Aggregate Structure I dentification
and its Application to Program Analysis

G. Ramalingam

John Field

Frank Tip

IBM T.J. Watson Research Center, PO. Box 704, Yorktown Heights, NY, 10598, USA

{rama,jfield, tip}ewatson.ibm.com

Abstract

In this paper, we describe an efficient agorithm for lazily decomposing
aggregates such as records and arrays into simpler components based on
the access patterns specific to a given program. This process alows us
both to identify implicit aggregate structure not evident from declarative
information in the program, and to simplify the representation of declared
aggregateswhen references are made only to a subset of their components.
We show that the structure identification process can be exploited to yield
the following principal results:

- A fast type analysis algorithm applicable to program maintenance
applications such as date usage inference for the “ Year 2000” prob-
lem.

An efficient algorithm for atomization of aggregates. Given a pro-
gram, an aggregate atomization decomposesall of the data that can
be manipulated by the program into a set of disjoint atoms such that
each data reference can be modeled as one or more references to
atoms without loss of semantic information. Aggregate atomization
can be used to adapt program analyses and representations designed
for scalar data to aggregate data. In particular, atomization can be
used to build more precise versions of program representations such
as SSA form or PDGs. Such representationscan in turn yield more
accurateresults for problemssuch as program slicing.

Our techniques are especially useful in weakly-typed languages such as
Cobol (where a variable need not be declared as an aggregate to store an
aggregate value) and in languages where references to statically-defined
subranges of data such as arraysor strings are allowed.

1 Introduction

Many algorithms for static analysis of imperative programs make
the simplifying assumption that the data manipulated by a pro-
gram consists of simple atomic values, when in reality aggregates
such as arrays and records are usually predominant. There are sev-
eral straightforward approachesto adapting analysisalgorithms de-
signed for scalarsto operate on aggregates:

1. Treat each aggregate asasingle scalar value.

2. Decompose each aggregate into a collection of scalars, each
of which representsone of the bytes (or bits!) comprising the

aggregate.

3. Use the declarative information in the program to break up
each aggregate into a collection of scalars, each of which
represents a declared component of the aggregate containing
no additional substructuresof its own.

Unfortunately, each of these approaches has drawbacks. (1) can
yield very imprecise results. While (2) is likely to produce precise
resultsit can be prohibitively expensive.

At first blush, (3) appearsto be the “obvious” solution. How-
ever, it is unsatisfactory in weakly-typed languages such as Cobol,
where a variable need not be explicitly declared as an aggregate
in order for it to contain composite data. Even in more strongly-
typed languages, declarative information alone can be insufficient
because (i) loopholes in the type system (such as typecasts) may
permit aggregate values to interoperate with non-aggregate val ues,
and (ii) programmersmay pack several scalars, each encoded using
one or more bits, into a single word. Moreover, (3) may produce
unnecessarily many scalar componentswhen the program only ac-
cesses a subset of those components. In addition, in the presence
of “unions’ this approach can produce scalarsthat overlap one an-
other in storage inexactly. The operation of determining whether
two scalarsin a program refer to overlapping storage (such checks
are often required in the inner loops of analysis algorithms) can be
costly.

In this paper, we present an efficient agorithm for lazily de-
composing aggregatesinto simpler componentsbased on the access
patterns specific to a given program. This process allows us both
to identify implicit aggregate structure not evident from declarative
information, and to simplify the representation of declared aggre-
gates when references are made only to a subset of their compo-
nents. After atomization, each reference to an aggregate can be ex-
pressed asa set of referencesto digjoint atoms. Theresulting atoms
may then be treated as scalars for the purposes of analysis, and
checks for overlapping storage reduce to equality tests on atoms.
Atomization canthusserveasan“enabling” techniquefor perform-
ing various program analyses (e.g., computing reaching definitions
[1] and program slicing [15]), aswell asconstructing their underly-
ing representations (e.g., PDG [6] or SSA form [4]) in the presence
of aggregates.

We also present a variant of the algorithm that can be used to
efficiently solve certain type analysis problems. One instance of
such a problem is date usage inference for programs affected by
the “Year 2000” problem. This is an instance of a general class
of problemsthat require inferring undeclared but related usages of
typeinformation for various software maintenance and verification
activities[10]. Thetypeanalysisalgorithm described here hasbeen
incorporated into several recent IBM products' .

*IBM Visual Age 2000 for Cobol and IBM Visual Age 2000 for PL/I.

01 A.
05 F1 PIC 99.
05 F2 PIC 99.
05 F3 PIC XX.
05 F4 PIC XX.

01 B PIC X(8).

01 C PIC X(8).

01 D.
05 F5 PIC 99.
05 F6 PIC 99.
05 F7 PIC XX.
05 F8 PIC XX

01 RESULT PIC 99.

MOVE 17 TO F1.
MOVE 18 TO F2.
MOVE A TO B.

MOVE B TO C.

MOVE C TO D.

MOVE F5 TO RESULT.

Figure 1: Example Cobol program illustrating assignments be-
tween aggregate and non-aggregate variables.

1.1 Motivating Examples

Consider the Cobol fragment shownininFig. 1. For Cobol-illiterati,
the declarations in the example behave as follows: The program

containstop-level declarationsof variablesa, B, C, D, and RESULT.

Varigbles A and D are both declared as records of four fields: F1

through F4, and F5 through F8, respectively. The types of these
fields are declared using so-called pi cture clauses, which are acom-

pact meansof expressing both the length and the allowabl e types of

the sequenceof charactersthat constitute the fields. The characters
that follow the keyword PIC specify the types of characters that
are allowed at corresponding locations in the field. For instance,
a‘'9’ character indicates numerical data, whereasan ‘X’ character
indicates that any character is allowed. Hence, variables 2 and D

both consist of 4 numeric characters followed by 4 unconstrained
characters. A picture character may befollowed by a parenthesized
repetition factor. The non-aggregate variables B and C thus each

consist of eight unconstrained characters. The example program

contains a number of assignments. Note that in Cobal, it is not
necessary to name parent structures in data references when field

references alone are unambiguous (e.g., in the assignment of 17 to

field F1 of a).

Suppose we are interested in computing the backwards pro-
gramsdlice [17, 15] with respect to the final value of RESULT, i.e,,
the set of assignmentsthat could affect the final value of RESULT.
Since our example program does not contain any control flow con-
structs, the slice contains any statement on which the final value of
RESULT is transitively data-dependent. We assume that the fol-
lowing model is used to compute these data dependences:

e All variables are decomposed into digoint atoms by some
means.

¢ Each MOVE statement is modeled as a set of atomic assign-
ments between corresponding atoms.

¢ Data dependences are determined by tracing def-use chains
between atomic assignments.

Clearly, an atomization that is too crude will lead to redundant
statementsin the slice. For example, treating the statement MOVE

01 DATA-RECORD.

02 DATE.
03 YY PIC 99. /lyear
03 MM PIC 99. // month
03 DD PIC 99. /lday

02 PRINTABLE-DATE REDEFINES DATE PIC X (6).
02 ...

01 OUTPUT-BUFFER.
02 LINE PIC X(80).
02 COLUMNS REDEFINES LINE.
05 COLUMN-1 PIC XX.
05 COLUMN-2 PIC XX.
05 ...

01 PRODUCT-INFORMATION.

02 COLUMN-1-INFOPIC XX.

02 COLUMN-2-INFOPIC XX.

02 ...
MOVE FUNCTION CURRENT-DATE TO DATE OF DATA-RECORD.
MOVE PRINTABLE-DATE(1:2) TO COLUMN-1.

MOVE PRODUCT- INFORMATION TO OUTPUT-BUFFER.
Figure 2: Exampleillustrating type analysisfor the Y 2K problem.

B TO C as a scaar assignment between two atomic variables?
will lead to the inclusion of the superfluous statement MOVE 18
TO F2 inthe dlice. On the other hand, if the atomization is too
fine-grained, the number of data dependencesthat must be traced
to compute the dlice will be larger than necessary and represen-
tations that capture these dependences (such as PDGs) will also
be larger than necessary. For example, breaking up each variable
into character-sized atoms|eads to the desired slice (one that omits
MOVE 18 TO F2). However, the same result can be achieved
with the following, much coarser-grained atomization, which is
produced by our atomization algorithm:

atomization(a

(A[1:2],A[3:4], (a[5:8])
atomization(
(

EB[1:2], B[3:4], B[5:8])
(cl1:2], C[3:4], c[5:8])
(D[1:2], D[3:4], D[5:8])

atomization
atomization(

)
)
)
)

B
C
D

Here, we use array notation to indicate subranges of the characters
occupied by avariable. E.g., B[3:4] denotes the subrange consist-
ing of character 3 and character 4 of variable B. There are a few
interesting things to note about this solution:

e FieldsF1 and F2 cannot be merged into a single atom with-
out aloss of precision, and therefore correspond to separate
atoms.

e Field F3 and F4 are merged, becausethe distinction between
these fieldsisirrelevant for this particular program®. In gen-
eral, merging fields can lead to faster dataflow analysis and
more compact program representations.

