
Aggregate Structure Identification
and its Application to Program Analysis

G. Ramalingam John Field Frank Tip
IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY, 10598, USA

frama,jfield,tipg@watson.ibm.com

Abstract

In this paper, we describe an efficient algorithm for lazily decomposing
aggregates such as records and arrays into simpler components based on
the access patterns specific to a given program. This process allows us
both to identify implicit aggregate structure not evident from declarative
information in the program, and to simplify the representation of declared
aggregates when references are made only to a subset of their components.
We show that the structure identification process can be exploited to yield
the following principal results:

- A fast type analysis algorithm applicable to program maintenance
applications such as date usage inference for the “Year 2000” prob-
lem.

- An efficient algorithm for atomization of aggregates. Given a pro-
gram, an aggregate atomization decomposes all of the data that can
be manipulated by the program into a set of disjoint atoms such that
each data reference can be modeled as one or more references to
atoms without loss of semantic information. Aggregate atomization
can be used to adapt program analyses and representations designed
for scalar data to aggregate data. In particular, atomization can be
used to build more precise versions of program representations such
as SSA form or PDGs. Such representations can in turn yield more
accurate results for problems such as program slicing.

Our techniques are especially useful in weakly-typed languages such as
Cobol (where a variable need not be declared as an aggregate to store an
aggregate value) and in languages where references to statically-defined
subranges of data such as arrays or strings are allowed.

� Introduction

Many algorithms for static analysis of imperative programs make
the simplifying assumption that the data manipulated by a pro-
gram consists of simple atomic values, when in reality aggregates
such as arrays and records are usually predominant. There are sev-
eral straightforward approaches to adapting analysis algorithms de-
signed for scalars to operate on aggregates:

1. Treat each aggregate as a single scalar value.

2. Decompose each aggregate into a collection of scalars, each
of which represents one of the bytes (or bits!) comprising the
aggregate.

3. Use the declarative information in the program to break up
each aggregate into a collection of scalars, each of which
represents a declared component of the aggregate containing
no additional substructures of its own.

Unfortunately, each of these approaches has drawbacks. (1) can
yield very imprecise results. While (2) is likely to produce precise
results it can be prohibitively expensive.

At first blush, (3) appears to be the “obvious” solution. How-
ever, it is unsatisfactory in weakly-typed languages such as Cobol,
where a variable need not be explicitly declared as an aggregate
in order for it to contain composite data. Even in more strongly-
typed languages, declarative information alone can be insufficient
because (i) loopholes in the type system (such as typecasts) may
permit aggregate values to interoperate with non-aggregate values;
and (ii) programmers may pack several scalars, each encodedusing
one or more bits, into a single word. Moreover, (3) may produce
unnecessarily many scalar components when the program only ac-
cesses a subset of those components. In addition, in the presence
of “unions” this approach can produce scalars that overlap one an-
other in storage inexactly. The operation of determining whether
two scalars in a program refer to overlapping storage (such checks
are often required in the inner loops of analysis algorithms) can be
costly.

In this paper, we present an efficient algorithm for lazily de-
composingaggregates into simpler components basedon the access
patterns specific to a given program. This process allows us both
to identify implicit aggregate structure not evident from declarative
information, and to simplify the representation of declared aggre-
gates when references are made only to a subset of their compo-
nents. After atomization, each reference to an aggregate can be ex-
pressed as a set of references to disjoint atoms. The resulting atoms
may then be treated as scalars for the purposes of analysis, and
checks for overlapping storage reduce to equality tests on atoms.
Atomization can thus serve as an “enabling” technique for perform-
ing various program analyses (e.g., computing reaching definitions
[1] and program slicing [15]), as well as constructing their underly-
ing representations (e.g., PDG [6] or SSA form [4]) in the presence
of aggregates.

We also present a variant of the algorithm that can be used to
efficiently solve certain type analysis problems. One instance of
such a problem is date usage inference for programs affected by
the “Year 2000” problem. This is an instance of a general class
of problems that require inferring undeclared but related usages of
type information for various software maintenance and verification
activities [10]. The type analysis algorithm described here has been
incorporated into several recent IBM products�.

�IBM VisualAge 2000 for Cobol and IBM VisualAge 2000 for PL/I.

01 A.
05 F1 PIC 99.
05 F2 PIC 99.
05 F3 PIC XX.
05 F4 PIC XX.

01 B PIC X(8).
01 C PIC X(8).
01 D.

05 F5 PIC 99.
05 F6 PIC 99.
05 F7 PIC XX.
05 F8 PIC XX

01 RESULT PIC 99.

MOVE 17 TO F1.
MOVE 18 TO F2.
MOVE A TO B.
MOVE B TO C.
MOVE C TO D.
MOVE F5 TO RESULT.

Figure 1: Example Cobol program illustrating assignments be-
tween aggregate and non-aggregate variables.

��� Motivating Examples

Consider the Cobol fragment shown in in Fig. 1. For Cobol-illiterati,
the declarations in the example behave as follows: The program
contains top-level declarations of variablesA, B, C, D, and RESULT.
Variables A and D are both declared as records of four fields: F1
through F4, and F5 through F8, respectively. The types of these
fields are declared using so-called picture clauses, which are a com-
pact means of expressing both the length and the allowable types of
the sequence of characters that constitute the fields. The characters
that follow the keyword PIC specify the types of characters that
are allowed at corresponding locations in the field. For instance,
a ‘9’ character indicates numerical data, whereas an ‘X’ character
indicates that any character is allowed. Hence, variables A and D
both consist of 4 numeric characters followed by 4 unconstrained
characters. A picture character may be followed by a parenthesized
repetition factor. The non-aggregate variables B and C thus each
consist of eight unconstrained characters. The example program
contains a number of assignments. Note that in Cobol, it is not
necessary to name parent structures in data references when field
references alone are unambiguous (e.g., in the assignment of 17 to
field F1 of A).

Suppose we are interested in computing the backwards pro-
gram slice [17, 15] with respect to the final value of RESULT, i.e.,
the set of assignments that could affect the final value of RESULT.
Since our example program does not contain any control flow con-
structs, the slice contains any statement on which the final value of
RESULT is transitively data-dependent. We assume that the fol-
lowing model is used to compute these data dependences:

� All variables are decomposed into disjoint atoms by some
means.

� Each MOVE statement is modeled as a set of atomic assign-
ments between corresponding atoms.

� Data dependences are determined by tracing def-use chains
between atomic assignments.

Clearly, an atomization that is too crude will lead to redundant
statements in the slice. For example, treating the statement MOVE

01 DATA-RECORD.
02 DATE.

03 YY PIC 99. // year
03 MM PIC 99. // month
03 DD PIC 99. // day

02 PRINTABLE-DATE REDEFINES DATE PIC X(6).
02 ...

01 OUTPUT-BUFFER.
02 LINE PIC X(80).
02 COLUMNS REDEFINES LINE.

05 COLUMN-1 PIC XX.
05 COLUMN-2 PIC XX.
05 ...

01 PRODUCT-INFORMATION.
02 COLUMN-1-INFOPIC XX.
02 COLUMN-2-INFOPIC XX.
02 ...

MOVE FUNCTION CURRENT-DATE TO DATE OF DATA-RECORD.
...
MOVE PRINTABLE-DATE(1:2) TO COLUMN-1.
...
MOVE PRODUCT-INFORMATION TO OUTPUT-BUFFER.

Figure 2: Example illustrating type analysis for the Y2K problem.

B TO C as a scalar assignment between two atomic variables�

will lead to the inclusion of the superfluous statement MOVE 18
TO F2 in the slice. On the other hand, if the atomization is too
fine-grained, the number of data dependences that must be traced
to compute the slice will be larger than necessary and represen-
tations that capture these dependences (such as PDGs) will also
be larger than necessary. For example, breaking up each variable
into character-sized atoms leads to the desired slice (one that omits
MOVE 18 TO F2). However, the same result can be achieved
with the following, much coarser-grained atomization, which is
produced by our atomization algorithm:

atomization�A� � �A[�:�]�A[�:�]� �A[�:]�
atomization�B� � �B[�:�]�B[�:�]�B[�:]�
atomization�C� � �C[�:�]�C[�:�]�C[�:]�
atomization�D� � �D[�:�]�D[�:�]�D[�:]�

Here, we use array notation to indicate subranges of the characters
occupied by a variable. E.g., B[�:�] denotes the subrange consist-
ing of character 3 and character 4 of variable B. There are a few
interesting things to note about this solution:

� Fields F1 and F2 cannot be merged into a single atom with-
out a loss of precision, and therefore correspond to separate
atoms.

� Field F3 andF4 are merged, because the distinction between
these fields is irrelevant for this particular program�. In gen-
eral, merging fields can lead to faster dataflow analysis and
more compact program representations.

