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Abstract threads. Current techniques for preventing data racesdviab-
taining locks prior to any access to the shared data usindimec
anisms such as Javadgnchronized blocks, or using language
constructs such as atomic sections [11] and transactioealary
[2, 24, 23] that ensure that a sequence of statements istexecu
atomically.

One disadvantage of such code-centric approaches foriagoid
data races is that it involves non-local reasoning: Shaatal chay
be accessed throughout the program and data races mayfdbeur i
programmer forgets to obtain the appropriate locks at anfiede
points. A second problem is that, even if every access toeshar
data is protected, data may still end up in an inconsistaig sthis
situation—sometimes referred to as “high-level data rafjs—
occurs if a consistency property exists between multiptegs of
shared data, and if the synchronization constructs do n&ren
that this property is maintained at all times. Avoiding sunigh-
level data races requires the same kind of non-local reagoni
as for ordinary data races, but is further complicated byféoe
that multiple locks may have to be acquired in a specific ordler
the programmer accidentally fails to obey this locking likoe,
deadlock or inconsistent data may result.

This paper presents an alternatielata-centricapproach for
Categories and Subject Descriptors  D.1.3 [Programming Tech-  avoiding both high-level and low-level data races. In tipr@ach,
niqueg: Concurrent Programming-parallel programming; D.2.4 the programmer specifies that a consistency prosistsbetween
[Software EngineerifigSoftware/Program Verification-reliability; a given set of fields, but without specifying the propertyelits
F.1.3 [Logics And Meanings of PrografnsSpecifying and Verify- We will call such a set aatomic setof fields, indicating that the
ing and Reasoning about Programs elements of such a set must be updated atomically. Accesses t
General Terms  Languages, Theory fields in an atomic set are assumed to take placeuniteof work

) ) ) which indicates a logical operation on shared data, andepres
Keywords Concurrent Object-Oriented Programming, Data Races, consistency when executed sequentially. In this papets ohivork

Concurrency-related bugs may happen when multiple threads
cess shared data and interleave in ways that do not corég$pon
any sequential execution. Their absence is not guarantgdideb
traditional notion of “data race” freedom. We present a nefini-
tion of data races in terms of 11 problematic interleavirenseios,
and prove that it isompleteéby showing that any execution not ex-
hibiting these scenarios is serializable for a chosen detatfions.
Our definition subsumes the traditional definition of a datzeras
well as high-level data races such as stale-value errorénand-
sistent views. We also propose a language feature catitedic sets
of locations, which lets programmers specify thaéstencef con-
sistency properties between fields in objects, withoutifgag the
properties themselves. We use static analyséitomatically infer
those points in the code where synchronization is neededaid a
data races under our new definition. An important benefit & th
approach is that, in general, far fewer annotations ardned)than
is the case with existing approaches such as synchroninedsbr
atomic sections. Our implementation successfully infibthre ap-
propriate synchronization for a significant subset of Ja8tndard
Collections framework.

Serializability, Programming Model are assumed to coincide with method bodies. Choosing psrti
) object state as atomic sets and methods as units of workitxplo
1. Introduction the encapsulation mechanism of objects.

Writing correct concurrent programs is hard, because isistent Given a pair of fields that occur in an atomic set, we have iden-

results may be computed when two threads access shared datdified 11 problematic interleaving scenarios that captiesvarious
concurrently. In particular, data raceis said to occur when two  Ways in which inconsistent data may occur when two threads up

threads concurrently access some data, where one of these acdate these fields non-atomically. The problematic inteifeasce-

cesses is a write, and where no synchronization exists betite narios include traditional data races, stale-value efdd’} incon-
sistent views of data [3], and several other forms of higiellelata
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class Customer {
String city;
int zipcode;
Date date;
Item item;

void updateAddress(String c, int z){
atomic { city = c; zipcode = z; }

}

void newPurchase(Date d, Item i){
atomic { date = d; item = i; }

}

class PreferredCustomer extends Customer {
void newStoreGift(Date d, Item i){
atomic { date = d; item = i; }
¥
J (a)

class Customer {
atomic(address) String city;
atomic(address) int zipcode;
atomic(purchase) Date date;
atomic(purchase) Item item;

void updateAddress(String c, int z){
city = c; zipcode = z;

void newPurchase(Date d, Item i){
date = d; item = i;

}

class PreferredCustomer extends Customer {
void newStoreGift(Date d, Item i){
date = d; item = i;
¥
J (b)

Figure 1. Customer example.

the analysis and conducted experiments with classes frerdiava
Standard Collections Framework. Our experiments indithast
our data-centric approach is sufficient to infer the corsgcichro-
nization in a significant portion of the collections frametud~ur-
thermore, one of our constructs can effectively replacelsyot
nization wrappers such &@llections.synchronizedList().

The experiments indicate that the number of atomic locadiets
is generally far smaller than the number of synchronized¢ksp

For the purposes of this example, we will assume that lowtlev
data races involving any of the four fields are undesirablg.,(e
we want to preclude situations where one thread reads the val
of date while another thread is updatirg.te simultaneously). In
addition, we want to disallow high-level data races invotvihe
related fieldscity andzipcode and involvingdate and item.
For example, we want to disallow the situation where oneatthre
intends to read firstity and thenzipcode, but where a second

hence reducing the burden on the programmer and creatirey few thread writes a new value inteity before the first thread has

opportunities for errors. In summary, this paper make theviing
contributions:

¢ A list of problematic interleaving scenarios that subsuties

traditional notion of a data race as well as stale-valuergrro
inconsistent views and other high-level data races. Weeprov
this list to be complete, in the sense that if a program exacut
does not exhibit these scenarios, then its projection oath e

atomic set is serializable.

¢ A set of data-centric language constructs that allow the pro

grammer to express synchronization constraints sucgiaail
declaratively.

e A static analysis that infers automatically where syncizran

tion needs to be performed. This relieves the programmaen fro

the non-local reasoning and cumbersome locking disciplase
sociated with current code-centric approaches.

completed both reads. In the example of Figure ld&mic sec-
tionsare used to prevent these low-level and high-level datastace
Conceptually, each atomic section is executed withoutrinpgions
by other threads. Atomic sections can be implemented usitigs!
[11] or using transactional memory [2, 24, 23]. The use ofrato
sections for preventing data races has the following draksa

¢ In general, the number of atomic sections may be propoitiona
to the number of accesses to shared fields. In the above exampl
each method contains an atomic section because it accesses
shared data.

e There is a lack of modularity in the sense that the burden is
placed on the programmer to remember that accesses to fields
in superclasses may have to be protected.

Figure 1(b) shows the approach we propose, in which synchro-
nization constraints are associated with data. Here,afpthgram-

* Experiments on the Java Standard Collection Framework that mer needs to do is indicate thatty andzipcode are part of an

illustrate the practicality of the work.

2. Motivating Examples

This section gives some examples that illustrate the shimitmys
of the traditional, code-centric approaches for avoidiatadaces.

At the same time, we will introduce the language construeas t

are part of the data-centric approach we propose.

