidual is contracted in a subsequent step, the other is not. Thefinal
elements of the projection triples corresponding to subtermsin 7, are also boxed.

6.2 Context Rewriting

Inthe discussion above, we wererather cavalier about extending the rewriting relation to
contexts. To be more precise, we need the following definitions: A variable instantiation
of acontext C isaterm 7' that can be obtained from C' by replacing each hole with a
variablethat doesnot occurin C, andrerootingitto (). A variableinstantiationisalinear
instantiation if each hole is replaced by a distinct variable. A context C rewrites to a
context C’, notated C —* C’,ifandonly if T'—* T", where T isalinear instantiation
of C and T" is a variable instantiation of C’. Note that we do not require that C' and
C' have the same roots. Also note that context reduction is not defined as the transitive
closure of a single-step contraction relation on contexts; this is necessary to correctly
account for the way in which areduction causes distinct holes to be moved and copied,
particularly in the case of |left-nonlinear rules.

6.3 Theorems

We can now state some theorems describing the most important properties of slices. In
[9], we provide full proofs; most of the proofs take the form of induction on the length
of reductions with (sometimes tedious) case analyses in the single-step case. We first
show that the dlicing relation is single-valued, i.e., that Slicex is one-to-one mapping
from contextsto contexts:

12

Theorem 1 (Uniqueness of Slices). Let p : T'—* T' be a reduction, and let D C T".
Then there exists a unique C' C T such that (C, D) € Slicex”.

Given Theorem 1, wewill beabletowriteC = Slicex” (D) instead of (C, D) € Slicex’.
The next theorem demonstrates that slices effectively preserve the topology of their
corresponding criteria. Thisisimportant in showing that slices are minimal projections.

Theorem 2 (Inclusion Theorem). Letp : T —* T" be areduction,andletD' C D C
T'. Then Slicex”(D') C Slicex” (D).

The following theorem states that a slice is the minimal initial component of some
projection triple whose final component contains the slicing criterion:

Theorem 3 (Minimality). If (C, D) € Slicex” for some reduction p, then C' is a mini-
mal (with respect to ‘C’) elementof theset { C' | D C D', (C',p',D") € Project«” }.

Our last theorem shows that slices are sound, in the sense that they reduce to a
supercontext of the slicing criterion (by a reduction derived from the original reduction
by projection).

Theorem 4 (Soundness). If (C, D) € Slicex” for some reduction p, then there exists a
context D’ O D such that C —* D'.

Together, Theorems 3 and 4 imply that our construction of dices agrees with Defini-
tion 1.1.

7 Implementation

In principle, one could implement slicing by storing information about every step of a
reduction p, and then computing Slicex” based on this information. In practice, such
an approach is infeasible since it would require space and time proportional to the
length of p for each choice of criterion. Since our reasons for investigating dependence
relations are eminently practical, we will use an aternate method that allows slices to
be computed as a “side-effect” of the reduction process, in away that efficiently yields
slices with respect to any chosen criterion. During the reduction process, our method
will maintain (i) the dlices for all function symbols in a term, and (ii) for every pair
of adjacent function symbols, the difference between their individual slices, and the
slice with respect to their (context) union. In [9], we will show that this is sufficient
information to derive slices with respect to any non-empty criterion. An important issue
is that the difference information for two adjacent function symbols is not necessarily
equal to the slice with respect to the empty context ‘ between’ them. Theimplementation
method discussed below is based on the following starting-points:

— Information about slices is coded into terms by surrounding every function symbol
with aspecia ‘wrapper’ symbol. If P isthe dlice associated with f(e, ---, @), and
Q is the difference information for this ‘node’ and its parent, this will be notated

<f(.v) .)vPvQ>'

13

— The computation of slices is coded into TRSs by transforming the rules such that:
(i) the original behavior of the TRS can be reproduced, and (ii) the ‘dice’ and
‘difference’ arguments of the wrappers are manipulated in accordance with Slicex.

Figure 7 below sketches the global organization of our approach. For any reduction
p: C—*D,and (Cq,D1),{C,, D,) € Slices”, we will transform C into an equiv-
alent context C’ where each symbol is surrounded by a wrapper with the appropriate
information. In the transformed TRS, areduction p’ : C' —* D' will exist. The steps
in p' are either rewrite steps equivalent to stepsin p, or ‘administrative’ steps for ma-
nipulating slice and differenceinformation. Context D can be extracted from D' using
a simple transformation. More important is the fact that for every subcontext of D, its
slice can be extracted from the corresponding subcontext of D’.

transform

!

C
i i S
|

Fig. 7. Globa organization of the implementation of Slicex.