?Note that this is a very reasonable choice, especialy if we use only declarative
information to perform the atomization.

#Unused fields occur frequently in Cobol applications. Cobol-based systems typ-
ically consist of a collection of persistent databases and a collection of programsthat
manipul ate these databases. Althoughthe declared record structurereflects the format
of the database, a single application typically only uses a subset of the fields of the
retrieved records. Hence, analysis of individual applications can benefit by coalescing
or eliminating uninteresting fields.

YY OF DATE OF DATA-RECORD — {year}
MM OF DATE OF DATA-RECORD — {notYear}
DD OR DATE OF DATA-RECORD — {notYear}
PRINTABLE-DATE [1:2] OF DATA-RECORD - {year}
PRINTABLE-DATE [3:4] OF DATA-RECORD — {notYear}
PRINTABLE-DATE [5:6] OF DATA-RECORD — {notYear}
LINE[1:2] OF OUTPUT-BUFFER — {year}
COLUMN-1 OF COLUMNS OF OUTPUT-BUFFER — {year}
COLUMN-1-INFO OF PRODUCT-INFORMATION - {year}

Figure 3: Result of type anaysisapplied to examplein Fig. 2

¢ Although variables B and C are both declared as scalar vari-
ables, both must be partitioned into three atoms in order to
obtain precise dicing results.

Fig. 2 showsaprogram fragment that manipul ates datesin ways
similar to those of Cobol programs affected by the “Year 2000”
(“Y2K") problem. Here, DATA-RECORD representsa record con-
taining date and non-date information. The storage for date infor-
mation is redefined in two different ways: DATE is a structured
record containing separate fields for month, day, and year digits,
while PRINTABLE-DATE is an unstructured “string” of uncon-
strained characters intended to be used for input or output. Since
the YY field of DATE is only two digits long, it would have to be
expanded to four digits to account for post-1999 dates. In addi-
tion, COLUMN-1 of OUTPUT-BUFFER (hererepresenting amulti-
purpose string used for input/output purposes) would have to be
expanded to account for the fact that years are now larger. This
couldin turn affect PRODUCT - INFORMATION aswell, sinceeven
thoughthelatter never actually containsayear value, it would prob-
ably haveto be updated to account for the fact that the first column
of OUTPUT-BUFFER is how two characterswider.

Section 5 discusses how our aggregate structure identification
algorithm can be extended to assist in remediating “field expan-
sion” problems such as the Y 2K problem by viewing it as a flow-
insensitive, bidirectional type analysis problem. The basic ideais
as follows: We first define a semi-lattice of abstract types. In the
case of the Y2K problem, a lattice of subsets of the set { year,
notYear } (where year and notYear are atomic types representing
fields inferred to be year-related or not year-related, respectively)
would suffice, although more complicated lattices could also be
used. Known sources of year-related values, such as the year char-
acters returned by the CURRENT-DATE library function in Fig. 2
areinitialized to year. Sourcesof valuesknown not to contain years
(e.g., the non-year characters returned by CURRENT-DATE) are
initialized to notYear. After applying the algorithm described in 5,
the results of the type analysisare depicted in Fig. 3.

The interesting aspect of our analysisis not the type lattice it-
self, which is trivial, but the way in which the analysisis carried
out efficiently and accurately on aggregates. Thiskind of analysis
is applicablenot only to the Y 2K problem, but to other problemsin
which similar types must be propagated through aggregates, e.g.,
any problem involving field expansion of variables holding values
of aparticular logica (i.e., non-declared) type.

Fig. 4 depicts a more problematic example, in which an ar-
ray, MONTH, is overlaid with a record, MONTHS -BY-NAME. Each
field of MONTHS-BY-NAME correspondsto an element of the ar-
ray MONTH). Overlaying of records and arraysis afairly common
idiom in Cobol. This alows programmers to refer to array ele-
ments by name aswell as by index (e.g., when iterating uniformly
through the collection represented by the array), and is aso used
to initialize arrays, as in this example. The use of such idioms
makes it desirable to avoid overly conservative treatment of such

01 M.
02 MONTH OCCURS 12 TIMES.
05 NAME PIC X(3).
05 NUM-DAYS PIC 9(2).
02 MONTHS-BY-NAME REDEFINES MONTH.

05 JAN.
10 NAME PIC X(3) VALUE IS "JAN".
10 NUM-DAYS PIC 9(2) VALUE IS 31.

05 FEB.
10 NAME PIC X(3) VALUE IS "FEB".

10 NUM-DAYS PIC 9(2) VALUE IS 28.

MOVE NUM-DAYS OF MONTH(I) TO ND.

Figure 4: Example Cobol program illustrating overlaid arrays and
records.

overlays in the context of program analysis. For instance, in the
context of reaching-definitionsanalysis, it is desirable to infer that
theinitializing definition of NAME OF JAN will not reach the use
of NUM-DAYS OF MONTH [I], butthat theinitiaizing definition
of NUM-DAYS OF JAN might reach the same use.

Our aggregate structure identification algorithm differentiates
between referencesto the array asawhole, referencesto array sub-
ranges with statically-determinable indices (references to the ele-
ments of MONTHS -BY -NAME in the example of Fig. 4 are treated
as single-element instances of subrange references), and references
to arbitrary elementsviaindices computed at run-time. Thesedis-
tinctions can be exploited to yield better atomizations that accu-
rately differentiate among these cases.

1.2 Overview

The remainder of the paper proceeds as follows: In Section 2, we
describe atiny programming language that contains only the lan-
guage features relevant to our results. Section 3 outlines the ba-
sic ideas behind the structure identification algorithm in terms of
solving equivalence constraints on ranges of abstract memory lo-
cations; this algorithm manipulates a new data structure called the
Equivalence DAG.

In Section 4, we observe that the algorithm of Section 3 can be
viewed as computing the solution to a unification problem. Among
other things, this alternate view allows certain other problems that
can be expressed in terms of unification (e.g., Steensgaard’s flow-
insensitive pointer analysis[11, 12]) to be incorporated smoothly
into our framework.

Sections 5 and 6 cover two refinements of the basic algorithm
and their applications: Section 5 extends the framework of Sec-
tion 3 to add inequality constraints involving elements of an ab-
stract type lattice. The resulting type analysisalgorithm is applica-
bletothe Y 2K problem. In Section 6, we formalize the atomization
problem, and provide a solution based on another extension to the
framework of Section 3.

The complexity of the Equivalence DAG construction algorithm
(in its most general form) is discussed in Section 7. Extensions
to the algorithm, including representation of variables of indeter-
minate length, pointer analysis, and uses of SSA renaming, are
covered in Section 8. Section 9 is devoted to related work. Sec-
tion 10 discusses possible future work. Finally, the appendix pro-
videsthe details of the type analysis and atomization algorithmsin
pseudocodeform.

Pgm == ¢ | Smt Pgm
Smt ::= DataRef « DataRef
DataRef ::= ProgVars |

DataRef [Int+ : Int+] |
DataRef \ Inty

Figure 5: The mini-language under consideration. Here, Int; de-
notesthe set of positive integers, and ProgVarsdenotesa set of “top
level” program variables.

2 A Mini Language

In order to facilitate the discussion of problems studied and the
algorithms presented in this paper, wewill useasmall language, the
grammar of which is shownin Fig. 5. Thelanguage of Fig. 5 may
be thought of asatraditional imperative languagetrimmed down to
the bare essential s necessary to discussthe problemsat hand. Since
the algorithms we present are flow-insensitive, control-flow aspects
of aprogram areirrelevant, and we consider aprogram P € Pgm
to ssimply consist of a set of statements. A statement d; < d» €
Smt represents an assignment which copies the contents of data
referenced, intod; .

A datareferenced € DataRef is areference to some sequence
of abstract locations (“ bytes’) and takesone of thefollowing forms:

e aprogramvariable z € ProgVars(the length of which will
be denoted by |z|)

e asubranged[::s] of locations: through 5 of some data ref-
erenced

e asingle, statically indeterminate element of an array of n
elements, denoted by d\r, where d is adatareference repre-
senting the complete array

Subrangesare usedto represent asequenceof locationsat astatically-
determined positionin adatareference. For example, if d referstoa
record, then d[<:5] canbe used represent areferenceto afield of the
record. A data-reference created by indexing an array is abstracted
in our mini language into a reference of the form d\n, where d
identifies the complete array, and » is the number of elementsin
the array. (Thus, our abstraction omits the actual array index ex-
pression. If the index expression is a constant, however, the data
reference can aternatively be represented as a subrange d[:5] of
the array, where : and 5 delimit the range of locations occupied by
the single array element denoted by the index expression.) The no-
tation d\rn is intended to suggest that if we break up the sequence
of locations that d denotesinto » subsequences of equal lengths,
then d\n denotes one of thesen different subsequences.
We now definethe set of all locationsas:

Loc= {(=z, 1) | = € ProgVars 1 <1 < |z|}

(Different elementsof ProgVarsthus represent digoint setsof loca-
tions.) For convenience, we will denote location {z, 1) as sSimply
z[4]. At execution time, every data-reference denotes a sequence
of locations. At analysis time, however, we may not know the
precise sequence of locations referred to by a data-reference d in
the genera case (e.g., due to areference to an array element at a
statically-indeterminate index). Hence, we treat a date-reference d
asareferenceto one of aset of sequencesof locations, and we will

denotethis set by D[d]. Formally, we define D by:

Dlz] = {=z[l] -z[2]-- =[|z|] }if z € Progvars
Dldlg]) = {ofs]-ols+1]---0[j] | o€ D[d]}
Dld\n] = {ofs] ofs + 1] ol]
o €Dd],1<i<n,
= ()= (ol/m) + Le = ix (lol/n))

where ¢[z] indicatesthe :-th element of sequences, and || denotes
the length of asequences. Notethat all elementsof D[d] have the
same length, which we will denote |d|.