2.1 Example 1: Customers

Figure 1(a) shows a clagmstomer, which contains fieldgity
andzipcode that store parts of a customer’s address, &te and

atomic setalledaddress, and thaldate anditem are part of an
atomic setcalled purchase. In this framework, the compilen-
ferswhere locks must be obtained so as to prevent low-level and
high-level data races. Observe that the number of anno&i®
proportional to the number of fields, and that no additionaitknis
required in the presence of subclassing, thus reducingnttoaiat
of work and limiting opportunities for programmer errors.
Informally, the semantics of atomic sets can be stated as fol
lows. Associated with each atomic sétis a set of code blocks
that represent logical operations on the set. We will redethese
code blocks as thenits of workfor A, denoted byUnits(A).
By default, the units of work associated with an atomic set de

item that record the item and date of his last purchase. Methods clared in classC' consist of the methods af' and its subclasses

updateAddress () andnewPurchase() serve to update customer

information.PreferredCustomer is a subclass afustomer that

(we will shortly discuss a mechanism for associating addil
units of work with a given atomic set). For a given atomic det

models certain aspects of a customer loyalty program using aand unit of worku € Units(A), the guarantee is that any pair

methodnewStoreGift () that also update$ate anditem.
If methods such aspdateAddress(), newPurchase(), and

newStoreGift () are executed concurrently by multiple threads,

care must be taken to ensure that no inconsistent resultarisam

10ne could also use explicit locking mechanisms such as slava’
synchronized blocks to prevent the low-level and high-level data races
in this example.



of accesses to fields iA that occur inu will be executed with-
out being interleaved by another thread that operates odsfiel
in A. For example, methodSustomer.newPurchase() and
PreferredCustomer.newStoreGift() are units of work for
atomic setpurchase. Therefore, it is guaranteed that the exe-
cution of these methods will not be interleaved, thus prérgn
high-level data races. However, ig allowed for the execution
of either of these methods to be interleaved with that of wth
Customer.updateAddress(), because the latter does not operate
on the same atomic set.

2.2 Example 2: Vector

The default units of work for a given atomic set are well-sdito
accommodate situations where some consistency propewtgbee

a set of fields must be maintained by the methods of the class th
declares those fields. However, there are situations widelig@nal
synchronization on parameters is needed.

Figure 2(a) shows a fragment of clagsva.util.Vector
from the Java Standard Collections Framework. Specifictily
figure shows the declaration of a fiekdlementData, which
refers to the array that stores the vector's contents, anéla fi
elementCount, Which counts the number of array elements that
are currently in use. Also shown is a constructor for creptin
new Vector that is initialized to contain the elements of a given
collectionc. Wang and Stoller [35] reported a high-level data race
that occurs in this code when this constructor is invoked vait
collection of lengthk. The race occurs if a thread that executes
the constructor's code is interrupted after executing theement
elementCount = c.size() by another thread that is calling the
removeAllElements() method on the collection pointed to by
c. Then, when the first thread resumes, and executes the statem
c.toArray(elementData), the resulting vector will contairk
elements that areull. This result is inconsistent with any serial
execution of the two threads.

Figure 2(b) shows how this high-level data race can be adoide
using our new language constructs. The fi@tlsmentCount and
elementData have been placed in an atomic sefc, and the
constructor has been designated as a unit of work for itswpeber
c. Note that only the fieldlementData is in the atomic set and
not the vector. Thanitfor construct used in this example is a
mechanism for specifying client-side synchronizationstaaints,
and declares that the scope of parametiara unit of work for all
atomic sets ot. Hence, the body of the constructor is not only a
unit of work for all the atomic sets athis but also for those of.

When a unit of work is declared on multiple atomic sets, as

is the case here, the atomic sets are combined to form a larger

atomic set for the duration of that unit of work. The guarenie
that accesses to any location within that enlarged set willbe
interleaved. Similarly, a method that accesses fields aignto
multiple atomic sets of the receiver object is a unit of warkthe
union of these sets.

2.3 Example 3: Bank Accounts

Figure 3 shows an example program containing classesunt
andBank. Account has a fieldcthecking and methodgithdraw ()
and deposit () that manipulate this field. Thehecking field
has been placed in a singleton atomic setount to prevent
low-level data races involving this fiel@ank provides a method

transfer () for transferring money between accounts, and de-

clares fieldd.og andlogCount for maintaining a log of completed
transfers. Observe thabg and logCount have been placed in
an atomic seflogging to prevent other threads from observing
intermediate states in which only one of the two has beentegda
To make the example slightly more interesting, we will as-

class Account {
atomic(account) int checking;
public void deposit(int n) { --- }
public void withdraw(int n) { --- }

class Bank {
atomic(logging) Log log;
atomic(logging) int logCount;

void transfer(Account a, Account b, int n){
log.add(a,b,n);
a.withdraw(n);
b.deposit(n);
logCount++;

public void localTransfer (unitfor Account a,
unitfor Account b,

int n){
transfer(a, b, n);
}
public void longDistanceTransfer(Account a,
Account b,
int n){
transfer(a, b, n);
}
}

Figure 3. Bank account example.

fers, for which intermediate states (in which the money heenb
withdrawn from one account, but not yet added to the other)
should not be visible, and long-distance transfers, forctvhihe
exposure of intermediate states can be tolerated. Thignahist
tion has been encoded by two methotiscalTransfer () and
longDistanceTransfer (), both of which invoke the previously
discussectransfer () method. In essence, we would like to ex-
press thatlocalTransfer () is a unit of work for its parameters
a andb, and this is accomplished using theitfor construct.
As localTransfer () reads botha andb, synchronization will
be inserted to ensure that the calltteansfer () will be executed
atomically.

Observe that this solution allows for more concurrency than
traditional solution where the body of theansfer () method has
been placed in an atomic section in order to preserve thérgdggr
formation. This is illustrated by Figures 4 and 5, which shahere
callsa’.deposit(m) andlog’.add(c,d,m) can be interleaved
with calls tolocalTransfer () andLongDistanceTransfer(),
respectively. Note that calls tieposit () can be interleaved with
calls tolongDistanceTransfer () while preserving the consis-
tency oflog andlogCount.

2.4 Example 4: Synchronization Wrappers

The Java Collections Framework providgmchronization wrap-
persfor creating synchronized versions of collections thatraoe
thread-safe. For example, clapsva.util.ArrayList provides
array-based lists that are not thread-safe. An applictiiatrwishes
to use a thread-saferrayList typically executes code such as:

List myList =
Collections.synchronizedList(new ArrayList())

Here, thesynchronizedList () method from the utility class
java.util.Collections creates a decorator object of typist
that wraps theArrayList that was passed in as a parameter,
and that forwards all methods to thisrayList. All forwarding
methods areynchronized, thus preventing low-level data races
that might otherwise be caused by concurrent accesses hodset

sume that a distinction needs to be made between local trans-such agget () andset (). Note that this only prevents races when



public class Vector {
Object[] elementData;
int elementCount;

public Vector(Collection<? extends E> c) {
elementCount = c.size();
// 10% for growth
elementData = new Object[
(int)Math.min((elementCount*110L) /100,
Integer .MAX_VALUE)];
c.toArray(elementData) ;

} @) }

public class Vector {
atomic(vec) Object[] elementData;
atomic(vec) int elementCount;

public Vector(unitfor Collection<? extends E> c) {
elementCount = c.size();
// 10% for growth
elementData = new Object[

(int)Math.min((elementCount*110L) /100,
Integer .MAX_VALUE)];

c.toArray(elementData) ;

(b)

Figure 2. Vector example.

localTransfer()

log.add(a,b,n

a’.deposit( a.withdraw(n log’.add(c,d,m

b.deposit(n)

logCount++

{7

Figure 4. Allowable interleavings forlocalTransfer. Arrows
indicate wherea’.deposit(m) andlog’.add(c,d,n) can be
interleaved, assuming thatanda’ andlog andlog’ may point
to the same objects, respectively.

longDistanceTransfer()

1

log.add(a,b,n

a’.deposit( a.withdraw(n log’.add(c,d,m

b.deposit(n)

logCount++

d

Figure 5. Allowable interleavings folongDistanceTransfer.
Arrows indicate where’ .deposit(m) andlog’.add(c,d,n)
can be interleaved, assuming thadnda’ andlog andlog’ may
point to the same objects, respectively.

