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Abstract. Type constraints express subtype-relationships between the
types of program expressions that are required for type-correctness, and
were originally proposed as a convenient framework for solving type
checking and type inference problems. In this paper, we show how type
constraints can be used as the basis for practical refactoring tools. In our
approach, a set of type constraints is derived from a type-correct pro-
gram P . The main insight behind our work is the fact that P constitutes
just one solution to this constraint system, and that alternative solutions
may exist that correspond to refactored versions of P . We show how a
number of refactorings for manipulating types and class hierarchies can
be expressed naturally using type constraints. Several refactorings in the
standard distribution of Eclipse are based on our results.

1 Introduction

Refactoring is the process of applying behavior-preserving transformations
(called “refactorings”) to a program’s source code with the objective of improving
that program’s design. Common reasons for refactoring include the elimination
of undesirable program characteristics such as duplicated code, making existing
program components reusable in new contexts, and breaking up monolithic sys-
tems into components. Pioneered in the early 1990s by Opdyke et al. [15,16] and
by Griswold et al. [9,10], the field of refactoring received a major boost with the
emergence of code-centric design methodologies such as extreme programming [2]
that advocate continuous improvement of code quality. Fowler [7] and Kerievsky
[12] authored popular books that classify many widely used refactorings, and
Mens and Tourwé [14] presented a survey of the field.

Refactoring is usually presented as an interactive process where the program-
mer takes the initiative by indicating a point in the program where a specific
transformation should be applied. Then, the programmer must verify if a number
of specified preconditions hold, and, assuming this is the case, apply a number
of prescribed editing steps. However, checking the preconditions may involve
nontrivial analysis, and the number of editing steps may be significant. There-
fore, automated tool support for refactoring is highly desirable, and has be-
come a standard feature of modern development environments such as Eclipse
(www.eclipse.org) and IntelliJ IDEA (www.jetbrains.com/idea).
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The main observation of this paper is that, for an important category of refac-
torings related to the manipulation of class hierarchies and types, the checking
of preconditions and computation of required source code modifications can be
expressed as a system of type constraints. Type constraints [17] are a formalism
for expressing subtype-relationships between the types of program elements that
must be satisfied in order for a program construct to be type-correct, and were
originally proposed as a means for expressing type checking and type inference
problems. In our work, a system of type constraints is derived from a program to
reason about the correctness of refactorings. Specifically, we derive a set of type
constraints from a program P and observe that, while the types and class hier-
archy of P constitute one solution to the constraint system, alternative solutions
may exist that correspond to refactored versions of P .

We show how several refactorings for manipulating class hierarchies and types
can be expressed in terms of type constraints. This includes refactorings that:
(i) introduce interfaces and supertypes, move members up and down in the class
hierarchy, and change the declared type of variables, (ii) introduce generics,
and (iii) replace deprecated classes with ones that are functionally equivalent.
Several refactorings1 in the Eclipse 3.2 distribution are based on the research
presented in this paper. Our previous papers [22,3,8,1,13], presented these refac-
torings in detail, along with experimental evaluations. This paper presents an
informal overview of the work and uses a running example to show how different
refactorings require slight variations on the basic type constraints model.

2 Type Constraints

Type constraints are a formalism for expressing subtype relationships between
the types of declarations and expressions, and were originally proposed as a
means for stating type-checking and type inference problems [17]. In the basic
model, a type constraint has of one of the following forms:

α = α′ type α must be the same as type α′

α<α′ type α must be a proper subtype of type α′

α≤α′ type α must be the same as, or a subtype of type α′

α≤α1 or · · · or α≤αk α≤αi must hold for at least one i, (1 ≤ i ≤ k)

Here, α, α′, ... are constraint variables that represent the types associated
with program constructs. In this paper, M denotes a method (with associated
signature and type information), F denotes a field, C denotes a class, I denotes
an interface, T denotes a class or an interface, and E denotes an expression.
Constraint variables are of one of the following forms:

T a type constant
[E] the type of an expression E
[M ] the declared return type of method M

[F ] the declared type of field F
Decl(M) the type in which method M is declared
Decl(F ) the type in which field F is declared