For example, let z,y € ProgVars Then, z[3:5] denotes the
singleton set {z[3] - z[4] - z[5]}. A more interesting example is
((y[1:10])\2)[2:3]. Here, y[1:10]\2 is areference to an arbitrary
element of a2-element array; thearray asawhole occupiesthe first
10locationsof y. Thesubrange[2:3] (which could, e.g., represent a
singlefieldwhen thearray element isarecord) isthen selected from
the element. As a result, the set of locations referred to consists
of {y[2] - y[3],y[7]- y[8]}. In other words, ((y[1:10])\2)[2:3] is
areference to either locations y[2] and y[3] or locations y[7] and
y[8].

We will now define an abstract semantics S(d1 « ds) for the
assignment statement d; < d, which simply consistsof the set of
al pairsof locations (11, I3), written symbolically asly «+ Iz, such
that the assignment statement might copy the contents of location
I> tolocation; . This semanticsis defined asfollows:

S(d1 — dz) = {0’1 (Z) — Uz(i) | o1 € D[d1],0’2 € D[dz],

1 <@ < min(|a1], |oz2])

In the rest of the paper, we will assume that for every statement
dl — dz, |d1| = |d2|

The abstract semantics for assignments that occur in a given
program P € Pgm can be used to define an equivalence relation
on locations that will be useful in the sequel (e.g., asthe basis for
inferring equivalent types). To this end, we first define:

E = U S(d1 %dz)

dy+dy€P

Now, let =p denote the smallest equivalence relation containing
the set of pairs of locations E (i.e., the equivalence closure of E).
Wewill omit the subscript P if no confusionislikely.

3 The Equivalence DAG: The Basic ldeas Behind the Al-
gorithm

In this section we focus on the problem of computing the equiva-
lencerelation =g, given aprogram P. Thegoal of thissectionisto
give the reader an understanding of the essential algorithmic con-
tributions of this paper, primarily through examples. We will de-
scribe extensions and applications of this algorithm in subsequent
sections.

Rather than generate an explicit representation of the equiva-
lencerelation =p, we will actually generate a more compact rep-
resentation of the equivalence relation that can be used to answer
queries about whether two locations are equivalent or not. We will
also refer to a statement d; < d» as an equivalence constraint
di ~ d for notationa convenience.

3.1 The Simple Equivalence Closure Problem

We start with a ssmple version of the problem, where every con-
straint hasthe form z ~ y, given z,y € ProgVars In this case,
~ induces an equivalencerelation on ProgVars This is sufficient
to answer questions of equivalence of locations since {(z, i) =p

{y, 7y if and only if variablesz and y are in the same equivalence
classand: = j. Thus, in this case, the set of equivalence classes
of ProgVars provides a compact representation of the equivalence
relation on locations.

The partitioning of ProgVarscan be donein the standard way:
initially place every program variable z € ProgVarsin an equiv-
alence class by itself, and then process the equival ence constraints
one by one; a constraint z ~ y is processed by merging the eguiv-
alence classesto which z and y belong into one equivalence class,
using the well-known union-find data structure* (see[14, 3]).

3.2 The Range Equivalence Closure Problem

Now, consider a version of the problem where every constraint is
of the form z[::5] ~ y[k:l], where z,y € ProgVars There are
two aspectsto the origina solution that we would like to preserve
when we address this generalized problem. The first aspect is that
the algorithm processesevery constraint in C' exactly once, instead
of using an iterative (e.g., transitive-closure-like) algorithm. The
second is that we would like to identify “ranges’ of locations that
are equivalent to each other and partition them into equivalence
classes. This can represent = ¢ more compactly than a partition of
the set of all locationsinto equivalence classes.

We now illustrate through an example how we can achieve these
goals. Assumethat W, X, Y, Z € ProgVars andthat [IW| =6, | X|
=12, |Y| = 8, and |Z| = 12. Assume that C consists of three
equivalence constraints, X [5:8] ~ Y[1:4], Z[1:6] ~ W][l:6],
and X[3:12] ~ Z[1:10]. We begin by placing every variable
in an equivalence class by itself. We then process the first con-
straint X[5:8] ~ Y[1:4] asfollows. We “split” the range X[1:12]
into three sub-ranges X [1:4], X[5:8], and X[9:12] and place them
each in an equivalence class by itself. We refer to this as adding
“breakpoints’. We similarly split range Y[1:8] into two sub-ranges
Y[1:4] and Y[5:8], placing them each in an equivalence class by
itself. We then merge the equivalence classesto which X [5:8] and
Y[1:4] belonginto one.

Given this kind of a partition of every program-variable into a
collection of sub-ranges, every location belongs to a unique sub-
range of the partition. We can map every location ! into a pair
(e1, 01) wheree; is the equivalence class of the unique sub-range
containing ! and o; is the offset of the location within that sub-
range. Further, locations!; and !, are equivalent with respect to the
relation =p if and only if thee;, =e;, ando;, = o01,. For exam-
ple, location X [6] will be mapped to (ec(X[5:8]), 2) where ec(r)
denotesthe equivalenceclass containing sub-ranger. Similarly, lo-
cation Y'[2] will be mapped to (ec(Y[1:4]),2). Since ec(X[5:8])
= ec(Y[1:4]), thesetwo locations are equivalent.

Let usre-visit the step where we “split” arange, say X[1:12],
into a sequence of sub-ranges, say X[1:4], X[5:8], and X[9:12].
It turns out to be convenient to keep both the origina range and the
new sub-rangesaround, and to capturethe“ refinement” relation be-
tween theseinto atree-like representation (rather than, for instance,
replacing the original range by the new sub-ranges). Fig. 6(a) and
Fig. 6(b) illustrate how we represent the refinement of X and Y for
the above example. Each rectanglein the figure, which we will re-
fer to asa“node”, denotes an equivalence class of sub-ranges, and
the number inside indicates the length of each sub-range contained
in the equivalence class. Fig. 6(c) indicates that the equivalence
classes containing the nodes representing X [5:8] and Y[1:4] have
been merged into a single equivalence class®.

]t can be done even more efficiently using the linear time algorithm for comput-
ing the connected components of an undirected graphs. However, we will need the
flexibility of the union-find data structurein a generalized version of the problem.

5Note that edges whose targets are nodes representing equivalence classes to be
merged are not literally redirected to a common node, instead, the union-find data
structureis used to merge the classes to which the edges refer.

The next constraint (Z[1:6], W[1:6]) is processedjust like the
first constraint, asillustrated by Fig. 6(d-€).

In the general case, processing a constraint d; ~ d» consists
of the following steps. (i) We first add break-points to the repre-
sentation before the starting-location and after the ending-location
of both d; and dz. (ii) The sub-ranges d; and d» can then be
represented by a sequence of nodes, say o1 = [s1,---,sx] and
o2 = [t1, -, tm] respectively. We make these two sequences
equivalent to each other asfollows: if s, and ¢; denote ranges of
the same length, we simply merge the two into one equivalence
class and proceed with the remaining elements of the sequence. If
the two denote ranges of different lengths, we then split the bigger
range, say s1, into two sub-ranges, s; and s;, suchthat s; hasthe
same length as ¢t;. We then merge s; with ¢, and continue on,
making the sequences(s?, sz, - - -, sx] and [tz, - - -, tn] equivalent.

The third constraint X[3:12] ~ Z[1:10] illustrates the more
general scenario described above. After adding the necessary break-
points, the range Z[1:10] is represented by the sequence [s1, s2]
(see Fig. 6(f)), while the range X [3:12] is represented by the se-
quence|[ti, t2, ts]. s1 islonger than ¢;, and is broken up into sub-
rangess; and sy, asshownin Fig. 6(g). We then merget; with s,
t» with 7/, and £s with s,. Fig. 6(h) shows the resulting represen-
tation.