using a single synchronized wrapper; it is possible to haces if
other threads have references to underlying collectioaabj

We present an alternative to synchronization wrappetsmic
class—which addresses these shortcomings. In essencegnaak
classatomic is equivalent to putting all of its fields and the fields
in its superclasses in a single atomic set. In addition, ymaois
atomic classes can be created by inserting the keyworthic
at allocation sites. For example, a thread-dafeayList can be
created as follows:

List myList = new atomic ArrayList(){};
This eliminates the need for the synchronization wrappassgs

that contain large numbers of boilerplate forwarding mdthax-
cept for those few that neadhitfor parameters.

class LinkedList {
owned(entry) atomic(list) Entry header;
atomic(list) int size;
public set(int index, Object value) {
Entry e = entry(index);
oldVal = e.value;
e.value = value;
return oldVal;

}

class Entry {
atomic(entry) Object value;
owned(entry) atomic(entry) Entry next;

Figure 6. Linked List Example

O 0
BB

atomic set

Figure 7. A linked list. Only the objects in the representation of
linked list are contained in an atomic set, not the objectgained
in the list (shaded).

2.5 Example 5: Owned Fields

The atomic set construct is used to include fields in an atomic
set. Sometimes it is useful to reason about atomic sets etthj
referred to by a field. In the example of Figure 6, a linkeddlass
has two fieldsheader andsize that belong to atomic sdtist.
Field header is of typeEntry, which declares its own atomic set
entry. Methodset () takes an index in the list, finds the proper
placement in the list (using a methestry (), not shown) and
inserts a given object at that position. We need to declatath
the objects that are part of the representation of the litistcre
part of the same atomic set, to protect the entire list, ealhein
methods such aset () which accesses the list in the middle. To
achieve this, we apply the construgtned (entry) to theheader
field, which states that thentry set of the object pointed to by
that field is to be included in the atomic set of that field. Tikis
illustrated in Figure 7. The satist owns theentry set pointed

to by field header, which includes theralue andnext field of
the first object. This set in turn includes thetry set of the next
object, and so on. Observe that the state of objects pointég t
the value field are not included because this field does not have
anowned annotation. Hence, updates to objects in lists can happen
concurrently with operations on the list itself.



u (localTransfer)

ul (add) u2 (withdraw) u3 (deposit)
W(this.log) R(a.checking) W(a.checking) R(b.checking) W(b.checking) R(logCount) W(logCount)

Figure 8. Units of work and accessesimcalTransfer

While this construct could, in general, be expensive to @npl
ment with explicit locks, an ownership type system can berev
aged to provide an efficient implementation since owned-+t-tha
is, private—state does not need additional locks. Intaggadur
scheme with ownership types is part of future work.

3. New Definition of Data Races

The current definition of a data race is two accesses to the sam
memory location, one of which is a write with no synchroniaat
between them. This is not sufficient in that the absence afsrac
does not imply the absence of concurrency-related bugsbigs
caused solely by interleavings of otherwise-correct c@la. ob-
jective in providing a new definition for data races is to gedhe
gap between traditional data races and a property relateerial-
izability.

Our definition is given as a set of non-serializable intesileg
scenarios in Section 3.2. If an execution does not displgyocén
these scenarios, then it satisfies a property related talizahility.
We refer to this fact asompletenessf the definition, and prove it
in Section 3.3.

3.1 Formal Model

This section presents a dynamic formal model of code in terins
sequences of accesses to memory locations, atomic setsnasd
of work.

Let £ be the set of all memory locations. A subgetC £ may
be designated agomic An events an access to a memory location
l € L. Accesses can be a red@tll) or a write W (). We assume
that accesses to a single memory location are uninterrufftéd
denotes locations or l2 in L, we use the notatioh — [ to denote
the other location.

A unit of work « is a sequence of events, anddisclared on
a set of atomic sets. We writgetgu) for the set of atomic sets
corresponding tou. We say thatl J; csets,) L is the dynamic

atomic seof u. Units of work may be nested, and we write— v’
to indicate that.’ is nested in. Units of work form a forest via the
« relation.

An access to a locatioh € L appearing in unit of worku
belonggo the top-most unit of work withim such thatl € setgu).
The notationR,, (!) denotes a read belongingdoand similarly for
writes.

As an illustration consider again the example of Figure 8- Fi
ure 8 shows the accesses and units of workoita1Transfer ().
Unit of work « contains three nested units, u2, andus, corre-
sponding to calls to methodsd (), withdraw(), anddeposit (),
respectively. Unit of worku is declared on atomic setsgging of
this, account oOf a, andaccount of b, and preserves the consis-
tency of their union. All accesses in this sequence mustdteged
insidew, and we say that all these accesses belong fhis illus-
trates how, in general, an access belongs to the topmosbfinit
work declared on it.

A threadis a sequence of units of work. The notatibread )
denotes the thread corresponding:toAn executions a sequence
of events from one or more threads. Given an execulicamd an
atomic setl, theprojection of E' on L is an execution that has every
event onL in I/ in the same order.

| Interleaving scenario

Description

1. | Ru(l) Wy (1) Wy (1) Value read is stale by the

time an update is made in

2. R (1) W,/ (1) Ru(l) Two reads of the same location

yield different values in.

An intermediate state is
observed by.’.

3| Wu) R, (D) W (D)

Value read is not the same as
the one written last in.

4. | Wu() W (1) Ru(l)

5 | W) W, (1) W, (1) Value written byu is lost.

Memory is left in an
inconsistent state.

6. | Wu(lh) Wy (1) Wy (L—1) Wy (l2)

7. W (l1) W, (12) Wi, (12) W,/ (11) same as above.

8. W (l1) R,/ (1) R,/ (L—1) W (l2) State observed is inconsistent.

9. Ry (l1) W, (1) W,/ (L—1) Ry (l2) same as above.

10. | Ru(l1) W,r(I12) Ru(l2) W,/ (11) same as above.

11. same as above.

Wu(l1) Ry (12) W (l2) Ry (1)

Figure 9. Problematic Interleaving Scenarios. These scenarios are
complete provided that each unit of work that writes to amato
set, writes all locations in that set.

Observation 1For any pair of accesses belonging to units of work
u and v’ that appear in the projection of an executiBhon an
atomic setL, if threadu) = threadw’) then we have neither
u « u, noru’ « w; i.e. the projection does not contain nested
units of work.

This observation follows from the fact that each accessrgsldo
the topmost unit of work declared on it.

An interleaving scenarios also a sequence of events. For ex-
ample,R. (1) W, (1) W, (1) is an interleaving scenario where unit
of work « first readsl, then another unit of works’ performs a
write, followed by a write by.

An executionis in accordance witkan interleaving scenario if it
contains the events in the interleaving scenario, and tigsear in
the same order. The atomic sets of an execulipatomicSet&E),
consists of all atomic sets for which there is an accesgf,iras
well as the dynamic atomic set of all units of workAh When the
execution is clear from context, we wrisdomicSets

3.2 Definition

Figure 9 shows the interleaving scenarios that are noalszile.
Serializability is obtained by preserving data consisgeno these
scenarios capture when the data may be read or written iiseons
tently.

Definition 1. Data RacesLet L be an atomic set of locations,
1,12 € L, 1 one ofl; or iz, andu andu’ two units of work forL,
such thathreadv) # threadw’). An execution has a data race if it
is in accordance with one of the interleaving scenarios gfif& 9.

