
Associating Synchronization Constraints with Data in an
Object-Oriented Language∗

Mandana Vaziri Frank Tip Julian Dolby
IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

{mvaziri,ftip,dolby}@us.ibm.com

Abstract
Concurrency-related bugs may happen when multiple threadsac-
cess shared data and interleave in ways that do not correspond to
any sequential execution. Their absence is not guaranteed by the
traditional notion of “data race” freedom. We present a new defini-
tion of data races in terms of 11 problematic interleaving scenarios,
and prove that it iscompleteby showing that any execution not ex-
hibiting these scenarios is serializable for a chosen set oflocations.
Our definition subsumes the traditional definition of a data race as
well as high-level data races such as stale-value errors andincon-
sistent views. We also propose a language feature calledatomic sets
of locations, which lets programmers specify theexistenceof con-
sistency properties between fields in objects, without specifying the
properties themselves. We use static analysis toautomatically infer
those points in the code where synchronization is needed to avoid
data races under our new definition. An important benefit of this
approach is that, in general, far fewer annotations are required than
is the case with existing approaches such as synchronized blocks or
atomic sections. Our implementation successfully inferred the ap-
propriate synchronization for a significant subset of Java’s Standard
Collections framework.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming-parallel programming; D.2.4
[Software Engineering]: Software/Program Verification-reliability;
F.1.3 [Logics And Meanings of Programs]: Specifying and Verify-
ing and Reasoning about Programs

General Terms Languages, Theory

Keywords Concurrent Object-Oriented Programming, Data Races,
Serializability, Programming Model

1. Introduction
Writing correct concurrent programs is hard, because inconsistent
results may be computed when two threads access shared data
concurrently. In particular, adata raceis said to occur when two
threads concurrently access some data, where one of these ac-
cesses is a write, and where no synchronization exists between the

∗ This work has been supported in part by the Defense Advanced Research
Projects Agency (DARPA) under contract No. NBCH30390004.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL ’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

threads. Current techniques for preventing data races involve ob-
taining locks prior to any access to the shared data using mech-
anisms such as Java’ssynchronized blocks, or using language
constructs such as atomic sections [11] and transactional memory
[2, 24, 23] that ensure that a sequence of statements is executed
atomically.

One disadvantage of such code-centric approaches for avoiding
data races is that it involves non-local reasoning: Shared data may
be accessed throughout the program and data races may occur if the
programmer forgets to obtain the appropriate locks at any ofthese
points. A second problem is that, even if every access to shared
data is protected, data may still end up in an inconsistent state. This
situation—sometimes referred to as “high-level data races” [3] —
occurs if a consistency property exists between multiple pieces of
shared data, and if the synchronization constructs do not ensure
that this property is maintained at all times. Avoiding suchhigh-
level data races requires the same kind of non-local reasoning
as for ordinary data races, but is further complicated by thefact
that multiple locks may have to be acquired in a specific order. If
the programmer accidentally fails to obey this locking discipline,
deadlock or inconsistent data may result.

This paper presents an alternative,data-centricapproach for
avoiding both high-level and low-level data races. In this approach,
the programmer specifies that a consistency propertyexistsbetween
a given set of fields, but without specifying the property itself.
We will call such a set anatomic setof fields, indicating that the
elements of such a set must be updated atomically. Accesses to
fields in an atomic set are assumed to take place in aunit of work,
which indicates a logical operation on shared data, and preserves
consistency when executed sequentially. In this paper, units of work
are assumed to coincide with method bodies. Choosing portions of
object state as atomic sets and methods as units of work exploits
the encapsulation mechanism of objects.

Given a pair of fields that occur in an atomic set, we have iden-
tified 11 problematic interleaving scenarios that capture the various
ways in which inconsistent data may occur when two threads up-
date these fields non-atomically. The problematic interleaving sce-
narios include traditional data races, stale-value errors[10], incon-
sistent views of data [3], and several other forms of high-level data
races. We prove this list of problematic interleaving scenarios to
be complete, in the sense that if an execution does not display any
of these scenarios, then its projection on each atomic set isserial-
izable, i.e., equivalent to an execution in which the units of work
occur in a serial order.

We also present an interprocedural static analysis that deter-
mines, for a given atomic set of fields, the places in the code where
synchronization must be performed in order to ensure that there are
no data races under our new definition. This is implemented byin-
serting reader-writer locks from thejava.util.concurrent li-
brary of Java 1.5 [31] at the appropriate places. We implemented

class Customer {
String city;
int zipcode;
Date date;
Item item;

void updateAddress(String c, int z){
atomic { city = c; zipcode = z; }

}
void newPurchase(Date d, Item i){

atomic { date = d; item = i; }
}

}
class PreferredCustomer extends Customer {

void newStoreGift(Date d, Item i){
atomic { date = d; item = i; }

}
}

class Customer {
atomic(address) String city;
atomic(address) int zipcode;
atomic(purchase) Date date;
atomic(purchase) Item item;

void updateAddress(String c, int z){
city = c; zipcode = z;

}
void newPurchase(Date d, Item i){
date = d; item = i;

}
}
class PreferredCustomer extends Customer {

void newStoreGift(Date d, Item i){
date = d; item = i;

}
}(a) (b)

Figure 1. Customer example.

the analysis and conducted experiments with classes from the Java
Standard Collections Framework. Our experiments indicatethat
our data-centric approach is sufficient to infer the correctsynchro-
nization in a significant portion of the collections framework. Fur-
thermore, one of our constructs can effectively replace synchro-
nization wrappers such asCollections.synchronizedList().
The experiments indicate that the number of atomic locationsets
is generally far smaller than the number of synchronized blocks,
hence reducing the burden on the programmer and creating fewer
opportunities for errors. In summary, this paper make the following
contributions:

• A list of problematic interleaving scenarios that subsumesthe
traditional notion of a data race as well as stale-value errors,
inconsistent views and other high-level data races. We prove
this list to be complete, in the sense that if a program execution
does not exhibit these scenarios, then its projection onto each
atomic set is serializable.

• A set of data-centric language constructs that allow the pro-
grammer to express synchronization constraints succinctly and
declaratively.

• A static analysis that infers automatically where synchroniza-
tion needs to be performed. This relieves the programmer from
the non-local reasoning and cumbersome locking disciplines as-
sociated with current code-centric approaches.

• Experiments on the Java Standard Collection Framework that
illustrate the practicality of the work.

2. Motivating Examples
This section gives some examples that illustrate the shortcomings
of the traditional, code-centric approaches for avoiding data races.
At the same time, we will introduce the language constructs that
are part of the data-centric approach we propose.

2.1 Example 1: Customers

Figure 1(a) shows a classCustomer, which contains fieldscity
andzipcode that store parts of a customer’s address, anddate and
item that record the item and date of his last purchase. Methods
updateAddress() andnewPurchase() serve to update customer
information.PreferredCustomer is a subclass ofCustomer that
models certain aspects of a customer loyalty program using a
methodnewStoreGift() that also updatesdate anditem.

If methods such asupdateAddress(), newPurchase(), and
newStoreGift() are executed concurrently by multiple threads,
care must be taken to ensure that no inconsistent results canarise.

For the purposes of this example, we will assume that low-level
data races involving any of the four fields are undesirable (e.g.,
we want to preclude situations where one thread reads the value
of date while another thread is updatingdate simultaneously). In
addition, we want to disallow high-level data races involving the
related fieldscity and zipcode and involvingdate and item.
For example, we want to disallow the situation where one thread
intends to read firstcity and thenzipcode, but where a second
thread writes a new value intocity before the first thread has
completed both reads. In the example of Figure 1(a),atomic sec-
tionsare used to prevent these low-level and high-level data races1.
Conceptually, each atomic section is executed without interruptions
by other threads. Atomic sections can be implemented using locks
[11] or using transactional memory [2, 24, 23]. The use of atomic
sections for preventing data races has the following drawbacks:

• In general, the number of atomic sections may be proportional
to the number of accesses to shared fields. In the above example,
each method contains an atomic section because it accesses
shared data.

• There is a lack of modularity in the sense that the burden is
placed on the programmer to remember that accesses to fields
in superclasses may have to be protected.

Figure 1(b) shows the approach we propose, in which synchro-
nization constraints are associated with data. Here, all the program-
mer needs to do is indicate thatcity andzipcode are part of an
atomic setcalledaddress, and thatdate anditem are part of an
atomic setcalledpurchase. In this framework, the compilerin-
fers where locks must be obtained so as to prevent low-level and
high-level data races. Observe that the number of annotations is
proportional to the number of fields, and that no additional work is
required in the presence of subclassing, thus reducing the amount
of work and limiting opportunities for programmer errors.