Clearly, givenalocation, wecan“wak” down the DAG (shown
in Fig. 6(h)), from the appropriateroot to aleaf e; to map the loca-
tion to apair (e, 0;) suchthat iy = I, if andonly if (es,,01,) =
(e15,01,). We call the representation generated by this algorithm
an Equivalence DAG.

In the above description of the algorithm, we assumed that the
nodes in the sequences o, and o> were “leaf” nodes. Even if that
were true when the processing of the two sequencesbegins, when
we get around to processing elements s; and ¢;, the processing of
the earlier elements of the sequences could have had the effect of
adding breakpointsto either s; or ¢; or both, converting them into
“internal” nodes. Our agorithm handlesthis by converting the sub-
rangesinvolved into a sequence of leaf nodeslazily rather than ea-
gerly.

A simple example that illustrates this is the single constraint
A[1:12] ~ A[5:16]. Adding breakpoints corresponding to the
endpoints of the two subranges A[1:12] and A[5:16] generatesthe
representation shown in Fig. 7(b). The processing of the constraint
then proceeds as below:

A[1:12] A[5:16]

[us, us]

(replace u2 by its children)
[us, us]

(split us into ug and w7)
[ue, u7, us]

(merge ua and ug)

[U7, u3]

(replace us by its children)
[U7, u3]

(merge ue and uy)

[us]

(merge w7 and us)

I

This example illustrates the motivation behind our representa-

tion. Note that if we maintained for each variable only the list
of subranges into which it has been refined (instead of the tree

RERNRERERENRERNRERENR

T
n -
S
]]
\
P ®\ e —
12 12
\4\\8\\ i
j—— e —
I4I e T[]
-

s [S —
(s\\ LT[o]
t s[2] 13

@
j———
(\]
_ 52-.

®\ ®\ \
S
(4] [s e
\

Figure 6: An exampleillustrating our range equivalence a gorithm.

(@ (b)

(d)

Figure 7: Another exampleillustrating our range equiva ence algorithm.

representation of the refinement), processing constraints such as
A[1:12] ~ A[5:16] will be more difficult. Our agorithm may be
easier to understand if it is viewed as a sort of unification, with
the leaf nodes denoting unbound variables and internal nodes de-

noting bound variables. We will explore this connection briefly in
Section 4.

3.3 The General Problem

In the most general version of the problem we consider here, an
equivalence constraint d; ~ d, may consist of arbitrary data ref-
erences as defined by the grammar in Fig. 5, including references
to (statically indeterminate) array elements. Consider, for exam-
ple, a casein which we have P, @, R € ProgVars with |P| =
20, |Q| = 10, and |R| = 2. Assume we have two constraints
P[1:10] ~ Q[1:10] and (P[1:20])\10 ~ R[1:2]. Thefirst con-
straint is processed as before, producing the representation shown
inFig. 8(a). Processingthe second constraint, whichincludesan ar-
ray reference, producesthe representation shown in Fig. 8(b). The
nodeslabeled v and v represent arrays consisting of 5 elements of
size 2 each.

We will explain in detail how our algorithm handles arrays and
similar constructsin Section 6. A complete algorithm for the gen-
eral version of the problem appearsin pseudocodeform in the ap-
pendix.

4 The Equivalence DAG as a Unifier

Readers familiar with unification may have observed that our algo-
rithm hasaunification flavor. Our algorithm can, infact, be thought
of as unifying terms belonging to aterm languageIT"y (defined be-
low), with the following distinction: unlikein standard unification,
we do not treat the operators & and @ in thisterm languageasfree,
i.e., uninterpreted operators; instead, we are interested in unifica
tion with respect to a specific interpretation of these operators. We
explore this connection briefly in this section.

For any set X, let " x denote set of terms defined by:

I'x =X | 'xol'x | Int+ QIT'x (1)
where Int; denotes the set of positive integers. Occasionally we
will omit ®, abbreviating: @ 7 tos7. Let V = U;»oV; denotea
set of variables. A variable belonging to V; is said to have alength
1. We will use the notation z : < to indicate that avariable z hasa
length <.

Consider now the set of terms I"y,. Observe that we may in-
terpret the “trees’ rooted at any node in the Equivalence DAG as
terms belonging to I'y: |eaves are interpreted as variables belong-
ing to V; internal nodes denoting the concatenation of two ranges,
such as those in Figure 6, may be interpreted as uses of the oper-
ator @; nodes such as v and v of Fig. 8, representing arrays, are
interpreted as uses of the operator ®.

Let X * denotethe set of sequencesof elementsfrom X . Given
atermr € I'x, thevalue[7] € X™* isobtained from 7 by interpret-
ing & as sequence concatenation and ® as repeated concatenation
(of aseguencewith itself, as many times asindicated)

Definethe length of aterm = € Ty to bethe sum of the lengths
of dl variablesin the sequence[7]. A substitution & is a length-
preserving mapping from V toT"y: i.e,, afunction that maps every
variable to a term that has the same length as the variable. The
Equivalence DAG can be thought of as a substitution, restricted to
a set of variables denoting program variables. For example, the
DAG in Fig. 8(b) represents a substitution {zqg — 5zr,zp —
(5zr)®(5zR), zR v TR}

Two substitutions o1 and o» are said to be equivalent if
[o1(z)] = [o2(=)] for al =. Every substitution o can be extended
tomapeverytermr € 'y toatermo(7) € I'y. A substitution s is
said to beaunifier for aset of unification constraints.S C I'y x Ty
if [o(m1)] =[o(r2)] for every (71, 72) € S. Further, it issaid to be
amost general unifier for .S if every other unifier &1 for S can be
expressed as the composition of some substitution o> with a sub-
gtitution o that isequivalentto o: o1 = o3 0 3.

Thetrandation rulesin Fig. 9, specified in the Natural Seman-
ticsstyle, show how aset of unification constraints can be generated
from a program. In particular, the trandlation rule S shows how a
statement d; «+ d» can be translated into a set of unification con-
gtraintsof theform =, & 7, wherery, =2 € T'v. Theauxiliary rules
D1, Ds, and D3 show how a data-reference d € DataRef can be
trandlated into avariable z € V and aset of unification constraints
C constraining variable z (which we denote by d = p (=, ().
For example, if we have a data reference of the form d\n (rule
Ds), then we represent d by a variable, say =z, and d\n by a vari-
able, say y, wherethevariablesz and y arerelated by the constraint
n ®y = z. The constraints generated from a program are simply
the union of the constraints generated from the statements in the
program.

Let us illustrate this using the example of Figure 8. Here we
have P, Q, R € ProgVars with |P| = 20, |Q| = 10, and |R| = 2.
We havetwo constraints P[1:10] ~ [1:10] and (P[1:20])\10 ~
R[1:2]. We represent every program variable v € ProgVars by
a congtraint variable zv of length |v|. Processing the constraint
P[1:10] ~ @Q[1:10] producesthe substitution{zg +— u : 10, zp —
(u:10)®(v : 10)}, wherew and v aretwo new variables, whichis
represented by the Equivalence DAG of Figure 8(a). Now consider
the constraint (P[1:20])\10 ~ R[1:2]. Thisis effectively trans-
lated into the unification constraint z = 10 ® =z (ignoring some
superfluous variablesthat may be generated by a direct application
of the trandation rules of Figure 9). Since zp is aready bound
to (v:10)4(v:10), our algorithm unifies (v:10)&(v:10) with 10 ®
(zr:2). Thisrequiressplitting up 10® (zr:2) iNt0 5@ (zr:2)P5R
(zr:2). The subsequent unification binds both « and v to 5 ®

:IZRZZ).
(It is easy to see that the Equivalence DAG construction algo-
rithm can be interpreted as computing a unifier for the constraints

@ ®

\

Y[] [0]V

@ ®_

@ (b)
Figure 8: An exampleillustrating our array equivalencealgorithm.
D V € ProgVars where a unique variable zv; is used for every pro-
! V=p (zv,{}) gram variable v
D d=p (z,C) where z1, z2, and =3 are fresh variables of lengths
2 dli:j]=p (z2,CU{z1@z2Dzs = 2}) 1—1,5—1+1,and|z| — 5 respectively
d=p (z,0C) . ,
Ds A\n=p @ CUnoy=a)) where y is afresh variable of length |z|/n
s d1 =p (z1,C1), d2 =p (32, C2)

d16d2:>5C1 UCQU{ZIZl 2:122}

Figure 9: Generating unification constraints from a program.

generated in Figure 9. We also conjecture that unifier it computes
ismost general.

5 Application I: Type Analysis

5.1 The Problem

In this section we extend the basic algorithm of Section 3 to ad-
dress a generdization of the type analysis problem discussed in
Section 1. Consider the example depicted in Fig. 6. Assume the
programmer wants to modify the representation of a field of the
variable W, say W[1:2]. Thequestion we wish to answer is“What
other variables are likely to be affected by this change, requiring
corresponding modificationsto their own representation?”’