We now describe informally why these scenarios are probiema
In the first scenario, unit of work reads one locatioh followed
by an update té. If another update tois interleaved between the
two, then the read operation yields a stale value and theegqubst
update may be inconsistent. This scenario captures comtoan “
level” data races, such as two threads execuiirg Scenario 1
corresponds roughly to the “lost update” [37] anomaly iratlases:



fi(st write events inan executiqn. W(? associate a.uniquest'mm
with each unit of work, respecting this order. A write eveatggthe

wu(i1) wu(2) W (i) wu(i2) timestamp of the unit of work to which it belongs. A read event

scenario 6 gets the timestamp of the most recent write to the memoryitnta
it is reading. If a memory location gets written more thaneoby
5 - S a unit of work, we mark the location asmporary until the last

write is completed. We use timestamps and temporary lataitio

capture consistency: if two reads within a unit of work géfedent

|:| ) |:| timestamps, they are observing an inconsistent statewiske
scenario 9 observing a location marked as temporary by another unitaskw

- — - - is undesirable. We make the following assumption in our pofo
Figure 10. Problematic interleaving scenarios completeness:

Ru(l1) Wu'(I1) Wu'(12) Ru(l2)

a transactiorl}, reads a data item, then another transacfign
updates the item, thefy, updates the item based on the value rea
and commits. The update @t is then lost.

Scenario 2 shows two consecutive reads of locationa unit
of work that do not yield the same value. It roughly corresjson
to the “fuzzy read” anomaly in databases, where a transa@tjo
reads a data item, then a second transadfipmodifies that item
and commits. If} attempts to re-read the same item, it receives a
different value.

In scenario 3, an intermediate valuela$ read, when a unit of
work writes it multiple times. In scenario 4, the value readifis
not the same as the one last written in the same unit of work. In
scenario 5, a write td s lost, or hidden by the writes from some
unit of work.

Scenarios 6 (Figure 10) and 7 illustrate cases where memory
is updated inconsistently. Recall thatenotes one of; or o,
and thatL — [ denotes the other. In scenario 6, a unit of wor
updates some location in the set, followed by an update tthano
location. Thus the whole set is updated in multiple steps vfite
to the set is interleaved between the two, then memory idieft
an inconsistent state since individual locations haveeslitom
different operations. A reader may then observe what appedre
intermediate states of various updates. Scenario 7 isaimil

Scenarios 8 through 11 (Figure 10) illustrate cases whems-me
ory is read inconsistently, even if it may never have beettevri
incorrectly. In scenario 9, one unit of work reatisfollowed by
readinglz. Thus one thread is observing the state of multiple parts

d Assumption 1. We assume that each execution is such that every
unit of work that writes some location in an atomic set, vaisgery
location in that atomic set.

This assumption is not restrictive because we can always add
“dummy writes” to any unit of work that does not satisfy it,dan
they are only needed conceptually.

In the rest of this section, we consider an executioand its
projection on some atomic sétin atomicSetSF). We call these
“the execution” and “the projected execution”, respedyive

If the execution imotin accordance with the interleaving sce-
narios of Definition 1, then neither is the projection, andshiew
that the timestamp of writes to a given memory locatiorLiare
monotonically increasing (Lemma 1), and that no unit of work
observes an inconsistent state (Lemma 2). These two prepert
K suffice to show that the projected execution is serializgbles-

orem 1), using the Serializability Theorem from databas®ih

We use indices to refer to a total order of events in the ptefec
executior. The functionevent:) gives the event at index If u is
a unit of work, therfirstWrite(u) is the index of the first write event
of u.

We assume that timestamps are drawn from the natural num-
bers, and that the indices in an execution start at 1. Wes(s¢
to denote the timestamp of a unit of work that performs write
allocate timestamps to units of work in such a way that:

in the atomic set. If an update to the whole set is interleatiezh ts(u) < ts(u') < firstWrite(u) < firstWrite(w').

the values observed belong to different operations. Theofdbe

scenarios are problematic for a similar reason. These sosra@e So a unit of worku, whose first write happens before the first write
similar to the “read skew” database anomaly. of another unit of work: in an execution, gets a lower timestamp.

All scenarios that only manipulate one memory location are Given a total order of timestamps thus allocatedptei(t) be the
marked as having a data race by the common definition. How- timestamp immediately precedimgn this order prev(t) < t).
ever, there are three scenarios missiig!) R, (1) Ru (1), Wu(l) We associate a timestants(:), with an event at indexin the
R, (1) Ry(l), and R, (1) R,/ (1) Wy (). None of these are prob-  execution. Write events get the timestamp of the unit of work
lematic, but the common definition marks the last two as lgaain ~~ which they belong, and read events get the timestamp of tt& mo
race. Our definition avoids these benign cases. An exampleeof ~ recent write to the memory location reas(i) is computed as
third scenario is a thread performing+ and another printing the  follows:

value ofx, where the write ok is atomic. This is non-deterministic ts(u) if eventi) = W (1)
but serializable, so there is no data race. ts(j) if eventi) = Ru (1)
Not all database anomalies are applicable in this contexheS ) Aj <iAevents) = W (l)
are concerned with an erroneous behavior when a transatimits ts(i) = A Bk j<k<il even(uk:) =W, (l)
and rolls back: e.g. “dirty read” and “dirty write”. Otherefer to 0 if eve,n(i) = Ru(l) “
reading a set of memory locations that satisfy a search tondi A B, j < i|eventj) = W, (l)
“phantom read”. Finally the “write skew” anomaly is coverey
several of our scenarios. So farts(u) is only defined for units of work that perform writes.
For a unit of work that consists entirely of read eventstdét) =
3.3 Completeness ts(i) for somei such thaeventi) = R, (1). We will see in Lemma 2
We now show that the interleaving scenarios are completaning that all suchi have the same timestamp.

that if an execution does not display them, then its prajectin

each atomic set is serializable, a concept that we definésplgc 2 total order of events is natural for a sequentially coesistarchitec-
below. To this end, we introduce a formal model of timestamps ture. However, events happen in some total order even oneveaémory
Units of work can be totally ordered by the occurrence ofrthei models, so our conceptual model is still applicable.




temdua,,l2)
indexi event | ts(¢) | temgui,i,l1) | temlue,i,l1)
temp(u2, 7, l2)

1 W, (I1) 1 true false

2 R, (l1) 1 true false

3 Ru, (l2) 0 true false

4 W, (I2) 1 true false

5 Wy (1) 2 true false

6 W, (12) 2 true false

7 W, (11) 1 false false

Figure 11. Sample execution and timestamps

The predicatéemgu, 4, 1) is true if location! is temporary for
unit of work « at indexz, meaning that there will be another write
to l in w beyond index. It is false for unit of worku at indexi if
1 represents the index of the last writeltim . For reads, we take
the value otemg, i, 1) to be the valuéeempu, i — 1,1). Initially,
temp(u, 0, 1) = falsefor all v and!. Itis computed as follows:

true if eventi) = W, (1) A
37 >i|eventj) = Wu(l)
temgu,i,l) = ¢ false if eventi) = W.(I) A
Aj>i|eventj) = Wyu(l)
tempdu,i —1,1) otherwise.

Figure 11 gives a sample execution and its timestamps. $n thi
example, there are two units of wotk andus in different threads,
and two locationg; andlz. We havets(u;) = 1 andts(u2) = 2.

At index 2, unit of workus reads an intermediate value of location
l;. This is captured byempu., 2, 1) being true.

The following lemma states that the timestamps of write &/en

on the same memory locatidrare monotonically increasing.

Lemma 1. If the projected execution is not in accordance with
the interleaving scenarios of Definition 1, andind ;5 are such
that: < j, evenfi) = W, (l) andeventj) = W, (l) for some

I, u # u, thents(i) < ts(j).

The proof of Lemma 1 can be found in Appendix A.