1 This includes the Extract Interface, Generalize Declared Type, and Infer

Generic Type Arguments refactorings presented in this paper, among others.
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program construct implied type constraint(s)
assignment E1 = E2 [E2]≤[E1] (1)

method call E.m(E1, · · · , En)
to a virtual method M

where RootDefs(M) = { M1, · · · , Mk }

[E.m(E1, · · · , En)]=[M ]
[Ei]≤[Param(M, i)]

[E]≤Decl(M1) or · · · or [E]≤Decl(Mk)

(2)
(3)
(4)

access E.f to field F
[E.f ]=[F ]

[E]≤Decl(F )
(5)
(6)

return E in method M [E]≤[M ] (7)
M ′ overrides M ,

M ′ �= M
[Param(M ′, i)]=[Param(M, i)]

[M ′]≤[M ]
(8)
(9)

F ′ hides F Decl(F ′)<Decl(F ) (10)
constructor call new C(E1, · · · , En)

to constructor M
[new C(E1, · · · , En)]=C

[Ei]≤[Param(M, i)]
(11)
(12)

direct call
E.m(E1, · · · , En)

to method M

[E.m(E1, · · · , En)]=[M ]
[Ei]≤[Param(M, i)]

[E]≤Decl(M)

(13)
(14)
(15)

implicit declaration of this in method M [this]=Decl(M) (16)

Fig. 1. Type constraints for a set of core Java language features

Type constraints are generated from a program’s abstract syntax tree in a
syntax-directed manner, and encode relationships between the types of decla-
rations and expressions that must be satisfied in order to preserve type correct-
ness or program behavior. Figure 1 shows rules that generate constraints from
a representative set of program constructs.

For example, rule (1) states that, for an assignment E1 = E2, a constraint
[E2]≤[E1] is generated. Intuitively, this captures the requirement that the type of
the right-hand side E2 be a subtype of the type of the left-hand side E1 because
otherwise the assignment would not be type correct. In the rules discussed below,
Param(M, i) denotes the i-th formal parameter of method M . For a call E.m(· · ·)
to a virtual method M , we have that: the type of the call-expression is the
same as M ’s return type (rule (2)2), the type of each actual parameter must
be the same as, or a subtype of the corresponding formal parameter (rule (3)),
and a method with the same signature as M must be declared in [E] or one
of its supertypes (rule (4)). Rule (4) determines a set of methods M1, · · · , Mk

overridden by M using Definition 1 below, and requires [E] to be a subtype of
one or more3 of Decl(M1), · · · ,Decl(Mk). In this definition, a virtual method M
in type C overrides a virtual method M ′ in type B if M and M ′ have identical
signatures and C is equal to B or C is a subtype of B.

Definition 1 (RootDefs). Let M be a method. Define:
RootDefs(M) = { M ′|M overrides M ′, and there exists no

M ′′ (M ′′ �= M ′) such that M ′ overrides M ′′ }

2 Rules (2), (5), (13), (11), and (16) define the type of certain kinds of expressions.
While not very interesting by themselves, these rules are essential for defining the
relationships between the types of expressions and declaration elements.

3 In cases where a referenced method does not occur in a supertype of [E], the
RootDefs-set defined in Definition 1 will be empty, and an or-constraint with zero
branches will be generated. Such constraints are never satisfied and do not occur in
our setting because we assume the original program to be type-correct.
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Changing a parameter’s type need not affect type-correctness, but may affect
virtual dispatch (and program) behavior. Hence, we require that types of corre-
sponding parameters of overriding methods be identical (rule (8)). As of Java 5.0,
return types in overriding methods may be covariant (rule (9)). Rule (16) de-
fines the type of a this expression to be the class that declares the associated
method. The constraint rules for several features (e.g., casts) have been omitted
due to space limitations and can be found in our earlier papers.

3 Refactorings for Generalization

Figure 2 shows a Java program that was designed to illustrate the issues posed by
several different refactorings. The program declares a class Stack representing a
stack, with methods push(), pop(), and isEmpty()with the expected behaviors,
methods moveFrom() and moveTo() for moving an element from one stack to
another, and a static method print() for printing a stack’s contents. Also shown
is a class Client that creates a stack, pushes the integer 1 onto it, then creates
another stack onto which it pushes the values 2.2 and 3.3. The elements of the
second stack are then moved to the first, the contents of one of the stacks is
printed, and the elements of the first stack are transferred into a Vector whose
contents are displayed in a tree. Executing the program creates a graphical
representation of a tree containing, from top to bottom, nodes 2.2, 3.3, and 1.