We now present amore preciseformulation of the problem. Let
L denote some semi-lattice with ajoin operator U. We may think
of the elements of £ as denoting abstract types. An example is
the lattice of subsetsof the set {year, notYear} used for year usage
inferencein the example of Fig. 2 of Section 1.

A function = from Loc to £ represents a typing for the set of
locations. We say that « is valid with respect to a program P if
(1) = =(lx) for dl li=pl;. In other words, atyping = is valid
with respect to P if the expressions on both sides of every assign-
ment in P have the sametype under .

Now consider a constraint of the form d > ¢, where d €
DataRef and ¢ € £. We say that = satisfies this constraint if and
only if

m(l) > cforeveryl U set(o)
oceD[d]

where set(o) denotes the set of elementsin a sequences. Given
two typing functionsw; and 72, we say that =1 > m if and only if
m1 (1) > m2(l) fordl ! € Loc.

Givenaprogram P and aset C of constraintsof theformd > ¢,
whered € DataRef and ¢ € £, we areinterested in computing the
least typing valid with respect to P that satisfiesevery constraint in
C.

5.2 The Solution

We now illustrate how we can efficiently compute the desired solu-
tion, using the data structure and algorithm presented in Section 3.
We first processthe equivalence constraints induced by program P
to produce the Equivalence DAG. We then associate every leaf of
the resulting DAG with avalue from £, which isinitially the least
element of £. We then process every constraint d > ¢ in C as
follows. The data-reference d can be mapped onto a sequence of
leaves in the Equivalence DAG (possibly after adding new break-
points). We update the value associated with each of these leaves
to the join of their current value and c¢. The example in Fig. 10
illustrates this. Assume we start with the Equivalence DAG of
Fig. 6(h), and process constraint W [1:2] > {year}. (We areusing
thelattice £ of subsetsof the set {year, notYear} described above.)
W11:2] correspondsto the singleleaf « (shown as abold rectangle
inFig. 10), whose valueis then updated to {year}.

The resulting DAG can be viewed as a compact representation
of the desired solution. In particular, it can beinterpreted asafunc-
tion 7 from locations to £: the value associated with any location
I is obtained by traversing the DAG to map location ! to a leaf e;
in the DAG (as explained earlier), whose valueyields = (1). In par-
ticular, the DAG in Fig. 10 mapslocations X [3], X[4], Z[1], Z[2],
WT1], and W2] to type {year} and every other location to type
{}. Equivalently, the DAG in Fig. 10 may be viewed as afunction
mapping every program variable to a type term belongingto I' .,
whereT" is defined asin Equation 1.

6 Application Il: Atomization

In this section, we addressthe aggregate atomi zation problem through
another extension of the basic algorithm of Section 3. Wefirst con-
sider some examples that illustrate several of the more subtle as-
pects of the problem.

Figure 10: An exampleillustrating our type inference algorithm. We have used N as an abbreviation for {} and YR as an abbreviation for {

year}.

6.1 Motivation

Overlapping Data References Consider the problem of com-
puting the reaching definitions for the use of NUM-DAYS OF
MONTH [I] in the example shown in Figure 4. In the absence of
aggregates, determining whether any two direct (i.e., non-pointer)
datareferencesin aprogram can refer to the sameset of locationsis
usually straightforward. However, in this example Cobol’s aggre-
gate model considerably complicates matters: we note that the ini-
tialization of NAME OF JAN (M[1:3] in our mini-language) does
not reach the use of NUM-DAYS OF MONTH[I] ((M[1:60] \ 12)
[4:5]), but the initiglization of NUM-DAYS OF JAN (M[4:5] in
our mini-language) does. This follows from the fact that M[4:5]
overlaps (M[1:60] \ 12) [4:5], while M[1:3] doesnot. It should be
evident from this exampl e that testing for overlap betweentwo data
references has the potential to be quite expensive, especialy in the
presenceof arrays.

Partially Killing Definitions Reaching definitions analysis is
further complicated by the fact that one definition may “partialy”
kill another definition. Consider the following examplein our mini
language:

Sl £[1:10] + y[1:10]
S2: z[1:5] + z[1:5]
S3: w[l:5] « z[1:5]
A z[1:5] + 2[6:10]

Clearly, the definition of z[1:10] at S1 does not reach the use of
z[1:5] at S3, but it does reach the use of z[6:10] at S4, because
the definition of z[1:5] at S2 partially kills the definition of z[1:10]
at S1. Although reaching definitions analysis can be performed in
severa different ways, the example illustrates the need to handle
partialy killing definitions accurately in order to compute precise
results.

The goal of atomization is to transform the input program into
asemantically equivalent program in which all datareferencesare
atomic, thereby simplying program analyses such as the computa-
tion of reaching definitions. In the case of the example above, we
can transform statements S1-S4 so that each of the assignmentsis
defined in terms of atoms z1, =2, y1, y2, 21, and wl. The set of
atoms partitions the set of locations such that every atom identifies
a set of locations, and distinct atoms refer to digoint sets. For in-
stance, atom z1 identifies the set of locations z[1:5], and atom z2
identifies the set of locations z[6:10]. (The statement S1 can be
thought of as an abbreviation for two assignment statements.)

S1: (z1,52) + (y1,y2)
S2: z1 «+ 21
S3wl « zl

A 21— z2

Aswith reaching definitionsanalysis, many other standard pro-
gram analysistechniquesor transformations (e.g., partitioned anal-
ysis, SSA-form construction, or program slicing) are not imme-
diately applicable to programs containing overlapping data refer-
ences or partially killing definitions. However, once a program is
transformed into an equivalent one containing only operations on
atoms, these complications can be ignored, since the atoms can be
treated as simple scalar variables.

6.2 The Basic ldeas

It should be clear from the preceding examplesthat an atomisin-
tended to denote a set of locations that may be treated as a single
logical unit for purposes of program analysis (we will make this
notion more precise in the sequel). Recall from Section 5 that the
leaves of the Equivalence DAG identify subrangesof |ocationsthat
can betreated asasinglelogical unit during typeanalysis. It should
therefore not be surprising that the Equivalence DAG can aso be
used asthe starting point for atomization.

However, we need to exercise some caution in treating the leaves
of the Equivalence DAG asatoms. Dueto the sharing present in the
DAG structure, aleaf may identify anumber of different subranges
of locations in the program, and each of these subranges must be
treated asa distinct atom. This can be done by first “flattening” the
Equivalence DAG into aforest (by duplicating shared subgraphs),
then treating the leaves of the resulting forest as atoms.

To formalize this intuition, we first note that the Equiva-
lence DAG can be interpreted as a function ¢ mapping ev-
ey Vv € ProgVarsto a term in I'y. Let ¢, be the sub-
stitution obtained by renaming the variable occurrences in the
set of terms {¢(z) | = € ProgVarst such that no variable oc-
curs twice. For example, if Progvars = {A,B}, and ¢ =
{A — whydw, B — ydz}, then a suitable renaming is ¢, =
{A v z1®z2Pzs, B — zaPzs}. By renaming multiple occur-
rences of the same variable, ¢, abstracts away type equivalence
information, while allowing usto determine for any program vari-
able the aggregate structure that was inferred during the construc-
tion of the Equivalence DAG. In the absence of arrays, we can
then identify atomswith the variablesoccurring in the set of terms
{or(z) | = € ProgVars}; wewill use Atomsto denote this set.

Once the atoms have been identified, the next step is to ex-
press al datareferencesin the program in terms of the atoms. In
particular, we can replace every data reference by a sequence of
atomic references. In the above example, the reference to z[1:10]
can be replaced by the sequence (z1, z2). Our atomization algo-
rithm guarantees that every assignment statement in the resulting
program will have the form (a1, az,- -, an) « (b1,b2, -+, bn),
where every a; andb; isan atom. If desired, such a statement can
be replaced by » simpler statements of theform a; « b;.

6.3 Dealing With Arrays

Consider the following example:

Ll: MOVE TO A(5) .
L2: MOVE TO A(I).
L3: MOVE TO A(6) .

L4: MOVE A(5) TO ...

A precisereaching definitionsanalysiscan establish that definitions
L1 and L2 reachtheusein L4, while definition L3 doesnot. To ex-
tend the atomization approach discussed in the previous section to
arraysin suchaway that no information islost, we must ensurethat
our atomization distinguishesreferencesto statically indeterminate
array elements from referencesto statically determinate elements.
Among other things, thismeansthat A (5) and A (6) must berep-
resented by distinct atoms (say, as and ag), and that A (I) must
refer to one of a set of atoms (containing a5, as, and additional
atoms as required to represent the other elements of 2).

More generaly, consider the example of Figure 8. Here we
must be able to model a reference to an entire array (P[1:20]), a
referenceto an array subrange (P[1:10]), aswell asareferenceto
astatically indeterminate array element (P[1:20]\10.