The following lemma states that the state observed in a tinit o
work is consistent, by giving three properties of read evémtan
execution that is not in accordance with any of the scenanos
Definition 1. First, no temporary value is ever read. Secoaads
in a unit of work that also writes the same atomic set do nosigde
values. Third, two reads in a unit of work that does not penfany
writes to same atomic set get consistent values.

Lemma 2. If the projected execution is not in accordance with any
of the interleaving scenarios of Definition 1:

1. No event from one unit of work reads a memory location
marked as temporary by another unit of work in a different
thread.

Vu,i,l | eventi) = Ru(l) = Au’ | v’ # u A threadu) #
thread (u’) A temgw/, ,1).

2. Aread in a unit of work that also contains a write to the same
atomic set does not get a stale value, i.e. it gets the tinmgsta
corresponding to the unit of work or the previous one.

Vi |(eventi) = Ru(I) A3 j | eventj) = Wu(l)) = ts(i) €
{ts(u), prev(ts(u))}.

3. Reads in a unit of work: that does not contain writes, get the
same timestamp.

Vi,7 | (eventi) = R, (1) Aeventj) = R.(I') A
Ak |eventk) = W, (1)) = ts(i) = ts(j) = ts(u).

The proof for Lemma 2 can be found in Appendix B.

Finally, we show that for an execution that is not in accoogan
with any of the interleaving scenarios of Definition 1, itejection
on each atomic set is serializable, which we define prectsatyw.

We can think of a unit of work as being a single-threaded fiens
tion that always commits, and this allows us to use concepta f
serializability theory [8]. Given indicesand:’ such that < i/, the
pair (event:),eventi’)) is aconflicting pair of eventsf they are on

the same memory location, and one of them is a write. We say tha
two executions arequivalentif they consist of the same units of
work and the same events, and have the same pairs of comflictin
events. An execution iserial if for every two units of worku and

v’ that appear in it, either all events inhappen before all events
in v/, or vice versa. We say that an executiosésializableif it is
equivalent to an execution that is serial.

The conflict graphof an execution is a directed graph, with
nodes consisting of units of work. There is an edge betweés un
of work » and«/’, if v andu’ have eventg ande’, respectively,
such that ¢,¢’) is a conflicting pair. The Serializability Theorem
[8] states that an execution is serializable, if and onlysiftionflict
graph is acyclic. We will use this fact to prove Theorem 1 telo

Theorem 1. Serializability If the execution is not in accordance
with any of the interleaving scenarios of Definition 1, itejection
on each atomic set imtomicSet&F) is serializable.

Proof. Assume that the execution is not in accordance with any
of the interleaving scenarios of Definition 1, and that thexists

an atomic setL in atomicSetssuch that the projection of the
execution onL is not serializable. We have that the projected
execution is also not in accordance with the interleavirenados

of Definition 1. By the Serializability Theorem [8], the canfl
graph for the projected execution has a cyde— ups — - --
un, — u1. Note that for any pair. and«’ in this cycle, it cannot
be the case thahread«) = threadv’), because otherwise one of
them would be nested inside the other, contradicting Obsierv1.
Consider two consecutive units of wotkandw in this cycle. Leti
be the index of an event afthat conflicts with an event af’ with
indexj (i < 7). We show by cases th&t(u) < ts(u’):

1. eventi) = W, (I) andeventj) = W,/ (1). By Lemma 1ts(¢)

< ts(j). Sincets(z) = ts(u) andts(j) = ts(u’), we havets(u)

< ts(u').
2. eventi) = W,(l) andeventj) = R,/ (I). We havets(i) <
ts(j). By Lemma 2, Part 2 and &5(j) is either equal tas(u')
or prev(ts(u)). Also ts(i) = ts(u). Therefore we have either
ts(u) < ts(u'), orts(u) < prev(ts(u’)). Note that in the latter
casets(u) < ts(u’), by the definition ofprev.
evenfi) = R,(!) andeventj) = W,/ (). We show by contra-
diction thatts(z) < ts(j). Assume first thats(:) = ts(j). Then
there must have beenia < 4 such thateventk) = W, (1).
Sotemygw’, ,1) is true. By Lemma 2, Part 1, we know that no
event reads a location marked as temporary, so this is a con-
tradiction ands(z) # ts(j). Assume now thats(z) > ts(4). In
this case, there existsia < i, such thateventk) = W, (1)
for somew”, which is the write responsible for the readiat
We havek < j, andts(k) > ts(j), which is a contradiction
by Lemma 1. Therefores(:) < ts(j). Moreover, by Lemma 2,
Part 2 and 3s(i) is eitherts(u) or prev(ts(u)). Sincets(y)
= ts(u'), then we have eithes(u) < ts(u'), or prev(ts(u)) <
ts(u’). Note that in the latter cags(u) < ts(u'), by the defini-
tion of prev.

—

3.

So in all three caseds(u) < ts(u'). So for our cycleu; —
Uz — - — up — u1, We havets(uq) < ts(uz) < -+ < ts(un)
< ts(u1). Thereforets(u,) - = ts(un). We know that the
conflicting events ofi; throughu,, must contain at least two writes



Construct | Usage
atomic(s) | fields that have a consistency property or
fields whose intermediate states should not be visible
unitfor parameter that must be manipulated atomically
atomic class that needs to be thread-safe
owned (s) similar toatomic (s) but with one level of indirection
through field dereference

Figure 12. Summary of language constructs

from different units of work. This is the case because istving
scenarios 2 and 3 do not happen in the execution, due of dia ini
assumption. Thus by the definition t{«), the fact thats(u,) =

--- = ts(un) is a contradiction. Therefore such a cycle does not
exist and the projection of the execution bris serializable. O

4. Implementation

This section presents an overview of the language constaral
their implementation for Java.

4.1 Overview of Language Constructs

In our approach, each class is responsible for its own spndita-
tion by declaring one or moretomic sets. An atomic set decla-
ration in a class means that each instance of that classshewrit
separate atomic set. These declarations are inheritedib@ass-
ing, and subclasses may extend existing sets and/or irtectheir
own. The public and protected methods of a class are asswomed t
be units of work for its atomic sets, meaning that they preser
consistency when executed sequentially. We assume thiatagac
cess to a location in an atomic set is done within a unit of work
that atomic sét If a unit of work accesses the elements of more
than one atomic set in the same class, then it is guarantaeddh
interleavings will occur in which other threads access amta dh
the union of these sets (though interleavings with otheyatis that
only access unrelated data are allowed). Thétfor construct
enables a client of a class to specify that a parameter neduts t
manipulated atomically for the duration of its scope. If almoel is
already a unit of work for an atomic sét then aunitfor decla-
ration on parameter effectively makes the method a unit of work
for theunion of the setS and the atomic sets @f

The owned(s) construct is similar taatomic(set) but pro-
vides one level of indirection. It guarantees that the atoseits
of the object pointed to by a field is included in the atomiccfet
the field. This mechanism allows transitively defined sets, en-
ables fine-grained concurrent access to recursive datetigtes.
For example, the representation of a linked list may be ot
in an atomic set without also including the objects contdiire
the list. As part of future work, we will provide two variants
owned for arrays, one which includes the array itself, and therothe
which additionally includes the elements. Finally, a titiinecha-
nism, theatomic class construct, helps making a class thread-safe,
by declaring that all its fields are in a single atomic setsEvoids
the need for synchronization wrappers in Java. Figure 12r&m
rizes the language constructs.

4.2 Synchronization Inference

We will now discuss an approach for generating code withlsgamc
nization that guarantees that the consistency properigaid us-
ing atomic set constructs are respected. In other words,ttlea

3This assumption means that our system expects client-sitieatcesses
to be done via getter/setter methods.