Informally, the semantics of atomic sets can be stated as fol-
lows. Associated with each atomic setA is a set of code blocks
that represent logical operations on the set. We will refer to these
code blocks as theunits of work for A, denoted byUnits(A).
By default, the units of work associated with an atomic set de-
clared in classC consist of the methods ofC and its subclasses
(we will shortly discuss a mechanism for associating additional
units of work with a given atomic set). For a given atomic setA
and unit of worku ∈ Units(A), the guarantee is that any pair

1 One could also use explicit locking mechanisms such as Java’s
synchronized blocks to prevent the low-level and high-level data races
in this example.

of accesses to fields inA that occur inu will be executed with-
out being interleaved by another thread that operates on fields
in A. For example, methodsCustomer.newPurchase() and
PreferredCustomer.newStoreGift() are units of work for
atomic setpurchase. Therefore, it is guaranteed that the exe-
cution of these methods will not be interleaved, thus preventing
high-level data races. However, itis allowed for the execution
of either of these methods to be interleaved with that of method
Customer.updateAddress(), because the latter does not operate
on the same atomic set.

2.2 Example 2: Vector

The default units of work for a given atomic set are well-suited to
accommodate situations where some consistency property between
a set of fields must be maintained by the methods of the class that
declares those fields. However, there are situations where additional
synchronization on parameters is needed.

Figure 2(a) shows a fragment of classjava.util.Vector
from the Java Standard Collections Framework. Specifically, the
figure shows the declaration of a fieldelementData, which
refers to the array that stores the vector’s contents, and a field
elementCount, which counts the number of array elements that
are currently in use. Also shown is a constructor for creating a
new Vector that is initialized to contain the elements of a given
collectionc. Wang and Stoller [35] reported a high-level data race
that occurs in this code when this constructor is invoked with a
collection of lengthk. The race occurs if a thread that executes
the constructor’s code is interrupted after executing the statement
elementCount = c.size() by another thread that is calling the
removeAllElements() method on the collection pointed to by
c. Then, when the first thread resumes, and executes the statement
c.toArray(elementData), the resulting vector will containk
elements that arenull. This result is inconsistent with any serial
execution of the two threads.

Figure 2(b) shows how this high-level data race can be avoided
using our new language constructs. The fieldselementCount and
elementData have been placed in an atomic setvec, and the
constructor has been designated as a unit of work for its parameter
c. Note that only the fieldelementData is in the atomic set and
not the vector. Theunitfor construct used in this example is a
mechanism for specifying client-side synchronization constraints,
and declares that the scope of parameterc is a unit of work for all
atomic sets ofc. Hence, the body of the constructor is not only a
unit of work for all the atomic sets ofthis but also for those ofc.

When a unit of work is declared on multiple atomic sets, as
is the case here, the atomic sets are combined to form a larger
atomic set for the duration of that unit of work. The guarantee is
that accesses to any location within that enlarged set will not be
interleaved. Similarly, a method that accesses fields belonging to
multiple atomic sets of the receiver object is a unit of work for the
union of these sets.

2.3 Example 3: Bank Accounts

Figure 3 shows an example program containing classesAccount
andBank. Account has a fieldchecking and methodswithdraw()
and deposit() that manipulate this field. Thechecking field
has been placed in a singleton atomic setaccount to prevent
low-level data races involving this field.Bank provides a method
transfer() for transferring money between accounts, and de-
clares fieldslog andlogCount for maintaining a log of completed
transfers. Observe thatlog and logCount have been placed in
an atomic setlogging to prevent other threads from observing
intermediate states in which only one of the two has been updated.

To make the example slightly more interesting, we will as-
sume that a distinction needs to be made between local trans-

class Account {
atomic(account) int checking;
public void deposit(int n) { · · · }
public void withdraw(int n) { · · · }

}
class Bank {

atomic(logging) Log log;
atomic(logging) int logCount;

void transfer(Account a, Account b, int n){
log.add(a,b,n);
a.withdraw(n);
b.deposit(n);
logCount++;

}
public void localTransfer(unitfor Account a,

unitfor Account b,
int n){

transfer(a, b, n);
}
public void longDistanceTransfer(Account a,

Account b,
int n){

transfer(a, b, n);
}

}

Figure 3. Bank account example.

fers, for which intermediate states (in which the money has been
withdrawn from one account, but not yet added to the other)
should not be visible, and long-distance transfers, for which the
exposure of intermediate states can be tolerated. This distinc-
tion has been encoded by two methods,localTransfer() and
longDistanceTransfer(), both of which invoke the previously
discussedtransfer() method. In essence, we would like to ex-
press thatlocalTransfer() is a unit of work for its parameters
a and b, and this is accomplished using theunitfor construct.
As localTransfer() reads botha and b, synchronization will
be inserted to ensure that the call totransfer() will be executed
atomically.

Observe that this solution allows for more concurrency thana
traditional solution where the body of thetransfer() method has
been placed in an atomic section in order to preserve the logging in-
formation. This is illustrated by Figures 4 and 5, which showwhere
callsa’.deposit(m) andlog’.add(c,d,m) can be interleaved
with calls tolocalTransfer() andLongDistanceTransfer(),
respectively. Note that calls todeposit() can be interleaved with
calls tolongDistanceTransfer() while preserving the consis-
tency oflog andlogCount.

2.4 Example 4: Synchronization Wrappers

The Java Collections Framework providessynchronization wrap-
pers for creating synchronized versions of collections that arenot
thread-safe. For example, classjava.util.ArrayList provides
array-based lists that are not thread-safe. An applicationthat wishes
to use a thread-safeArrayList typically executes code such as:

List myList =
Collections.synchronizedList(new ArrayList())

Here, thesynchronizedList() method from the utility class
java.util.Collections creates a decorator object of typeList
that wraps theArrayList that was passed in as a parameter,
and that forwards all methods to thisArrayList. All forwarding
methods aresynchronized, thus preventing low-level data races
that might otherwise be caused by concurrent accesses to methods
such asget() andset(). Note that this only prevents races when

public class Vector {
Object[] elementData;
int elementCount;

public Vector(Collection<? extends E> c) {
elementCount = c.size();
// 10% for growth
elementData = new Object[
(int)Math.min((elementCount*110L)/100,

Integer.MAX VALUE)];
c.toArray(elementData);

}
}

public class Vector {
atomic(vec) Object[] elementData;
atomic(vec) int elementCount;

public Vector(unitfor Collection<? extends E> c) {
elementCount = c.size();
// 10% for growth
elementData = new Object[
(int)Math.min((elementCount*110L)/100,

Integer.MAX VALUE)];
c.toArray(elementData);

}
}(a) (b)

Figure 2. Vector example.

localTransfer()

log’.add(c,d,m)

log.add(a,b,n)

a.withdraw(n)

b.deposit(n)

logCount++

a’.deposit(m)

Figure 4. Allowable interleavings forlocalTransfer. Arrows
indicate wherea’.deposit(m) and log’.add(c,d,n) can be
interleaved, assuming thata anda’ andlog andlog’ may point
to the same objects, respectively.

longDistanceTransfer()

log’.add(c,d,m)

log.add(a,b,n)

a.withdraw(n)

b.deposit(n)

logCount++

a’.deposit(m)

Figure 5. Allowable interleavings forlongDistanceTransfer.
Arrows indicate wherea’.deposit(m) and log’.add(c,d,n)
can be interleaved, assuming thata anda’ andlog andlog’ may
point to the same objects, respectively.

using a single synchronized wrapper; it is possible to have races if
other threads have references to underlying collection object.

We present an alternative to synchronization wrappers—atomic
class—which addresses these shortcomings. In essence, making a
classatomic is equivalent to putting all of its fields and the fields
in its superclasses in a single atomic set. In addition, anonymous
atomic classes can be created by inserting the keywordatomic
at allocation sites. For example, a thread-safeArrayList can be
created as follows:

List myList = new atomic ArrayList(){};

This eliminates the need for the synchronization wrapper classes
that contain large numbers of boilerplate forwarding methods, ex-
cept for those few that needunitfor parameters.

class LinkedList {
owned(entry) atomic(list) Entry header;
atomic(list) int size;
public set(int index, Object value) {

Entry e = entry(index);
oldVal = e.value;
e.value = value;
return oldVal;

}
}
class Entry {

atomic(entry) Object value;
owned(entry) atomic(entry) Entry next;

}

Figure 6. Linked List Example

value value
next next next

header
valuesize

atomic set

Figure 7. A linked list. Only the objects in the representation of
linked list are contained in an atomic set, not the objects contained
in the list (shaded).