Slices and difference information are represented by context domains (i.e. sets of
paths). Details of the requisiteadministrativefunctionsfor manipulatingthisinformation
depend on the actual set representation, and are irrelevant for the purposes of this paper.
Although sets can be represented as terms, and the administrative steps as rewrite steps,
recent experiments show that implementing these steps by non-rewriting meansis more
efficient.

Figure 8 shows the transformed version B’ of system B of Figure 3. In this system,
Union, Add, Collect, and Strip perform administrative steps. Union denotes set union
on context domains, Add updates the difference information of the root of a term,
Merge merges the information in the bindings of a non-linearly matched variables,
Collect recursively collects the information in such variables, and Strip derives the
corresponding B-term from a B'-term by removing al slice information. Details of
these operations are discussed in [9].

14

[BI] X (A, Vi), Wo) (Y (8, Vi, Wia) Z) —
(X (A\NG,G)Y) (8,G,G) (X (NG,G) 2)
where G = Union(Union(Vyy, Viz)), W(2))
[B2] X (A, V), W) (it, Vi), Wiz)) — Add(X, Union(Vy), Union(Viz), Wiz))))
[B3] X (A, Vi), W) (ff, Vig), Wiz)) — (ff, Union(V}), Union(Vz), W(z))), W)
[B4,] X (@,W),W()) X' — (ff7 Union(‘/(ﬁ CO”eCt(X7 X,7 ‘/()7 W))):W(»
when Strip(X) = Strip(X")

Fig. 8. Transformed Boolean TRSB'.
The B-term ff A (tt @ tt) will be transformed to the B'-term:

(. { (D10 (AL01H0) ({21 },0) (0,{(2) },0) (tt,{(22) },0))

Reduction of thisterm according to system B’ results in the term:

{ff.{0, (2, (21), (22) },0)

The “context” domain of this result correspondsto the slice @ A (it @ tt) we computed
previously. In general, the domain of a slice with respect to a context is equal to the
union of the function symbol domains and the difference domains for each nodein the
criterion, except that the difference domain at the root node of the criterion is omitted.

For each reduction step in the untransformed TRS, there is a corresponding non-
administrative step in the transformed TRS. Administrative steps are bounded by the
size of domain sets, which arein turn bounded by the size of theinitial term. Each union
operation can be implemented efficiently using bit vectors, whose size is proportional
to the size of the initial term. The number of unions per reduction step is bounded by
the number of function symbols that need to be matched. Consequently, the overhead
is linear in the size of the initial term. We have implemented dependence tracking in
the ASF+SDF system [11]; the overhead required to compute slices has proved quite
tolerablein practice.

8 Redated Work

The term “dlice” was first coined by Weiser [19], and defined for imperative pro-
gramming languages using dataflow analysis. Subsequent work, beginning with that
of Ottenstein and Ottenstein [15], has focused on use of program dependence graphs
[6] for computing slices. Cartwright and Felleisen [4] and Venkatesh [17] discuss the
denotational foundations of dependence and dlicing, respectively for similar classes of
languages; however, they do not provide an operational means to compute slices. [16]
provides a survey of current work on program slicing.

A number of authors have considered various “labeling” or “tracking” schemes
which propagate auxiliary information in conjunction with reduction systems; these
schemes are similar in some respects to the method we will use to implement slicing.
Bertot [2, 3] defines an origin function, which is a generalization of the classic notions
of residual and descendant in the lambda-calculusand TRSs. He appliesthisideato the
implementation of source-level program debuggers for languages implemented using
natural semantics [10]. Van Deursen, Klint and Tip [5], addressing similar problems,

15

defineadlightly expanded classof “origin” informationfor thelarger classof conditional
TRSs. However, dlicing is not considered in these papers, nor do these “tracking”
algorithms propagate information appropriate for computing slices.

In [12] (page 85), Klop presents a “tracing relation” which is very similar to our
dynamic dependence notion, and observes that it can be used to distinguish the needed
prefix and the non-needed part of a term. In our terminology, the needed part is the
slice with respect to the entire normal form, and the non-needed parts correspond to
the “holes’ in this dice. In other words, replacing the non-needed parts by arbitrary
subterms will result in the same normal form. There are two main differences with our
work. First, Klop’s tracing relation is only defined for orthogonal TRSs. This ensures
that the normal form resulting from replacing non-needed parts is exactly the same as
the normal form of the original term. Second, for collapse rules the top symbol of the
reduct is considered to be “created”. As we discussed earlier, this gives rise to slices
being non-minimal. Finally, Klop does not study the use of tracing relationsfor program
dlicing, nor does he give an algorithm to compute his relation efficiently in practice.