3.1 Extract Interface

One possible criticism about the code in Figure 2 is the fact that class Client
explicitly refers to class Stack. Such explicit dependences on concrete data struc-
tures are generally frowned upon because they make code less flexible. The Ex-

tract Interface refactoring aims to address this issue by introducing an in-
terface that declares a subset of the methods in a class, and updating references
in client code to refer to the interface instead of the class wherever possible.
Let us assume that the programmer has decided that it would be desirable to
create an interface IStack that declares all of Stack’s instance methods, and
to update references to Stack to refer to IStack instead, as shown in Figure 3
(code fragments changed by the application of Extract Interface are under-
lined). Observe that s1, s3, and s4 are the only variables for which the type has
been changed to IStack. Changing the type of s2 or s5 to IStack would result
in type errors. In particular, changing s5’s type to IStack results in an error
because field v2, which is not declared in IStack, is accessed from s5 on line 45.

Using type constraints, it is straightforward to compute the declarations that
can be updated to refer to IStack instead of Stack. Figure 4(a) shows some of
the type constraints generated for declarations and expressions of type Stack in
the program of Figure 2, according to the the rules of Figure 1. It is important
to note that the constraints were generated after adding interface IStack to the
class hierarchy. Now, from the constraints of Figure 4(a), it is easy to see that
Stack≤[s2]≤[s5]≤Stack and hence that the types of s2 and s5 have to remain
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[1] class Client {
[2] public static void main(String[] args){
[3] Stack s1 = new Stack();
[4] s1.push(new Integer(1));
[5] Stack s2 = new Stack();
[6] s2.push(new Float(2.2));
[7] s2.push(new Float(3.3));
[8] s1.moveFrom(s2);
[9] s2.moveTo(s1);
[10] Stack.print(s2);
[11] Vector v1 = new Vector(); /* A1 */
[12] while (!s1.isEmpty()){
[13] Number n = (Number)s1.pop();
[14] v1.add(n);
[15] }
[16] JFrame frame = new JFrame();
[17] frame.setTitle("Example");
[18] frame.setSize(300, 100);
[19] JTree tree = new JTree(v1);
[20] frame.add(tree, BorderLayout.CENTER);
[21] frame.setVisible(true);
[22] }
[23] }

[24] class Stack {
[25] private Vector v2;
[26] public Stack(){
[27] v2 = new Vector(); /* A2 */
[28] }
[29] public void push(Object o){
[30] v2.addElement(o);
[31] }
[32] public Object pop(){
[33] return v2.remove(v2.size()-1);
[34] }
[35] public void moveFrom(Stack s3){
[36] this.push(s3.pop());
[37] }
[38] public void moveTo(Stack s4){
[39] s4.push(this.pop());
[40] }
[41] public boolean isEmpty(){
[42] return v2.isEmpty();
[43] }
[44] public static void print(Stack s5){
[45] Enumeration e = s5.v2.elements();
[46] while (e.hasMoreElements())
[47] System.out.println(e.nextElement());
[48] }
[49] }

Fig. 2. An example program. The allocation sites for the two Vector objects created
by this program have been labeled A1 and A2 to ease the discussion of the Replace

Class refactoring in Section 5.

class Client {
public static void main(String[] args){

IStack s1 = new Stack();
s1.push(new Integer(1));
Stack s2 = new Stack();
s2.push(new Float(2.2));
s2.push(new Float(3.3));
s1.moveFrom(s2);
s2.moveTo(s1);
Stack.print(s2);
Vector v1 = new Vector();
while (!s1.isEmpty()){
Number n = (Number)s1.pop();
v1.add(n);

}
JFrame frame = new JFrame();
frame.setTitle("Example");
frame.setSize(300, 100);

Component tree = new JTree(v1);

frame.add(tree, BorderLayout.CENTER);
frame.setVisible(true);