2.5 Example 5: Owned Fields

The atomic set construct is used to include fields in an atomic
set. Sometimes it is useful to reason about atomic sets of objects
referred to by a field. In the example of Figure 6, a linked listclass
has two fieldsheader andsize that belong to atomic setlist.
Field header is of typeEntry, which declares its own atomic set
entry. Methodset() takes an index in the list, finds the proper
placement in the list (using a methodentry(), not shown) and
inserts a given object at that position. We need to declare that all
the objects that are part of the representation of the linkedlist are
part of the same atomic set, to protect the entire list, especially in
methods such asset() which accesses the list in the middle. To
achieve this, we apply the constructowned(entry) to theheader
field, which states that theentry set of the object pointed to by
that field is to be included in the atomic set of that field. Thisis
illustrated in Figure 7. The setlist owns theentry set pointed
to by field header, which includes thevalue andnext field of
the first object. This set in turn includes theentry set of the next
object, and so on. Observe that the state of objects pointed to by
the value field are not included because this field does not have
anowned annotation. Hence, updates to objects in lists can happen
concurrently with operations on the list itself.

W(this.log) R(a.checking) W(a.checking) R(b.checking) W(b.checking) R(logCount) W(logCount)

u (localTransfer)

u1 (add) u2 (withdraw) u3 (deposit)

Figure 8. Units of work and accesses inlocalTransfer

While this construct could, in general, be expensive to imple-
ment with explicit locks, an ownership type system can be lever-
aged to provide an efficient implementation since owned—that
is, private—state does not need additional locks. Integrating our
scheme with ownership types is part of future work.

3. New Definition of Data Races
The current definition of a data race is two accesses to the same
memory location, one of which is a write with no synchronization
between them. This is not sufficient in that the absence of races
does not imply the absence of concurrency-related bugs, i.e., bugs
caused solely by interleavings of otherwise-correct code.Our ob-
jective in providing a new definition for data races is to bridge the
gap between traditional data races and a property related toserial-
izability.

Our definition is given as a set of non-serializable interleaving
scenarios in Section 3.2. If an execution does not display any of
these scenarios, then it satisfies a property related to serializability.
We refer to this fact ascompletenessof the definition, and prove it
in Section 3.3.

3.1 Formal Model

This section presents a dynamic formal model of code in termsof
sequences of accesses to memory locations, atomic sets, andunits
of work.

LetL be the set of all memory locations. A subsetL ⊆ L may
be designated asatomic. An eventis an access to a memory location
l ∈ L. Accesses can be a readR(l) or a writeW (l). We assume
that accesses to a single memory location are uninterrupted. If l
denotes locationsl1 or l2 in L, we use the notationL− l to denote
the other location.

A unit of work u is a sequence of events, and isdeclared on
a set of atomic sets. We writesets(u) for the set of atomic sets
corresponding tou. We say that

S

L∈sets(u) L is the dynamic
atomic setof u. Units of work may be nested, and we writeu← u′

to indicate thatu′ is nested inu. Units of work form a forest via the
← relation.

An access to a locationl ∈ L appearing in unit of worku
belongsto the top-most unit of work withinu such thatL∈ sets(u).
The notationRu(l) denotes a read belonging tou, and similarly for
writes.

As an illustration consider again the example of Figure 3. Fig-
ure 8 shows the accesses and units of work inlocalTransfer().
Unit of work u contains three nested unitsu1, u2, andu3, corre-
sponding to calls to methodsadd(), withdraw(), anddeposit(),
respectively. Unit of worku is declared on atomic setslogging of
this, account of a, andaccount of b, and preserves the consis-
tency of their union. All accesses in this sequence must be protected
insideu, and we say that all these accesses belong tou. This illus-
trates how, in general, an access belongs to the topmost unitof
work declared on it.

A threadis a sequence of units of work. The notationthread(u)
denotes the thread corresponding tou. An executionis a sequence
of events from one or more threads. Given an executionE and an
atomic setL, theprojection ofE onL is an execution that has every
event onL in E in the same order.

Interleaving scenario Description

1. Ru(l) W
u
′ (l) Wu(l) Value read is stale by the

time an update is made inu.

2. Ru(l) W
u
′ (l) Ru(l) Two reads of the same location

yield different values inu.

3. Wu(l) R
u
′ (l) Wu(l) An intermediate state is

observed byu′.

4. Wu(l) W
u
′ (l) Ru(l) Value read is not the same as

the one written last inu.

5. Wu(l) W
u
′ (l) Wu(l) Value written byu′ is lost.

6. Wu(l1) W
u
′ (l) W

u
′ (L−l) Wu(l2) Memory is left in an

inconsistent state.

7. Wu(l1) W
u
′ (l2) Wu(l2) W

u
′ (l1) same as above.

8. Wu(l1) R
u
′ (l) R

u
′ (L−l) Wu(l2) State observed is inconsistent.

9. Ru(l1) W
u
′ (l) W

u
′ (L−1) Ru(l2) same as above.

10. Ru(l1) W
u
′ (l2) Ru(l2) W

u
′ (l1) same as above.

11. Wu(l1) R
u
′ (l2) Wu(l2) R

u
′ (l1) same as above.

Figure 9. Problematic Interleaving Scenarios. These scenarios are
complete provided that each unit of work that writes to an atomic
set, writes all locations in that set.

Observation 1For any pair of accesses belonging to units of work
u and u′ that appear in the projection of an executionE on an
atomic setL, if thread(u) = thread(u′) then we have neither
u ← u′, nor u′ ← u; i.e. the projection does not contain nested
units of work.

This observation follows from the fact that each access belongs to
the topmost unit of work declared on it.

An interleaving scenariois also a sequence of events. For ex-
ample,Ru(l) Wu′(l) Wu(l) is an interleaving scenario where unit
of work u first readsl, then another unit of worku′ performs a
write, followed by a write byu.

An executionis in accordance withan interleaving scenario if it
contains the events in the interleaving scenario, and theseappear in
the same order. The atomic sets of an executionE, atomicSets(E),
consists of all atomic sets for which there is an access inE, as
well as the dynamic atomic set of all units of work inE. When the
execution is clear from context, we writeatomicSets.

3.2 Definition

Figure 9 shows the interleaving scenarios that are non-serializable.
Serializability is obtained by preserving data consistency, so these
scenarios capture when the data may be read or written inconsis-
tently.

Definition 1. Data RacesLet L be an atomic set of locations,
l1, l2 ∈ L, l one ofl1 or l2, andu andu′ two units of work forL,
such thatthread(u) 6= thread(u′). An execution has a data race if it
is in accordance with one of the interleaving scenarios of Figure 9.

We now describe informally why these scenarios are problematic.
In the first scenario, unit of worku reads one locationl, followed
by an update tol. If another update tol is interleaved between the
two, then the read operation yields a stale value and the subsequent
update may be inconsistent. This scenario captures common “low-
level” data races, such as two threads executingx++. Scenario 1
corresponds roughly to the “lost update” [37] anomaly in databases:

Wu(l1)

scenario 6

Wu’(l2) Wu’(l1) Wu(l2)

scenario 9

Ru(l1) Ru(l2)Wu’(l1) Wu’(l2)

l1 l2

l1 l2

Figure 10. Problematic interleaving scenarios

a transactionT1 reads a data item, then another transactionT2

updates the item, thenT1 updates the item based on the value read
and commits. The update ofT2 is then lost.

Scenario 2 shows two consecutive reads of locationl in a unit
of work that do not yield the same value. It roughly corresponds
to the “fuzzy read” anomaly in databases, where a transaction T1

reads a data item, then a second transactionT2 modifies that item
and commits. IfT1 attempts to re-read the same item, it receives a
different value.

In scenario 3, an intermediate value ofl is read, when a unit of
work writes it multiple times. In scenario 4, the value read for l is
not the same as the one last written in the same unit of work. In
scenario 5, a write tol is lost, or hidden by the writes from some
unit of work.

Scenarios 6 (Figure 10) and 7 illustrate cases where memory
is updated inconsistently. Recall thatl denotes one ofl1 or l2,
and thatL − l denotes the other. In scenario 6, a unit of work
updates some location in the set, followed by an update to another
location. Thus the whole set is updated in multiple steps. Ifa write
to the set is interleaved between the two, then memory is leftin
an inconsistent state since individual locations have values from
different operations. A reader may then observe what appears to be
intermediate states of various updates. Scenario 7 is similar.

Scenarios 8 through 11 (Figure 10) illustrate cases where mem-
ory is read inconsistently, even if it may never have been written
incorrectly. In scenario 9, one unit of work readsl1 followed by
readingl2. Thus one thread is observing the state of multiple parts
in the atomic set. If an update to the whole set is interleaved, then
the values observed belong to different operations. The rest of the
scenarios are problematic for a similar reason. These scenarios are
similar to the “read skew” database anomaly.