To properly account for the various classes of array references
discussed above, we must slightly relax the assumption in the pre-
vious section that all data referencesin the origina program could
be redefined entirely in terms of sets of atoms. Borrowing from the
notation for array element referencesin our mini-language, we will
instead replace data references in the original program by atomic
data references, which are defined as follows:

DataRef =

Atomac

Intuitively, z\n € DataRef,,,.,. representsan indeterminate
reference to exactly one element of a set of n determinate refer-
ences. We will refer to » asthe multiplicity of the reference. Note
that the union of locations referred to by z\n need not itself be
contiguous sequenceof locations, e.g., when z\n refersto asingle
field of an indeterminate element of an array of multi-field records.
In the limit case, z\1 is used for all determinate references. Not
unexpectedly, such references include contiguous ranges of loca-
tions such assimple scalar variables and referencesto entire arrays.
However, determinate references may also denote noncontiguous
ranges of locations, e.g., given an array of records, each of which
containstwo fields F1 and F2, the collection of referencesto the
F2 fields of al array elements.

Consider, for example, the Equivalence DAG of Figure 8, which
represents the substitution

Atoms \ Int;+

¢ ={xg — bzr,zp — (5zr)B(52r), xR — TR}
Renaming the variables gives us
or ={zg > ba1,zp — (baz)PB(5as), zr — as}

with atomsa , a2, as, and as. Notethat atomsa, andas represent
different parts of thearray zp. The datareference P[1:20]\10 rep-
resents an arbitrary element of the array. Consequently, its repre-
sentationin termsof atomic datareferencesisgivenby {a2\5, as\5}.
In contrast, the full array P[1:20] is represented by the singleton
set {az\1 - as\1}. We seefrom this example that if an array has
been “fragmented” into several sub-arrays, then a reference to an
arbitrary element of the original array must be represented as aref-
erence to an element of one of the array subranges resulting from
the fragmentation. In the general case, a data reference must be
replaced by a set of sequenceof atomic references.

Recall from Section 2 that we defined the semantics D[d] of a
data reference d as a set of sequenceof locations. The atomization

processallows usto think of an arbitrary data referencesas a set of
sequenceof atoms instead of set of sequenceof locations. Because
of this connection, we denote the function that maps every data
reference to a set of sequences of elements of DataRef ,,.,.... by
D1 . The pseudocodein Fig. 13 showshow D, is definedin itsfull
generdlity.

6.4 Atomization versus Unification

It isworth noting that atomization imposesstricter requirementson
the construction of the Equivalence DAG than doestype analysisor
unification. In the context of type analysis or unification, the two
terms 77 and 27 are completely equivalent. However, thisis not
true for atomization. Theterm @~ leadsto twice as many atoms
astheterm 27, sinceit indicatesthat atomization should distinguish
thefirst half of the array from the second half.

Consider the example in Fig 8. Unification of (u:10)&(v:10)
and 10 ® (zr:2) createsthe bindingsu — 5 @ (zr:2) and v
5 @ (zr:2) and the unified terms can be represented by either
5® (zr:2)85 ® (zr:2) or 10 ® (zr:2). To perform atomiza-
tion, however, it isimportant to choose5 @ (zr:2)$5 @ (zr:2) as
the representation of the unified terms. The algorithm presented in
the appendix takes this stricter requirement into account.

6.5 Atomic Data References and Reaching Definitions

We note that two atomic data references z\: and y\ 5 are digoint
whenever their atomic components differ, i.e., when z # y. Thus
for the purposes of computing reaching definitions, two data ref-
erences z\: and y\ 7 can overlap if and only if z = y. However,
when determining whether a definition of one atomic data refer-
ence kills (i.e., completely “covers’) another, the multiplicity in-
formation comesinto play: z\: killsy\7 if and only if z = y and
1 = 1. In other words, only adeterminate reference can kill another
reference. Thusfor the purpose of computing reaching definitions,
there is no reason to distinguish between different multiplicity val-
ues greater than 1. However, the full range of values will be useful
in the sequel to establish certain formal properties of the atomiza-
tion.

6.6 Correctness Properties

In this section, we formalize a notion of equivalence between a
program and its transformed version, in which data references are
replaced by corresponding atomic data references. We first define
afunction §; that maps every statement s € Simt to a set of state-
ments S C SNt atomic Where

SMtatomic = DataRef + DataRef

Atomac Atomac

S1(d1 — dz) =
{01(2) & 02(1) | 01 € Di[di], 02 € Di[d2],

1 <¢ < min(|o1],|oz2]) }

By ordering the set of locations identified by an atom a in as-
cending order, we get a sequence of locations which we denote
Ala]. Defineafunction D, that mapsevery element of DataRef
to aset of sequenceof locations asfollows:

Dafa\n] = { (o]s], ofs + 1], -+, ofe]) |
1< <m0 =Ad)
5= (i=1) % (lal/n) + Le =i x (o|/n) }

Atomac

Define function §2 mapping every element of St 4:omic t0 @ set
of ordered pairs of locations asfollows:

{(01(),92(0)) | o1 € Dfar), 02 € Dafa],
1 <4 < min(|o1],|o2]) }

Sz(a1 — az) =

Observethat:

S(dy + do) = U

(a1,a2)€81(d1 +dz)

Sz (a1 — az)

for every statement d; + d» in the given program. Thus, we can
think of our atomization algorithm as decomposing the semantic
function D into D; and D,. In particular, note that the abstract
semantics S(s) of a statement s can be fully recovered from the
atomized statement Sz (s). This formalizes the sense in which our
atomization transformation is “lossless’.

Note that §; only models flow-insensitive program properties,
sinceit does not distinguish between casesin which one of aset of
possible assignmentsis executed, and casesin which all of aset of
assignments are executed. It is straightforward to generaize S; to
yield aprogram transformation that correctly model sflow-sensitive
program properties.

7 Complexity Analysis

Let d denote the maximum number of atoms (as defined in Sec-
tion 6) and arrays identified in a single aggregate. (For example,
if we have asingle aggregate whose atomizationis z 1 ®5(z2®zs),
then d is 4. Equivalently, we may think of d asthe maximum size
of the atomization-trees produced.) Let f denote the total num-
ber of atoms identified in the program and let s denote the total
number of statementsin the program. Our algorithm runsin time
O(sd-a(sd, f)) intheworst case, where«(., .) denotestheinverse
Ackermann function.

8 Extensions

Variables of Unknown Length Our basic agorithm assumes
that all variables have a statically-determined finite length. We can
extend our algorithm to deal with variables of statically indetermi-
nate length (e.g., variable-length strings) by representing them as
variables of (potentially) infinite length. One interesting issue that
comes up in this context is the need to do an “occurs check”. Note
that the algorithm presented in this paper binds variables only to
terms of the same length. When all lengths are finite, this ensures
that a variable can never be bound to a complex term containing
the same variable. However, this is no longer true once variables
of infinite lengths are allowed. We detect the creation of a cyclic
term during unification, and replaceit by asuitable“array” consist-
ing of an unbounded number of elements. For example, unifying
(z : 2)®(y : o) Withy : co resultsin bindingy to co ®@ (z : 2).

Pointer Analysis Our full algorithm incorporates a points-to al-
gorithm similar to that of Steensgaard[11, 12]. Sinceboth our algo-
rithm and the points-to algorithm are unification-style algorithms,
it is straightforward to perform both the analysesin parallel, in a
common framework. Thisis not only convenient, it turns out to be
necessary since in the presence of both (implicit) aggregates and
pointers, the points-to analysisdepends on atomi zation information
while the atomization algorithm requires points-to information.
Theessential ideain thisapproachisasfollows: For each pointer-

valued variable p, we maintain a term 7, describing the range of
locations pointed to by p. Whenever two pointer-valued variables
p and g need to be unified, the two corresponding pointed-to terms
7 and 74 are also unified. Note that any location (or range of lo-
cations) may potentially store apointer value. Hence, we associate
apoints-to term 7, with every leaf I of the Equivalence DAG. This
effectively amounts to expanding our term languageI"y; to encode
points-to information.

Using SSA Renaming to Improve Precision The flow-
insensitive nature of our agorithm can introduce imprecision, es-
pecially when variables are used for completely different purposes
in different parts of the program. The technique of Static Sngle
Assignment [4] renaming can be used to improve the precision of
the results produced by our algorithm.

Oneinteresting issuethat arises hereisthe interdependence be-
tween the atomization problem and the SSA renaming problem:
our atomization algorithm can produce more precise resultsif ap-
plied after SSA renaming, while SSA renaming is easier to do after
atomization sinceit does not haveto deal with aggregates.

One possible solution to thisissueis to run the atomization al-
gorithm once, apply SSA renaming, and then run the atomization
algorithm again to produce a more precise atomization. (lterating
any further will not improve the atomization results.)

9 Related Work

A substantial body of work exists in the area of type inference,
following [9]. While our agorithm belongs to this family, what
distinguishes it is that it is aimed at low level languages, where
aggregate structure hasto be inferred from the way memory (loce-
tions) are accessed and used. The algorithm presented in this paper
can be thought of as unification in the presence of an equational
theory. Much previous work [8] has been done on unification in
the presence of equational axioms (e.g, associativity) but we are
unaware of previous work in this area for the specific equational
theory that we are interested in.