�Note that this is a very reasonable choice, especially if we use only declarative
information to perform the atomization.

�Unused fields occur frequently in Cobol applications. Cobol-based systems typ-
ically consist of a collection of persistent databases and a collection of programs that
manipulate these databases. Although the declared record structure reflects the format
of the database, a single application typically only uses a subset of the fields of the
retrieved records. Hence, analysis of individual applications can benefit by coalescing
or eliminating uninteresting fields.

YY OF DATE OF DATA-RECORD � fyearg
MM OF DATE OF DATA-RECORD � fnotYearg
DD OR DATE OF DATA-RECORD � fnotYearg
PRINTABLE-DATE[1:2] OF DATA-RECORD � fyearg
PRINTABLE-DATE[3:4] OF DATA-RECORD � fnotYearg
PRINTABLE-DATE[5:6] OF DATA-RECORD � fnotYearg
LINE[1:2] OF OUTPUT-BUFFER � fyearg
COLUMN-1 OF COLUMNS OF OUTPUT-BUFFER � fyearg
COLUMN-1-INFO OF PRODUCT-INFORMATION � fyearg

Figure 3: Result of type analysis applied to example in Fig. 2

� Although variables B and C are both declared as scalar vari-
ables, both must be partitioned into three atoms in order to
obtain precise slicing results.

Fig. 2 showsa program fragment that manipulates dates in ways
similar to those of Cobol programs affected by the “Year 2000”
(“Y2K”) problem. Here, DATA-RECORD represents a record con-
taining date and non-date information. The storage for date infor-
mation is redefined in two different ways: DATE is a structured
record containing separate fields for month, day, and year digits,
while PRINTABLE-DATE is an unstructured “string” of uncon-
strained characters intended to be used for input or output. Since
the YY field of DATE is only two digits long, it would have to be
expanded to four digits to account for post-1999 dates. In addi-
tion, COLUMN-1 of OUTPUT-BUFFER (here representing a multi-
purpose string used for input/output purposes) would have to be
expanded to account for the fact that years are now larger. This
could in turn affect PRODUCT-INFORMATION as well, since even
though the latter never actually contains a year value, it would prob-
ably have to be updated to account for the fact that the first column
of OUTPUT-BUFFER is now two characters wider.

Section 5 discusses how our aggregate structure identification
algorithm can be extended to assist in remediating “field expan-
sion” problems such as the Y2K problem by viewing it as a flow-
insensitive, bidirectional type analysis problem. The basic idea is
as follows: We first define a semi-lattice of abstract types. In the
case of the Y2K problem, a lattice of subsets of the set f year,
notYear g (where year and notYear are atomic types representing
fields inferred to be year-related or not year-related, respectively)
would suffice, although more complicated lattices could also be
used. Known sources of year-related values, such as the year char-
acters returned by the CURRENT-DATE library function in Fig. 2
are initialized to year. Sourcesof values known not to contain years
(e.g., the non-year characters returned by CURRENT-DATE) are
initialized to notYear. After applying the algorithm described in 5,
the results of the type analysis are depicted in Fig. 3.

The interesting aspect of our analysis is not the type lattice it-
self, which is trivial, but the way in which the analysis is carried
out efficiently and accurately on aggregates. This kind of analysis
is applicable not only to the Y2K problem, but to other problems in
which similar types must be propagated through aggregates, e.g.,
any problem involving field expansion of variables holding values
of a particular logical (i.e., non-declared) type.

Fig. 4 depicts a more problematic example, in which an ar-
ray, MONTH, is overlaid with a record, MONTHS-BY-NAME. Each
field of MONTHS-BY-NAME corresponds to an element of the ar-
ray MONTH). Overlaying of records and arrays is a fairly common
idiom in Cobol. This allows programmers to refer to array ele-
ments by name as well as by index (e.g., when iterating uniformly
through the collection represented by the array), and is also used
to initialize arrays, as in this example. The use of such idioms
makes it desirable to avoid overly conservative treatment of such

01 M.
02 MONTH OCCURS 12 TIMES.

05 NAME PIC X(3).
05 NUM-DAYS PIC 9(2).

02 MONTHS-BY-NAME REDEFINES MONTH.
05 JAN.

10 NAME PIC X(3) VALUE IS "JAN".
10 NUM-DAYS PIC 9(2) VALUE IS 31.

05 FEB.
10 NAME PIC X(3) VALUE IS "FEB".
10 NUM-DAYS PIC 9(2) VALUE IS 28.

...

...
MOVE NUM-DAYS OF MONTH(I) TO ND.

Figure 4: Example Cobol program illustrating overlaid arrays and
records.

overlays in the context of program analysis. For instance, in the
context of reaching-definitions analysis, it is desirable to infer that
the initializing definition of NAME OF JAN will not reach the use
of NUM-DAYS OF MONTH[I], but that the initializing definition
of NUM-DAYS OF JAN might reach the same use.

Our aggregate structure identification algorithm differentiates
between references to the array as a whole, references to array sub-
ranges with statically-determinable indices (references to the ele-
ments of MONTHS-BY-NAME in the example of Fig. 4 are treated
as single-element instances of subrange references), and references
to arbitrary elements via indices computed at run-time. These dis-
tinctions can be exploited to yield better atomizations that accu-
rately differentiate among these cases.

��� Overview

The remainder of the paper proceeds as follows: In Section 2, we
describe a tiny programming language that contains only the lan-
guage features relevant to our results. Section 3 outlines the ba-
sic ideas behind the structure identification algorithm in terms of
solving equivalence constraints on ranges of abstract memory lo-
cations; this algorithm manipulates a new data structure called the
Equivalence DAG.

In Section 4, we observe that the algorithm of Section 3 can be
viewed as computing the solution to a unification problem. Among
other things, this alternate view allows certain other problems that
can be expressed in terms of unification (e.g., Steensgaard’s flow-
insensitive pointer analysis [11, 12]) to be incorporated smoothly
into our framework.

Sections 5 and 6 cover two refinements of the basic algorithm
and their applications: Section 5 extends the framework of Sec-
tion 3 to add inequality constraints involving elements of an ab-
stract type lattice. The resulting type analysis algorithm is applica-
ble to the Y2K problem. In Section 6, we formalize the atomization
problem, and provide a solution based on another extension to the
framework of Section 3.

The complexity of the EquivalenceDAG construction algorithm
(in its most general form) is discussed in Section 7. Extensions
to the algorithm, including representation of variables of indeter-
minate length, pointer analysis, and uses of SSA renaming, are
covered in Section 8. Section 9 is devoted to related work. Sec-
tion 10 discusses possible future work. Finally, the appendix pro-
vides the details of the type analysis and atomization algorithms in
pseudocode form.

Pgm

� � j Stmt Pgm

Stmt

� DataRef � DataRef

DataRef

� ProgVars j

DataRef �Int�
 Int�� j

DataRef n Int�

Figure 5: The mini-language under consideration. Here, Int� de-
notes the set of positive integers, and ProgVarsdenotes a set of “top
level” program variables.

� A Mini Language

In order to facilitate the discussion of problems studied and the
algorithms presented in this paper, we will use a small language, the
grammar of which is shown in Fig. 5. The language of Fig. 5 may
be thought of as a traditional imperative language trimmed down to
the bare essentials necessary to discuss the problems at hand. Since
the algorithms we present are flow-insensitive, control-flow aspects
of a program are irrelevant, and we consider a program P � Pgm
to simply consist of a set of statements. A statement d� � d� �
Stmt represents an assignment which copies the contents of data
reference d� into d� .

A data reference d � DataRef is a reference to some sequence
of abstract locations (“bytes”) and takes one of the following forms:

� a program variable x � ProgVars (the length of which will
be denoted by jxj)

� a subrange d[i:j] of locations i through j of some data ref-
erence d

� a single, statically indeterminate element of an array of n
elements, denoted by dnn, where d is a data reference repre-
senting the complete array

Subranges are used to represent a sequenceof locations at a statically-
determined position in a data reference. For example, if d refers to a
record, then d[i:j] can be used represent a reference to a field of the
record. A data-reference created by indexing an array is abstracted
in our mini language into a reference of the form dnn, where d
identifies the complete array, and n is the number of elements in
the array. (Thus, our abstraction omits the actual array index ex-
pression. If the index expression is a constant, however, the data
reference can alternatively be represented as a subrange d[i:j] of
the array, where i and j delimit the range of locations occupied by
the single array element denoted by the index expression.) The no-
tation dnn is intended to suggest that if we break up the sequence
of locations that d denotes into n subsequences of equal lengths,
then dnn denotes one of these n different subsequences.