}
}
interface IStack {

public void push(Object o);
public Object pop();
public void moveFrom(IStack s3);
public void moveTo(IStack s4);
public boolean isEmpty();

}

class Stack implements IStack {
private Vector v2;
public Stack(){

v2 = new Vector();
}
public void push(Object o){

v2.addElement(o);
}
public Object pop(){

return v2.remove(v2.size()-1);
}
public void moveFrom(IStack s3){

this.push(s3.pop());
}
public void moveTo(IStack s4){

s4.push(this.pop());
}
public boolean isEmpty(){

return v2.isEmpty();
}
public static void print(Stack s5){

Enumeration e = s5.v2.elements();
while (e.hasMoreElements())
System.out.println(e.nextElement());

}
}

Fig. 3. The example program of Figure 2 after applying Extract Interface to class
Stack (code fragments affected by this step are underlined), and applying Generalize

Declared Type to variable tree (the affected code fragment is shown boxed)
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line(s) constraint(s) rule(s)
3 Stack≤[ s1 ] (11),(1)

4, 8, 12, 13 [ s1 ]≤IStack (4)
5 Stack≤[ s2 ] (11),(1)

6, 7, 9 [ s2 ]≤IStack (4)
8,35 [ s2 ]≤[ s3 ] (3)
9,38 [ s1 ]≤[ s4 ] (3)
10,44 [ s2 ]≤[ s5 ] (14)
36 [ s3 ]≤IStack (4)
39 [ s4 ]≤IStack (4)
45 [ s5 ]≤Stack (6)

line(s) constraint(s) rule applied
19 JTree≤[ tree ] (11),(1)
20 [ tree ]≤Component (12)
11 Vector≤[ v1 ] (11),(1)
14 [ v1 ]≤Collection (4)
19 [ v1 ]≤Vector (12)
27 Vector≤[ v2 ] (11),(1)
30 [ v2 ]≤Vector (4)

33, 42 [ v2 ]≤Collection (4)

(a) (b)

Fig. 4. (a) Type constraints generated for the application of the Extract Interface

refactoring to the program of Figure 2 (only nontrivial constraints related to variables
s1–s5 are shown). (b) Type constraints used for the application of Generalize De-

clared Type (only nontrivial constraints related to variables tree, v1, and v2 are
shown). Line numbers refer to Figure 2, and rule numbers to rules of Figure 1.

Stack. However, the types of s1 and s4 are less constrained ([s1]≤[s4]≤IStack)
implying that type IStack may be used for these variables. In general, the types
of variables may not be changed independently. For example, changing s1’s type
to IStack but leaving s4’s type unchanged results in a type-incorrect program.
In a previous paper [22], we presented an algorithm for computing the maximal
set of variables whose type can be updated to refer to a newly extracted interface.

3.2 Generalize Declared Type

Another possible criticism of the program of Figure 2 is the fact that the types
of some variable declarations in the program of Figure 2 are overly specific. This
is considered undesirable because it reduces flexibility. The Generalize De-

clared Type refactoring in Eclipse lets a programmer select a declaration, and
determines whether its type can be generalized without introducing type errors
or behavioral changes. If so, the programmer may choose from the alternative
permissible types. Using this refactoring, the type of variable tree can be up-
dated to refer to Component instead of JTree without affecting type-correctness
or program behavior, as is indicated by a box in Figure 3. This, in turn, would
enable one to vary the implementation to use, say, a JList instead of a JTree in
Client.main(). In some situations, the type of a variable cannot be generalized.
For example, changing the type of v2 to Collection (or to any other supertype
of Vector) would result in a type error because the method addElement(), which
is not declared in any supertype of Vector, is invoked on v2 on line 30. Further-
more, the type of v1 cannot be generalized because, on line 19, v1 is passed as
an argument to the constructor JTree(Vector). JTree is part of the standard
Java libraries (for which we cannot change the source code), and the fact that its
constructor expects a Vector implies that a more general type cannot be used.