Several other authors [11, 10, 7, 16] have explored the appli-
cation of type inference based techniquesto program maintenance
and software reengineering as well as program analysis for imper-
ative languages.

van Deursen and Moonen [16] present a type inference system
for Cobol and describe its applications. What distinguishes our al-
gorithm from theirsis the way we handle the unification of records.
In their algorithm, the unification of two records causes the cor-
responding fields of the two records to be unified only if the two
records have the same structure, i.e., only if they have the same
number of fields, with corresponding fields having same length.

Our agorithm is also similar in some respects to a points-to
algorithm presented by Steensgaard [11] which accommodates C-
style structs and unions. The problem common to both our
paper and Steensgaard’ sis the “ unification” of two aggregateswith
differing structure. In our approach, the result of unifying two
structures S and S, isastructure that ismorerefined than both S
and S2. For example, unifying z:44y:4¢2:4 with a:44b:24c:6
resultsin the structure z:4db: 20 w: 23 z:4 with the additional bind-
ingsa — z,y — bbw, c =~ wPz. In Steensgaard’salgorithm, on
the other hand, the unification of 5; and S2 produces a structure
that is less refined than both S; and S2. In the above example,
Steensgaard’s algorithm [13] will stop distinguishing between the
fieldsy, z, b and ¢, and produce the unified structure z:4®¢:8, with
the a being bound to z, and y, z, b and ¢ all being boundto ¢.

As aresult, our algorithm computes more precise results than
Steensgaard’salgorithm. Our algorithm was primarily designed to
analyzelegacy applicationswritten in languages such as Cobol and
PL/1, where variables are commonly used to store aggregate data
without necessarily declaring the aggregate structure of the vari-
ables. We believe that in such a context our approach is prefer-
able. However, whether our approach produces more precise re-
sults when applied to typical C or C++ applications remains to be
seen.
O’ Callahan and Jackson [10] usetype inferenceto C programs
to identify sets of variables that must share a common representa-
tion and outline various applications based on this.

10 Future Work

Future directions we wish to pursue include:

Other Notions of Atomization Does our atomization algo-
rithm produce the optimal (i.e., the least refined) atomization? We
believe that it does, with respect to one reasonable definition of at-
omization, though we have attempted no formal proof. However, if
we relax the notion of an atom implicit in our algorithm, the atom-
ization produced by our agorithm is not necessarily optimal. As
an example, consider the program z[1:10] + y[1:10]; 2[1:2] «
z[5:6]. Inthis case, it is possible to generate the following atom-
ized program (z1,z2) + (y1,y2);z1 < z2 where atom =1 de-
notes the union of the ranges z[1:4] and z[7:10], while atom z2
denotes the range z[5:6]. (The remaining atoms are defined in a
corresponding manner.) However, our algorithm breaks up z into
three atoms z[1:4], z[5:6], and z[7:10], producing a more refined
atomization than is necessary.

It is possibleto take the atomi zation produced by our algorithm
and to improve it further by applying an algorithm somewhat sim-
ilar to thefinite state minimization algorithm (grouping atoms that
need not be di stinguished from each other into equivalenceclasses).
It would be more interesting to seeif such an improvement can be
integrated directly into our atomization algorithm.

Applications to Sparse Analysis The equivalence class parti-
tioning of atoms produced by our algorithm can be used to con-
struct (flow-insensitive) sparse evaluation representations for vari-
ous analysis problems.

Disjoint Unions Cobol programsmay useREDEFINES for two
purposes: to define disjoint unions or to define multiple views of
the same data. The inability to distinguish between these two us-
agesforcesour algorithm to handleREDEFINES conservatively. It
would be worth developing analysis techniques to infer the use of
digioint unions so that they can be handled less conservatively.

More Sophisticated Type Systems One could extend thesim-
ple type framework introduced in Section 4 in various directions,
including adding more complex constructors and incorporating in-
equality (or set) constraints [2, 5]. Such extensions might enable
more precise treatment of data located at variable offsets, over-
loaded operators, and pointer arithmetic than are possible with our
current approach.

References

[1] AHO,A., SETHI,R., AND ULLMAN, J. Compilers. Principles, Techniquesand
Tools. Addison-Wesley, 1986.

[2] AIKEN,A., AND WIMMERS, E. Solving systems of set constraints. In Sympo-
siumon Logicin Computer Science (June 1992), pp. 329-340.

[3] CORMEN, T., LEISERSON, C., AND RIVEST, R. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[4] CyTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND
ZADECK, F. Efficiently computingstatic single assignment form and the control
dependencegraph. ACM Transactionson Programming Languagesand Systems
13, 4 (1991), 451-490.

[5] FAHNDRICH, M., AND AIKEN, A. Program analysis using mixed term and
set constraints. In Proceedings of the 4th International Symposium on Static
Analysis (September 1997), vol. 1302 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 114-126.

[6] FERRANTE,J., OTTENSTEIN, K., AND WARREN, J. The program dependence
graph and its use in optimization. ACM Transactions on Programming Lan-
guagesand Systems 9, 3 (1987), 319-349.

[7] KAwABE, K., A. MATSUO, UEHARA, S., AND OGAWA, A. Vaiable clas-
sification technique for software maintenance and application to the year 2000
problem. In Conference on Software Maintenance and Reengineering (1998), P.
Nesi and F. Lehner, Eds., |[EEE Computer Society, pp. 44-50.

[8] KNIGHT, K. Unification: A multidisciplinary survey. ACM Computing Surveys
21, 1(1989), 93-124.

[9] MILNER, R. A theory of type polymorphismin programming. Journal of Com-
puter and System Sciences 17 (1978), 348-375.

[10] O’ CALLAHAN,R., AND JACKSON, D. Lackwit: A programunderstandingtool
based on type inference. In Proceedings of the 1997 International Conference
on Software Engineering (ICSE’ 96) (Boston, MA, May 1997), pp. 338-348.

[11] STEENSGAARD, B. Points-to analysis by typeinferenceof programswith struc-
tures and unions. In Proceedingsof the 1996 I nternational Conference on Com-
piler Construction (Linkdping, Sweden, April 1996), vol. 1060 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 136-150.

[12] STEENSGAARD, B. Points-to analysis in aimost linear time. In Proceedings
of the Twenty-Third ACM Symposium on Principles of Programming Languages
(St. Petersburg, FL, January 1996), pp. 32—41.

[13] STEENSGAARD, B. Persona communication, Oct. 1998.

[14] TARJAN, R. E. Data Sructuresand Network Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1983.

[15] Tip, F. A survey of program slicing techniques. Journal of Programming Lan-
guages3, 3(1995), 121-1809.

[16] vAN DEURSEN,A., AND MOONEN, L. Typeinferencefor cobol systems. In5th
Working Conference on Reverse Engineering (1998), IEEE Computer Society,
pp. 220-230.

[17] WEISER, M. Programslices: formal, psychological, and practical investiga-
tions of an automatic program abstraction method. PhD thesis, University of
Michigan, Ann Arbor, 1979.

Appendix

We now present a complete description of our algorithm in SML-
like pseudo-code. We assume that an implementation of the fast
union-find datastructure[14, 3] isavail able with the signature shown
in Fig 11. The function newvar createsanew element not equiv-
alent to any other element (i.e., belonging to an equivalence class
all by itself). Thefunction union merges two equivalence classes
into one, while the function equivalent indicates if two ele-
ments are equivalent or not. In addition, every equivalence class
has a value associated with it, whose type is the parameter ’ a of
the parametrized type ' a eqgClass. The value associated with
an equivalenceclass can be retrieved and modified by the functions
findval and setval respectively. The functions newvar and
union take aparameter specifying the value to be associated with
the newly created/merged equivalence class.

We also assume the existence of a semi-lattice L. (of “types’)
with ajoin operator U.

In our implementation, we have a set of term variables (repre-
sented by the type termvar in Fig 11), which are partitioned into
acollection of equivalence classes (using the union-find data struc-
ture). Every equivalence class has an associated value, which has
thetype termy, 57 ye -

Thefunction | x| returnsthelength of avariablez. Inan actual
implementation it will be more efficient to store (cache) the length
with the variable, rather than computeit every timeiit is needed.

Thefunction|v |is aconvenient wrapper for functionnewvar.
It creates anew equivalence class with the initial value v, unlessv
denotes a one element array, in which case the array element itself
isreturned. Thefunction split (x,n) addsa breakpoint to the
DAG rooted at x after position n. Thefunction refine (x,n)
returns the children of a concatenation node x. If x is not a con-
catenation node, it is first converted into one by adding a break-
point, preferably (but not necessarily) after position n. Note that
every leaf of the Equivalence DAG has a value (belonging to semi-
lattice 1) associated with it. Thefunction update (x, c) updates
the value associated with every leaf of the DAG rooted at x by c.