In(v) « {Out(v;)| v — v; € EgV
(3vi = v.£f A s owned(s) f)}
Out(v) <« In(v)U readgv) U writeqv)
readfv) «— {read(s)|3x=vienAfes}
writeqv) «— {write(s)|Ivf=x€EnAf€E s}

Figure 13. Dataflow equations for determining atomic sets ac-
cessed from pointers.

problematic interleaving scenarios do not occur. First,deéne

a dataflow analysis over a program’s call graph that inferghvh
locks need to be held for each unit of work. Then, we discuss ho
that information can be used to insert synchronization troots.

Determining Atomic-Set Usage. The atomic sets that may be ac-
cessed by a unit of work can be determined by examining the cod
in the method that denotes the unit of work and in all methoats-t
sitively called by that method. In this set of methods, alldfiac-
cesses are directly evidénfThe containment of fields in atomic
sets is declared explicitly, so that computing the atomis se-
cessed by each unit of work is straightforward. The anabyesisbe
formulated as a standard dataflow problem using Kildallapr
based dataflow framework [26]. Recall that this frameworkoas
ciates settn(n) andOut(n) with each nodex and defines the value
In(n) to be the union of values of a@ut(x) where the graph has an
edge fromz to n. Node transfer functions defif@ut(n) in terms

of In(n). We formulate a standard bit-vector problem, in which the
bits areread(s) andwrite(s) for each atomic setin the program.

We define the dataflow problem across a standard dataflow
graphG =< Ng, E¢ > that captures the dataflow among pointer
values in the program. There is Bmand anOut set for each value
in N¢. The edges in our problem consist of: (i) the inverse of edges
in E¢ and (ii) edges derived from reads @fned fields. The latter
edges ensure that accesses to objects that are owned deel trea
as accesses of the owner set.The dataflow equations are ghown
Figure 13, where the notatigh € s is used to denote the fact that
field f is declared to be in atomic sef andstatement € n to
mean that a statement occurs in the method associated vdénno
The result of the analysis is, for each pointer valie the program,

a setOut(v) of all atomic sets accessed framand from anyv’ to
which objects might transitively flow from.

Adding Synchronization. We associate a lock with each atomic
set. For each methodh, we acquire locks for all atomic sets that
m may access according to the above analysis and for wiich

is a unit of work. This includes atomic sets that are accessed by
methodsn/’ transitively called byn as well as atomic sets accessed
from fields transitively owned by elements in atomic setsased

by m. Note that atomic sets accessed transitively frormmmay
include atomic sets declared in subclasses of the clasdé¢bktres

m.
Various kinds of locks can be used for synchronization. The
most conservative strategy is to use exclusion, which pitevall
problematic interleaving scenarios. We initially implented this
strategy using Java'synchronized blocks. However, our prob-
lematic interleaving scenarios enable more aggressivéeimem-
tations. In particular, we implemented the use of readéewr
locks [31] in which multiple readers are permitted concotrac-
cess, but where writers must have exclusive access. Sihseeal
narios of Figure 9 involve at least one writer, this schenwdarly

4We ignore the issue of fields accessed via mechanisms suakisageflec-
tion. In such cases, we would need to use a conservative xapyaton of
what fields might be accessed.

5We assume some ability to atomically acquire multiple loakkich is
straightforward for locks that support POSIX-style trjtoc



correct. Potentially, we could analyze units of work foraeences ‘ orig. ‘ added data-centric constructs

of problematic interleaving scenarios and generate clisezhsyn- Benchmark sync. | sets | owned | unitfors :
chronization that prohibits possible bad interactions. Vector(unitfor Collection)
. : R addAll(unitfor Collection)
Assumptions like having call graphs or global dataflow ggaph  vector 37 1 1 addAll(int,unitfor Collection)
make this implementation most suitable for whole-prograim< removeAll(unitfor Collection)
pilation where relatively precise graphs can be constdid#®w- retainAll(unitfor Collection)
ever, it is possible to use approximations of unknown pogtiof giigﬁgﬁe v 3 void putAli(unitior Map)
the graph when the whole program is not available. Random 3 T 5
i i i ArrayList(unitfor Collection)
Detad{ﬁdi Whtehn («jalttemptlng to acquire |Oﬁks fOI’_ ?“ t;]uema?tomlc ArrayList n/a 1 1 addAll(unitfor Collection)
sets that a method accesses, our approach consists of tmyaug addAll(int,unitfor Collection)
quire them all, and release them all if at least one is unaivia| and LinkedList nia 1 3 addATI(int, unitfor Collection)
then trying again. This mitigates deadlock to some exteead> SublList n/a 1 0 addAll(int,unitfor Collection)
lock may still occur in the generated code if there are (itae$ HashSet n/a 1 0 HashSet(unitfor Collection)
cyclical dependences between the sets of locks needed hynitgo Lffhs'\j;p 2;2 . : addAli(unitfor Collection)
_of work. Thl_s can be detected th_rough static analysis. leuttork CinkedHashMap | a 1 3
includes building such an analysis to warn the programmer. [dentityHashMap | /a T T PUTATI(UNTtfor Map)
equals(unitfor Object)
4.3 Experimental Results TreeMap n/a 1 4 putAll(unitfor Map)
. L . intersects(unitfor BitSet
Wg have |mplemented a prototype for synchronllzatlon |mfeee equa|s(un(itf0r Object) )
using the Eclipse refactoring framework [6]. The infererogine BitSet nia 1 0 and (unitfor BitSet)
is based on Domo [16], an analysis infrastructure develapé&siM or (unitfor BitSet)
Research xor (unitfor BitSet)
: _ andNot (unitfor BitSet)
Our language constructs are sufficient to correctly addrsync
nization to a significant subset of the the Java Collectiasne- Figure 14. For each benchmark the table shows the number of

work®. Figure 14 shows, for several classes in that framework, the original synchronization blocks, the number of atomic setded,
number of originalsynchronized blocks, the number of atomic  the number of owned fields and the methods requiring thearnitf
sets needed, the number of owned fields, and the number of meth construct. The notation n/a is used for classes that hadigmair
ods for whichunitfor was needed. All experiments took less than synchronization because they were not intended for coaectnse.
one minute on a 1.7GHz Pentium Il with 768MB of memory. The
first four lines refer to classes such @sctor which had exist-
ing synchronization. For each such class, we manually rechait
synchronization blocks, and then added a single atomicThete
were 5 methods ifflector that needed thenitfor construct, and
most of these correspond to published high-level data the¢sre
easily avoided using our constructs. Observe that our agprgen-
erally requires far fewer annotations than the traditi@pgroach.
For exampleVector requires only 1 atomic set, 1 owned field, and
5 unitfor constructs instead of the original 3ynchronized
blocks.

The rest of the benchmarks are classes that did not have
synchronization. As the figure indicates, very few annotei
are needed to make each of them thread-safe. This is to be
contrasted with Java’'s synchronization wrappers, such.gs e
SynchronizedSet, which wrap each method of the base class
in a synchronization block. These wrappers are long and-erro
prone classes, since there is an explicit lock that must laeatti¢he
right places. With our constructs, synchronization wrap@ee no
longer needed.

variable is stale if it is used beyond the critical sectionnihich

it was defined. Scenario 1 of our definition of data races adee
stale-value errors. View consistency [3] is a correctnegeron
that ensures that multiple reads in a thread observe a temisis
state. A view is defined to be the set of variables that a lock
protects. Two threads are view consistent if all the viewshia
execution of one, intersected with the maximal view of theeot
form a chain under set inclusion. View consistency can belatg
dynamically [3] or statically [34]. Scenarios 8 through Ifloair
definition of data races address the issue of multiple reatting
an inconsistent state. In our approach, however, the progex
indicates explicitly what sets of locations form an atont, S0
this information does not need to be extracted from the hugki
structure of the code, which may not be correct.