All scenarios that only manipulate one memory location are
marked as having a data race by the common definition. How-
ever, there are three scenarios missingRu(l) Ru′(l) Ru(l), Wu(l)
Ru′(l) Ru(l), andRu(l) Ru′(l) Wu(l). None of these are prob-
lematic, but the common definition marks the last two as having a
race. Our definition avoids these benign cases. An example ofthe
third scenario is a thread performingx++ and another printing the
value ofx, where the write ofx is atomic. This is non-deterministic
but serializable, so there is no data race.

Not all database anomalies are applicable in this context. Some
are concerned with an erroneous behavior when a transactionaborts
and rolls back: e.g. “dirty read” and “dirty write”. Others refer to
reading a set of memory locations that satisfy a search condition:
“phantom read”. Finally the “write skew” anomaly is coveredby
several of our scenarios.

3.3 Completeness

We now show that the interleaving scenarios are complete, meaning
that if an execution does not display them, then its projection on
each atomic set is serializable, a concept that we define precisely
below. To this end, we introduce a formal model of timestamps.
Units of work can be totally ordered by the occurrence of their

first write events in an execution. We associate a unique timestamp
with each unit of work, respecting this order. A write event gets the
timestamp of the unit of work to which it belongs. A read event
gets the timestamp of the most recent write to the memory location
it is reading. If a memory location gets written more than once by
a unit of work, we mark the location astemporary, until the last
write is completed. We use timestamps and temporary locations to
capture consistency: if two reads within a unit of work get different
timestamps, they are observing an inconsistent state. Likewise,
observing a location marked as temporary by another unit of work
is undesirable. We make the following assumption in our proof of
completeness:

Assumption 1.We assume that each execution is such that every
unit of work that writes some location in an atomic set, writes every
location in that atomic set.

This assumption is not restrictive because we can always add
“dummy writes” to any unit of work that does not satisfy it, and
they are only needed conceptually.

In the rest of this section, we consider an executionE and its
projection on some atomic setL in atomicSets(E). We call these
“the execution” and “the projected execution”, respectively.

If the execution isnot in accordance with the interleaving sce-
narios of Definition 1, then neither is the projection, and weshow
that the timestamp of writes to a given memory location inL are
monotonically increasing (Lemma 1), and that no unit of work
observes an inconsistent state (Lemma 2). These two properties
suffice to show that the projected execution is serializable(The-
orem 1), using the Serializability Theorem from database theory
[8].

We use indices to refer to a total order of events in the projected
execution2. The functionevent(i) gives the event at indexi. If u is
a unit of work, thenfirstWrite(u) is the index of the first write event
of u.

We assume that timestamps are drawn from the natural num-
bers, and that the indices in an execution start at 1. We usets(u)
to denote the timestamp of a unit of work that performs writes. We
allocate timestamps to units of work in such a way that:

ts(u) < ts(u′)⇔ firstWrite(u) < firstWrite(u′).

So a unit of worku, whose first write happens before the first write
of another unit of worku′ in an execution, gets a lower timestamp.
Given a total order of timestamps thus allocated, letprev(t) be the
timestamp immediately precedingt in this order (prev(t) < t).

We associate a timestamp,ts(i), with an event at indexi in the
execution. Write events get the timestamp of the unit of workto
which they belong, and read events get the timestamp of the most
recent write to the memory location read.ts(i) is computed as
follows:

ts(i) =

8

>

>

>

>

>

<

>

>

>

>

>

:

ts(u) if event(i) = Wu(l)
ts(j) if event(i) = Ru(l)

∧ j < i ∧ event(j) = Wu′(l)
∧ 6 ∃k, j < k < i | event(k) = Wu′′(l)

0 if event(i) = Ru(l)
∧ 6 ∃j, j < i | event(j) = Wu′(l)

So farts(u) is only defined for units of worku that perform writes.
For a unit of work that consists entirely of read events, letts(u) =
ts(i) for somei such thatevent(i) = Ru(l). We will see in Lemma 2
that all suchi have the same timestamp.

2 A total order of events is natural for a sequentially consistent architec-
ture. However, events happen in some total order even on weaker memory
models, so our conceptual model is still applicable.

temp(u1, i, l2)
indexi event ts(i) temp(u1, i, l1) temp(u2, i, l1)

temp(u2, i, l2)

1 Wu1
(l1) 1 true false

2 Ru2
(l1) 1 true false

3 Ru2
(l2) 0 true false

4 Wu1
(l2) 1 true false

5 Wu2
(l1) 2 true false

6 Wu2
(l2) 2 true false

7 Wu1
(l1) 1 false false

Figure 11. Sample execution and timestamps

The predicatetemp(u, i, l) is true if locationl is temporary for
unit of work u at indexi, meaning that there will be another write
to l in u beyond indexi. It is false for unit of worku at indexi if
i represents the index of the last write tol in u. For reads, we take
the value oftemp(u, i, l) to be the valuetemp(u, i− 1, l). Initially,
temp(u, 0, l) = falsefor all u andl. It is computed as follows:

temp(u, i, l) =

8

>

>

>

<

>

>

>

:

true if event(i) = Wu(l) ∧
∃ j > i | event(j) = Wu(l)

false if event(i) = Wu(l) ∧
6 ∃ j > i | event(j) = Wu(l)

temp(u, i− 1, l) otherwise.

Figure 11 gives a sample execution and its timestamps. In this
example, there are two units of worku1 andu2 in different threads,
and two locationsl1 andl2. We havets(u1) = 1 and ts(u2) = 2.
At index 2, unit of worku2 reads an intermediate value of location
l1. This is captured bytemp(u1, 2, l1) being true.

The following lemma states that the timestamps of write events
on the same memory locationl are monotonically increasing.

Lemma 1. If the projected execution is not in accordance with
the interleaving scenarios of Definition 1, andi and j are such
that i < j, event(i) = Wu(l) and event(j) = Wu′(l) for some
l, u 6= u′, thents(i) < ts(j).

The proof of Lemma 1 can be found in Appendix A.
The following lemma states that the state observed in a unit of

work is consistent, by giving three properties of read events in an
execution that is not in accordance with any of the scenariosin
Definition 1. First, no temporary value is ever read. Second,reads
in a unit of work that also writes the same atomic set do not getstale
values. Third, two reads in a unit of work that does not perform any
writes to same atomic set get consistent values.

Lemma 2. If the projected execution is not in accordance with any
of the interleaving scenarios of Definition 1:

1. No event from one unit of work reads a memory location
marked as temporary by another unit of work in a different
thread.
∀u, i, l | event(i) = Ru(l) ⇒ 6 ∃u′ | u′ 6= u ∧ thread(u) 6=
thread(u′) ∧ temp(u′, i, l).

2. A read in a unit of work that also contains a write to the same
atomic set does not get a stale value, i.e. it gets the timestamp
corresponding to the unit of work or the previous one.
∀ i |(event(i) = Ru(l) ∧ ∃ j | event(j) = Wu(l)) ⇒ ts(i) ∈
{ts(u), prev(ts(u))}.

3. Reads in a unit of worku that does not contain writes, get the
same timestamp.
∀ i, j | (event(i) = Ru(l) ∧ event(j) = Ru(l′) ∧
6 ∃ k | event(k) = Wu(l))⇒ ts(i) = ts(j) = ts(u).

The proof for Lemma 2 can be found in Appendix B.

Finally, we show that for an execution that is not in accordance
with any of the interleaving scenarios of Definition 1, its projection
on each atomic set is serializable, which we define preciselybelow.
We can think of a unit of work as being a single-threaded transac-
tion that always commits, and this allows us to use concepts from
serializability theory [8]. Given indicesi andi′ such thati < i′, the
pair (event(i),event(i′)) is aconflicting pair of events, if they are on
the same memory location, and one of them is a write. We say that
two executions areequivalentif they consist of the same units of
work and the same events, and have the same pairs of conflicting
events. An execution isserial if for every two units of worku and
u′ that appear in it, either all events inu happen before all events
in u′, or vice versa. We say that an execution isserializableif it is
equivalent to an execution that is serial.

The conflict graphof an execution is a directed graph, with
nodes consisting of units of work. There is an edge between units
of work u andu′, if u andu′ have eventse ande′, respectively,
such that (e,e′) is a conflicting pair. The Serializability Theorem
[8] states that an execution is serializable, if and only if its conflict
graph is acyclic. We will use this fact to prove Theorem 1 below.