Figure 4(b) shows the constraints generated from the example program of
Figure 2 for variables tree, v1, and v2. Note that, for parameters of methods in
external classes such as the constructor of JTree, we must include constraints
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that constrain these parameters to have their originally declared type, because
the source code in class libraries cannot be changed. Therefore, we have that:
JTree≤[tree]≤Component, Vector≤[v1]≤Vector, and Vector≤[v2]≤Vector.
In other words, the types of v1 and v2 must be exactly Vector, but for tree we
may choose any supertype of JTree that is a subtype of Component.

3.3 Other Refactorings for Generalization

Several other refactorings related to generalization can be modeled similarly. For
example, the Pull Up Members refactoring is concerned with moving methods
and fields from a class to one of its superclasses. For this refactoring, we leave
the types of variables constant by including constraints that require variables to
have their originally declared type while allowing the locations of methods and
fields to vary by leaving constraint variables of the form Decl(.) unconstrained.

4 Refactorings That Introduce Generics

Generics were introduced in Java 5.0 to enable the creation of reusable class
libraries with compiler-enforced type-safe usage. For example, an application
that instantiates Vector<E> with, say, String, obtaining Vector<String>, can
only add and retrieve Strings. In the previous, non-generic version of this class,
the signatures of access methods such as Vector.get() refer to type Object,
which prevents the compiler from ensuring the type-safety of vector operations,
and therefore down-casts to String are needed to recover the type of retrieved
elements. When a programmer makes a mistake, such downcasts fail at runtime,
with ClassCastExceptions.

Donovan et al. [5] identified two refactoring problems related to the introduc-
tion of generics. The parameterization problem consists of adding type param-
eters to an existing class definition so that it can be used in different contexts
without the loss of type information. Once a class has been parameterized, the
instantiation problem is the task of determining the type arguments that should
be given to instances of the generic class in client code. The former problem
subsumes the latter because the introduction of type parameters often requires
the instantiation of generic classes.

The Introduce Type Parameter refactoring developed recently by Kieżun
et al. [13] provides a solution to the parameterization problem in which the
programmer selects a declaration for which the type is to be replaced with a
new formal type parameter. As we shall see shortly, this may involve nontrivial
changes to other declarations (e.g., by introducing wildcard types [24]). Fuhrer
et al. [8] proposed a solution to the instantiation problem that forms the basis
for the Infer Generic Type Arguments refactoring in Eclipse.

The right column of Figure 5 shows class Stack after applying Introduce

Type Parameter to the formal parameter of method Stack.push() (for the
purposes of this example, it is assumed that class Stack is analyzed in isolation).
Underlining is used to indicate changes w.r.t. the version of Stack in Figure 2.
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As can be seen in the figure, a new type parameter T1 was added to class Stack,
and T1 is used as the type for the parameter of Stack.push(), for the return
type of Stack.pop(), and for the type of field v2. A more interesting change
can be seen in the moveFrom(), moveTo(), and print() methods. Here, the pa-
rameters now have wildcard types Stack<? extends T1>, Stack<? super T1>,
and Stack<?>, respectively. As we shall see shortly, this allows for greater flexi-
bility when refactoring class Client because it enables the transfer of elements
between the two stacks without the loss of precision in their declared types.

The left column of Figure 5 shows the result of applying Infer Generic

Type Arguments to the example program after the parameterization of Stack.
Observe that the types of s1 and s2 are now Stack<Number> and Stack<Float>,
and that the downcast on line 13 that was present originally has been re-
moved. This result was enabled directly by the introduction of wildcard types
in Stack.moveFrom() and Stack.moveTo(). If the formal parameters of these
methods had been changed to Stack<T1> instead, Java’s typing rules would have
required Vector<Number> for the types of s1 and s2, making it impossible to
remove the downcast.

class Client {
public static void main(String[] args){

Stack<Number> s1 = new Stack<Number>();
s1.push(new Integer(1));
Stack<Float> s2 = new Stack<Float>();
s2.push(new Float(2.2));
s2.push(new Float(3.3));
s1.moveFrom(s2);
s2.moveTo(s1);
Stack.print(s2);
Vector<Number> v1 = new Vector<Number>();
while (!s1.isEmpty()){
Number n = s1.pop();
v1.add(n);