We now define the set of all locations as:

Loc � fhx� ii j x � ProgVars� � � i � jxjg

(Different elements of ProgVars thus represent disjoint sets of loca-
tions.) For convenience, we will denote location hx� ii as simply
x�i�. At execution time, every data-reference denotes a sequence
of locations. At analysis time, however, we may not know the
precise sequence of locations referred to by a data-reference d in
the general case (e.g., due to a reference to an array element at a
statically-indeterminate index). Hence, we treat a data-reference d
as a reference to one of a set of sequencesof locations, and we will

denote this set by D�d�. Formally, we defineD by:

D�x� � f x��� � x��� � � �x�jxj� g if x � ProgVars
D�d[i:j]� � f ��i� � ��i �� � � ���j� j � � D�d�g
D�dnn� � f ��s� � ��s �� � � ���e� j

� � D�d��� � i � n�
s � �i� �� � �j�j�n� �� e � i � �j�j�n� g

where ��i� indicates the i-th element of sequence�, and j�j denotes
the length of a sequence�. Note that all elements of D�d� have the
same length, which we will denote jdj.

For example, let x� y � ProgVars. Then, x[�:�] denotes the
singleton set fx��� � x��� � x���g. A more interesting example is
��y[�:��]�n��[�:�]. Here, y[�:��]n� is a reference to an arbitrary
element of a 2-element array; the array as a whole occupies the first
10 locations of y. The subrange [�:�] (which could, e.g., represent a
single field when the array element is a record) is then selected from
the element. As a result, the set of locations referred to consists
of fy��� � y���� y��� � y�	�g. In other words, ��y[�:��]�n��[�:�] is
a reference to either locations y��� and y��� or locations y��� and
y�	�.

We will now define an abstract semantics S�d� � d�� for the
assignment statement d� � d�, which simply consists of the set of
all pairs of locations �l�� l��, written symbolically as l� � l�, such
that the assignment statement might copy the contents of location
l� to location l� . This semantics is defined as follows:

S�d� � d�� � f ���i�� ���i� j �� � D�d��� �� � D�d���
� � i � min�j��j� j��j� g

In the rest of the paper, we will assume that for every statement
d� � d�, jd�j = jd�j.

The abstract semantics for assignments that occur in a given
program P � Pgm can be used to define an equivalence relation
on locations that will be useful in the sequel (e.g., as the basis for
inferring equivalent types). To this end, we first define:

E �
�

d��d��P

S�d� � d��

Now, let �P denote the smallest equivalence relation containing
the set of pairs of locations E (i.e., the equivalence closure of E).
We will omit the subscript P if no confusion is likely.

� The Equivalence DAG� The Basic Ideas Behind the Al�
gorithm

In this section we focus on the problem of computing the equiva-
lence relation�P , given a program P . The goal of this section is to
give the reader an understanding of the essential algorithmic con-
tributions of this paper, primarily through examples. We will de-
scribe extensions and applications of this algorithm in subsequent
sections.

Rather than generate an explicit representation of the equiva-
lence relation �P , we will actually generate a more compact rep-
resentation of the equivalence relation that can be used to answer
queries about whether two locations are equivalent or not. We will
also refer to a statement d� � d� as an equivalence constraint
d� 	 d� for notational convenience.

��� The Simple Equivalence Closure Problem

We start with a simple version of the problem, where every con-
straint has the form x 	 y, given x� y � ProgVars. In this case,
	 induces an equivalence relation on ProgVars. This is sufficient
to answer questions of equivalence of locations since hx� ii �P

hy� ji if and only if variables x and y are in the same equivalence
class and i � j. Thus, in this case, the set of equivalence classes
of ProgVars provides a compact representation of the equivalence
relation on locations.

The partitioning of ProgVars can be done in the standard way:
initially place every program variable x � ProgVars in an equiv-
alence class by itself, and then process the equivalence constraints
one by one; a constraint x 	 y is processed by merging the equiv-
alence classes to which x and y belong into one equivalence class,
using the well-known union-find data structure� (see [14, 3]).

��� The Range Equivalence Closure Problem

Now, consider a version of the problem where every constraint is
of the form x[i:j] 	 y[k:l], where x� y � ProgVars. There are
two aspects to the original solution that we would like to preserve
when we address this generalized problem. The first aspect is that
the algorithm processes every constraint in C exactly once, instead
of using an iterative (e.g., transitive-closure-like) algorithm. The
second is that we would like to identify “ranges” of locations that
are equivalent to each other and partition them into equivalence
classes. This can represent �C more compactly than a partition of
the set of all locations into equivalence classes.

We now illustrate through an example how we can achieve these
goals. Assume that W�X�Y�Z � ProgVars, and that jW j = 6, jXj
= 12, jY j = 8, and jZj = 12. Assume that C consists of three
equivalence constraints, X[�:] 	 Y [�:�], Z[�:�] 	 W [�:�],
and X[�:��] 	 Z[�:��]. We begin by placing every variable
in an equivalence class by itself. We then process the first con-
straint X[�:] 	 Y [�:�] as follows. We “split” the range X[�:��]
into three sub-rangesX[�:�], X[�:], and X[�:��] and place them
each in an equivalence class by itself. We refer to this as adding
“breakpoints”. We similarly split range Y [�:] into two sub-ranges
Y [�:�] and Y [�:], placing them each in an equivalence class by
itself. We then merge the equivalence classes to which X[�:] and
Y [�:�] belong into one.

Given this kind of a partition of every program-variable into a
collection of sub-ranges, every location belongs to a unique sub-
range of the partition. We can map every location l into a pair
�el� ol� where el is the equivalence class of the unique sub-range
containing l and ol is the offset of the location within that sub-
range. Further, locations l� and l� are equivalent with respect to the
relation �P if and only if the el� = el� and ol� � ol� . For exam-
ple, location X��� will be mapped to �ec�X[�:]�� �� where ec�r�
denotes the equivalenceclass containing sub-range r. Similarly, lo-
cation Y ��� will be mapped to �ec�Y [�:�]�� ��. Since ec�X[�:]�
= ec�Y [�:�]�, these two locations are equivalent.

Let us re-visit the step where we “split” a range, say X[�:��],
into a sequence of sub-ranges, say X[�:�], X[�:], and X[�:��].
It turns out to be convenient to keep both the original range and the
new sub-ranges around, and to capture the “refinement” relation be-
tween these into a tree-like representation (rather than, for instance,
replacing the original range by the new sub-ranges). Fig. 6(a) and
Fig. 6(b) illustrate how we represent the refinement of X and Y for
the above example. Each rectangle in the figure, which we will re-
fer to as a “node”, denotes an equivalence class of sub-ranges, and
the number inside indicates the length of each sub-range contained
in the equivalence class. Fig. 6(c) indicates that the equivalence
classes containing the nodes representing X[�:] and Y [�:�] have
been merged into a single equivalence class �.

�It can be done even more efficiently using the linear time algorithm for comput-
ing the connected components of an undirected graphs. However, we will need the
flexibility of the union-find data structure in a generalized version of the problem.

�Note that edges whose targets are nodes representing equivalence classes to be
merged are not literally redirected to a common node, instead, the union-find data
structure is used to merge the classes to which the edges refer.

The next constraint �Z[�:�]�W [�:�]� is processed just like the
first constraint, as illustrated by Fig. 6(d-e).

In the general case, processing a constraint d� 	 d� consists
of the following steps. (i) We first add break-points to the repre-
sentation before the starting-location and after the ending-location
of both d� and d�. (ii) The sub-ranges d� and d� can then be
represented by a sequence of nodes, say � � � �s�� � � � � sk� and
�� � �t�� � � � � tm� respectively. We make these two sequences
equivalent to each other as follows: if s� and t� denote ranges of
the same length, we simply merge the two into one equivalence
class and proceed with the remaining elements of the sequence. If
the two denote ranges of different lengths, we then split the bigger
range, say s�, into two sub-ranges, s�� and s��� , such that s�� has the
same length as t�. We then merge s�� with t�, and continue on,
making the sequences �s ��� � s�� � � � � sk� and �t�� � � � � tm� equivalent.

The third constraint X[�:��] 	 Z[�:��] illustrates the more
general scenario describedabove. After adding the necessarybreak-
points, the range Z[�:��] is represented by the sequence �s�� s��
(see Fig. 6(f)), while the range X[�:��] is represented by the se-
quence �t�� t�� t��. s� is longer than t�, and is broken up into sub-
ranges s�� and s��� , as shown in Fig. 6(g). We then merge t� with s��,
t� with s��� , and t� with s�. Fig. 6(h) shows the resulting represen-
tation.

Clearly, given a location l, we can “walk”down the DAG (shown
in Fig. 6(h)), from the appropriate root to a leaf el to map the loca-
tion to a pair �el� ol� such that l� � l� if and only if �el� � ol�� �
�el� � ol��. We call the representation generated by this algorithm
an Equivalence DAG.

