
PARAMETRIC PROGRAM SLICING

John Field G. Ramalingam
IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY, 10598, USA

fjfield,ramag@watson.ibm.com

Frank Tip�

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

tip@cwi.nl

Abstract

Program slicing is a technique for isolating computational threads in pro-
grams. In this paper, we show how to mechanically extract a family of
practical algorithms for computing slices directly from semantic specifi-
cations. These algorithms are based on combining the notion of dynamic
dependence tracking in term rewriting systems [13] with a program rep-
resentation whose behavior is defined via an equational logic [12]. Our
approach is distinguished by the fact that changes to the behavior of the
slicing algorithm can be accomplished through simple changes in rewriting
rules that define the semantics of the program representation. Thus, e.g.,
different notions of dependence may be specified, properties of language-
specific datatypes can be exploited, and various time, space, and precision
tradeoffs may be made. This flexibility enables us to generalize the tradi-
tional notions of static and dynamic slices to that of a constrained slice,
where any subset of the inputs of a program may be supplied.

1 Introduction

Program slicing is an important technique for program understand-
ing and program analysis. Informally, a program slice consists of
the program parts that (potentially) affect the values of specified
variables at some designated program point—the slicing criterion.
Although originally proposed as a means for program debugging
[33], it has subsequently been used for performing such diverse tasks
as program integration and “differencing” [16], software mainte-
nance and testing [15, 8], compiler tuning [23], and parallelization
of sequential code [32].

In this paper, we describe how a family of practical slicing
algorithms can be derived directly from semantic specifications.
The title of this paper is a triple entendre, in the sense that our
technique is “parameterized” in three respects:

� We generalize the traditional notions of static and dynamic
slices to that of a constrained slice. Static and dynamic
slices have previously been computed by different techniques.
By contrast, our approach provides a generic algorithm for
computing constrained slices.

� Given a well-defined specification of a translation from a
programming language to a common intermediate represen-

�Supported in part by the European Union under ESPRIT project # 5399 (Compiler
Generation for Parallel Machines—COMPARE). Part of this work was done while this
author was at IBM.

To appear in the Proceedings of the 22nd ACM Symposium on
Principles of Programming Languages, San Francisco, January
1995

tation called PIM [12], we automatically extract a semantically
well-founded language-specific algorithm for computing con-
strained slices. An advantage of this approach is that only
the PIM translation is language dependent; the mechanics of
slicing itself are independent of the language.

� PIM’s semantics (and thus that of the source language via
translation) is defined by a set of rewriting rules. These rules
implicitly carry out many techniques used in optimizing com-
pilers, e.g., conditional constant propagation and dead code
elimination. The slices we obtain are thus often more precise
than those computed by previous algorithms. By choosing
different subsets of rules or adding additional rules, the preci-
sion of the analysis, as well as its time and space complexity,
may be readily varied. We illustrate the flexible nature of
our approach by defining several extensions to PIM’s core
logic. These variants describe differing treatments of loop
semantics, and consequently define differing slice behaviors.

One of the primary contributions of this paper is an algorithm
for computing constrained slices. Despite the myriad variations on
the theme of slicing that can be found in the literature [28], almost
all existing slicing algorithms fall into one of two classes: static
slicing algorithms, which make no assumptions about the inputs
to the program, and consequently compute slices that are valid for
all possible input instances, and dynamic slicing algorithms, which
accept a specific instantiation of all inputs, and compute slices
valid only for that specific case. A constrained slice is valid for all
instantiations of the inputs that satisfy a given set of constraints. In
the sequel, we will primarily consider constraints that specify the
values of some subset of the input parameters of the program.

The relation between constrained slicing, static slicing, and dy-
namic slicing is straightforward: a fully constrained slice (with
every input a fixed constant) is a dynamic slice, and a fully
unconstrained slice is a static slice. We believe that constrained
slicing can be more useful than static or dynamic slicing in helping
programmers understand programs, by enabling the programmer to
supply a variety of plausible input scenarios that the slicing system
can exploit to simplify the slice obtained.

While Venkatesh has defined a notion of a quasi-static slice [30]
similar to that of a constrained slice, we know of no previous work
that describes how such slices may be computed. In a recent paper
[24], Ning et al. describe a reverse engineering tool that permits
users to specify constraints on variables and extract conditional
slices, but they do not specify how these slices are computed or
how powerful the constraints can be. One might consider combin-
ing partial evaluation of programs with static slicing to compute
constrained slices, but, as will be explained later, this does not lead
to satisfactory results.

p = ?P;
q = ?Q;
if (p > 0)

ptr = &y;
else

ptr = &x;
if (q < 0) f

x = 17;
y = 18;

g else f
x = 19;
y = 20;

g
result = *ptr;

p = ?P;
q = ?Q;
if (p > 0)

ptr = &y;
else

;
if (q < 0) f

;
y = 18;

g else f
;

y = 20;
g
result = *ptr;

p = ?P;
q = ?Q;
if (p > 0)

ptr = &y;
else

ptr = &x;
if (q < 0)

; else f
x = 19;
y = 20;

g
result = *ptr;

result
result

given ?P �� �
result

given ?Q �� �

(a) (b) (c)

p = ?P;
q = ?Q;
if (p > 0)

ptr = &y;
else

;
if (q < 0)

; else f
;

y = 20;
g
result = *ptr;

p = ?P;
q = ?Q;
if (p > 0)

ptr = &y;
else

if (q < 0) f

g else f
x = ;
y = 20;

g
result = *ptr;

result
given ?P �� �� ?Q �� �

result
given ?P �� �� ?Q �� �

(d) (d�)

Figure 1: (a) Example program (= static slice). (b) Constrained slice with
?P �� �. (c) Constrained slice with ?Q �� �. (d) Constrained slice with
?P �� �� ?Q �� � (= dynamic slice). (d�) Non-postprocessed term slice
corresponding to (d).

The feasibility of the ideas in this paper has been demonstrated
by a successful prototype implementation of the PIM logic and trans-
lators for significant subsets of such disparate languages as C and
Cobol using the ASF+SDF Meta-environment [19], a programming
environment generator based on algebraic specifications.

2 Overview

In this section, we will give a brief overview of our approach using
examples. Details will follow in subsequent sections.

2.1 Motivating Example

Fig. 1(a) shows an example program written in �C, a C subset that
we will use for all the examples in this paper. �C has the standard
C syntax and semantics, with one extension: meta-variables like
?P and ?Q are used to represent unknown values or inputs. All
data in �C are assumed to be integers or pointers; we also assume
that no address arithmetic is used. When we discuss loops in
Section 5, we will for simplicity further restrict our analysis to
programs containing only constant L-values.

The example of Fig. 1(a) is not entirely trivial, due to manipu-
lation of pointers in a conditional statement. The static slice with
respect to the final value of result consists of the entire program.
The dynamic slice with respect to the final value of result for
input p = 5, q = 3 is shown in 1(d); note that it does not im-
mediately reveal the effect of each input. The effect of input p =
5 is illustrated by the constrained slice of 1(b); clearly it causes the
aliasing of *ptr to y, and thereby makes both assignments to x
obsolete. In 1(c), the effect of the other input, q = 3 is shown: the
statements in the first branch of the second if statement become
irrelevant. Note that in general, it is not the case that a slice with
respect to multiple constraints consists of the “intersection” of the
slices with respect to each constraint.

In examples in the sequel, we will use the double box notation
of Fig. 1 to denote a slicing criterion and the constraints, if any,
on meta-variables. We will also use the terminology “slice of P
at x [given C]” to denote the slice of P with respect to the final
value of variable x [given meta-variable constraints C]. Slicing
with respect to arbitrary expressions at intermediate program points
will be discussed in Section. 4.6.

2.2 Slicing via Rewriting

PIM [12] consists of a rooted directed acyclic graph program
representation� and an equational logic that operates on PIM graphs.
These graphs can also be interpreted (or depicted) as terms after
“flattening.” A subsystem of the full PIM logic defines a rewriting
semantics for a program’s PIM representation. Rewriting rules can
be used not only to execute programs, but also to perform various
kinds of analysis by simplification of a program’s PIM representa-
tion; each simplification step consists of the application of a rule of
PIM’s logic.

To compute the slice of a program with respect to the final
value of a variable x, we begin with a term that “encodes” (i)
the abstract syntax tree (AST) of the program, (ii) the variable x
that represents the slicing criterion, and (iii) a (possibly empty) set
of additional constraints. Next, we translate the AST to a graph
comprising its PIM representation. This translation is assumed to
be defined by a rewriting system (although it need not necessarily
be implemented that way). The resulting graph is then simplified by
repeated application of sets of rewriting rules derived from the PIM
logic. This reduction process is carried out using the technique of
term graph rewriting [4]. The graph that results from the reduction
process represents the final value of variable x (in terms of the
unconstrained meta-variables). During the reduction process, we
maintain dynamic dependence relations [13] that relate nodes of the
graph being manipulated to the AST. These relations are defined in
a simple way directly from the structure of each rewriting rule,
and will be discussed in more detail in Section 3. By tracing the
dynamic dependence relations from the simplified PIM-graph back
to the AST yields, we finally derive the slice of the AST with respect
to x. The steps involved in the slicing process are depicted in Fig. 2.