Theorem 1. Serializability If the execution is not in accordance
with any of the interleaving scenarios of Definition 1, its projection
on each atomic set inatomicSets(E) is serializable.

Proof. Assume that the execution is not in accordance with any
of the interleaving scenarios of Definition 1, and that thereexists
an atomic setL in atomicSets, such that the projection of the
execution onL is not serializable. We have that the projected
execution is also not in accordance with the interleaving scenarios
of Definition 1. By the Serializability Theorem [8], the conflict
graph for the projected execution has a cycle:u1 → u2 → · · · →
un → u1. Note that for any pairu andu′ in this cycle, it cannot
be the case thatthread(u) = thread(u′), because otherwise one of
them would be nested inside the other, contradicting Observation 1.
Consider two consecutive units of worku andu′ in this cycle. Leti
be the index of an event ofu that conflicts with an event ofu′ with
indexj (i < j). We show by cases thatts(u) ≤ ts(u′):

1. event(i) = Wu(l) andevent(j) = Wu′(l). By Lemma 1,ts(i)
< ts(j). Sincets(i) = ts(u) andts(j) = ts(u′), we havets(u)
< ts(u′).

2. event(i) = Wu(l) and event(j) = Ru′(l). We havets(i) ≤
ts(j). By Lemma 2, Part 2 and 3,ts(j) is either equal tots(u′)
or prev(ts(u′)). Also ts(i) = ts(u). Therefore we have either
ts(u) ≤ ts(u′), or ts(u) ≤ prev(ts(u′)). Note that in the latter
casets(u) ≤ ts(u′), by the definition ofprev.

3. event(i) = Ru(l) andevent(j) = Wu′(l). We show by contra-
diction thatts(i) < ts(j). Assume first thatts(i) = ts(j). Then
there must have been ak < i such thatevent(k) = Wu′(l).
So temp(u′, i, l) is true. By Lemma 2, Part 1, we know that no
event reads a location marked as temporary, so this is a con-
tradiction andts(i) 6= ts(j). Assume now thatts(i) > ts(j). In
this case, there exists ak < i, such thatevent(k) = Wu′′(l)
for someu′′, which is the write responsible for the read ati.
We havek < j, and ts(k) > ts(j), which is a contradiction
by Lemma 1. Thereforets(i) < ts(j). Moreover, by Lemma 2,
Part 2 and 3,ts(i) is either ts(u) or prev(ts(u)). Sincets(j)
= ts(u′), then we have eitherts(u) < ts(u′), or prev(ts(u)) <
ts(u′). Note that in the latter casets(u) ≤ ts(u′), by the defini-
tion of prev.

So in all three cases,ts(u) ≤ ts(u′). So for our cycleu1 →
u2 → · · · → un → u1, we havets(u1) ≤ ts(u2) ≤ · · · ≤ ts(un)
≤ ts(u1). Thereforets(u1) = · · · = ts(un). We know that the
conflicting events ofu1 throughun must contain at least two writes

Construct Usage

atomic(s) fields that have a consistency property or
fields whose intermediate states should not be visible

unitfor parameter that must be manipulated atomically

atomic class that needs to be thread-safe

owned(s) similar toatomic(s) but with one level of indirection
through field dereference

Figure 12. Summary of language constructs

from different units of work. This is the case because interleaving
scenarios 2 and 3 do not happen in the execution, due of our initial
assumption. Thus by the definition ofts(u), the fact thatts(u1) =
· · · = ts(un) is a contradiction. Therefore such a cycle does not
exist and the projection of the execution onL is serializable.

4. Implementation
This section presents an overview of the language constructs and
their implementation for Java.

4.1 Overview of Language Constructs

In our approach, each class is responsible for its own synchroniza-
tion by declaring one or moreatomic sets. An atomic set decla-
ration in a class means that each instance of that class has its own
separate atomic set. These declarations are inherited via subclass-
ing, and subclasses may extend existing sets and/or introduce their
own. The public and protected methods of a class are assumed to
be units of work for its atomic sets, meaning that they preserve
consistency when executed sequentially. We assume that each ac-
cess to a location in an atomic set is done within a unit of workfor
that atomic set3. If a unit of work accesses the elements of more
than one atomic set in the same class, then it is guaranteed that no
interleavings will occur in which other threads access any data in
the union of these sets (though interleavings with other threads that
only access unrelated data are allowed). Theunitfor construct
enables a client of a class to specify that a parameter needs to be
manipulated atomically for the duration of its scope. If a method is
already a unit of work for an atomic setS, then aunitfor decla-
ration on parameterp effectively makes the method a unit of work
for theunionof the setS and the atomic sets ofp.

The owned(s) construct is similar toatomic(set) but pro-
vides one level of indirection. It guarantees that the atomic sets
of the object pointed to by a field is included in the atomic setof
the field. This mechanism allows transitively defined sets, and en-
ables fine-grained concurrent access to recursive data structures.
For example, the representation of a linked list may be included
in an atomic set without also including the objects contained in
the list. As part of future work, we will provide two variantsof
owned for arrays, one which includes the array itself, and the other
which additionally includes the elements. Finally, a utility mecha-
nism, theatomic class construct, helps making a class thread-safe,
by declaring that all its fields are in a single atomic set. This avoids
the need for synchronization wrappers in Java. Figure 12 summa-
rizes the language constructs.

4.2 Synchronization Inference

We will now discuss an approach for generating code with synchro-
nization that guarantees that the consistency properties declared us-
ing atomic set constructs are respected. In other words, that the

3 This assumption means that our system expects client-side field accesses
to be done via getter/setter methods.

In(v) ← {Out(vi)| v → vi ∈ EG∨
(∃vi = v.f ∧ ∃s owned(s) f)}

Out(v) ← In(v) ∪ reads(v) ∪ writes(v)
reads(v) ← {read(s) |∃x = v.f ∈ n ∧ f ∈ s}
writes(v) ← {write(s) |∃v.f = x ∈ n ∧ f ∈ s}

Figure 13. Dataflow equations for determining atomic sets ac-
cessed from pointers.

problematic interleaving scenarios do not occur. First, wedefine
a dataflow analysis over a program’s call graph that infers which
locks need to be held for each unit of work. Then, we discuss how
that information can be used to insert synchronization constructs.

Determining Atomic-Set Usage. The atomic sets that may be ac-
cessed by a unit of work can be determined by examining the code
in the method that denotes the unit of work and in all methods tran-
sitively called by that method. In this set of methods, all field ac-
cesses are directly evident4. The containment of fields in atomic
sets is declared explicitly, so that computing the atomic sets ac-
cessed by each unit of work is straightforward. The analysiscan be
formulated as a standard dataflow problem using Kildall’s graph-
based dataflow framework [26]. Recall that this framework asso-
ciates setsIn(n) andOut(n) with each noden and defines the value
In(n) to be the union of values of allOut(x) where the graph has an
edge fromx to n. Node transfer functions defineOut(n) in terms
of In(n). We formulate a standard bit-vector problem, in which the
bits areread(s) andwrite(s) for each atomic sets in the program.

We define the dataflow problem across a standard dataflow
graphG =< NG, EG > that captures the dataflow among pointer
values in the program. There is anIn and anOut set for each value
in NG. The edges in our problem consist of: (i) the inverse of edges
in EG and (ii) edges derived from reads ofowned fields. The latter
edges ensure that accesses to objects that are owned are treated
as accesses of the owner set.The dataflow equations are shownin
Figure 13, where the notationf ∈ s is used to denote the fact that
field f is declared to be in atomic sets, andstatement ∈ n to
mean that a statement occurs in the method associated with noden.
The result of the analysis is, for each pointer valuev in the program,
a setOut(v) of all atomic sets accessed fromv and from anyv′ to
which objects might transitively flow fromv.

Adding Synchronization. We associate a lock with each atomic
set. For each methodm, we acquire locks for all atomic sets that
m may access according to the above analysis and for whichm
is a unit of work5. This includes atomic sets that are accessed by
methodsm′ transitively called bym as well as atomic sets accessed
from fields transitively owned by elements in atomic sets accessed
by m. Note that atomic sets accessed transitively fromm may
include atomic sets declared in subclasses of the class thatdeclares
m.

Various kinds of locks can be used for synchronization. The
most conservative strategy is to use exclusion, which prevents all
problematic interleaving scenarios. We initially implemented this
strategy using Java’ssynchronized blocks. However, our prob-
lematic interleaving scenarios enable more aggressive implemen-
tations. In particular, we implemented the use of reader-writer
locks [31] in which multiple readers are permitted concurrent ac-
cess, but where writers must have exclusive access. Since all sce-
narios of Figure 9 involve at least one writer, this scheme isclearly

4 We ignore the issue of fields accessed via mechanisms such as Java reflec-
tion. In such cases, we would need to use a conservative approximation of
what fields might be accessed.
5 We assume some ability to atomically acquire multiple locks, which is
straightforward for locks that support POSIX-style trylock.

correct. Potentially, we could analyze units of work for occurrences
of problematic interleaving scenarios and generate customized syn-
chronization that prohibits possible bad interactions.