In the above description of the algorithm, we assumed that the
nodes in the sequences �� and �� were “leaf” nodes. Even if that
were true when the processing of the two sequences begins, when
we get around to processing elements s i and tj , the processing of
the earlier elements of the sequences could have had the effect of
adding breakpoints to either si or tj or both, converting them into
“internal” nodes. Our algorithm handles this by converting the sub-
ranges involved into a sequence of leaf nodes lazily rather than ea-
gerly.

A simple example that illustrates this is the single constraint
A[�:��] 	 A[�:��]. Adding breakpoints corresponding to the
endpoints of the two subrangesA[�:��] and A[�:��] generates the
representation shown in Fig. 7(b). The processing of the constraint
then proceeds as below:

A[�:��] 	 A[�:��]

�u�� 	 �u�� u��

 (replace u� by its children)

�u�� u�� 	 �u�� u��

 (split u� into u� and u�)

�u�� u�� 	 �u�� u�� u��

 (merge u� and u�)

�u�� 	 �u�� u��

 (replace u� by its children)

�u�� u�� 	 �u�� u��

 (merge u� and u�)

�u�� 	 �u��

 (merge u� and u�)

�� 	 ��

This example illustrates the motivation behind our representa-
tion. Note that if we maintained for each variable only the list
of subranges into which it has been refined (instead of the tree

ZX WY
6(a) 8 12 12

ZX WY

(b) 8 12

84

12 6

4 4

4 4

ZX WY

(c) 8

4

12

84

12 6

4 4

ZX WY

(d) 6

6 6

8

4

12

84

4 4

12

ZX WY

(e)

6 6

8

4

12

84

12

4 4

ZX W

s1

3tt2t1

Y

2

6 6

2

12

84

4 4 24

8

4

12(f)

s2

ZX W

s2s’1 s’’1t3t2t1

Y

(g)

6 6

2 2

12

84

4 4 242 4

8

4

12

ZX W

2

Y

4

6 6

12

84

2

8

4

12(h)

2 4

Figure 6: An example illustrating our range equivalence algorithm.

4

u1

u2 u3

u4 u5 4

4 4

u1

u2 u3

u4 u5

u6 u7

u1

u2

u5

4
u3 u4 u7u6

u1

(d)

16

A

(a)

16

12 4

A

8

(b)

16

12 4

A

8

(c)

16

12

A

8

Figure 7: Another example illustrating our range equivalence algorithm.

representation of the refinement), processing constraints such as
A[�:��] 	 A[�:��] will be more difficult. Our algorithm may be
easier to understand if it is viewed as a sort of unification, with
the leaf nodes denoting unbound variables and internal nodes de-
noting bound variables. We will explore this connection briefly in
Section 4.

��� The General Problem

In the most general version of the problem we consider here, an
equivalence constraint d� 	 d� may consist of arbitrary data ref-
erences as defined by the grammar in Fig. 5, including references
to (statically indeterminate) array elements. Consider, for exam-
ple, a case in which we have P�Q�R � ProgVars, with jP j �
��, jQj � ��, and jRj � �. Assume we have two constraints
P [�:��] 	 Q[�:��] and �P [�:��]�n�� 	 R[�:�]. The first con-
straint is processed as before, producing the representation shown
in Fig. 8(a). Processing the second constraint, which includes an ar-
ray reference, produces the representation shown in Fig. 8(b). The
nodes labeled u and v represent arrays consisting of 5 elements of
size 2 each.

We will explain in detail how our algorithm handles arrays and
similar constructs in Section 6. A complete algorithm for the gen-
eral version of the problem appears in pseudocode form in the ap-
pendix.

� The Equivalence DAG as a Uni	er

Readers familiar with unification may have observed that our algo-
rithm has a unification flavor. Our algorithm can, in fact, be thought
of as unifying terms belonging to a term language �V (defined be-
low), with the following distinction: unlike in standard unification,
we do not treat the operators� and� in this term language as free,
i.e., uninterpreted operators; instead, we are interested in unifica-
tion with respect to a specific interpretation of these operators. We
explore this connection briefly in this section.

For any set X , let �X denote set of terms defined by:

�X

� X j �X��X j Int� � �X (1)

where Int� denotes the set of positive integers. Occasionally we
will omit �, abbreviating i � � to i� . Let V � i�	Vi denote a
set of variables. A variable belonging to Vi is said to have a length
i. We will use the notation x
 i to indicate that a variable x has a
length i.

Consider now the set of terms �V . Observe that we may in-
terpret the “trees” rooted at any node in the Equivalence DAG as
terms belonging to �V : leaves are interpreted as variables belong-
ing to V; internal nodes denoting the concatenation of two ranges,
such as those in Figure 6, may be interpreted as uses of the oper-
ator �; nodes such as u and v of Fig. 8, representing arrays, are
interpreted as uses of the operator�.

Let X� denote the set of sequences of elements from X . Given
a term � � �X , the value ��� �� � X� is obtained from � by interpret-
ing � as sequence concatenation and � as repeated concatenation
(of a sequence with itself, as many times as indicated)

Define the length of a term � � �V to be the sum of the lengths
of all variables in the sequence ��� ��. A substitution � is a length-
preserving mapping from V to �V : i.e., a function that maps every
variable to a term that has the same length as the variable. The
Equivalence DAG can be thought of as a substitution, restricted to
a set of variables denoting program variables. For example, the
DAG in Fig. 8(b) represents a substitution fxQ �� �xR� xP ��
��xR����xR�� xR �� xRg.

Two substitutions �� and �� are said to be equivalent if
�����x��� � �����x��� for all x. Every substitution � can be extended
to map every term � � �V to a term ���� � �V . A substitution � is
said to be a unifier for a set of unification constraintsS � �V��V
if ��������� = ��������� for every ���� ��� � S. Further, it is said to be
a most general unifier for S if every other unifier �� for S can be
expressed as the composition of some substitution �� with a sub-
stitution �� that is equivalent to �: �� � �� � ��.

The translation rules in Fig. 9, specified in the Natural Seman-
tics style, show how a set of unification constraints can be generated
from a program. In particular, the translation rule S shows how a
statement d� � d� can be translated into a set of unification con-
straints of the form �� �� �� where ��� �� � �V . The auxiliary rules
D�, D�, and D� show how a data-reference d � DataRef can be
translated into a variable x � V and a set of unification constraints
C constraining variable x (which we denote by d �D �x�C�).
For example, if we have a data reference of the form dnn (rule
D�), then we represent d by a variable, say x, and dnn by a vari-
able, say y, where the variables x and y are related by the constraint
n � y �� x. The constraints generated from a program are simply
the union of the constraints generated from the statements in the
program.

Let us illustrate this using the example of Figure 8. Here we
have P�Q�R � ProgVars, with jP j � ��, jQj � ��, and jRj � �.
We have two constraints P [�:��] 	 Q[�:��] and �P [�:��]�n�� 	
R[�:�]. We represent every program variable V � ProgVars by
a constraint variable xV of length jVj. Processing the constraint
P [�:��] 	 Q[�:��] produces the substitution fxQ �� u
 ��� xP ��
�u
 �����v
 ���g, where u and v are two new variables, which is
represented by the Equivalence DAG of Figure 8(a). Now consider
the constraint �P [�:��]�n�� 	 R[�:�]. This is effectively trans-
lated into the unification constraint xP �� ��� xR (ignoring some
superfluous variables that may be generated by a direct application
of the translation rules of Figure 9). Since xP is already bound
to �u:10���v:10�, our algorithm unifies �u:10���v:10� with ���
�xR:2�. This requires splitting up ����xR:2� into ���xR:2����
�xR:2�. The subsequent unification binds both u and v to � �
�xR:2�.

It is easy to see that the Equivalence DAG construction algo-
rithm can be interpreted as computing a unifier for the constraints

P QQ
2

RR

X X

P

(b)

5

20

10 10

20

2

vu 5
u v

(a)

Figure 8: An example illustrating our array equivalence algorithm.

D�
V � ProgVars
V�D �xV� fg�

where a unique variable xV is used for every pro-
gram variable V

D�
d�D �x�C�

d�i
 j��D �x�� C fx��x��x� �� xg�
where x�, x�, and x� are fresh variables of lengths
i� �, j � i �, and jxj � j respectively

D�
d�D �x�C�

dnn�D �y�C fn� y �� xg�
where y is a fresh variable of length jxj�n

S
d� �D �x�� C��� d� �D �x�� C��
d� � d� �S C� C� fx� �� x�g

Figure 9: Generating unification constraints from a program.

generated in Figure 9. We also conjecture that unifier it computes
is most general.