This basic slicing algorithm is unusually flexible, in that it can
be adapted to new languages simply by providing a source-to-PIM
translator for the language. In addition, simple alterations to the
rules or rewriting strategy can be used to affect the kinds of slice
produced, as well as the time or space complexity of the reduction
process. The ease with which we can handle constrained slices is
due principally to the fact that the reduction process adapts itself to
the presence or absence of information represented by constraints.
As more information is available, more rules are applicable that
have the potential to further simplify the slice.

�Although loops and recursive procedures admit a PIM graph representation with
cycles, we will use a simpler DAG representation for such constructs in this paper.

2

translate simplify

dynamic dependence relations

term graph rewriting

slicing criterion

simplified Pim graphabstract syntax tree Pim graphconstraints

extract slice

term slice

parseable slice

post-processing
optional

Figure 2: Overview of our approach.

2.3 Term Slices and Parseable Slices

Formally, our slices are contexts derived from the program’s AST,
i.e., a connected set of AST nodes in which certain subtrees are
omitted, leaving “holes” behind. By interpreting these contexts as
open terms, all of the slices we compute are “executable” via the
PIM rewriting semantics, in the sense that any syntactically valid
substitution for the holes in a term slice yields a program with the
same behavior with respect to the slicing criterion�.

It is often the case, however, that one wishes obtain a parseable
representation of the slice (i.e., a syntactically well-formed AST
without missing subtrees). Therefore, term slices may be optionally
postprocessed in various ways to obtain parseable programs with
identical behavior.

Fig. 1(d�) depicts the term slice corresponding to 1(d) before
postprocessing. Certain fine details are present in this term slice that
do not appear in Fig. 1(d), e.g., the L-values but not the R-values
of certain assignment statements appear in the term slice.

The advantage of term slices is that they have a consistent
semantic interpretation, and are oblivious to a language’s syntactic
quirks. This is particularly important in a language like C, where
virtually any expression can have a side effect, and thus for which
some parts of an expression can be relevant to a slice while others
are not.

Unfortunately, term slices often introduce a certain amount of
“clutter” not present in more ad-hoc algorithms; thus for the sake
of clarity, most of the example slices we use in the sequel will
be minimally postprocessed, primarily by replacing assignments
with a hole in the right-hand side by empty statements. We will
distinguish parseable slices from term slices by using boxes in the
latter to represent holes.

2.4 More Examples

The example in Fig. 3 illustrates the flexibility of our technique by
showing some of the differing treatments of loops that are possible
(loops will be further studied in Sec. 5). Fig. 3(b) depicts what
we will call a pure dynamic slice at result, given ?N �� � and
?P �� �. Note that this slice includes the while loop though it
computes no value relevant to the criterion. This is the case because
the underlying slicing algorithm faithfully reflects the standard se-
mantics, under which there is a dependence between the while
loop and the subsequent assignment to result. This phenome-
non is noted in Cartwright and Felleisen’s discussion of demand

�More precisely, the term “encoding” the original program and the slicing criterion
and the term “encoding” the slice (with any syntactically valid substitution for the
holes) and the slicing criterion both reduce to the same term/value.

and control dependence [5]. This notion of dependence is also
closely related to the notion of weak control dependence discussed
by Podgurski and Clarke [26]. The slice in Fig. 3(c), similar to
the kind computed by Agrawal and Horgan [1], results from adding
some simple equational rules to be discussed later. The same vari-
ant of the slicing algorithm produces the result in Fig. 3(d), though
the program is non-terminating for the constraints specified un-
der the standard semantics. Previous dynamic slicing algorithms
[1, 21] will not terminate for this input constraint. In this sense, our
dynamic slicing algorithm is “more consistently lazy”.

As a final example, consider the program in Fig. 4. Although
absurdly contrived, the example illustrates several important points.
By not insisting that the slice be parseable, we can make distinctions
between assignment statements whose R-values are included but
whose L-values are excluded and vice versa, as Fig. 4(b) shows.
We also see that it is possible to determine that the values tested
in a conditional are irrelevant to the slice, even though the body
is relevant. In general, our approach can make a variety of fine
distinctions that other algorithms cannot.

Fig. 4(c) gives an example of a conditional constraint. Such
constraints can be handled by straightforward extensions to our ba-
sic algorithm. A detailed treatment of such constraints is outside the
scope of this paper, but we will discuss them briefly in Section 4.7.

3 Term Rewriting and Dynamic Dependence Tracking

Our approach to slicing is based on extending the generic notion
of dynamic dependence tracking in term rewriting systems [13]
to realistic programming languages. In this section, we review
dynamic dependence tracking and the basic ideas behind term and
graph rewriting. For further details on term rewriting, the reader is
referred to the excellent tutorial survey of Klop [20].

We begin by considering two PIM rewriting rules that define
simple boolean identities:

�hT � pi �� T �B���
�h�hp� � p�i � p�i �� �hp� � �hp� � p�ii �B�	�

A rewriting rule is used to replace a subterm of a term that matches
the rule’s left hand side by the rule’s right hand side. Variables
(here, p, p�, p�, and p�) match any subterm; all other symbols must
match exactly. By applying the rules above, the term

�h�h�hT � Fi � �hF � Tii � Fi

may be rewritten as follows (subterms affected by rule applications

3

n = ?N;
i = 1;
sum = 0;
while (i != n) f
sum = sum + i;
i = i + 1;

g
if (?P)
result = n*(n-1)/2;

else
result = sum;

n = ?N;
i = 1;

;
while (i != n) f

;
i = i + 1;

g
if (?P)

result = n*(n-1)/2;
else

;

result
given ?N �� �� ?P �� �

(a) (b)

n = ?N;
;

;

;
if (?P)
result = n*(n-1)/2;

else
;

n = ?N;
;

;

;
if (?P)
result = n*(n-1)/2;

else
;

result
given ?N �� �� ?P �� �

result
given ?N �� �� ?P �� �

(c) (d)

Figure 3: (a) An example program. (b) Pure dynamic slice at result
given ?N �� �, ?P �� �. (c) Lazy dynamic slice at result given
?N �� �, ?P �� �. (d) Lazy dynamic slice at result given ?N �� �,
?P �� �.

*(ptr = &a) = ?A;
b = ?B;
x = a;
if (a < 3)

ptr = &y;
else

ptr = &x;
if (b < 2)

x = a;
(*ptr) = 20;

*(= &a) = ?A;
b = ;
x = a;
if (a < 3)

ptr = &y;
else

if (<)
x = a;

(*ptr) = ;

*(= &a) = ?A;
b = ;
x = ;
if (a < 3)

else
ptr = &x;

if (<)
x = ;

(*ptr) = 20;

x
given ?A ��

x
given ?A � �

(a) (b) (c)

Figure 4: (a) An example program. (b) Constrained slice at x given
?A �� �. (c) Conditional constrained slice at x given ?A � �.

F\/

\/

(B14)
\/

\/

/\

/\

F

/\

F

/\

T1T0 T2

/\

T

creation relation

residuation relation

dynamic depedence relation

F TT F

T

F

F T

(B10)

Figure 5: Example of creation and residuation relations.

are underlined):

T� � �h�h�hT � Fi � �hF � Tii � Fi�� (B14)

T� � �h�hT � �hF � �hF � Tiii � Fi�� (B10)

T� � �hT � Fi

Observe in the example above that the outer context �h� � Fi
(‘�’ denotes a missing subterm) is not affected at all, and therefore
occurs in T�, T�, and T�. Furthermore, the occurrence of variables
p�, p�, and p� in both the left-hand side and the right-hand side
of (B14) causes the subterms T, F, and �hF � Ti of the underlined
subterm of T� to reappear in T�. Also note that variable p occurs
only in the left-hand side of (B10): consequently, the subterm (of
T�) �hF � �hF � Tii matched against p does not reappear in T�.
Thus, the subterm matched against p is irrelevant for producing the
constant T in T�: the ‘creation’ of this subterm T only requires the
presence of the matched symbols “�” and “T”. This observation is
the keystone of our reduction-based slicing technique: We “track”
those subterms that are relevant to each reduction steps; subterms
that are relevant to no reduction step can then be eliminated from
the slice.

The tracking process determines not only which subterms are
relevant to a given reduction step, but also how subterms are com-
bined and propagated by the reduction as a whole. To accomplish
this task, we define for each reduction step that takes a term Ti
and yields a new term Ti�� the notions of creation and residua-
tion. These are binary relations between the nodes of Ti and the
nodes of Ti��. The creation relation relates the new symbols in
Ti�� produced by the rewriting step to the nodes of Ti that matched
the symbols in the left-hand side of the rewriting rule (making the
rewriting step possible). The residuation relation relates every other
node in Ti�� to the corresponding occurrence of the same node in
the Ti��. The dynamic dependence relation for a multi-step reduc-
tion r then consists, roughly speaking� , of the transitive closure of
creation and residuation relations for the rewriting steps in r. Fig. 5
shows all the relations for the example reduction discussed above.

For any reduction r which transforms a term T into a term T �,
a term slice with respect to some subcontext C of T � is defined as
the subcontext S of T that is found by tracing back the dynamic
dependence relations from C. The term slice S satisfies the follow-
ing properties: (i) S reduces to a term C� containing context C via
a reduction r�, and (ii) r� is a subreduction of r. These properties

�The notions of creation and residuation become more complicated in the presence
of so-called left-nonlinear rules and collapse rules. The exact problems posed by these
rules are outside the scope of this paper, but are extensively discussed in [13].