Assumptions like having call graphs or global dataflow graphs
make this implementation most suitable for whole-program com-
pilation where relatively precise graphs can be constructed. How-
ever, it is possible to use approximations of unknown portions of
the graph when the whole program is not available.

Deadlock When attempting to acquire locks for all the atomic
sets that a method accesses, our approach consists of tryingto ac-
quire them all, and release them all if at least one is unavailable, and
then trying again. This mitigates deadlock to some extent. Dead-
lock may still occur in the generated code if there are (transitive)
cyclical dependences between the sets of locks needed by twounits
of work. This can be detected through static analysis. Future work
includes building such an analysis to warn the programmer.

4.3 Experimental Results

We have implemented a prototype for synchronization inference
using the Eclipse refactoring framework [6]. The inferenceengine
is based on Domo [16], an analysis infrastructure developedat IBM
Research.

Our language constructs are sufficient to correctly add synchro-
nization to a significant subset of the the Java Collections Frame-
work6. Figure 14 shows, for several classes in that framework, the
number of originalsynchronized blocks, the number of atomic
sets needed, the number of owned fields, and the number of meth-
ods for whichunitfor was needed. All experiments took less than
one minute on a 1.7GHz Pentium III with 768MB of memory. The
first four lines refer to classes such asVector which had exist-
ing synchronization. For each such class, we manually removed all
synchronization blocks, and then added a single atomic set.There
were 5 methods inVector that needed theunitfor construct, and
most of these correspond to published high-level data racesthat are
easily avoided using our constructs. Observe that our approach gen-
erally requires far fewer annotations than the traditionalapproach.
For example,Vector requires only 1 atomic set, 1 owned field, and
5 unitfor constructs instead of the original 37synchronized
blocks.

The rest of the benchmarks are classes that did not have
synchronization. As the figure indicates, very few annotations
are needed to make each of them thread-safe. This is to be
contrasted with Java’s synchronization wrappers, such as e.g.
SynchronizedSet, which wrap each method of the base class
in a synchronization block. These wrappers are long and error-
prone classes, since there is an explicit lock that must be held at the
right places. With our constructs, synchronization wrappers are no
longer needed.

5. Related Work
Most static [15, 28] and dynamic race detectors [30, 33], as well as
type systems [9, 19] and languages [5] that guarantee race freedom
are based on the common definition of data races and thereforedo
not handle high-level races. Type systems use redundant annota-
tions to verify that data races do not occur. In contrast, oursystem
infers the appropriate synchronization to prevent high-level as well
as low-level data races, and does not require the programmerto
keep track of locks explicitly.

An extension to ESC/Java detects a class of high-level data
races, called “stale-value errors” [10, 4]. The value of a local

6 Some limitations in our current implementation (most notably in handling
inner classes) prevent us for performing the experiment on the entire Col-
lections Framework.

orig. added data-centric constructs
Benchmark sync. sets owned unitfor s

Vector(unitfor Collection)
addAll(unitfor Collection)

Vector 37 1 1 addAll(int,unitfor Collection)
removeAll(unitfor Collection)
retainAll(unitfor Collection)

Hashtable 17 1 3 void putAll(unitfor Map)
Observable 8 1 1
Random 3 1 0

ArrayList(unitfor Collection)
ArrayList n/a 1 1 addAll(unitfor Collection)

addAll(int,unitfor Collection)
LinkedList n/a 1 3 addAll(int,unitfor Collection)
SubList n/a 1 0 addAll(int,unitfor Collection)
HashSet n/a 1 0 HashSet(unitfor Collection)
TreeSet n/a 1 1 addAll(unitfor Collection)
HashMap n/a 1 3
LinkedHashMap n/a 1 3
IdentityHashMap n/a 1 1 putAll(unitfor Map)

equals(unitfor Object)
TreeMap n/a 1 4 putAll(unitfor Map)

intersects(unitfor BitSet)
equals(unitfor Object)

BitSet n/a 1 0 and (unitfor BitSet)
or (unitfor BitSet)
xor (unitfor BitSet)
andNot (unitfor BitSet)

Figure 14. For each benchmark the table shows the number of
original synchronization blocks, the number of atomic setsadded,
the number of owned fields and the methods requiring the unitfor
construct. The notation n/a is used for classes that had no original
synchronization because they were not intended for concurrent use.

variable is stale if it is used beyond the critical section inwhich
it was defined. Scenario 1 of our definition of data races addresses
stale-value errors. View consistency [3] is a correctness criterion
that ensures that multiple reads in a thread observe a consistent
state. A view is defined to be the set of variables that a lock
protects. Two threads are view consistent if all the views inthe
execution of one, intersected with the maximal view of the other,
form a chain under set inclusion. View consistency can be checked
dynamically [3] or statically [34]. Scenarios 8 through 11 of our
definition of data races address the issue of multiple reads getting
an inconsistent state. In our approach, however, the programmer
indicates explicitly what sets of locations form an atomic set, so
this information does not need to be extracted from the locking
structure of the code, which may not be correct.

Atomicity [21] is a non-interference property used to reason
about multi-threaded programs. An atomic section can be assumed
to execute serially without interleaved steps from other threads. A
number of tools have been developed for checking atomicity vio-
lations, including type systems [21, 22, 18, 32]; dynamic analysis
such as the Atomizer [20] which combines the theory of reduction
[29] and ideas from dynamic race detectors; and model checking
techniques [25, 17]. These approaches require atomicity annota-
tions in addition to synchronized blocks from the programmer.
In contrast, we have aimed at minimizing the amount of anno-
tation required to specify synchronization constraints. Units of
work are different from atomic code blocks in that they are re-
lated to the sequential, rather than concurrent, behavior of code
and preserve the consistency of data when executed sequentially.
They correspond naturally to method bodies in a well-designed
object-oriented program. They are also data-centric because they
are declared on specific atomic sets, which sometimes allows
more concurrency than an atomic code block (see, e.g., method
longDistanceTransfer() in Example 3).

Our definition of data races differs from the theory of reduction
[20, 18], which provides a single pattern for atomicity, that is a

sequence of right movers, followed by at most one atomic action,
followed by a sequence of left movers. Lock acquires (releases) are
considered right (left) movers. Consider the following fragment of
code, wherex is a shared variable andt is local:

synchronized(lock){ t = x; }

t++;

synchronized(lock){ x = t; }

This fragment of code is non-atomic, and can be fixed as follows:

synchronized(lock) {
synchronized(lock){ t = x; }
t++;

synchronized(lock){ x = t; }
}

Even though this fragment is now atomic, the theory of reduction
would reject it, since it consists of a right mover, followedby two
atomics, followed by a left mover. To overcome shortcomingsof
the underlying theory, the Atomizer tool [20] performs additional
analysis to determine reentrant locks, as well as protectedlocks.
The type system of [18] remedies this problem by providing more
precision via conditional atomicities. In contrast, our definition of
data races is a complete set ofnon-serializablepatterns, and is not
based on locking structures. A tool based on our definition would
not consider the above fixed code as problematic, because it would
observe accesses to data rather than locks.

Language-level atomic sections [11] and software transactional
memory [2, 24, 23, 36] are methods for removing the burden on
the programmer in determining which locks to hold, by allowing
code blocks to be marked as atomic. These code-centric approaches
still require non-local reasoning from the programmer as illustrated
in Section 2. A correct implementation of these methods needs to
guarantee that there exists a global serial order of execution for the
atomic sections. This is in general hard to implement efficiently in
an imperative language, and requires specialized hardware[2]. The
requirement for our units of work is that there exists a serial order
only with respect to each atomic set, and there may not be a global
serial order. By weakening the guarantee, while still maintaining
correctness (preservation of data consistency), we have a method
that is much easier to implement.

Our problematic interleaving scenarios are similar to those used
by Wang and Stoller [35] to provide run-time analyses for atomic-
ity. Our scenarios are simpler, and more importantly they are com-
plete, meaning that an execution not displaying them is guaranteed
to have a property related to serializability.

The scenarios in our definition of data races are analogous to
anomalies used to characterize levels of isolation in databases, and
defined in the ANSI SQL standard [37, 7]. Commercial databases
allow programmers to trade off consistency for performanceby of-
fering different levels of isolation. Each level is characterized by
the set of anomalies it does not allow. The highest level of iso-
lation is serializability. Our problematic interleaving scenarios are
similar to the schedules used to express the database anomalies.
Some of these are not directly applicable in the context of concur-
rent programming, because they explicitly talk about a transaction
committing or aborting.