The main unification algorithm aswell as our type analysis al-
gorithm appear in Fig. 12. The basic ideas behind the algorithm
were explained earlier in Sections 3, 4, and 5. The four different
unify functions implement the actual unification. The functions

// An implementation of union-find with the
// following signature is assumed
type ’'a egClass

val newvar: ‘a -> ’‘a eqgClass
val union: (’a eqgClass * 'a eqgClass * ’'a) -> unit
val equivalent: (’a egClass * ’'a egClass) -> bool
val findval: 'a egClass -> ’'a
. £ f , =
val setval: (’a egClass * ’a) -> unit un unify (x,y)

if (not (equivalent (x,y))) then
// Merge the two vars into one, setting the
// value of the merged var to
union (x, vy,

// A semi-lattice L of types is assumed, with a
// join/meet operator U

tyﬁeUL. L * L L // the join of the values of x and y
va : g case (findval x, findval y) of
. . (atomic (¢, 1), _) => unifygtom(y.c) |
datatype termygjye = atomic (L, int) | , atomic (c, 1)) = unifyaton (x,c)
termvar @ termvar | X1 @ x5, _) => unifylist([xl,xz],[y])

vyl @ y2) => unifyiey ([x1, [yl,y2]) |
nl ® ell, n2 ® 62) =>
unifyarrays ((ni,e1), (nz,ey))

(
int ® termvar E
withtype termvar = termyzjye edClass (
fun |x| =
case (findval x) of
atomic (¢, 1) => 1 |

)
fi;
| findval x // return the value associated with

x1 @ %2 => |x1| + |x2] val N
ne® e —>n * |ef // the merged equivalence class
fun unif ,C) = date (x,c); findval x
fun - un unifyatom(x,c) = up (x,¢)
case v of _ fun unifyyjgqp (x3::17, Xp::rp) =
1oe => e if (|x1] = |%3]) then
otherwise => newvar v

case (rq,ry) of
([1,01) => unify (x7,x3) |
@ |unifylist (r1,r3)

fun split (x, n) =

if (0 < n) and (n < |x|) then _=> [unify (x1,%p)

case (findval x) of elsif (|x1]| > |xy|) then
atomic (c, 1) =»> unifyqige (refine(xy, |x5]) @ ry, xp::ry)
setval (x, else /* (|xq1| < [|xg]|) */
|atomic (c, n)| &) |atomic (¢, 1-n) . unifyyigr (x3::rp, refine(xy,|x1]) @ ry)
) fi
X7 @D Xy => .
if (n < |Xl|) then fun unlfyarrays((nl,el), (n2,e2)) =
split (x7,n) let
else fun exp (t,1) =t |
split (x5,n-|xq1]) exp (t,i) = |t ® exp(t,i—l)|
fi | val m = least-common-multiple([eq|,|ex|)/|eq]
meE e => val xq1 = exp(ey, m)
let val p = max(1l, n/|e|) in val x5 = exp(ey, m)
setval (x, |p ® e| D |(m—p) ® el ; val z = (ni* |eq| / [x1]) @ %1
split (x,n) mo
end unify (x7, x3);
fi Z

end

fun refine (x, n) =
case (findval x) of
Xl @ X2 => [Xl’ X2]
atomic (c, 1) => split (x,n); refine (x,n)
meE e =>
let val p = max(1l, n/|e|) in
setval (x, |p & e| @ |(m—p) ® e
refine (x,n)
end

// The main procedures
| datatype constraint =
| termyvar & termvar |
termvar t L

fun processConstraint

) y) = unify (x,y) |
! processConstraint c)

= update(x,c)

(x &
(x =

fun solve listOfConstraints =

apply processConstraint listOfConstraints
fun update (x, c)

case (findval x) of

atomic (c¢’, 1) => . . P . .

setval (x,atomic (¢ U ¢/, 1))) | Figure 12: The unification and type analysis algorithms.

x1 @ x5 => update (x7, c¢); update (x5, <) |
m ® e => update (e, c)

Figure 11: Type definitions and auxiliary procedures.

// Assume some suitable way of generating
// names for new atoms.
type AtomId
val gensym: unit -> AtomId
datatype AtomicReference = AtomId \ int
datatype AtomicTree =
atom of (AtomId * int * int) |
AtomicTree @ AtomicTree |
int ® AtomicTree

// Assume a suitable implementation of ‘‘program
// variables’’ with the following signature

type PgmVar
val termVarOf:
val setAtomicTree:
val getAtomicTree:

PgmVar -> termvar
PgmVar * AtomicTree -> unit
PgmVar -> (AtomicTree option)

datatype DataRef =
ProgVar of PgmvVar |
DataRef [int : int] |
DataRef \ int

fun flatten(x,mu) =
case (findval x) of
atomic (¢, 1) => atom (gensym(),1l,mu) |
y @ z => (flatten(y,mu)) @ (flatten(z,mu))
i®y=>1Q@® (flatten(y,mu*i))

fun atomicTreeOf pgmvar =

case (getAtomicTree pgmvar) of
SOME atomicTree => atomicTree |
NONE => (
setAtomicTree (pgmvar, rightAssociate(
(flatten (termvVarOf pgmvar,1l)));
atomicTreeOf (pgmvar) ;
)
fun treesOf (ProgVar x) = { atomicTreeOf x }
treesOf(d [i:3]) =

{ subrange (t, i, j) | t € treesOf(d) } |
treesOf (d\n) = U,etreesof(d) Preakup (t, [t|/n)

fun leaves(atom (a,l,mu),m) = [a \ (mu/m)] |
leaves(x1 @ xp,m) = leaves(xy,m) @ leaves(Xp,m)
leaves(i ® x,m) = leaves(x,m*i)

fun Di[d] = { leaves(t,1) | t € (treesOf d) }

) =

)|

fun rightAssociate ((x1 @ x3) @ x3
rightAssociate(x; @& (x5 @ x3)
rightAssociate (x7 @ x3)
(rightAssociate x;) @ (rightAssociate xj)
rightAssociate (i ® x) = i ® (rightAssociate x)
rightAssociate (atom (a,l,mu)) = atom (a,l,mu)

fun breakup (t,s) =
if (|t| = s) then { t } else
case t of
Xl @Xz =>
if (|x7| > s) then
breakup (x7,s) U breakup(xy,s)
else
{ head(t,s) } U breakup(tail(t,s+1), s)
£i |
i ® x => breakup (x,s)
head

fun subrange (t, i, j) = (tail(t,i), j-1i+1)

Figure 13: The atomization algorithm (part 1).

fun tail (t, 1) = t |

tail <Xl @Xz, i) = tail <X2, i - |Xl|>
fun head (x7 @& x5, i) =
if (1 > [xq1])
then X1 @ head <X2, i - |Xl|>
else xq |
head (t, s) =t

Figure 14: The atomization algorithm (part 2).

solve and processConstraint show how the Equivalence
DAG can be constructed and how type analysis can be performed.

The atomization agorithm appearsin Figs. 13 and 14 and was
explained in Section 6. We assume the existence of a function
gensym that can be used to generate new symbols to represent
atoms. As explained earlier, every top level program variable is
associated with anode (a term variable) in the Equivalence DAG.
Thefunction termvaroOf£ is assumedto return this.

The first step in atomization is to take the DAG rooted as this
node and flatten it to construct an “atomization tree”. The function
flatten (x, mu) showshow atermvar x can be flattened
intoaAtomicTree. Thesecondparameter mu isusedto compute
the multiplicity of the leaves in the atomic tree, where the multi-
plicity of aleaf in an atomic-tree is defined to be the product of the
cardinalities of al arraysin the tree that contain the given leaf.

In order to simplify some of the other functions, the gener-
ated atomic-treeis “normalized” to bein right-associative form (by
thefunction rightAssociate). We assumethat the imperative
functions setAtomicTree and getAtomicTree let us asso-
ciate an atomic-tree with every program variable. (The function
atomicTreeOf constructsthe atomic-tree and associatesit with
the corresponding program variable.)

Once an atomic-tree has been constructed for a program vari-
able X, any data-reference based on X can be mapped onto a set
of subtrees of the atomic tree corresponding to X. The function
treesOf doesthis. Please note that the input data-reference can
not bean arbitrary one. It isassumedto be oneof thedata-references
inthe original program with respect to which the EquivalenceDAG
was constructed. (Hence, the Equivalence DAG and the atomic-
tree are guaranteed to have “ breakpoints’ corresponding to the end-
points of data-referenced.)

Given an atomic reference a\ i, let usrefer to 1 asthe denom-
inator of the atomic reference. The function 1eaves shows how
any subtree s of an atomic-tree T can be converted into a sequence
of atomic references. This essentially is the sequence of |eaves of
the subtree combined with an appropriate denominator. The de-
nominator of a leaf I is simply the multiplicity of I in the tree T
divided by the multiplicity of I in the subtree s.