4

C

S
T

S

r

dynamic dependence relations

T ’ C ’

r ’

C’
C

Figure 6: The concept of dynamic dependence.

are rendered pictorially in Fig. 6, and have the important implica-
tion that all the slices computed by our technique are effectively
“executable” with respect to the rewriting semantics.

Our implementation maintains the transitive dependence rela-
tions between the nodes of the initial term and the nodes of the
current term of the reduction by storing with each node n in the
current term its term slice, which is the set of nodes in the initial
term to which n is related. (The dependence relations associated
with individual rewriting steps are not stored.) The term slice with
respect to a subgraph S of T is then defined as the union of term
slices with respect to the nodes in S.

Returning to the example of Fig. 5, we can determine the term
slice with respect to the constant T in T� by tracing back all cre-
ation and residuation relations to T�. By following the transitive
relations in Fig. 5; the reader may verify that this slice consists of
the subcontext �h�hT � �i � �i.

3.1 Efficient Implementation of Term Rewriting

We implement term rewriting using the technique of term graph
rewriting [4]. This technique extends the basic idea of term rewrit-
ing from labeled trees to rooted, labeled graphs, or term graphs.
A term graph may be viewed as a term by traversing it from its
root and replacing all shared subgraphs by separate copies of their
term representations. For clarity, we will frequently depict PIM
term graphs or subgraphs in “flattened” form as terms. (The flat-
tened representation of the graph T� in Fig. 7, for instance, is
�h�hT � Fi � �hT � Tii.)

For certain kinds of rewriting rules, term graph rewriting has the
effect of creating shared subgraphs where none existed previously.
Consider following PIM boolean rule:

�hp� � �hp� � p�ii � �h�hp� � p�i � �hp� � p�ii (B22)

In rule (B22), the variable p� appears twice on the right-hand side.
Although the left-hand side instance of p� in (B22) matches only a
single subterm, the result of the rule application must contain two in-
stances of the subterm matched by p�. Rather than duplicating such
a term, it can be shared, as illustrated by the example in Fig. 7, in
which rule (B22) is applied to term T� � �h�hT � Fi � �hF � Tii.
We see also from Fig. 7 that the result of a single application of
reduction rule (here, rule (B10)) inside a shared subterm can also
be shared, thus giving the effect of multiple reductions for the price
of one.

In general, graph rewriting is performed by replacing the sub-
graph matched by a rule with the graph corresponding to the rule’s

\/

FT

\/

\/

/\ /\

\/

FT

F T

/\ \/

T

/\ /\

F T

T

(B10)(B22)

T0 1
T T2

F

Figure 7: Creation of shared subgraphs and a shared reduction step using
a graph rewriting implementation.

right hand side. The nodes in a replaced subterm that are not ac-
cessible from elsewhere in the graph are reclaimed by a memory
manager. Since the PIM representation of programs contains many
shared subgraphs, a graph rewriting implementation is critical to
acceptable performance of the algorithm in practice.

4 PIM � Dynamic Dependence Tracking � Slicing

PIM was designed to generalize and rationalize many of the prop-
erties of commonly used graphical representations for imperative
programs such as SSA-form [7] and PDGs [10], and to provide
a semantically sound but mechanizable framework for perform-
ing program analysis and optimization. PIM’s formal progenitor is
Cartwright and Felleisen’s notion of lazy store [5], interpreted oper-
ationally rather than denotationally. Unlike SSA-form and PDGs,
computations on addresses required for arrays or pointers are “first-
class citizens,” and procedures and functions are integral parts of
the formalism.

4.1 �C-To-PIM Translation

Fig. 8 depicts a very simple �C program, P�, its corresponding PIM
representation, and several slicing-related structures.

The graph depicted in Fig. 8, denoted by Slice�P��x� hi�, is
generated by translating P� to its corresponding PIM representation
and embedding the resulting graph (labeled SP�) in a graph corre-
sponding to the slicing criterion x. Slice�P�� x� hi� is simply the
PIM expression denoting the final value of the variable x. Only a
small number of graph edges, primarily those connecting shared
subgraphs to multiple parents are shown explicitly in Fig. 8; we
have flattened most other subgraphs for clarity. Parent nodes in
the graph are depicted below their children to emphasize the cor-
respondence between program constructs and corresponding PIM
subgraphs.

SP� is generated by a simple syntax-directed translation. A
representative subset of the translation rules appears in Fig. 9. The
translation is specified in the Natural Semantics style [17] for clar-
ity; however, the translation is implemented by a pure rewriting
system�. The translation uses several sequent forms corresponding
to the principal C syntactic components. The general form for these
sequents is:

s � c � t

Such a sequent may be read as “�C construct c translates to PIM term
t, given initial (PIM) store s. ‘�’ is subscripted by ‘Pgm’, ‘Exp’, or
‘LValue’, depending on whether a statement, expression, or L-value
(address), respectively, is being translated. Pure expressions (those

�A rewriting system can be derived from simple classes of Natural Semantics
specifications such as the one in Fig. 8 in a purely mechanical fashion.

5

1P x,,)Slice ()(@) !addr(x

VP

))paddr(

S1)(

S2()

S3()

))addr(y S4()

S5)(

P1
S()

PIM Translation

PIM

)

}

=x

{ addr([T }]

}[]T @(!

{ addr(}[]T)@)addr(p(!

~ ,(@) !addr()p= 0

[] }

)(V

T @(!

if (p)

{

x = p ;

p = ?P ;

y = p ;

x = y ;

{ addr(

{ addr(

p)

y)

x)

x)

denotes root node of enclosed graph

between C syntax tree and
initial transitive dependence relations

graph

Program P
1

(only a subset of edges are depicted)

(M

(M

1

(M

(M1

2

3)

)

)5

Figure 8: P� and its PIM representation, SP� . Major corresponding
structures in P� and SP� are located side-by-side.

having no side-effects) and unpure expressions are distinguished in
the translation process; subscripts p and u are used to denote the two
types. The shared subgraphs in SP� arise from repeated instances
of store variables in the antecedents of the translation rules in Fig. 9,
as illustrated in Fig. 7.

The translation process establishes transitive dependence rela-
tions between nodes of the program’s AST and the PIM graph SP� ,
as described in Section 3. Fig. 8 depicts a representative subset of
these relations for the root nodes of certain subtrees of the syntax
tree of P�. We have used vestigial arrows in the syntax tree to indi-
cate that nodes are referred to by some set of nodes in the PIM graph.
We have also depicted statements ofP� and their corresponding PIM
subgraphs side-by-side.

4.2 Overview of PIM

In this section, we briefly outline the function of various PIM sub-
structures using program P� and its PIM translation, SP� .

The graphSP� as a whole is a PIM store structure� , essentially an
abstract term representation of memory. SP� is constructed from
the sequential composition (using the ‘	’ operator) of substores
corresponding to the statements comprising P�. The subgraphs
accessible from boxes labeled S�–S� in Fig. 8 correspond to the
four assignment statements in P�. The simplest form of store is a
cell such as

S� � faddr�p�
� �T� PV g

A store cell associates an address expression (here addr�p�) with
a merge structure, (here �T � PV). Constant addresses such as
addr�p� represent ordinary variables. More generally, address

�For clarity, Fig. 8 does not depict certain empty stores created by the translation
process; this elision will be irrelevant in the sequel.

(P)
�s � Stmt �Stmt u

� Stmt �Pgm u

(S�)
s � f StmtList g �Stmt u�

s � u � Stmt �Stmt u
�

s � f StmtList Stmt g �Stmt u � u�

(S�)
s � Exp �Exp hv� ui
s � Exp; �Stmt u

(S�)

s � Exp �Exp hvE� uEi�
s � uE � Stmt�Stmt uS
s � if (Exp) Stmt �Stmt

uE � �v�E � uS�

v�E � �h�hvE � �i i

(S�)

xS � Exp �Exp hvE� uEi�
s� � Stmt�Stmt uS

s � while (Exp) Stmt �Stmt

Loop��xS �body�uE � v
�

E� uS�� s�

s� � xS � uE
v�E � �h�hvE � �i i

(E�)
s � Expp �Expp

v

s � Expp �Exp hv� �si

(E�)
s � Expu �Expu

hv� ui
s � Expu �Exp hv� ui

(Ep�) s � Id �Expp
�s 	 addr�Id��

(Ep�) s � ?Id �Expp
IdV

(Eu�)
s � Exp �Exp hv� ui

s � * Exp �Expu
h��s � u� 	 v�
� ui

(Eu�)
s � LValue �LValue hv� ui
s � & LValue �Expu

hv� ui

(Eu�)

s � Exp �Expu
hvE� uEi�

s � uE � LValue�LValue hvL� uLi
s � LValue = Exp �Expu

hvE� uE � uL � fvL �� �T� vE �gi

(Eu�)

s � Exp� �Expu
hv�� u�i�

s � u� � Exp� �Expu
hv�� u�i

s � Exp� + Exp� �Expu
hhv� � v�i� u� � u�i

(Lp) s � Id �LValuep addr�Id�

(Lu)
s � Exp �Expu

hv� ui
s � * Exp �LValueu hv� ui

Figure 9: Representative translation rules for �C.

expressions are used when addresses are computed, e.g., in pointer
references. ‘�s’ is used to denote the empty store.