 Application I� Type Analysis

�� The Problem

In this section we extend the basic algorithm of Section 3 to ad-
dress a generalization of the type analysis problem discussed in
Section 1. Consider the example depicted in Fig. 6. Assume the
programmer wants to modify the representation of a field of the
variable W , say W [�:�]. The question we wish to answer is “What
other variables are likely to be affected by this change, requiring
corresponding modifications to their own representation?”

We now present a more precise formulation of the problem. Let
L denote some semi-lattice with a join operator . We may think
of the elements of L as denoting abstract types. An example is
the lattice of subsets of the set fyear� notYearg used for year usage
inference in the example of Fig. 2 of Section 1.

A function � from Loc to L represents a typing for the set of
locations. We say that � is valid with respect to a program P if
��l�� � ��l�� for all l��P l�. In other words, a typing � is valid
with respect to P if the expressions on both sides of every assign-
ment in P have the same type under �.

Now consider a constraint of the form d � c, where d �
DataRef and c � L. We say that � satisfies this constraint if and
only if

��l� � c for every l �
�

��D
d�

set���

where set��� denotes the set of elements in a sequence �. Given
two typing functions �� and �� , we say that �� � �� if and only if
���l� � ���l� for all l � Loc.

Given a programP and a setC of constraints of the form d � c,
where d � DataRef and c � L, we are interested in computing the
least typing valid with respect to P that satisfies every constraint in
C .

�� The Solution

We now illustrate how we can efficiently compute the desired solu-
tion, using the data structure and algorithm presented in Section 3.
We first process the equivalence constraints induced by program P
to produce the Equivalence DAG. We then associate every leaf of
the resulting DAG with a value from L, which is initially the least
element of L. We then process every constraint d � c in C as
follows. The data-reference d can be mapped onto a sequence of
leaves in the Equivalence DAG (possibly after adding new break-
points). We update the value associated with each of these leaves
to the join of their current value and c. The example in Fig. 10
illustrates this. Assume we start with the Equivalence DAG of
Fig. 6(h), and process constraint W [�:�] � fyearg. (We are using
the lattice L of subsets of the set fyear� notYearg described above.)
W [�:�] corresponds to the single leaf u (shown as a bold rectangle
in Fig. 10), whose value is then updated to fyearg.

The resulting DAG can be viewed as a compact representation
of the desired solution. In particular, it can be interpreted as a func-
tion � from locations to L: the value associated with any location
l is obtained by traversing the DAG to map location l to a leaf el
in the DAG (as explained earlier), whose value yields ��l�. In par-
ticular, the DAG in Fig. 10 maps locations X���, X���, Z���, Z���,
W ���, and W ��� to type fyearg and every other location to type
fg. Equivalently, the DAG in Fig. 10 may be viewed as a function
mapping every program variable to a type term belonging to �L,
where � is defined as in Equation 1.

� Application II� Atomization

In this section, we address the aggregate atomization problem through
another extension of the basic algorithm of Section 3. We first con-
sider some examples that illustrate several of the more subtle as-
pects of the problem.

ZX WY

u

6 6

12

84

N: 2

8 12(h)

YR: 2 N: 4 N: 4
N: 2

N: 4

Figure 10: An example illustrating our type inference algorithm. We have used N as an abbreviation for fg and YR as an abbreviation for f
yearg.

��� Motivation

Overlapping Data References Consider the problem of com-
puting the reaching definitions for the use of NUM-DAYS OF
MONTH[I] in the example shown in Figure 4. In the absence of
aggregates, determining whether any two direct (i.e., non-pointer)
data references in a program can refer to the same set of locations is
usually straightforward. However, in this example Cobol’s aggre-
gate model considerably complicates matters: we note that the ini-
tialization of NAME OF JAN (M[�:�] in our mini-language) does
not reach the use of NUM-DAYS OF MONTH[I] ((M[�:��] n 12)
[�:�]), but the initialization of NUM-DAYS OF JAN (M[�:�] in
our mini-language) does. This follows from the fact that M[�:�]
overlaps (M[�:��] n 12) [�:�], while M[�:�] does not. It should be
evident from this example that testing for overlap between two data
references has the potential to be quite expensive, especially in the
presence of arrays.

Partially Killing De	nitions Reaching definitions analysis is
further complicated by the fact that one definition may “partially”
kill another definition. Consider the following example in our mini
language:

S1: x[�:��] � y[�:��]

S2: x[�:�] � z[�:�]

S3: w[�:�] � x[�:�]

S4: z[�:�] � x[�:��]

Clearly, the definition of x[�:��] at S1 does not reach the use of
x[�:�] at S3, but it does reach the use of x[�:��] at S4, because
the definition of x[�:�] at S2 partially kills the definition of x[�:��]
at S1. Although reaching definitions analysis can be performed in
several different ways, the example illustrates the need to handle
partially killing definitions accurately in order to compute precise
results.

The goal of atomization is to transform the input program into
a semantically equivalent program in which all data references are
atomic, thereby simplying program analyses such as the computa-
tion of reaching definitions. In the case of the example above, we
can transform statements S1–S4 so that each of the assignments is
defined in terms of atoms x�, x�, y�, y�, z�, and w�. The set of
atoms partitions the set of locations such that every atom identifies
a set of locations, and distinct atoms refer to disjoint sets. For in-
stance, atom x� identifies the set of locations x[�:�], and atom x�
identifies the set of locations x[�:��]. (The statement S1 can be
thought of as an abbreviation for two assignment statements.)

S1: �x�� x��� �y�� y��

S2: x�� z�

S3: w�� x�

S4: z�� x�

As with reaching definitions analysis, many other standard pro-
gram analysis techniques or transformations (e.g., partitioned anal-
ysis, SSA-form construction, or program slicing) are not imme-
diately applicable to programs containing overlapping data refer-
ences or partially killing definitions. However, once a program is
transformed into an equivalent one containing only operations on
atoms, these complications can be ignored, since the atoms can be
treated as simple scalar variables.

��� The Basic Ideas

It should be clear from the preceding examples that an atom is in-
tended to denote a set of locations that may be treated as a single
logical unit for purposes of program analysis (we will make this
notion more precise in the sequel). Recall from Section 5 that the
leaves of the Equivalence DAG identify subranges of locations that
can be treated as a single logical unit during type analysis. It should
therefore not be surprising that the Equivalence DAG can also be
used as the starting point for atomization.

However, we need to exercise some caution in treating the leaves
of the Equivalence DAG as atoms. Due to the sharing present in the
DAG structure, a leaf may identify a number of different subranges
of locations in the program, and each of these subranges must be
treated as a distinct atom. This can be done by first “flattening” the
Equivalence DAG into a forest (by duplicating shared subgraphs),
then treating the leaves of the resulting forest as atoms.

To formalize this intuition, we first note that the Equiva-
lence DAG can be interpreted as a function � mapping ev-
ery V � ProgVars to a term in �V . Let �r be the sub-
stitution obtained by renaming the variable occurrences in the
set of terms f��x� j x � ProgVarsg such that no variable oc-
curs twice. For example, if ProgVars = fA�Bg, and � �
fA �� w�y�w�B �� y�zg, then a suitable renaming is �r �
fA �� x��x��x��B �� x��x�g. By renaming multiple occur-
rences of the same variable, �r abstracts away type equivalence
information, while allowing us to determine for any program vari-
able the aggregate structure that was inferred during the construc-
tion of the Equivalence DAG. In the absence of arrays, we can
then identify atoms with the variables occurring in the set of terms
f�r�x� j x � ProgVarsg; we will use Atoms to denote this set.

Once the atoms have been identified, the next step is to ex-
press all data references in the program in terms of the atoms. In
particular, we can replace every data reference by a sequence of
atomic references. In the above example, the reference to x[�:��]
can be replaced by the sequence �x�� x��. Our atomization algo-
rithm guarantees that every assignment statement in the resulting
program will have the form �a�� a�� � � � � an� � �b�� b�� � � � � bn�,
where every ai and bi is an atom. If desired, such a statement can
be replaced by n simpler statements of the form ai � bi .

��� Dealing With Arrays

Consider the following example:

L1: MOVE ... TO A(5).

L2: MOVE ... TO A(I).

L3: MOVE ... TO A(6).

L4: MOVE A(5) TO ...

A precise reaching definitions analysis can establish that definitions
L1 and L2 reach the use in L4, while definition L3 does not. To ex-
tend the atomization approach discussed in the previous section to
arrays in such a way that no information is lost, we must ensure that
our atomization distinguishes references to statically indeterminate
array elements from references to statically determinate elements.
Among other things, this means that A(5) and A(6) must be rep-
resented by distinct atoms (say, a� and a�), and that A(I) must
refer to one of a set of atoms (containing a� , a�, and additional
atoms as required to represent the other elements of A).