Atomicity [21] is a non-interference property used to reaso
about multi-threaded programs. An atomic section can henasd
to execute serially without interleaved steps from othegdds. A
number of tools have been developed for checking atomidgy v
lations, including type systems [21, 22, 18, 32]; dynamialgsis
such as the Atomizer [20] which combines the theory of reduact

5. Related Work [29] and ideas from dynamic race detectors; and model chgcki
Most static [15, 28] and dynamic race detectors [30, 33], elbas techniques [25, 17]. These approaches require atomicitptan
type systems [9, 19] and languages [5] that guarantee reeddm tions in addition to synchronized blocks from the programme

are based on the common definition of data races and themore I contrast, we have aimed at minimizing the amount of anno-
not handle high-level races. Type systems use redundaotann tation required to specify synchronization constraintsits) of

tions to verify that data races do not occur. In contrast,system work are different from atomic code blocks in that they are re
infers the appropriate synchronization to prevent higlellas well lated to the sequential, rather than concurrent, behaviaode
as low-level data races, and does not require the progrartamer and preserve the consistency of data when executed seajlyent
keep track of locks explicitly. They correspond naturally to method bodies in a well-design

An extension to ESC/Java detects a class of high-level data Object-oriented program. They are also data-centric tsecaey
races, called “stale-value errors” [10, 4]. The value of ealo are declared on specific atomic sets, which sometimes allows

more concurrency than an atomic code block (see, e.g., mhetho
6 Some limitations in our current implementation (most nita handling longDistanceTransfer () in Example 3). )
inner classes) prevent us for performing the experimenherentire Col- Our definition of data races differs from the theory of redarct
lections Framework. [20, 18], which provides a single pattern for atomicity, tthe a




sequence of right movers, followed by at most one atomioacti
followed by a sequence of left movers. Lock acquires (relgpare
considered right (left) movers. Consider the followinggimzent of
code, where is a shared variable andis local:

synchronized(lock){ t = x; }
tT++;

synchronized(lock){ x

t; }

This fragment of code is non-atomic, and can be fixed as fallow

synchronized(lock) {
synchronized(lock) { t
t++;
synchronized(lock) { x

t; }

Even though this fragment is now atomic, the theory of reidact
would reject it, since it consists of a right mover, followey two
atomics, followed by a left mover. To overcome shortcominfs
the underlying theory, the Atomizer tool [20] performs ditmtial
analysis to determine reentrant locks, as well as protdoied.
The type system of [18] remedies this problem by providingeno
precision via conditional atomicities. In contrast, oufiiéon of
data races is a complete setrmin-serializablepatterns, and is not
based on locking structures. A tool based on our definitionld/o
not consider the above fixed code as problematic, becauseiitiw
observe accesses to data rather than locks.

Language-level atomic sections [11] and software traisaeit
memory [2, 24, 23, 36] are methods for removing the burden on
the programmer in determining which locks to hold, by allogi
code blocks to be marked as atomic. These code-centric ages
still require non-local reasoning from the programmer lasitated
in Section 2. A correct implementation of these methods si¢ed
guarantee that there exists a global serial order of exactdr the
atomic sections. This is in general hard to implement efiityein
an imperative language, and requires specialized hard@prehe
requirement for our units of work is that there exists a $enider
only with respect to each atomic set, and there may not betmfglo
serial order. By weakening the guarantee, while still nziibg
correctness (preservation of data consistency), we havetlaoch
that is much easier to implement.

Our problematic interleaving scenarios are similar to ¢hased
by Wang and Stoller [35] to provide run-time analyses fonatoe
ity. Our scenarios are simpler, and more importantly theycam-
plete, meaning that an execution not displaying them isapteed
to have a property related to serializability.

The scenarios in our definition of data races are analogous to
anomalies used to characterize levels of isolation in dested and
defined in the ANSI SQL standard [37, 7]. Commercial database
allow programmers to trade off consistency for performamgcef-
fering different levels of isolation. Each level is chae&ted by
the set of anomalies it does not allow. The highest level of is
lation is serializability. Our problematic interleavingenarios are
similar to the schedules used to express the database aesmal
Some of these are not directly applicable in the context atuoo
rent programming, because they explicitly talk about agaation
committing or aborting.

Atomic sets share characteristics with data groups [27{aDa
groups help in the specification of methods whose overridag m
modify additional state introduced in subclasses. A methatlis
allowed to modify a data group, is allowed to modify its dovamd/
closure, consisting of all member variables added in ssbekm
Atomic sets are similar in that subclasses may add locatmaset
declared in a parent class. They differ in that, unlike daitaups,
they are not hierarchical and non-overlapping.

The Serializability Violation Detector (SVD) [38] is a totiat
dynamically infers atomic sections (called ComputatiorittJor

CUs), based on data and control dependences, and thensdétect
these CUs are non-serializable by checking a rule basedion2st
Phase Locking. One of its key features is that it does notaelhe
possibly buggy locking structure of the program to infer Clle
share a similar viewpoint by having a definition of data rabes
does not rely on locks. SVD produces both false positiveSaind
negatives, depending on the precision of the inferred Cl.tnds
not consider some of our interleaving scenarios to be pnodilie.
This is always the case for Scenario 2, and some of the time for
other scenarios because accesses can end up in differentit&ds
there is no data or control dependence between them.

Deng et al [14] present a method that allows the user to specif
synchronization patterns that are used to synthesize symzkd
code. The generated code can then be verified using the Bander
toolset. The user must specify explicitly the regions of ectlat
need synchronization, but we do not require this. Unlikenthe
we only focus on one kind of synchronization pattern: exolus
between two regions that access the same atomic set.

The Actor model [1] defines objects that are updated atotyical
by individual methods. The Actor model shares our focus amgus
objects to manage consistency, but there are some cruéfial-di
ences. First, it has a more restrictive notion of state changith a
singlebecome operation. Second, it is asynchronous, and does not
have the notion of nesting of units of work. Third, this modees
not support our notion of multiple consistency propertiethin a
single object. Fourth, these languages lack a compositginsc-
ture like ourowned. Fifth, these languages do not support a con-
struct such asnitfor for customizing consistency. Some Actor-
based languages address some of these issues—Concurgeat Ag
gates [13] added synchronous calls and nesting, and ICCa}+ [1
had a limited form of composition witimtegral.

6. Conclusions

We presented a new definition of a data race as a collectiot of 1
problematic interleaving scenarios, which subsumes Huitional
notion of a data race as well as high-level data races sudalas s
value errors and inconsistent views. We have proved it cetapl
by demonstrating that any execution that does not exhilyitcdn
the 11 scenarios is equivalent to a serial execution, whejeqied
onto each atomic set.

We have proposed a small humber of language constructs that
allow programmers to specify atomic sets, and a simplecsiatil-
ysis to determine the places in the code where synchrooizéi
needed in order to avoid data races according to our new tiefini
Our data-centric approach is a declarative and succincforaie
programmer to specify synchronization constraints, in § that
maps naturally to the encapsulation provided by objects. |#ss
error-prone because the constructs are easy to use andtesy
nization is inserted automatically.

The experiments indicate that these constructs suffice fmhm
of the Java Collections Framework, and they also show greatl
reduced annotations compared to synchronized blocks.
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A. Proofof Lemma 1l

Assume that the projected execution is not in accordande amy
of the problematic interleaving scenarios of Definition EsAme
that there exist andj such thati < j, evenfi) = W,(l), and
eventj) = W,/ (l) for somel andu # u', butts(z) > ts(j). Since
u # v/, thents(z) andts(j) could not be equal. So we hats:) >
ts(j).