Merge structures are a special kind of conditional construct con-
taining ordered guarded expressions. The simplest form of merge
expression is a merge cell such as �T�PV , in which some boolean
predicate (here, T) guards a value (here, the free PIM variable PV
representing the �C meta-variable ?P). The formal consequence
of the presence of a free variable is that any subsequent rewriting-
based analysis is valid for any instantiation of the free variable.

Merge expressions m� and m� may be composed into ordered
lists of the form m� 	m m�, in which the rightmost guarded cell
takes precedence. Such lists correspond roughly to Lisp cond ex-
pressions, and represent information similar to SSA-form � nodes
[7], particularly the gated SSA variant of [3]. Unlike normal con-
ditional expressions, however, merges cannot evaluate to values
unless they are referred to in a special context represented by the
selection operation, ‘�’. Among other places, this operator is used
in the translation of every variable reference. SP� contains no
non-trivial merge structures, but such structures will arise in the
simplification process. �m denotes the null merge structure. In the
sequel, we will often drop subscripts distinguishing related store

6

and merge constructs when no confusion will arise.
In addition to guards in merge cells, stores such as S� (which

corresponds to the ‘if’ statement as a whole) may also be guarded.
The guard expression V� corresponds to the if’s predicate expres-
sion. Consistent with standard C semantics, the guard V� tests
whether the value of the variable p is nonzero.

The general form for the PIM graph constructed for a slice of
program P at x given constraints

?X� �� Exp�� � � � �?Xn �� Expn

is

Slice�P�x� h?X� �� Exp�� � � � �?Xn �� Expni�
� ��SP�addr�x���� �X�V �� v�� � � � � XnV �� vn

where SP is the PIM store to which P compiles, the X�V are free
variables corresponding to the meta-variables and the vi are PIM
graphs corresponding to the value of the Expi (ignoring side ef-
fects). Slice�P�x� h� � �i� is the PIM representation of the value of
x after execution of P , with substitutions for free variables defined
by the constraints.

4.3 PIM Rewriting and Elimination of Dependences

PIM’s equational logic consists of an “operational” subsystem, PIM�,
plus a set of additional non-oriented equational rules for reasoning
about operational equivalences in PIM�, instances of which can
also be oriented for use in analysis. PIM� is confluent and nor-
malizing (assuming an appropriate strategy), thus it can be viewed
as defining an operational semantics or interpreter for PIM terms.
An important subsystem of PIM� that defines the semantics of pro-
grams without loops or procedures, PIM�t , is canonical, that is,
strongly normalizing as well as confluent. PIM� can be enriched
with certain oriented instances of rules in (PIM� PIM�) in such
a way that confluence is preserved on closed terms, and such that
unique normal forms for open terms exist up to certain trivial per-
mutations. PIM’s rules and subsystem structure are described in
detail in [12]; key subsystems are reviewed in Appendix A.

Given a programP and a slicing criterion x, we use normalizing
sets of oriented PIM equations to simplify Slice�P�x� h� � �i� graphs
by reducing them to normal (i.e., irreducible) forms. From the
point of view of slicing, the goal of this simplification process is
to eliminate in a sound, systematic way, as many subgraphs of
Slice�P�x� h� � �i� as possible that do not affect its behavior.

4.4 Reduction of Unconstrained and Constrained Slices

Fig. 10 depicts key steps in the reductions of Slice�P��x� h?P ��
�i� and Slice�P��x� hi�, the slices of P� that result from these
reductions, and certain dependence relations for reduction steps
that are critical to producing the slices. These reductions share a
common initial subsequence that is independent of the substitution
generated in the constrained case. We have numbered certain im-
portant intermediate graphs in the reductions. The interpretation of
several of these graphs (depicted in flattened form) is as follows:

Graph (1) is the flattened and abbreviated form ofSlice �P��x� hi�.
Graph (2) results from multiple applications of the rule

�s� 	s s�� � v �� �s� � v� 	m �s� � v� �S4�

which have the effect of distributing the reference to the variable x,
addr�x�, to the sequence of substores S�, S�, S�, S�. Graph (3)
results from applications of the rule

fv�
� mg � v� �� �hv� � v�i�m m �S1�

to all but the rightmost subgraph. (S1) has the effect of converting
references to store cells into conditional tests comparing the cell
and dereferencing addresses; these predicates guard the merge cells
M�, M�, M�, and M�, which are part of the original PIM graph
SP� . Graph (4) results from evaluation of address comparisons.
The comparison fails for assignments represented by S� and S�
(which are irrelevant to x) and succeeds in the case of S� and S�
(which both contain assignments to x). At (5), references to irrel-
evant assignments have been reduced to null merges. At (6), after
eliminating null stores, the remaining expressions essentially repre-
sent the two definitions of x that “reach” its final value. Graph (7) is
derived by first simplifying the expression containing merge struc-
ture M�, yielding a merge cell containing the free meta-variable
?P, then combining the PIM expression representing the predicate
guarding the if statement, V�, with a predicate derived from the
address comparison for the nested store for the assignment in store
S� (representing the result of the assignment inside the if).

The reduction thus far has the effect of eliminating all assign-
ments irrelevant to the final value of x. At this point, the reductions
in the constrained and unconstrained cases diverge:

4.4.1 Constrained Case: Slice�P��x� h?P �� �i�

In the constrained case, PV is bound to �, i.e., is false. In step (8a),
the highlighted application of the rule

F�� l �� �� (L6)

has the effect of eliminating the body of the if from the final slice.
This can be seen in detail in the “exploded” (L6) rule application in
Fig. 10. In this case, the only transitive dependence edges linking
the constructs in the body of the if statement and the identifier p
in the assignment y = p; have their origin in the subgraph S�.
When this subgraph is eliminated by the application of (L6), the
constructs effectively disappear from the slice.

While it may appear that the slice results entirely from the
application of a single rule, this rule is only the last of several
rules that eliminate transitive edges from PIM nodes to the omitted
constructs in P�. Only when the last edges are eliminated does the
construct disappear from the slice. Other rules have the effect of
combining dependence edges emanating from several intermediate
nodes into a single node (as the two single-step dependence edges
in the depiction of rule (L6) illustrate).

4.4.2 Unconstrained Case: Slice�P��x� hi�

The unconstrained case is somewhat more interesting than the con-
strained case: Although we do not know the value of PV and thus
cannot effectively evaluate the if statement in P�, we discover
that the two reaching definitions for x both assign the same value
to x, namely, PV . Application of several rules allows us to com-
bine guards of merge cells with the same guarded value into the
disjunctive expression shown in (11b).

The next step, the reduction of (11b) to (12b), discovers that
the predicate’s value itself is irrelevant to the final value of x. As
the exploded view this rewrite step illustrates, there is no transitive
dependence between the predicate p of the source AST and any
of the nodes in the resulting term (12b) (or the final term (13b)).
Consequently, the unconstrained slice does not contain the predicate
of the if statement, though it does contain assignment statement
within the if statement.

Slices which contain statements from the arms of a conditional
statement but not its predicate, are unusual enough to deserve some
discussion. Such slices indicate that the value of the predicate it-
self is irrelevant, even though the conditional statement contains

7

*

!x)addr(S1 S2 S3 S5 @())(

PV[]T xaddr()S4~ = PV , 0() @) !(

*

*

*

*

*

0 0

x)addr(S1 @(x)addr(S2 @() x)addr(S3)@(

PV unconstrained

PV[]T xaddr()S4~ = PV , 0() @) !(

*

*

*

*

PV

PV[]T V5~ = PV , 0[T ,]() !

PV[]T(PV~ PV, 0=[]) !

~ PV, 0= PV[T ,] !

PV[]T !

*

PV[]T V5~ = PV , 0x)addr(= ,)addr(x ,[]

dependence edge deleted during reduction

single-step dynamic dependence relations

transitive dynamic dependence relations

denotes root node of enclosed graph

denotes all nodes in enclosed graph

(not all edges are depicted)

(not all edges are depicted)

[T 0] xaddr()S4)F(@() !

[T 0] 0() !

[T]0 xaddr()S400 ,=~)(@() !

*

[T 0] 0 xaddr()@() !

*

*[T 0] !

*

(7a)

(8a)

(9a)

(11a)

(10a)

(12a)

(L6)

0

PV := 0

T
(B10)

TPV

x = p ;x = p ;

1

x = p ;

0
(L6)

x = p ;

S4

x)addr()addr(p , addr(y addr(x x)addr(addr()x= ,

)xaddr()@

)xaddr()@

)xaddr()@

)xaddr()@

xaddr()@

M

MM

x
given ?P := 0

x

(1)

(7)

(6)

(5)

(4)

(3)

(2)

(!)

(!)

(!)

)() !

(7b)

(8b)

(9b)

(10b)

(11b)

(12b)

(13b)

(B10)

() !