More generally, consider the example of Figure 8. Here we
must be able to model a reference to an entire array (P [�:��]), a
reference to an array subrange (P [�:��]), as well as a reference to
a statically indeterminate array element (P [�:��]n��.

To properly account for the various classes of array references
discussed above, we must slightly relax the assumption in the pre-
vious section that all data references in the original program could
be redefined entirely in terms of sets of atoms. Borrowing from the
notation for array element references in our mini-language, we will
instead replace data references in the original program by atomic
data references, which are defined as follows:

DataRefAtomic

� Atoms n Int�

Intuitively, xnn � DataRefAtomic represents an indeterminate
reference to exactly one element of a set of n determinate refer-
ences. We will refer to n as the multiplicity of the reference. Note
that the union of locations referred to by xnn need not itself be
contiguous sequence of locations, e.g., when xnn refers to a single
field of an indeterminate element of an array of multi-field records.
In the limit case, xn� is used for all determinate references. Not
unexpectedly, such references include contiguous ranges of loca-
tions such as simple scalar variables and references to entire arrays.
However, determinate references may also denote noncontiguous
ranges of locations, e.g., given an array of records, each of which
contains two fields F1 and F2, the collection of references to the
F2 fields of all array elements.

Consider, for example, the EquivalenceDAG of Figure 8, which
represents the substitution

� � fxQ �� �xR� xP �� ��xR����xR�� xR �� xRg

Renaming the variables gives us

�r � fxQ �� �a�� xP �� ��a�����a��� xR �� a�g

with atoms a� , a�, a� , and a�. Note that atoms a� and a� represent
different parts of the array xP . The data reference P [�:��]n�� rep-
resents an arbitrary element of the array. Consequently, its repre-
sentation in terms of atomic data references is given by fa�n�� a�n�g.
In contrast, the full array P [�:��] is represented by the singleton
set fa�n� � a�n�g. We see from this example that if an array has
been “fragmented” into several sub-arrays, then a reference to an
arbitrary element of the original array must be represented as a ref-
erence to an element of one of the array subranges resulting from
the fragmentation. In the general case, a data reference must be
replaced by a set of sequence of atomic references.

Recall from Section 2 that we defined the semantics D�d� of a
data reference d as a set of sequence of locations. The atomization

process allows us to think of an arbitrary data references as a set of
sequence of atoms instead of set of sequence of locations. Because
of this connection, we denote the function that maps every data
reference to a set of sequences of elements of DataRefAtomic by
D�. The pseudocode in Fig. 13 shows how D � is defined in its full
generality.

��� Atomization versus Uni	cation

It is worth noting that atomization imposes stricter requirements on
the construction of the Equivalence DAG than does type analysis or
unification. In the context of type analysis or unification, the two
terms ��� and �� are completely equivalent. However, this is not
true for atomization. The term ��� leads to twice as many atoms
as the term �� , since it indicates that atomization should distinguish
the first half of the array from the second half.

Consider the example in Fig 8. Unification of �u:10���v:10�
and �� � �xR:2� creates the bindings u �� � � �xR:2� and v ��
� � �xR:2� and the unified terms can be represented by either
� � �xR:2��� � �xR:2� or �� � �xR:2�. To perform atomiza-
tion, however, it is important to choose �� �xR:2���� �xR:2� as
the representation of the unified terms. The algorithm presented in
the appendix takes this stricter requirement into account.

��
 Atomic Data References and Reaching De	nitions

We note that two atomic data references xni and ynj are disjoint
whenever their atomic components differ, i.e., when x �� y. Thus
for the purposes of computing reaching definitions, two data ref-
erences xni and ynj can overlap if and only if x � y. However,
when determining whether a definition of one atomic data refer-
ence kills (i.e., completely “covers”) another, the multiplicity in-
formation comes into play: xni kills ynj if and only if x � y and
i � �. In other words, only a determinate reference can kill another
reference. Thus for the purpose of computing reaching definitions,
there is no reason to distinguish between different multiplicity val-
ues greater than 1. However, the full range of values will be useful
in the sequel to establish certain formal properties of the atomiza-
tion.

��� Correctness Properties

In this section, we formalize a notion of equivalence between a
program and its transformed version, in which data references are
replaced by corresponding atomic data references. We first define
a function S� that maps every statement s � Stmt to a set of state-
ments S � StmtAtomic where

StmtAtomic

� DataRefAtomic � DataRefAtomic

S��d� � d�� �
f ���i�� ���i� j �� � D��d��� �� � D��d���

� � i � min�j��j� j��j� g

By ordering the set of locations identified by an atom a in as-
cending order, we get a sequence of locations which we denote
A�a�. Definea functionD� that maps every element of DataRefAtomic

to a set of sequence of locations as follows:

D��ann� � f h��s�� ��s ��� � � � � ��e�i j
� � i � n� � � A�a��
s � �i� �� � �j�j�n� �� e � i � �j�j�n� g

Define function S� mapping every element of StmtAtomic to a set
of ordered pairs of locations as follows:

S��a� � a�� � f ����i�� ���i�� j �� � D��a��� �� � D��a���
� � i � min�j��j� j��j� g

Observe that:

S�d� � d�� �
�

�a��a��S��d��d�

S��a� � a��

for every statement d� � d� in the given program. Thus, we can
think of our atomization algorithm as decomposing the semantic
function D into D� and D�. In particular, note that the abstract
semantics S�s� of a statement s can be fully recovered from the
atomized statement S��s�. This formalizes the sense in which our
atomization transformation is “lossless”.

Note that S� only models flow-insensitive program properties,
since it does not distinguish between cases in which one of a set of
possible assignments is executed, and cases in which all of a set of
assignments are executed. It is straightforward to generalize S� to
yield a program transformation that correctly models flow-sensitive
program properties.

� Complexity Analysis

Let d denote the maximum number of atoms (as defined in Sec-
tion 6) and arrays identified in a single aggregate. (For example,
if we have a single aggregate whose atomization is x����x��x��,
then d is 4. Equivalently, we may think of d as the maximum size
of the atomization-trees produced.) Let f denote the total num-
ber of atoms identified in the program and let s denote the total
number of statements in the program. Our algorithm runs in time
O�sd���sd� f�� in the worst case, where��	� 	� denotes the inverse
Ackermann function.

 Extensions

Variables of Unknown Length Our basic algorithm assumes
that all variables have a statically-determined finite length. We can
extend our algorithm to deal with variables of statically indetermi-
nate length (e.g., variable-length strings) by representing them as
variables of (potentially) infinite length. One interesting issue that
comes up in this context is the need to do an “occurs check”. Note
that the algorithm presented in this paper binds variables only to
terms of the same length. When all lengths are finite, this ensures
that a variable can never be bound to a complex term containing
the same variable. However, this is no longer true once variables
of infinite lengths are allowed. We detect the creation of a cyclic
term during unification, and replace it by a suitable “array” consist-
ing of an unbounded number of elements. For example, unifying
�x
 ����y
�� with y
� results in binding y to�� �x
 ��.

Pointer Analysis Our full algorithm incorporates a points-to al-
gorithm similar to that of Steensgaard[11, 12]. Since both our algo-
rithm and the points-to algorithm are unification-style algorithms,
it is straightforward to perform both the analyses in parallel, in a
common framework. This is not only convenient, it turns out to be
necessary since in the presence of both (implicit) aggregates and
pointers, the points-to analysis depends on atomization information
while the atomization algorithm requires points-to information.

The essential idea in this approach is as follows: For each pointer-
valued variable p, we maintain a term �p describing the range of
locations pointed to by p. Whenever two pointer-valued variables
p and q need to be unified, the two corresponding pointed-to terms
�p and �q are also unified. Note that any location (or range of lo-
cations) may potentially store a pointer value. Hence, we associate
a points-to term �l with every leaf l of the Equivalence DAG. This
effectively amounts to expanding our term language �V to encode
points-to information.

Using SSA Renaming to Improve Precision The flow-
insensitive nature of our algorithm can introduce imprecision, es-
pecially when variables are used for completely different purposes
in different parts of the program. The technique of Static Single
Assignment [4] renaming can be used to improve the precision of
the results produced by our algorithm.

One interesting issue that arises here is the interdependence be-
tween the atomization problem and the SSA renaming problem:
our atomization algorithm can produce more precise results if ap-
plied after SSA renaming, while SSA renaming is easier to do after
atomization since it does not have to deal with aggregates.

One possible solution to this issue is to run the atomization al-
gorithm once, apply SSA renaming, and then run the atomization
algorithm again to produce a more precise atomization. (Iterating
any further will not improve the atomization results.)