Atomic sets share characteristics with data groups [27]. Data
groups help in the specification of methods whose overrides may
modify additional state introduced in subclasses. A methodthat is
allowed to modify a data group, is allowed to modify its downward
closure, consisting of all member variables added in subclasses.
Atomic sets are similar in that subclasses may add locationsto a set
declared in a parent class. They differ in that, unlike data groups,
they are not hierarchical and non-overlapping.

The Serializability Violation Detector (SVD) [38] is a toolthat
dynamically infers atomic sections (called Computation Units or

CUs), based on data and control dependences, and then detects if
these CUs are non-serializable by checking a rule based on strict 2-
Phase Locking. One of its key features is that it does not relyon the
possibly buggy locking structure of the program to infer CUs. We
share a similar viewpoint by having a definition of data racesthat
does not rely on locks. SVD produces both false positives andfalse
negatives, depending on the precision of the inferred CUs. It does
not consider some of our interleaving scenarios to be problematic.
This is always the case for Scenario 2, and some of the time for
other scenarios because accesses can end up in different CUswhen
there is no data or control dependence between them.

Deng et al [14] present a method that allows the user to specify
synchronization patterns that are used to synthesize synchronized
code. The generated code can then be verified using the Bandera
toolset. The user must specify explicitly the regions of code that
need synchronization, but we do not require this. Unlike them,
we only focus on one kind of synchronization pattern: exclusion
between two regions that access the same atomic set.

The Actor model [1] defines objects that are updated atomically
by individual methods. The Actor model shares our focus on using
objects to manage consistency, but there are some crucial differ-
ences. First, it has a more restrictive notion of state changes, with a
singlebecome operation. Second, it is asynchronous, and does not
have the notion of nesting of units of work. Third, this modeldoes
not support our notion of multiple consistency properties within a
single object. Fourth, these languages lack a compositional struc-
ture like ourowned. Fifth, these languages do not support a con-
struct such asunitfor for customizing consistency. Some Actor-
based languages address some of these issues—Concurrent Aggre-
gates [13] added synchronous calls and nesting, and ICC++ [12]
had a limited form of composition withintegral.

6. Conclusions
We presented a new definition of a data race as a collection of 11
problematic interleaving scenarios, which subsumes the traditional
notion of a data race as well as high-level data races such as stale-
value errors and inconsistent views. We have proved it complete
by demonstrating that any execution that does not exhibit any of
the 11 scenarios is equivalent to a serial execution, when projected
onto each atomic set.

We have proposed a small number of language constructs that
allow programmers to specify atomic sets, and a simple static anal-
ysis to determine the places in the code where synchronization is
needed in order to avoid data races according to our new definition.
Our data-centric approach is a declarative and succinct wayfor the
programmer to specify synchronization constraints, in a way that
maps naturally to the encapsulation provided by objects. Itis less
error-prone because the constructs are easy to use and the synchro-
nization is inserted automatically.

The experiments indicate that these constructs suffice for much
of the Java Collections Framework, and they also show greatly
reduced annotations compared to synchronized blocks.

Acknowledgments
We thank David Bacon, Rastislav Bodik, Stephen Fink, Robert
O’Callahan, and Vivek Sarkar for very useful discussions.

References
[1] Gul Agha. An overview of actor languages. InProceedings of the 1986

SIGPLAN workshop on Object-oriented programming, pages 58–67,
New York, NY, USA, 1986.

[2] C. S. Ananian and M. Rinard. Language-level transactions. In High-
Performance Embedded Computing (HPEC), 2004.

[3] C. Artho, K. Havelund, and A. Biere. High-level data races. InProc.
NDDL/VVEIS’03, pages 82–93, 2003.

[4] C. Artho, K. Havelund, and A. Biere. Using block-local atomicity to
detect stale-value concurrency errors. InATVA’04, pages 150–164,
2004.

[5] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A dialectof Java
without data races. InProc. OOPSLA’00, pages 382–400, 2000.

[6] D. Bäumer, E. Gamma, and Adam Kieżun. Integrating refactoring
support into a Java development tool. InObject-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA) Companion,
October 2001.

[7] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,and P. O’Neil.
A critique of ANSI SQL isolation levels. InProc. ACM SIGMOD
Conf., pages 1–10, 1995.

[8] P. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[9] C. Boyapati and M. Rinard. A parameterized type system for race-free
Java programs. InProc. OOPSLA’01, October 2001.

[10] M. Burrows and K. R. M. Leino. Finding stale-value errors in
concurrent programs. Technical Report 2002-004, SRC, May 2002.

[11] Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian
Grothoff, Allan Kielstra, Vijay Saraswat, Vivek Sarkar, and Christoph
von Praun. X10: An object-oriented approach to non-uniformcluster
computing. InProc. OOPSLA’05, San Diego, CA, 2005. To appear.

[12] A. Chien, U. Reddy, J. Plevyak, and J. Dolby. ICC++ — A C++
dialect for high performance parallel computing.Lecture Notes in
Computer Science, 1049:76–95, 1996.

[13] Andrew A. Chien and William J. Dally. Concurrent aggregates (ca).
In Proc. PPoPP ’90, pages 187–196, 1990.

[14] X. Deng, M. Dwyer, J. Hatcliff, and M. Mizuno. Invariant-
based specification, synthesis, and verification of synchronization
in concurrent programs. InProc. ICSE’02, May 2002.

[15] D. Engler and K. Ashcraft. Racerx: Effective, static detection of race
conditions and deadlocks. InProc. SOSP’03, pages 237–252, October
2003.

[16] S. Fink, J. Dolby, , and L. Colby. Semi-automatic J2EE transaction
configuration. Technical Report RC23326, IBM T.J. Watson Research
Center, March 2004.

[17] C. Flanagan. Verifying commit-atomicity using model checking. In
Proc. SPIN’04, pages 252–266, 2004.

[18] C. Flanagan, S. Freund, and M. Lifshin. Type inference for atomicity.
In Proc. TLDI’05, pages 47–58, 2005.

[19] C. Flanagan and S. N. Freund. Type-based race detectionfor Java. In
Proc. PLDI’00, pages 219–232, 2000.

[20] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. InProc. POPL’04, pages 256–
267, 2004.

[21] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
Proc. PLDI’03, pages 338–349, 2003.

[22] C. Flanagan and S. Qadeer. Types for atomicity. InProc. TLDI’03,
pages 1–12, 2003.

[23] T. Harris and K. Fraser. Language support for lightweight transactions.
In Proc. OOPSLA’03, pages 388–402, 2003.

[24] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. InProc. PPoPP’05, 2005.

[25] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifica-
tions for concurrent object-oriented software using modelchecking.
In Proc. VMCAI’04, pages 175–190, 2004.

[26] Gary A. Kildall. A unified approach to global program optimization.
In Proc. POPL’73, pages 194–206, 1973.

[27] K. R. M. Leino. Data groups: Specifying the modificationof extended
state. InProc. OOPSLA’98, pages 144–153, 1998.

[28] K. R. M. Leino, J. B. Saxe, and R. Stata. Checking Java programs via
guarded commands. Technical Report 002, Compaq SRC, 1999.

[29] R. J. Lipton. Reduction: A method of proving propertiesof parallel
programs.CACM, 18(12), 1975.

[30] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection.
In Proc. PPoPP’03, pages 167–178, 2003.

[31] Java Community Process. JSR 166: Concurrency utilities. Seehttp:
//gee.cs.oswego.edu/dl/concurrency-interest/index.
html., September 2004.

[32] A. Sasturkar, R. Agarwal, L. Wang, and S. Stoller. Automated type-
based analysis of data races and atomicity. InProc. PPoPP’05, 2005.

[33] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multi-threaded programs. In
Proc. SOSP’97, pages 27–37, October 1997.

[34] C. von Praun and T. Gross. Static detection of atomicityviolations in
object-oriented programs.Journal of Object Technology, 3(2), 2004.

[35] Liqiang Wang and Scott D. Stoller. Runtime analysis foratomicity
for multi-threaded programs. Technical Report DAR-04-14,State
University of New York At Stony Brook, May 2005.

[36] A. Welc, S. Jagannathan, and A. Hosking. Transactionalmonitors for
concurrent objects. InProc. ECOOP’04, pages 519–542, 2004.

[37] ANSI X3.135-1992. InAmerican National Standard for Information
Systems – Database Language – SQL, November 1992.