, ~ = , 0

{

y = p ;

}

x = y ;

p = ?P ;

if ()

{

if (p)

y = p ;

}

x = y ;

p = ?P ;{

if (p)

}

p = ?P ;

y = ;

F

{

if (p)

y = p ;

}

x = y ;

p = ?P ;

=))= ,(() ()

F() F() T()

T()

(T()

S4)((

S4)((

S)((

S)((V4

V

V

V1

1

1 4

4

) !S4)(V1

1) M

M

M

M 32

3

3

M

2

3

Figure 10: Reduction of Slice�P�� x� hi	 and Slice�P��x� h?P �� �i	. Steps in which removal of dependence edges eliminates constructs from slices are
highlighted along with the resulting slices.

8

some relevant statement, e.g., an assignment to some relevant vari-
able. Such situations can arise in realistic programs. Consider, for
example, the statement

if (P) f(foo); else f(bar);

where the procedure f has some side-effect on some variable x of
interest, and where this side-effect itself is independent of the argu-
ment to the procedure. Here, the two call statements are relevant to
the final value of x, though the predicate itself is irrelevant. This re-
flects a kind of reasoning that programmers do use when analyzing
a program backwards, and can result in substantially smaller slices
because of the elimination of the statements that the predicate itself
depends on. The possibilities for computing more precise slices in
this fashion are even greater in the case of constrained slicing.

4.5 Slicing and Reduction Strategies

As PIM� is a confluent rewriting system, reductions may be per-
formed anywhere in a graph without affecting the final term pro-
duced (assuming the reduction terminates at all). This “stateless”
property of reduction systems accommodates a variety of perfor-
mance tradeoffs derived from varying the reduction strategy. We
use an outermost or “lazy” strategy, which ensures that only steps
that contribute to a final result are performed. (Note, however, that
the reduction depicted in Fig. 10 uses a strategy that is not strictly
outermost to better illustrate the properties of certain intermediate
terms). Alternatively, the PIM representation of the entire program
could be normalized “eagerly” prior to the specification of any slic-
ing criterion; those steps specific to the criterion or constraints could
be performed later.

Reduction strategies can also have an effect on slices. In the
constrained case, both of the reductions depicted in Fig. 10 are
valid, and, consequently both of the slices depicted are also valid.
Slices are therefore not necessarily unique, even when the underly-
ing reduction system is confluent. However, our reduction strategy
favors the left reduction over the right one in the constrained case.
Intuitively, this favors a “standard” execution semantics that cor-
responds most closely with results of traditional program slicing
algorithms.

4.6 Slicing at Intermediate Program Points

Although our discussion thus far has concentrated on computing
slices with respect to the final values of variables, our approach is
capable of computing slices with respect to any expression at any
program point. Conceptually, a slice with respect to a�C expression
e (assumed to be side-effect free) at some specific program point
can be computed as follows: First, introduce a new variable v and
an assignment of the form

v = ophv � ei;

at the program point of interest, where op is an abstract, uninter-
preted operator. Then, compute the slice with respect to the final
value of v. Variable v has the effect of accumulating the sequence
of values the expression takes on at the desired program point.

In practice, it is not necessary to alter the program in order to
compute slices at intermediate points. An implementation can in-
stead construct and maintain a reference to the PIM store subgraph
sp corresponding to every program point p (note that the graphs
representing these stores will generally have many nodes in com-
mon). The slice with respect to the program point of interest is then
computed by normalizing the PIM expression corresponding to the
translation of e in initial store sp.

4.7 Conditional Constraints

A slice with respect to a conditional constraint such as that depicted
in Fig. 4(c) can be computed by constructing a PIM graph roughly
equivalent to that which would be produced by inserting the body
of the program in a conditional statement where the predicate is the
conjunction of all such constraints.

The effectiveness of our slicing algorithm in handling condi-
tional constraints depends primarily on its ability to reason about
the operations allowed in such constraints. The extensible nature
of our approach makes it easy to augment the slicing algorithm
by incorporating sophisticated reasoning capabilities about partic-
ular domains into the slicing algorithm, as it only involves adding
rewrite rules characterizing the appropriate domains. For exam-
ple, in the case of Fig. 4(c), rudimentary rules for reasoning about
arithmetic inequalities suffice to compute the slice shown.

4.8 Complexity Tradeoffs

Use of different normalizing subsets of PIM equations allows var-
ious accuracy/time tradeoffs in the analysis process. For instance,
pointer-induced alias analysis is NP-complete even in the absence
of loops and procedures [22], although such analysis is usually
tractable in practice. By including or excluding appropriate PIM
rules, one can effectively choose more precise (but potentially
slow) or more conservative (but guaranteed fast) pointer analysis.
For instance, eliminating rule (M3) (see Fig. 18) effectively inhibits
propagation of symbolic addresses representing pointer values, thus
preventing these expressions involving these addresses from being
resolved or simplified. Rule (L11) has the effect of joining common
results of common expression propagation (including address ex-
pressions) in different branches of a conditional, and can be enabled,
disabled, or restricted to prevent or allow such propagation.

The result of more accurate pointer analysis in slicing is mani-
fested by elimination of more subgraphs of the program represen-
tation that are irrelevant to the slicing criterion. A similar phenom-
enon occurs with simplification of boolean predicates involved in
conditionals.

5 Variations on a Looping Theme

This section discusses a number of PIM variants suitable for com-
puting slices in loops. These sets of rules may be used as building
blocks for generating a variety of different slicing algorithms with-
out changing the underlying algorithmic framework. In the sequel,
we will use COREPIM� to denote those PIM rules that are not loop
related and are common to the slicing variants we will present.
While the COREPIM� rules allow addresses to be stored as values
and manipulated, the analysis rules presented in this section assume
for simplicity that no pointers are used. The ideas in this section can
be adapted easily to produce conservative slices in the presence of
pointers; more precise pointer analysis is also possible, but requires
more sophisticated rules for reasoning about address equivalence.

5.1 Loop Execution Rules: Pure Dynamic Slicing

Loops are represented in PIM by terms of the form

Loop��xS�body�uE� vE� uS�� s�

Informally, uE is a store representing the side-effects of evaluat-
ing the loop predicate, vE represents the value of the predicate,
uS is a store representing the side-effects of the loop body, all
as functions of the store xS at the beginning of a loop itera-
tion. The second argument s is the incoming store. The term

9

Loop��xS �body�uE � vE � uS	� s	 ��
S�� Y �fL�xS �

�uE �s �vE �s �uS �s
S�fL �xS �s uE �s uS					 	 s	 �loop	

(where fL �� �FV �uE	 � FV�uS	 � FV�vE			

��x�f	 g �� f
x �� g� ��	
�Y f	 �� f �Y f	 �recursion	

Figure 11: Loop execution rules

Loop��xS �body�uE � vE � uS	� s	 ��
Project� Loop��xS �body�uE � vE � uS	� s	�

AssignedVars�uE �s uS	 	 �LA�	

Project�s� fg	 �� �s �LA�	
Project�s� fvg � r	 �� �v 	� s � v	 �s Project�s� r	 �LA�	

...
rules for computing AssignedVars�s	,

the set of variables assigned to in the store s
...

Figure 12: � rules

Loop��xS �body�uE � vE � uS�� s� itself denotes the store repre-
senting the side-effects of executing the loop until the predicate
evaluates to false. The rewriting rules in Fig. 11, which we will
refer to as loop execution rules, specify this behavior formally. The
underlined subterm of the right-hand side of the rule (loop) may
be read as: (the side-effects of executing the loop consists of) the
side-effects of evaluating the loop predicate and, if the predicate
evaluates to true, the side-effects of executing the loop body once,
composed with the side-effects of executing the same loop with
an appropriately updated store, namely, xS 	s uE 	s uS . The
rest of the term serves to express the recursion using the recursion
combinator Y. f �x �� g represents the result of substituting g for
free occurrences of x in f (with the usual provisos about variable
capture and renaming), FV��� is the set of free variables in a term
� , and ‘S’ is a technicality—a “sort coercion” operator that has no
semantic content. [11] shows how the � rule and substitution can
be encoded as pure rewriting rules.

Utilizing these rules and COREPIM� during the simplification
phase leads to a straightforward dynamic slicing algorithm that
we call a pure dynamic slicing algorithm. Sec. 2.4 discusses an
example (Fig. 3(b)) of this sort of slice.

5.2 � Rules: Lazy Dynamic Slicing

Fig. 12 depicts a set of rules, the � rules, that statically simplify
PIM stores generated by loops. The effect of � rules on the PIM

representation is essentially to introduce an SSA-form � node [7]
for every variable that might be assigned a value inside the loop. In
terms of slicing, these rules have the effect of permitting loops to
be removed from slices if it can be determined (statically) that the
loop cannot assign to any “variable of interest”.

We will refer to the slicing algorithm obtained by using both the
loop execution rules and the � rules in conjunction with COREPIM�

as a lazy dynamic slicing algorithm. This slicing algorithm com-
putes traditional dynamic slices, such as Fig. 3(c), as well as the
somewhat more unusual result in Fig. 3(d).

The slices produced by our lazy dynamic slicing algorithm are
closer to the slices produced by the Agrawal-Horgan algorithm

x = ?X;
y = x;
if (x < 0)

x = -x;
z = x;

x = ?X;
;

if (x < 0)
;

z = x;

z
given ?X �� �

(a) (b)

Figure 13: (a) Example program. (b) Dynamic slice at z given ?X �� �.