� Related Work

A substantial body of work exists in the area of type inference,
following [9]. While our algorithm belongs to this family, what
distinguishes it is that it is aimed at low level languages, where
aggregate structure has to be inferred from the way memory (loca-
tions) are accessed and used. The algorithm presented in this paper
can be thought of as unification in the presence of an equational
theory. Much previous work [8] has been done on unification in
the presence of equational axioms (e.g, associativity) but we are
unaware of previous work in this area for the specific equational
theory that we are interested in.

Several other authors [11, 10, 7, 16] have explored the appli-
cation of type inference based techniques to program maintenance
and software reengineering as well as program analysis for imper-
ative languages.

van Deursen and Moonen [16] present a type inference system
for Cobol and describe its applications. What distinguishes our al-
gorithm from theirs is the way we handle the unification of records.
In their algorithm, the unification of two records causes the cor-
responding fields of the two records to be unified only if the two
records have the same structure, i.e., only if they have the same
number of fields, with corresponding fields having same length.

Our algorithm is also similar in some respects to a points-to
algorithm presented by Steensgaard [11] which accommodates C-
style structs and unions. The problem common to both our
paper and Steensgaard’s is the “unification” of two aggregates with
differing structure. In our approach, the result of unifying two
structures S� and S� is a structure that is more refined than both S�

and S� . For example, unifying x:4�y:4�z:4 with a:4�b:2�c:6
results in the structure x:4�b:2�w:2�z:4 with the additional bind-
ings a �� x� y �� b�w� c �� w�z. In Steensgaard’s algorithm, on
the other hand, the unification of S� and S� produces a structure
that is less refined than both S� and S� . In the above example,
Steensgaard’s algorithm [13] will stop distinguishing between the
fields y, z, b and c, and produce the unified structure x:4�t:8, with
the a being bound to x, and y, z, b and c all being bound to t.

As a result, our algorithm computes more precise results than
Steensgaard’s algorithm. Our algorithm was primarily designed to
analyze legacy applications written in languages such as Cobol and
PL/1, where variables are commonly used to store aggregate data
without necessarily declaring the aggregate structure of the vari-
ables. We believe that in such a context our approach is prefer-
able. However, whether our approach produces more precise re-
sults when applied to typical C or C++ applications remains to be
seen.

O’Callahan and Jackson [10] use type inference to C programs
to identify sets of variables that must share a common representa-
tion and outline various applications based on this.

�� Future Work

Future directions we wish to pursue include:

Other Notions of Atomization Does our atomization algo-
rithm produce the optimal (i.e., the least refined) atomization? We
believe that it does, with respect to one reasonable definition of at-
omization, though we have attempted no formal proof. However, if
we relax the notion of an atom implicit in our algorithm, the atom-
ization produced by our algorithm is not necessarily optimal. As
an example, consider the program x[�:��] � y[�:��]� z[�:�] �
x[�:�]. In this case, it is possible to generate the following atom-
ized program �x�� x�� � �y�� y��� z� � x� where atom x� de-
notes the union of the ranges x[�:�] and x[�:��], while atom x�
denotes the range x[�:�]. (The remaining atoms are defined in a
corresponding manner.) However, our algorithm breaks up x into
three atoms x[�:�], x[�:�], and x[�:��], producing a more refined
atomization than is necessary.

It is possible to take the atomization produced by our algorithm
and to improve it further by applying an algorithm somewhat sim-
ilar to the finite state minimization algorithm (grouping atoms that
need not be distinguished from each other into equivalenceclasses).
It would be more interesting to see if such an improvement can be
integrated directly into our atomization algorithm.

Applications to Sparse Analysis The equivalence class parti-
tioning of atoms produced by our algorithm can be used to con-
struct (flow-insensitive) sparse evaluation representations for vari-
ous analysis problems.

Disjoint Unions Cobol programs may use REDEFINES for two
purposes: to define disjoint unions or to define multiple views of
the same data. The inability to distinguish between these two us-
ages forces our algorithm to handleREDEFINES conservatively. It
would be worth developing analysis techniques to infer the use of
disjoint unions so that they can be handled less conservatively.

More Sophisticated Type Systems One could extend the sim-
ple type framework introduced in Section 4 in various directions,
including adding more complex constructors and incorporating in-
equality (or set) constraints [2, 5]. Such extensions might enable
more precise treatment of data located at variable offsets, over-
loaded operators, and pointer arithmetic than are possible with our
current approach.

References

[1] AHO, A., SETHI, R., AND ULLMAN, J. Compilers. Principles, Techniques and
Tools. Addison-Wesley, 1986.

[2] AIKEN, A., AND WIMMERS, E. Solving systems of set constraints. In Sympo-
sium on Logic in Computer Science (June 1992), pp. 329–340.

[3] CORMEN, T., LEISERSON, C., AND RIVEST, R. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[4] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND

ZADECK, F. Efficiently computingstatic single assignment form and the control
dependencegraph. ACM Transactions on ProgrammingLanguagesand Systems
13, 4 (1991), 451–490.

[5] FÄHNDRICH, M., AND AIKEN, A. Program analysis using mixed term and
set constraints. In Proceedings of the 4th International Symposium on Static
Analysis (September 1997), vol. 1302 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 114–126.

[6] FERRANTE, J., OTTENSTEIN, K., AND WARREN, J. The program dependence
graph and its use in optimization. ACM Transactions on Programming Lan-
guages and Systems 9, 3 (1987), 319–349.

[7] KAWABE, K., A. MATSUO, UEHARA, S., AND OGAWA, A. Variable clas-
sification technique for software maintenance and application to the year 2000
problem. In Conference on Software Maintenance and Reengineering (1998), P.
Nesi and F. Lehner, Eds., IEEE Computer Society, pp. 44–50.

[8] KNIGHT, K. Unification: A multidisciplinary survey. ACM Computing Surveys
21, 1 (1989), 93–124.

[9] MILNER, R. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences 17 (1978), 348–375.

[10] O’CALLAHAN, R., AND JACKSON, D. Lackwit: A programunderstandingtool
based on type inference. In Proceedings of the 1997 International Conference
on Software Engineering (ICSE’96) (Boston, MA, May 1997), pp. 338–348.

[11] STEENSGAARD, B. Points-to analysis by type inferenceof programswith struc-
tures and unions. In Proceedings of the 1996 International Conference on Com-
piler Construction (Linköping, Sweden, April 1996), vol. 1060 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 136–150.

[12] STEENSGAARD, B. Points-to analysis in almost linear time. In Proceedings
of the Twenty-Third ACM Symposium on Principles of ProgrammingLanguages
(St. Petersburg, FL, January 1996), pp. 32–41.

[13] STEENSGAARD, B. Personal communication, Oct. 1998.

[14] TARJAN, R. E. Data Structures and Network Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1983.

[15] TIP, F. A survey of program slicing techniques. Journal of Programming Lan-
guages 3, 3 (1995), 121–189.

[16] VAN DEURSEN, A., AND MOONEN, L. Type inference for cobol systems. In 5th
Working Conference on Reverse Engineering (1998), IEEE Computer Society,
pp. 220–230.

[17] WEISER, M. Program slices: formal, psychological, and practical investiga-
tions of an automatic program abstraction method. PhD thesis, University of
Michigan, Ann Arbor, 1979.

Appendix

We now present a complete description of our algorithm in SML-
like pseudo-code. We assume that an implementation of the fast
union-find data structure[14, 3] is available with the signature shown
in Fig 11. The function newvar creates a new element not equiv-
alent to any other element (i.e., belonging to an equivalence class
all by itself). The function union merges two equivalence classes
into one, while the function equivalent indicates if two ele-
ments are equivalent or not. In addition, every equivalence class
has a value associated with it, whose type is the parameter ’a of
the parametrized type ’a eqClass. The value associated with
an equivalence class can be retrieved and modified by the functions
findval and setval respectively. The functions newvar and
union take a parameter specifying the value to be associated with
the newly created/merged equivalence class.

We also assume the existence of a semi-lattice L (of “types”)
with a join operator .

In our implementation, we have a set of term variables (repre-
sented by the type termvar in Fig 11), which are partitioned into
a collection of equivalence classes (using the union-find data struc-
ture). Every equivalence class has an associated value, which has
the type termvalue .

The function |x| returns the length of a variable x. In an actual
implementation it will be more efficient to store (cache) the length
with the variable, rather than compute it every time it is needed.

The function v is a convenient wrapper for function newvar.
It creates a new equivalence class with the initial value v, unless v
denotes a one element array, in which case the array element itself
is returned. The function split(x,n) adds a breakpoint to the
DAG rooted at x after position n. The function refine (x,n)
returns the children of a concatenation node x. If x is not a con-
catenation node, it is first converted into one by adding a break-
point, preferably (but not necessarily) after position n. Note that
every leaf of the Equivalence DAG has a value (belonging to semi-
lattice L) associated with it. The function update(x,c) updates
the value associated with every leaf of the DAG rooted at x by c.