Sincets(z) = ts(u), andts(j) = ts(u’), it must be that the first
write of u occurs after the first write of’. Let i’ = firstWrite(u)
and;j’ = firstWrite(u'). Then we have that < i’ <i < j.

Case levent;’) = W, (1). It must be thathread v) # thread'u’),
because otherwise andu’ would be nested units of work and this
would contradict Observation 1 (two non-nested units ofknafr
the same thread do not have interleaved events). Then tfeeimo
execution is in accordance with the interleaving scenanb Bef-
initiop 1, which is a contradiction.

J ( J
Wy (1) Wu(l) Wy (l) (scenario 5)

Case 2.eventj’) = W,/ (I'), I’ # 1. Since unit of worku also
writes!’, by Assumption 1, the indek of such a write is greater
thani’, sinces’ is the index of the first write ofi. We have that
threadu) # thread ) for the same reason as above. Therefore the
projected execution is in accordance with one of the indertey

scenarios 6 or 7, which is a contradiction.
° : ¢
3

Wy (') W) Wu() Wu]/ (1)  (scenario 6)
., : i .

Wuj/ (3] Wz(l) W (") Wuj/ (1)  (scenario 6)
i’ : . 8

Wuj/ ) Wz(l) Wuj/ (1) Wu(') (scenario 7)

Thereforets(i) < ts(j) as required.

B. Proof of Lemma 2
Table 1 illustrates the different cases appearing in thasfor

Part 1. Assume that the projected execution is not in accordance
with the interleaving scenarios of Definition 1. Consideriraex
i such thateventi) = R, (l), andtemgd/’, ,1) = true for some
u’ # wu such thathreadw) # threadv’). Then there must be A
andk, j < i < k, such thateventj) = eventk) = W,/ (I). But
the projected execution would be in accordance with indsitey



scenario 3 (Table 1), which is a contradiction. ®mgu’, 7,1) =
false

The unit of worku'" must writel as well by Assumption 1. Lét be
the index of such a writeventk) = W, (1). It cannot be the case

Part 2. Assume that the projected execution is not in accordance thatk < ', because that would contradict Lemma 1./5¢> i,

with the interleaving scenarios of Definition 1. Considemét of

since the write at’ is the one responsible for the valueiatVe

work v that contains at least a read and a write event. Assume have thatthread«) # threadu’), because otherwise that would

that there is an, such thaeventi) = R.(l), andts(i) & {ts(u),
prev(ts(u))}. Letk, k < ¢, be the index of the write responsible for
the value ofts(z). Soeventk) = W, (1) for someuv’.

Case 1.ts(z) > ts(u). Since unit of worku must also writel by
Assumption 1, letj the index of this writeeventj) = W, (1).
Note that we cannot have < j < 4, since the write at indek
is responsible for the value (z).

J < k < )
Wa(l) W (D) Ru (1)

We have thathreadu) # thread '), because otherwise andu’
would have to be nested units of work, and this would conttadi
Observation 1. Then the projected execution is in accoelarith
interleaving scenario 4 (Table 1), which is a contradiction

Subcase la.

k < i < j
Subcase 1b. W, (1) Ru(l) W)
We have thats(i) = ts(k) > ts(u) = ts(j), which contradicts
Lemma 1.

Case 21s(7) < prev(ts(u)). There must be gsuch thaeventj) =
W, (1) by Assumption 1, antk(j) = prev(ts(u)). Sincets(k) =
ts(¢) < prev(ts(u)), then it cannot be the case thak &, because
otherwise that would contradict Lemma 1. Therefore we have:

k < i J
W (1) Ru(D) W (1)

There must be and index such thateventi’) = W, (1) by As-
sumption 1. We have thét > j, because otherwise that would con-
tradict Lemma 1. We have th#treadu) # thread«”), because
otherwise that would contradict Observation 1. Thus thecexe
tion is in accordance with the interleaving scenaf:(l) W, (1)

<

W (1) (Table 1), which is scenario 1 from Definition 1. This is a

contradiction.
Thereforets(i) € {ts(u), prev(ts(u))}.

Part 3. Assume that the projected execution is not in accordance

with any of the interleaving scenarios of Definition 1. As&uthat
there exists a unit of work, andi < j, such thaevent:) = R, (1),
evenfj) = R, (I'), andts(i) # ts(7). Suppose that the unit of work
u does not contain any writes. L&tand;’ be the indices of writes
responsible for the values ¢6(i) andts(j). We have that’ < :
andj’ < 7, andeventi’) = W,/ (1), eventj’) = W (I').

Case 1! = !’. Then it must be that:

4 < i

i J
W (1) Ru(l) W (1) Ru(l)

We havethreadw) # threadv””) because otherwise that would
contradict Observation 1. But then the execution is in ataoce
with interleaving scenario 2 of Definition 1 (Table 1), whisha
contradiction.

Case 21 # I’ andts(i) < ts(j).

i’ < i <
W (1) Ru (1)

’ < ]

J
Case 2a. W (ll) Ru(l/)

contradict Observation 1. Thus the execution is in accarelavith
one the interleaving scenarios 9 or 10 (Table 1), which isrdaree
diction.

Case 2h.
i’ < J’ < i < J
W, (1) W (1) Ru(1) Ru(l')
or
J’ < i’ < i < J
W (1) W (1) Ru(l) Ru(I')

Let k be an index such thaventk) = W, (l). Sincets(i') =
ts(z) < ts(j) =ts(j) = ts(k), then it must be that > ¢’, because
otherwise that would contradict Lemma 1. We also have#hat:
becausei’ is the index responsible for the value read:awe
have thatthreadu) # threadw”), because otherwise that would
contradict Observation 1. Therefore the execution is imetance
with one of interleaving scenarios 8 and 11 (Table 1), which i
contradiction.

Case 3.1 # I’ andts(z) > ts(j). The unit of worku’ must write
I’ as well by Assumption 1. Let be the index of such a write,
eventk) = W, (I'). Sincets(u’) = ts(¢) > ts(j) = ts(u”), then
it must be thatt > j’, because otherwise that would contradict
Lemma 1. Sincg’ is the index of the write responsible for the read
atj, then it is also the case that> j. We have thathreadw) #
thread '), because otherwise that would contradict Observation 1.
Therefore the execution is in accordance with the inteifepsce-
nario 8 (Table 1), which is a contradiction.
Thereforets(i) = ts(j).

i k
Ru(l) Wy (D)

Part 1

J
W (1) (scenario 3)
j k i
Wu() Wy () Ru(l)
Part 2 - Subcase 1a

(scenario 4)

. . Y
) J )
R,(l) Wyn(l) Wyu() (scenariol)
Part 2 - Case 2
’

i J J
R.(l) Wyn(l) Ru(l) (scenario?2)

Part 3-Case 1
4 k 3’ J
R,(1) Wun(l) Wun(') R, (scenario 9)
; 5 )
i J k J
R,(1) Wun(l') Wyun(l) R, (1) (scenario 9)
; 5 !
g J J k
Ru,(l) Wy () R, (1) W, (l)  (scenario 10)
Part 3 - Case 2a
i i k J
W (') Ru(l) Wy (l) R, (1") (scenario 11)
¢ : |
J 2 J k
W (1) Ru(l) R, (U") W, (1)  (scenario 8)
Part 3 - Case 2b
i A 7 k
W, () Ru(l) Ru.(l) W,(@") (scenario8)
Part 3 - Case 3

Table 1 - Proof of Lemma 2