[1] than to the slices produced by the Korel-Laski algorithm [21].
The Korel-Laski slices tend to be larger than the Agrawal-Horgan
slices since they, unlike the Agrawal-Horgan slices, are executable.
Our dynamic slices, though not executable under the “standard
semantics”, are executable with respect to the semantics specified
by the rewriting rules.

Fig. 13(a) illustrates an important difference between our al-
gorithm and previous dynamic slicing algorithms. Since the if
predicate evaluates to false, previous dynamic slicing algorithms
exclude the predicate (and any of the statements the predicate eval-
uation is dependent upon) from the dynamic slice with respect to
z. However, as has been observed before [21, 25, 2], the predicate
does “affect” the final value of z, and in applications such as de-
bugging it is useful to include these statements in the slice. In this
sense, our slicing algorithm produces a slice that is semantically
more consistent than existing dynamic slicing algorithms.

5.3 Loop Splitting Rules: Static Loop Slicing

Fig. 14 contains the essential subset of a collection of rules that we
will refer to as loop splitting rules, which can be used in conjunction
with COREPIM� to compute a classical static slice. The goal of
these rules is quite simple. Consider the PIM term

Slice�while�i 	 ���fj � j �
� i � i � �� g� i� hi�

This reduces to a term of the form

Loop��xS�body�uE� vE � uS�� s� � addr�i�

where uS , representing the loop body, is the store

faddr�j�
� T�v �h�xS � addr�j��� �
ig
	s faddr�i�
� T�v �h�xS � addr�i��� � �ig

Intuition suggests that this term should be reducible to

Loop��xS �body�uE � vE � uS
��� s� � addr�i�

where uS � is the store

faddr�i�
� T�v �h�xS � addr�i��� � �ig

Such reductions are crucial to computing static (and constrained)
slices. In general, we would like to reduce a term of the form

Loop��xS �body�s�� p� s��� s�� � a

to a term

Loop��xS �body�s�
�
� p� s�

��� s�
�� � a

10

Loop��xS �body�uE � vE � uS	� s	 � v ��
�Loop��xS �body�uE � vE � uS	� s	 �� fvg	 � v �SA�	

�a 	� m	 �� l �� �a � l	�s �a 	� m	 �SA�	

�s �� l �� �s �SA�	
�s� �s s�	 �� l �� �s� �� l	 �s �s� �� l	 �SA	
�g �s s	 �� l �� g �s �s �� l	 �SA�	

r
 � l �Demand�vE � xS	 �Demand�uE �� r� xS	
�Demand�uS �� r� xS	 	 � T

Loop��xS �body�uE � vE � uS	� s	 �� l ��
Loop��xS �body�uE �� r� vE � uS �� r	� s �� r	 �SA�	

...
rules for computing Demand�s� xS	, the set of
addresses dereferencing free instances of xS in s

...

Figure 14: Loop splitting rules

where each si
� is a “restriction” of the original store si to the

addresses that are relevant, given that we are interested only in the
final value at address a. We need to do two things here. First, we
need to identify the set r of relevant addresses (variables), second,
we need to perform the actual restriction of the stores to the relevant
variables.

The rules in Fig. 14 show the essence of what we need to do.
Rule (SA1) simply transforms a dereference operation on a store
computed by a loop into a corresponding dereference operation on
a restriction of the loop-computed store. This leaves the bulk of
the work to the operator ��, whose purpose is to restrict a store to
a set of addresses of interest. Rule (SA2) is the key rule defining
the behavior of this operator. (The operator may be interpreted
as denoting the usual set-theoretic member function.)

The rule of primary interest is (SA6), which performs the re-
striction operation for a store generated by a loop. Restricting a
loop-computed store with respect to a set l of addresses requires
restricting the loop body store and the initial incoming store with
respect to a set of addresses r. The set r is a superset of the set l, and
effectively accounts for loop-carried dependences. The antecedent
of rule (SA6) specifies the condition this set r has to satisfy, namely
that the set of variables r should include the set l, the set of variables
required to compute the loop predicate, and the set of variables nec-
essary to compute values assigned to the variables in r within the
loop. Put another way, the antecedent of (SA6) ensures that the
set of variables r is transitively closed with respect to loop-carried
dependences. The auxiliary function Demand�t� xS�, roughly,
identifies “upwards exposed” variables in t. More formally, given
a store or merge t, Demand�t� xS� identifies dereferences of the
free store variable xS in t and collects the address operands of such
dereferences.

Rule (SA6) is not a pure rewriting rule, since the variable r
in the antecedent of the rule is not bound in the left-hand side of
the rewrite rule. Applying rule (SA6) thus requires computing
some solution r to the constraint expressed by the antecedent. The
computation of the least solution of this constraint can be performed
easily using rewriting rules that compute an iterative computation
of the constraint’s least fixed point.

Rules expressed in a “constraint” style such as (SA6) have the
advantage that they can accommodate analysis algorithms imple-
mented by non-rewriting means (and thus for which dependence
tracking cannot be performed). Observe that (SA6) is valid for
every possible instantiation of the variable r—thus, one may view
(SA6) as a rule schema describing infinitely many rewriting rules.

One may then use any mechanism whatsoever to choose an instanti-
ation for the rule, treating the instantiation as an ordinary rewriting
rule with respect to dependence tracking. This approach ensures
that the dependence information is computed correctly, notwith-
standing the use of an external analysis algorithm.

5.4 Loop Invariance Rules: Invariance-Sensitive Slicing

We now turn our attention to the final set of rules, which we will
refer to as loop invariance rules. We will refer to the slicing al-
gorithm obtained by using these rules, the COREPIM� rules, and
the loop splitting rules, as an invariance sensitive slicing algo-
rithm. If the loop execution rules are used as well, we obtain a
� invariance-sensitive algorithm. The primary difference between
the two algorithms is that the latter will execute (i.e., unfold) a loop
as long as its predicate evaluates to a constant. Fig. 15 illustrates
this behavior. The � invariance-sensitive slicing algorithm, by ex-
ecuting the loop, discovers that two of the three assignments to y
in the loop are irrelevant for the given input constraint ?N �� �.
The simpler algorithm avoids unfolding the loop; however, by ef-
fectively performing constant propagation, it discovers that one of
the three assignment statements is irrelevant.

We describe the goals of the loop invariance rules below. Con-
sider a store of the form

Loop��xS �body�uE � vE � uS�� s� � a

The store uS represents the loop body, and free occurrences of xS
in uS denote the store at the beginning of a specific loop iteration.
In the presence of loop invariants, one can simplify the store uS
further. For instance, consider the example in Fig. 15(c). The store
uS compiled for the loop body will contain subterms of the form
�xS � addr�x���, denoting the value of variable x in a particular
iteration. Since the value of x is a loop-invariant constant 6 (given
the constraint ?N �� �), we would like to replace this term by 6.
This replacement, in turn, will allow further simplifications of the
store, and ultimately lead to the slice depicted in the figure.

Achieving this kind of simplification requires us to do two
things: We must identify the loop-invariant component of the store,
and we must specialize the loop body (and the loop predicate) with
respect to the loop invariant component of the store. The second
task is relatively trivial. Once the loop invariant component sinv
of the store has been identified, we can replace the free occurrences
of xS in the loop body by xS 	s sinv . The rest of PIM will then
take care of the specialization.

The rules in Fig. 16 formalize these intuitions. The most impor-
tant rule is (IA1), a conditional rule in the style of rule (SA6) (Fig.
14). The consequent of the rule specializes the loop body and loop
predicate of a loop-computed store with respect to the loop-invariant
part of the store, namely sinv . The antecedent guarding the applic-
ability of the rule “defines” what it means for a part of the store to be
loop invariant. This definition is stated in terms of a subsumption
relationship� between program stores. A store s� subsumes a store
s�, if for every variable x assigned a value v in store s�, x is also
assigned the same value v in store s�. The subsumption relation
is concisely defined by the equational axiom (IA2). Rules (IA2.1)
through (IA2.3) represent a conservative approximation to the �
that is more “directly computable,” since it is defined inductively.
Less conservative approximations to (IA2) can also be defined that
allow inference of more complex loop invariants.

Returning to the notion of a loop-invariant store, the store sinv is
considered to be loop invariant if (a) The incoming store s (the store
before the loop begins its first iteration) subsumes sinv , and (b) The
loop body uE 	s uS , specialized for an incoming store xS 	s sinv
that subsumes sinv , and then composed with sinv results in a store
that subsumes sinv .

11

n = ?N; z = ?Z;
x = n + 1;
i = 1; y = 0;
while (i < n) f

if (x > 100)
y = y + 100;

else if (y < 99)
y = y + x;

else
y = y + 50;

z = z + y;
i = i + 1;

g

n = ?N; z = ?Z;
x = n + 1;
i = 1; y = 0;
while (i < n) f

if (x > 100)
;

else if (y < 99)
y = y + x;

else
;

z = z + y;
i = i + 1;

g

n = ?N; z = ?Z;
x = n + 1;
i = 1; y = 0;
while (i < n) f
if (x > 100)

;
else if (y < 99)

y = y + x;
else

y = y + 50;
z = z + y;
i = i + 1;

g

z
given ?N �� �

z
given ?N �� �

(a) (b) (c)

Figure 15: (a) Example program. (b) � invariance-sensitive slice at z
given ?N �� �. (c) Simple invariance-sensitive slice at z given ?N �� �.

s � sinv � T�
s� � �xS �s sinv	�

sinv �s ��uE �s uS	
xS �� s��	 � sinv � T
Loop��xS �body�uE � vE � uS	� s	 ��

Loop��xS �body�uE
xS �� s���
vE
xS �� s���
uS
xS �� s��	� s	 �IA�	

s� �s s� � s�
s� � s� �� T �IA�	

s � �s �� T �IA���	

s � s� � T� s � s� � T
s � �s� �s s�	 �� T �IA���	

�h�s � a	� � m�i � T
s � fa 	� mg �� T �IA���	

Figure 16: Loop invariance rules

As with rule (SA6) discussed in the section on static slicing, rule
(IA1) cannot be used directly by the dependence tracking system.
However, we can use the rule in conjunction with any algorithm
for identifying loop invariants, such as the conditional constant
propagation algorithm of Wegman et al [31].