In certain respects, our techniqueisthe dual of strictness analysis in lazy functional
programming languages, particularly the work of Wadler and Hughes [18] using pro-
jections. Strictness analysisis used to characterize those subcomponentsof afunction’s
input domain that are always needed to compute a result; we instead determine sub-
components of a particular input that are not needed. However, there are significant
differences: strictness analysis is concerned with domain-theoretic approximations of
values, usually requires computation by fixpoint iteration, and rarely addresses more
than a few core functional primitives. By contrast, we perform exact analysis on a
particular input (although we can effectively perform some approximate analysesby re-
duction of open terms), compute our results algebrai cally, and can address any construct
expressiblein TRS form.

Maranget [13, 14] provides a comprehensive study of lazy and optimal reductions
in orthogonal TRSs using labeled terms. Although Maranget’s label information could
in principle be used to compute slices, he does not discuss such an application, nor
does he provide any means by which such labels could be used to implement dlicing.
LikeKlop, Maranget also only considersorthogonal TRSs. Our approach coversalarger
classof TRSs, and providesapurely relational definition of slice which doesnot require
labeling.

9 Future Work
An important question for future work isto define classes of TRSs for which dlices are
independent of the reduction actually used. While orthogonal systems certainly have

this property, we believe it should be possible to characterize non-orthogonal systems
for which this property also holds.

Acknowledgments

We are grateful to G. Ramalingam and Jan Heering for commenting on earlier drafts of
this paper.

16

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

ACETO, L., BLOOM, B., AND VAANDRAGER, F. Turning SOS rules into equations. In Proc.
IEEE Symp. on Logic in Computer Science (Santa Cruz, CA, June 1992), pp. 113-124.
BERTOT, Y. Occurrences in debugger specifications. In Proc. ACM SIGPLAN ’91 Conf. on
Programming Language Design and Implementation (Toronto, June 1991), pp. 327-336.
BEerTOT, Y. Origin functionsin A-calculus and term rewriting systems. In Proc. Seventeenth
CAAP (1992), J.-C. Raoult, Ed., pp. 49-64. (Springer-Verlag LNCS 581).

CARTWRIGHT, R., AND FELLEISEN, M. The semantics of program dependence. In Proc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation (Portland,
OR, 1989), pp. 13-27.

DEURSEN, A. VAN, KLINT, P, AND TIR, F. Origin tracking. J. Symbolic Computation 15
(1993), 523-545.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. The program dependence graph and
its use in optimization. ACM Trans. on Programming Languages and Systems 9, 3 (July
1987), 319-349.

FIELD, J. On laziness and optimality in lambda interpreters: Tools for specification and
analysis. In Proc. Seventeenth ACM Symp. on Principles of Programming Languages (San
Francisco, January 1990), pp. 1-15.

FIELD, J. A simplerewriting semanticsfor realisticimperative programsand itsapplication to
program analysis. In Proc. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (San Francisco, June 1992), pp. 98-107. Published as Yae
University Technical Report YALEU/DCS/RR—909.

FIELD, J., AND TiP, F. Dynamic dependence in term rewriting systems and its application to
program slicing. Report CS-R94xx, CWI, Amsterdam, 1994. Forthcoming.

KAHN, G. Natural semantics. In Fourth Annual Symp. on Theoretical Aspects of Computer
Science (1987), vol. 247 of LNCS, Springer-Verlag, pp. 22—39.

KLINT, P A meta-environment for generating programming environments. ACM Trans. on
Software Engineering and Methodology 2, 2 (1993), 176-201.

KLoPR, J. Termrewriting systems. Tech. Rep. CS-R9073, CWI, Amsterdam, The Netherlands,
1990.

MARANGET, L. Optimal derivations in weak lambda-calculi and in orthogonal term rewriting
systems. InProc. Eighteenth ACM Symp. on Principles of Programming Languages (Orlando,
FL, January 1991), pp. 255-269.

MARANGET, L. La Stratégie Paresseuse. PhD thesis, Universite de Paris VIII, 1992. (in
French).

OTTENSTEIN, K. J., AND OTTENSTEIN, L. M. The program dependence graph in a software
development environment. In Proc. ACM SIGPLAN/SIGSOFT Symp. on Practical Program-
ming Development Environments (April 1984), pp. 177-184. SIGPLAN Notices 19(5).

Tip, F. A survey of program slicing methods. Forthcoming CWI technical report, 1994.
VENKATESH, G. The semantic approach to program slicing. In Proc. ACM SIGPLAN Conf.
on Programming Language Design and Implementation (Toronto, June 1991), pp. 80-91.
WADLER, P, AND HUGHES, R. Projectionsfor strictnessanalysis. InProc. Conf. on Functional
Programming and Computer Architecture (Portland, OR, September 1987), pp. 385-406.
(Springer-Verlag LNCS 274).

WEISER, M. Program dicing. IEEE Trans. on Software Engineering SE-10, 4 (1989),
352-357.

This article was processed using the IATEX macro package with LLNCS style

17