The main unification algorithm as well as our type analysis al-
gorithm appear in Fig. 12. The basic ideas behind the algorithm
were explained earlier in Sections 3, 4, and 5. The four different
unify functions implement the actual unification. The functions

// An implementation of union-find with the
// following signature is assumed
type ’a eqClass
val newvar: ’a -> ’a eqClass
val union: (’a eqClass * ’a eqClass * ’a) -> unit
val equivalent: (’a eqClass * ’a eqClass) -> bool
val findval: ’a eqClass -> ’a
val setval: (’a eqClass * ’a) -> unit

// A semi-lattice L of types is assumed, with a
// join/meet operator �
type L
val � : L * L -> L

datatype termvalue = atomic (L, int) |
termvar � termvar |
int � termvar

withtype termvar = termvalue eqClass

fun |x| =
case (findval x) of
atomic (c, l) => l |
x1 � x2 => |x1| + |x2| |
n � e => n * |e|

fun v =
case v of
1 � e => e |
otherwise => newvar v

fun split (x, n) =
if (0 < n) and (n < |x|) then
case (findval x) of
atomic (c, l) =>
setval(x,

atomic (c, n) � atomic (c, l-n)
) |

x1 � x2 =>
if (n < |x1|) then

split (x1,n)
else
split (x2,n-|x1|)

fi |
m � e =>
let val p = max(1, n/|e|) in

setval(x, p � e � (m-p) � e);

split (x,n)
end

fi

fun refine (x, n) =
case (findval x) of
x1 � x2 => [x1, x2] |
atomic (c, l) => split (x,n); refine (x,n) |
m � e =>

let val p = max(1, n/|e|) in

setval(x, p � e � (m-p) � e);

refine (x,n)
end

fun update (x, c) =
case (findval x) of
atomic (c’, l) =>

setval(x,atomic (c � c’, l))) |
x1 � x2 => update (x1, c); update (x2, c) |
m � e => update (e, c)

Figure 11: Type definitions and auxiliary procedures.

fun unify (x,y) =
if (not (equivalent(x,y))) then

// Merge the two vars into one, setting the
// value of the merged var to ...
union(x, y,

// ... the join of the values of x and y
case (findval x, findval y) of
(atomic (c, l),) => unifyatom(y,c) |
(, atomic (c, l)) => unifyatom(x,c) |
(x1 � x2,) => unifylist([x1,x2],[y]) |
(, y1 � y2) => unifylist([x],[y1,y2]) |
(n1 � e1, n2 � e2) =>

unifyarrays((n1,e1), (n2,e2))
)

fi;
findval x // return the value associated with

// the merged equivalence class

fun unifyatom(x,c) = update(x,c); findval x

fun unifylist(x1::r1, x2::r2) =
if (|x1| = |x2|) then
case (r1,r2) of
([],[]) => unify (x1,x2) |

=> unify (x1,x2) � unifylist(r1,r2)

elsif (|x1| > |x2|) then
unifylist(refine(x1,|x2|) @ r1, x2::r2)

else /* (|x1| < |x2|) */
unifylist(x1::r1, refine(x2,|x1|) @ r2)

fi

fun unifyarrays((n1,e1), (n2,e2)) =
let

fun exp (t,1) = t |

exp (t,i) = t � exp(t,i-1)

val m = least-common-multiple(|e1|,|e2|)/|e1|
val x1 = exp(e1, m)
val x2 = exp(e2, m)
val z = (n1* |e1| / |x1|) � x1

in
unify (x1, x2);
z

end

// The main procedures
datatype constraint =

termvar �� termvar |
termvar � L

fun processConstraint (x �� y) = unify (x,y) |
processConstraint (x � c) = update(x,c)

fun solve listOfConstraints =
apply processConstraint listOfConstraints

Figure 12: The unification and type analysis algorithms.

// Assume some suitable way of generating
// names for new atoms.
type AtomId
val gensym: unit -> AtomId

datatype AtomicReference = AtomId n int
datatype AtomicTree =

atom of (AtomId * int * int) |
AtomicTree � AtomicTree |
int � AtomicTree

// Assume a suitable implementation of ‘‘program
// variables’’ with the following signature
type PgmVar
val termVarOf: PgmVar -> termvar
val setAtomicTree: PgmVar * AtomicTree -> unit
val getAtomicTree: PgmVar -> (AtomicTree option)

datatype DataRef =
ProgVar of PgmVar |
DataRef [int : int] |
DataRef n int

fun flatten(x,mu) =
case (findval x) of
atomic (c, l) => atom (gensym(),l,mu) |
y � z => (flatten(y,mu)) � (flatten(z,mu)) |
i � y => i � (flatten(y,mu*i))

fun atomicTreeOf pgmvar =
case (getAtomicTree pgmvar) of
SOME atomicTree => atomicTree |
NONE => (
setAtomicTree (pgmvar, rightAssociate(

(flatten (termVarOf pgmvar,1)));
atomicTreeOf (pgmvar);

)

fun treesOf(ProgVar x) = f atomicTreeOf x g |
treesOf(d [i:j]) =

f subrange (t, i, j) j t � treesOf(d) g |
treesOf(dnn) = �

t�treesOf(d) breakup(t, |t|/n)

fun leaves(atom (a,l,mu),m) = [a n (mu/m)] |
leaves(x1 � x2,m) = leaves(x1,m) @ leaves(x2,m) |
leaves(i � x,m) = leaves(x,m*i)

fun D��d� = f leaves(t,1) j t � (treesOf d) g

fun rightAssociate ((x1 � x2) � x3) =
rightAssociate(x1 � (x2 � x3)) |

rightAssociate (x1 � x2) =
(rightAssociate x1) � (rightAssociate x2)

rightAssociate (i � x) = i � (rightAssociate x)
rightAssociate (atom (a,l,mu)) = atom (a,l,mu)

fun breakup (t,s) =
if (|t| = s) then f t g else
case t of
x1 � x2 =>

if (|x1| > s) then
breakup(x1,s) � breakup(x2,s)

else
f head(t,s) g � breakup(tail(t,s+1), s)

fi |
i � x => breakup(x,s)

fun subrange (t, i, j) = head (tail(t,i), j-i+1)

Figure 13: The atomization algorithm (part 1).

fun tail (t, 1) = t |
tail (x1 � x2, i) = tail (x2, i - |x1|)

fun head (x1 � x2, i) =
if (i > |x1|)
then x1 � head (x2, i - |x1|)
else x1|

head (t, s) = t

Figure 14: The atomization algorithm (part 2).

solve and processConstraint show how the Equivalence
DAG can be constructed and how type analysis can be performed.

The atomization algorithm appears in Figs. 13 and 14 and was
explained in Section 6. We assume the existence of a function
gensym that can be used to generate new symbols to represent
atoms. As explained earlier, every top level program variable is
associated with a node (a term variable) in the Equivalence DAG.
The function termVarOf is assumed to return this.

The first step in atomization is to take the DAG rooted as this
node and flatten it to construct an “atomization tree”. The function
flatten(x, mu) shows how a termvar x can be flattened
into a AtomicTree. The secondparameter mu is used to compute
the multiplicity of the leaves in the atomic tree, where the multi-
plicity of a leaf in an atomic-tree is defined to be the product of the
cardinalities of all arrays in the tree that contain the given leaf.

In order to simplify some of the other functions, the gener-
ated atomic-tree is “normalized” to be in right-associative form (by
the function rightAssociate). We assume that the imperative
functions setAtomicTree and getAtomicTree let us asso-
ciate an atomic-tree with every program variable. (The function
atomicTreeOf constructs the atomic-tree and associates it with
the corresponding program variable.)

Once an atomic-tree has been constructed for a program vari-
able X, any data-reference based on X can be mapped onto a set
of subtrees of the atomic tree corresponding to X. The function
treesOf does this. Please note that the input data-reference can
not be an arbitrary one. It is assumed to be one of the data-references
in the original program with respect to which the EquivalenceDAG
was constructed. (Hence, the Equivalence DAG and the atomic-
tree are guaranteed to have “breakpoints” corresponding to the end-
points of data-reference d.)

Given an atomic reference ani, let us refer to i as the denom-
inator of the atomic reference. The function leaves shows how
any subtree S of an atomic-tree T can be converted into a sequence
of atomic references. This essentially is the sequence of leaves of
the subtree combined with an appropriate denominator. The de-
nominator of a leaf l is simply the multiplicity of l in the tree T
divided by the multiplicity of l in the subtree S.