6 Pragmatics

A prototype implementation of our methods has been completed
using the ASF+SDF Meta-environment [19]. The results obtained
from this prototype have been encouraging, and we are now engaged
in implementing a “free-standing” reduction-based slicing system
using the most efficient possible implementation techniques. In
this section, we briefly touch on several pragmatic that arise in
implementing our approach.

6.1 Properties of Graph Reduction

Term graph reduction is a simple technique that can be implemented
efficiently when an automaton-based matching algorithm and out-
ermost reduction strategies are used. This leads us to believe that

it should scale well to relatively large programs. Graph reduction
also has the advantage that results of reductions performed in shared
subgraphs are immediately available to all supergraphs from which
they are accessible. This means, e.g., that a slice can be computed
in a subprogram (such as a procedure), and the results later used
in computing the slice with respect to the entire program. It also
means that reduction steps that are independent of a given criterion,
but dependent on the program, can be shared and reused when new
criteria are supplied.

6.2 Alternative Translation Algorithms

As alluded to in Section 2.2, it is not strictly necessary to use a
rewriting system to translate a source program to PIM. Any algo-
rithm to perform the translation suffices, provided that the dynamic
dependence relations between the source AST and its PIM trans-
lation are correctly initialized. However, the correctness of these
initial relations must be established by hand.

6.3 Chain Rules

Chain rules in a language’s abstract syntax can be used to distin-
guish classes of syntactically related program constructs that have
differing semantic properties. For instance, in our C grammar, we
distinguish between “pure” expressions and those that may have
side-effects. Dependences traced by CR-tracking to such nodes can
be used to single out a particular property of a construct that causes
it to be included or excluded from a slice.

7 Related Work

PIM was introduced as a semantically sound internal representa-
tion for program analysis in [12]. The theoretical underpinnings
of the notion of dynamic dependence were developed in [13] for
arbitrary term rewriting systems. In this paper we have augmented
PIM’s logic (particularly for loop analysis), and applied the notion
of dynamic dependence to it to develop a family of extensible slic-
ing algorithms for standard programming languages, exploiting in
particular the possibility of computing slices with respect to con-
straints.

Some previous algorithms [6, 8, 18] combine both static and
dynamic information to compute slices, but primarily to combine
the efficiency of static slicing algorithms with the accuracy of dy-
namic slicing algorithms. The notion of constrained slices is not
studied in these papers.

Constrained slicing and partial evaluation of programs are
closely related, in a manner similar to the relationship between
dynamic slicing and standard program evaluation. However, con-
strained slices cannot be obtained simply by partially evaluating a
program, then computing a static slice from the residual program
that results—one must also relate slices in the partially evaluated
program to the source program; this is not necessarily a trivial task.

Consider the example in Fig. 17. Given the input constraint
?X �� �, the program in Fig. 17(a) can be simplified using constant
propagation and dead code elimination to yield the program shown
in Fig. 17(b). However, a static slice of this optimized program at
z fails to provide the same information as our constrained slice of
the original program with respect to the same criterion (Fig. 17(c)).
This is due to the fact that the predicate of the if statement (which
evaluates to false) is relevant to the computation of the final value of
z, and should therefore be included in the slice. Slicing is intended
to indicate how the value of a variable or expression is computed,
not merely what its value may be. For further details on the relation
between previous work on partial evaluation and PIM, see [12].

12

x = ?X;
y = ?Y;
if (x < 0)

y = -y;
z = y;

;
y = ?Y;

;
z = y;

x = ?X;
y = ?Y;
if (x < 0)

;
z = y;

z
given ?X �� �

z
given ?X �� �

(a) (b) (c)

Figure 17: (a) Example program. (b) Example program after optimiza-
tion using constant propagation and dead code elimination, given ?X �� �.
The static slice of the optimized program at z is the optimized program
itself. (c) Our constrained slice at z given ?X �� �.

Ernst [9] presents an algorithm for static slicing that is similar to
our algorithm in certain respects. In particular, Ernst describes how
conventional program optimization techniques can be used to pro-
duce smaller and better slices. The internal representation that Ernst
uses, the value dependence graph (VDG), has similarities with PIM,
and the process of optimization itself consists of transforming the
VDG. Ernst refers to the problem of maintaining a correspondence
between the VDG and the source code graph throughout the op-
timization process, and mentions that this correspondence enables
a history mechanism for explaining the transformations that were
performed. No details are presented as to how this is done, but
this aspect of Ernst’s work appears to be the analogue of the no-
tion of dynamic dependence used in our work to maintain a similar
correspondence.

Tip shows that dynamic dependence tracking can be used to
compute accurate dynamic slices from a simple “interpreter-style”
semantics for a language, and that these techniques are useful for
debugging [27]. [29] contains a comprehensive discussion of many
issues related to slicing, dynamic dependence tracking, and use of
algebraic specifications in generating program analysis tools.

While we have yet to undertake a formal comparison of the
complexity of our approach with that of earlier methods based on
dataflow analysis or dependence graphs, informal analysis indicates
that for comparable types of slices, our approach should be quite
competitive with previous techniques. One characteristic of our
approach that must be kept in mind in any complexity analysis is
that aspects of both intermediate representation construction and
analysis using the intermediate representation are combined into
reduction steps. For instance, in comparing our work with PDG-
based algorithms, it is apparent that there is a close correspondence
between most steps involved in PDG construction and certain PIM
rewriting steps. The computation of the slice itself in PDG-based
approaches requires a graph traversal that corresponds roughly to
traversing the set of dynamic dependence relations in a reduced PIM
term.

One advantage of our approach over PDG-based methods is that
by using an outermost “lazy” graph reduction strategy, the analysis
performed is effectively demand-driven. Thuse only those reduc-
tion steps directly relevant to the slicing criterion are performed.
In this respect, our approach has the potential to outperform prior
techniques that may eagerly compute dataflow information that is
never used.

8 Future Work

There are several areas for future research: We are currently ex-
ploring the issues involved in extending our techniques to handle
arbitrary control flow, arrays, address arithmetic, dynamic mem-
ory allocation, and procedures. We also intend to study various
PIM subsystems and reduction strategies in isolation to determine
their worst-case complexity versus their ability to make slices more
precise. This study can assist in designing a set of stratified sub-
systems that let the user decide on an appropriate tradeoff between
precision and speed. Finally, it would be would be interesting
to attempt to extend the notion of dynamic dependence to more
powerful theorem-proving techniques, such as those incorporating
higher-order or equational unification or resolution.

References

[1] AGRAWAL, H., AND HORGAN, J. Dynamic program slicing. In Proceedings
of the ACM SIGPLAN’90 Conference on Programming Language Design and
Implementation (1990), pp. 246–256. SIGPLAN Notices 25(6).

[2] BALL, T. Personal communication.

[3] BALLANCE, R. A., MACCABE, A. B., AND OTTENSTEIN, K. J. The program de-
pendence Web: A representation supporting control-, data-, and demand-driven
interpretation of imperative languages. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation (White Plains, NY, June
1990), pp. 257–271.

[4] BARENDREGT, H., VAN EEKELEN, M., GLAUERT, J., KENNAWAY, J., PLASMEIJER,
M., AND SLEEP, M. Term graph rewriting. In Proc. PARLE Conference, Vol.
II: Parallel Languages (Eindhoven, The Netherlands, 1987), Springer-Verlag,
pp. 141–158. Lecture Notes in Computer Science 259.

[5] CARTWRIGHT, R., AND FELLEISEN, M. The semantics of program dependence.
In Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (Portland, OR, June 1989), pp. 13–27.

[6] CHOI, J.-D., MILLER, B., AND NETZER, R. Techniques for debugging parallel pro-
grams with flowback analysis. ACM Transactions on Programming Languages
and Systems 13, 4 (1991), 491–530.

[7] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K.
Efficiently computing static single assignment form and the control dependence
graph. ACM Trans. Program. Lang. Syst. 13, 4 (October 1991), 451–490.

[8] DUESTERWALD, E., GUPTA, R., AND SOFFA,M. Rigorous data flow testing through
output influences. In Proceedings of the Second Irvine Software Symposium
ISS’92 (California, 1992), pp. 131–145.

[9] ERNST, M. Practical fine-grained static slicing of optimized code. Tech. Rep.
MSR-TR-94-14, Microsoft Research, Redmond, WA, 1994.

[10] FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst. 9, 3 (July
1987), 319–349.