[38] M. Xu, R. Bodik, and M. Hill. A serializability violation detector for
shared-memory server programs. InProc. PLDI’05, pages 1–14, 2005.

A. Proof of Lemma 1
Assume that the projected execution is not in accordance with any
of the problematic interleaving scenarios of Definition 1. Assume
that there existi and j such thati < j, event(i) = Wu(l), and
event(j) = Wu′(l) for somel andu 6= u′, but ts(i) ≥ ts(j). Since
u 6= u′, thents(i) andts(j) could not be equal. So we havets(i) >
ts(j).

Sincets(i) = ts(u), andts(j) = ts(u′), it must be that the first
write of u occurs after the first write ofu′. Let i′ = firstWrite(u)
andj′ = firstWrite(u′). Then we have thatj′ < i′ ≤ i < j.

Case 1.event(j′) = Wu′(l). It must be thatthread(u) 6= thread(u′),
because otherwiseu andu′ would be nested units of work and this
would contradict Observation 1 (two non-nested units of work of
the same thread do not have interleaved events). Then the projected
execution is in accordance with the interleaving scenario 5of Def-
inition 1, which is a contradiction.

j′ i j
Wu′(l) Wu(l) Wu′(l) (scenario 5)

Case 2.event(j′) = Wu′(l′), l′ 6= l. Since unit of worku also
writes l′, by Assumption 1, the indexk of such a write is greater
than i′, sincei′ is the index of the first write ofu. We have that
thread(u) 6= thread(u′) for the same reason as above. Therefore the
projected execution is in accordance with one of the interleaving
scenarios 6 or 7, which is a contradiction.

j′ k i j
Wu′(l′) Wu(l′) Wu(l) Wu′(l) (scenario 6)

j′ i k j

Wu′(l′) Wu(l) Wu(l′) Wu′(l) (scenario 6)
j′ i j k

Wu′(l′) Wu(l) Wu′(l) Wu(l′) (scenario 7)

Thereforets(i) < ts(j) as required.

B. Proof of Lemma 2
Table 1 illustrates the different cases appearing in this proof.

Part 1. Assume that the projected execution is not in accordance
with the interleaving scenarios of Definition 1. Consider anindex
i such thatevent(i) = Ru(l), and temp(u′, i, l) = true for some
u′ 6= u such thatthread(u) 6= thread(u′). Then there must be aj
andk, j < i < k, such thatevent(j) = event(k) = Wu′(l). But
the projected execution would be in accordance with interleaving

scenario 3 (Table 1), which is a contradiction. Sotemp(u′, i, l) =
false.

Part 2. Assume that the projected execution is not in accordance
with the interleaving scenarios of Definition 1. Consider a unit of
work u that contains at least a read and a write event. Assume
that there is ani, such thatevent(i) = Ru(l), andts(i) 6∈ {ts(u),
prev(ts(u))}. Letk, k < i, be the index of the write responsible for
the value ofts(i). Soevent(k) = Wu′(l) for someu′.

Case 1.ts(i) > ts(u). Since unit of worku must also writel by
Assumption 1, letj the index of this write,event(j) = Wu(l).
Note that we cannot havek < j < i, since the write at indexk
is responsible for the value ofts(i).

Subcase 1a. j < k < i

Wu(l) Wu′(l) Ru(l)

We have thatthread(u) 6= thread(u′), because otherwiseu andu′

would have to be nested units of work, and this would contradict
Observation 1. Then the projected execution is in accordance with
interleaving scenario 4 (Table 1), which is a contradiction.

Subcase 1b. k < i < j

Wu′(l) Ru(l) Wu(l)

We have thatts(i) = ts(k) > ts(u) = ts(j), which contradicts
Lemma 1.

Case 2.ts(i) < prev(ts(u)). There must be aj such thatevent(j) =
Wu′′(l) by Assumption 1, andts(j) = prev(ts(u)). Sincets(k) =
ts(i) < prev(ts(u)), then it cannot be the case thatj < k, because
otherwise that would contradict Lemma 1. Therefore we have:

k < i < j

Wu′(l) Ru(l) Wu′′(l)

There must be and indexi′ such thatevent(i′) = Wu(l) by As-
sumption 1. We have thati′ > j, because otherwise that would con-
tradict Lemma 1. We have thatthread(u) 6= thread(u′′), because
otherwise that would contradict Observation 1. Thus the execu-
tion is in accordance with the interleaving scenario:Ru(l) Wu′′(l)
Wu(l) (Table 1), which is scenario 1 from Definition 1. This is a
contradiction.
Thereforets(i) ∈ {ts(u), prev(ts(u))}.

Part 3. Assume that the projected execution is not in accordance
with any of the interleaving scenarios of Definition 1. Assume that
there exists a unit of worku, andi < j, such thatevent(i) = Ru(l),
event(j) = Ru(l′), andts(i) 6= ts(j). Suppose that the unit of work
u does not contain any writes. Leti′ andj′ be the indices of writes
responsible for the values ofts(i) and ts(j). We have thati′ < i
andj′ < j, andevent(i′) = Wu′(l), event(j′) = Wu′′(l′).

Case 1.l = l′. Then it must be that:

i′ < i < j′ < j

Wu′(l) Ru(l) Wu′′(l) Ru(l)

We havethread(u) 6= thread(u′′) because otherwise that would
contradict Observation 1. But then the execution is in accordance
with interleaving scenario 2 of Definition 1 (Table 1), whichis a
contradiction.

Case 2.l 6= l′ andts(i) < ts(j).

Case 2a. i′ < i < j′ < j

Wu′(l) Ru(l) Wu′′(l′) Ru(l′)

The unit of worku′′ must writel as well by Assumption 1. Letk be
the index of such a write,event(k) = Wu′′(l). It cannot be the case
that k < i′, because that would contradict Lemma 1. Sok > i,
since the write ati′ is the one responsible for the value ati. We
have thatthread(u) 6= thread(u′), because otherwise that would
contradict Observation 1. Thus the execution is in accordance with
one the interleaving scenarios 9 or 10 (Table 1), which is a contra-
diction.

Case 2b.
i′ < j′ < i < j

Wu′(l) Wu′′ (l′) Ru(l) Ru(l′)

or
j′ < i′ < i < j

Wu′′(l′) Wu′(l) Ru(l) Ru(l′)

Let k be an index such thatevent(k) = Wu′′(l). Sincets(i′) =
ts(i) < ts(j) = ts(j′) = ts(k), then it must be thatk > i′, because
otherwise that would contradict Lemma 1. We also have thatk > i
becausei′ is the index responsible for the value read ati. We
have thatthread(u) 6= thread(u′′), because otherwise that would
contradict Observation 1. Therefore the execution is in accordance
with one of interleaving scenarios 8 and 11 (Table 1), which is a
contradiction.

Case 3.l 6= l′ and ts(i) > ts(j). The unit of worku′ must write
l′ as well by Assumption 1. Letk be the index of such a write,
event(k) = Wu′(l′). Sincets(u′) = ts(i) > ts(j) = ts(u′′), then
it must be thatk > j′, because otherwise that would contradict
Lemma 1. Sincej′ is the index of the write responsible for the read
at j, then it is also the case thatk > j. We have thatthread(u) 6=
thread(u′), because otherwise that would contradict Observation 1.
Therefore the execution is in accordance with the interleaving sce-
nario 8 (Table 1), which is a contradiction.
Thereforets(i) = ts(j).

j i k

W
u
′ (l) Ru(l) W

u
′ (l) (scenario 3)

Part 1

j k i

Wu(l) W
u
′ (l) Ru(l) (scenario 4)

Part 2 - Subcase 1a

i j i′

Ru(l) W
u
′′ (l) Wu(l) (scenario 1)

Part 2 - Case 2

i j′ j

Ru(l) W
u
′′ (l) Ru(l) (scenario 2)

Part 3 - Case 1

i k j′ j

Ru(l) W
u
′′ (l) W

u
′′ (l′) Ru(l′) (scenario 9)

i j′ k j

Ru(l) W
u
′′ (l′) W

u
′′ (l) Ru(l′) (scenario 9)

i j′ j k

Ru(l) W
u
′′ (l′) Ru(l′) W

u
′′ (l) (scenario 10)

Part 3 - Case 2a

j′ i k j

W
u
′′ (l′) Ru(l) W

u
′′ (l) Ru(l′) (scenario 11)

j′ i j k

W
u
′′ (l′) Ru(l) Ru(l′) W

u
′′ (l) (scenario 8)

Part 3 - Case 2b

i′ i j k

W
u
′ (l) Ru(l) Ru(l′) W

u
′ (l′) (scenario 8)

Part 3 - Case 3
Table 1 - Proof of Lemma 2