[11] FIELD, J. On laziness and optimality in lambda interpreters: Tools for speci-
fication and analysis. In Proc. Seventeenth ACM Symposium on Principles of
Programming Languages (San Francisco, January 1990), pp. 1–15.

[12] FIELD, J. A simple rewriting semantics for realistic imperative programs and
its application to program analysis. In Proc. ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation (San Fran-
cisco, June 1992), pp. 98–107. Published as Yale University Technical Report
YALEU/DCS/RR–909.

[13] FIELD, J., AND TIP, F. Dynamic dependence in term rewriting systems and its
application to program slicing. Tech. Rep. RC 19???, IBM T.J. Watson Research
Center, November 1994. (Corrected and expanded version of [14]).

[14] FIELD, J., AND TIP, F. Dynamic dependence in term rewriting systems and
its application to program slicing. In Proceedings of the Sixth International
Symposium on Programming Language Implementation and Logic Programming
(September 1994), M. Hermenegildo and J. Penjam, Eds., vol. 844, Springer-
Verlag, pp. 415–431.

[15] GALLAGHER, K., AND LYLE, J. Using program slicing in software maintenance.
IEEE Transactions on Software Engineering 17, 8 (1991), 751–761.

[16] HORWITZ, S., PRINS, J., AND REPS, T. Integrating noninterfering versions of
programs. ACM Transactions on Programming Languages and Systems 11, 3
(1989), 345–387.

[17] KAHN, G. Natural semantics. In Fourth Annual Symp. on Theoretical Aspects of
Computer Science (1987), vol. 247 of LNCS, Springer-Verlag, pp. 22–39.

13

[18] KAMKAR, M., FRITZSON, P., AND SHAHMEHRI, N. Three approaches to interpro-
cedural dynamic slicing. Microprocessing and Microprogramming 38 (1993),
625–636.

[19] KLINT, P. A meta-environment for generating programming environments. ACM
Trans. on Software Engineering and Methodology 2, 2 (1993), 176–201.

[20] KLOP, J. Term rewriting systems. In Handbook of Logic in Computer Science,
Volume 2. Background: Computational Structures, S. Abramsky, D. Gabbay, and
T. Maibaum, Eds. Oxford University Press, 1992, pp. 1–116.

[21] KOREL, B., AND LASKI, J. Dynamic slicing of computer programs. Journal of
Systems and Software 13 (1990), 187–195.

[22] LANDI, W., AND RYDER, B. A safe approximate algorithm for interprocedural
pointer aliasing. In Proceedings of the 1992 ACM Conference on Programming
Language Design and Implementation (San Francisco, 1992), pp. 235–248. SIG-
PLAN Notices 27(7).

[23] LARUS, J., AND CHANDRA, S. Using tracing and dynamic slicing to tune compil-
ers. Computer Science Technical Report 1174, University of Wisconsin-Madison,
1993.

[24] NING, J., ENGBERTS, A., AND KOZACZYNSKI, W. Automated support for legacy
code understanding. Communications of the ACM 37, 5 (1994), 50–57.

[25] PAN, H. Software Debugging with Dynamic Intrumentation and Test-Based
Knowledge. PhD thesis, Purdue University, 1993.

[26] PODGURSKI, A., AND CLARKE, L. A formal model of program dependences
and its implications for software testing, debugging, and maintenance. IEEE
Transactions on Software Engineering 16, 9 (1990), 965–979.

[27] TIP, F. Generic techniques for source-level debugging and dynamic program
slicing. Report CS-R9453, Centrum voor Wiskunde en Informatica (CWI),
1994.

[28] TIP, F. A survey of program slicing techniques. Report CS-R9438, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, 1994.

[29] TIP, F. Generation of Program Analysis Tools. PhD thesis, University of Ams-
terdam, 1995. Forthcoming.

[30] VENKATESH, G. The semantic approach to program slicing. In Proc. ACM SIG-
PLAN Conf. on Programming Language Design and Implementation (Toronto,
June 1991), pp. 80–91.

[31] WEGMAN, M. N., AND ZADECK, F. K. Constant propagation with conditional
branches. ACM Trans. Program. Lang. Syst. 13, 2 (April 1991), 181–210.

[32] WEISER, M. Reconstructing sequential behavior from parallel behavior projec-
tions. Information Processing Letters 17, 3 (1983), 129–135.

[33] WEISER, M. Program slicing. IEEE Transactions on Software Engineering 10, 4
(1984), 352–357.

A PIM Details

In this section, we briefly review the PIM term structure and the most important subsets
of PIM rules. Additional rules used primarily for performing induction are described in
[12]; these rules are the foundation for the loop analysis rules presented in Section 5.
In general, PIM is augmented with rules defining the semantics of language-specific
datatypes such as integers.

PIM terms are constructed over an order-sorted signature. PIM sorts distinguish
among fundamentally incompatible syntactic structures corresponding to observable
values, merge structures, store structures, and lambda expressions; however, sorts
should not be interpreted as types in the usual sense.

A.1 PIM� Rules
The rules of PIM�t are given in Fig. 18. Variables v, m, s, and f will be used in
the rules to refer to observable values, merge structures, store structures, and lambda-
expressions, respectively. Equations (L1)–(L8) are generic to merge or store structures.
Thus each of the operators labeled � is to be interpreted as one of s or m. (E1) and
(E2) are schemes for an infinite set of equations. Equation (C1) only applies if the
argument of ‘S�	�’ is of sort S. The rules of PIM� consist of those of PIM�t , along
with the rules depicted in Fig. 11.

A.2 PIM�
t Equations

The rules of PIM�t are those of PIM�t along with those given in Fig. 19. As before, �
in rules (L9)–(L11) is assumed to be one of m or s. In rule (M9), CV � � denotes an
arbitrary context of value sort; this rule could also be less perspicuously rendered as a
family of rules, one for each value-sorted function symbol.

�� �� l
� l (L1)
l �� ��
� l (L2)

l� �� �l� �� l��
� �l� �� l�� �� l� (L3)
p �� ��
� �� (L4)

T�� l
� l (L5)
F�� l
� �� (L6)

p�� �l� �� l��
� �p�� l�� �� �p�� l�� (L7)
p� �� �p� �� l�
� �hp� � p�i�� l (L8)

fv� �� mg 	 v�
� �hv� � v�i�m m (S1)
fv �� �mg
� �s (S2)

�s 	 v
� �m (S3)
�s� �s s�� 	 v
� �s� 	 v� �m �s� 	 v� (S4)
p�s fv �� mg
� fv �� �p �m m�g (S5)

�hk� � k�i
� T� ki constants� k� � k� (E1)
�hk� � k�i
� F� ki constants� k� � k� (E2)

�F� v�
� �m (M1)
�m �m �T� v��
� �T� v� (M2)

�T� v�

� v (M3)
�m

� � (M4)

p� �m �p� � v�
� ��hp� � p�i� v� (M5)

�hT i
� F (B1)
�h F i
� T (B2)

�h�hp i i
� p (B3)
�hT � pi
� p (B4)
�hp � Ti
� p (B5)
�hF � pi
� F (B6)
�hp � Fi
� F (B7)

�h�hp� � p�i � p�i
� �hp� � �hp� � p�ii (B8)
�h�hp� � p�i i
� �h�h p� i � �h p� ii (B9)

�hT � pi
� T (B10)
�hp � Ti
� T (B11)
�hF � pi
� p (B12)
�hp � Fi
� p (B13)

�h�hp� � p�i � p�i
� �hp� � �hp� � p�ii (B14)
�h�hp� � p�i i
� �h�h p� i � �h p� ii (B15)

S�s�
� s (C1)

Figure 18: Equations of PIM�t

�hv � vi � T (E3)

l� �� l� �� l� � l� �� l� (L9)

�hp� � p�i � F
�p� �� l�� �� �p� �� l����p� �� l�� �� �p� �� l�� (L10)

�p� �� l� �� �p� �� l� � ��hp� � p�i��� l (L11)

fv �� m�g �s fv �� m�g � fv �� �m� �m m��g (S6)
�hv� � v�i � F

fv� �� m�g �s fv� �� m�g�fv� �� m�g �s fv� �� m�g (S7)

��h p i�m m� �m
m� �m �p� v� � m� �m m� �m �p� v� (M6)

�p�m
� � �p� �� �m �p�m m� (M7)
��T� �� �m m�
 � m
 (M8)

CV � m
 � � �m n ��xV �CV � xV ���
�
xV � FV �CV � �� (M9)

�m� �m m�� n f � �m� n f� �m �m� n f� (M10)
�p� v� n f � �p� �f v�� (M11)

�m n f � �m (M12)
�p�m m� n f � p�m �m n f� (M13)
�m n�x�v� n f � m n�x�fv (M14)

�hp� � p�i � �hp� � p�i (B16)
�hp � pi � p (B17)

�hp � �h p ii � F (B18)
�hp� � p�i � �hp� � p�i (B19)
�hp � pi � p (B20)

�hp � �h p ii � T (B21)
�hp� � �hp� � p�ii � �h�hp� � p�i � �hp� � p�ii (B22)
�hp� � �hp� � p�ii � �h�hp� � p�i � �hp� � p�ii (B23)

�p� ��hp � qi�� � �p� q� (B24)

Figure 19: Additional Equations of PIM�t

14