}
JFrame frame = new JFrame();
frame.setTitle("Example");
frame.setSize(300, 100);
JTree tree = new JTree(v1);
frame.add(tree, BorderLayout.CENTER);
frame.setVisible(true);

}
}

class Stack<T1> {
private Vector<T1> v2;
public Stack(){

v2 = new Vector<T1>();
}
public void push(T1 o){

v2.addElement(o);
}
public T1 pop(){

return v2.remove(v2.size()-1);
}
public void moveFrom(Stack<? extends T1> s3){

this.push(s3.pop());
}
public void moveTo(Stack<? super T1> s4){

s4.push(this.pop());
}
public boolean isEmpty(){

return v2.isEmpty();
}
public static void print(Stack<?> s5){

Enumeration<?> e = s5.v2.elements();
while (e.hasMoreElements())

System.out.println(e.nextElement());
}

}

Fig. 5. The example program after the application of Introduce Type Parameter

to the formal parameter of Stack.push(), followed by an application of Infer Generic

Type Arguments to the entire application

4.1 Infer Generic Type Arguments

The Infer Generic Type Arguments refactoring requires a minor extension
of the type constraint formalism of Section 2, which we illustrate by way of
our running example. Some technical details are not discussed due to space
limitations, and can be found in a previous paper [8].
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In order to reason about type parameters, we introduce a new kind of con-
straint variable. These constraint variables are of the form T (x), representing
the type that is bound to formal type parameter T in the type of x. For ex-
ample, if we have a parameterized class Vector<E> and a variable v of type
Vector<String>, then E(v) = String. We also need additional rules for gener-
ating type constraints to ensure that the appropriate values are inferred for the
new constraint variables. We now give a few examples to illustrate how these
rules are inferred from method signatures in parameterized classes. In giving
these examples, we assume that class Stack has already been parameterized as
in the right column of Figure 5 (either manually, or using the Introduce Type

Parameter refactoring presented in Section 4.2).

Example 1. Consider the method call s1.push(new Integer(1)) on line 4 in
Figure 2. This call refers to the method void Stack<T1>.push(T1 o). If s1 is
of a parameterized type, say, Stack<α>, then this call can only be type-correct
if Integer≤α and this constraint is generated from rule (17) in Figure 6(a).

Example 2. Similarly, the call s1.pop() on line 13 refers to method void
Stack<T1>.pop(). If s1 is of some parametric type, say Stack<α>, then
[s1.pop()] = α and this constraint can be generated from rule (18).

Example 3. Consider the call s1.moveFrom(s2) on line 8. If we assume that
s1 and s2 are of parameterized types Stack<α1> and Stack<α2>, for some α1,
α2, then the call is type correct if we have that α2≤α1 and this constraint is
generated from rule (19).

As can be seen from Figure 6(a), the rules for generating constraints have a
regular structure, in which occurrences of type parameters in method signatures
give rise to different forms of constraints. In the examples we have seen, type
parameters occur as types of formal parameters, as return types, and as actual
type parameters in the type of a formal parameter. Several other forms exist [8].

Figure 6(b) shows the constraints generated for the example. From these con-
straints, it follows that: Integer≤T1(s1), Float≤T1(s2), and T1(s2)≤T1(s1),
and hence that Float≤T1(s1). Since Number is a common supertype of Integer
and Float, a possible solution to this constraint system is:

T1(s1) ← Number, T1(s2) ← Float

However, several other solutions exist, such as the following uninteresting one:

T1(s1) ← Object, T1(s2) ← Object

Our current constraint solver relies on heuristics to guide it towards preferred so-
lutions. The most significant of these heuristics are preferring more specific types
over less specific ones, and avoiding marker interfaces such as Serializable.

Generating the refactored source code is now straightforward. The type of
variable s1 in the example program, for which we inferred T1(s1) = Number, is
rewritten to Stack<Number>. Similarly, the types of s2 and v1 are rewritten to
Stack<Float> and Vector<Number>, respectively. Furthermore, all downcasts
are removed for which the type of the expression being cast is a subtype of the
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program construct constraint(s)
method call E1.push(E2) to
void Stack<T1>.push(T1)

[E2]≤T1(E1) (17)

method call E.pop() to
void Stack<T1>.pop()

[E.pop()]=T1(E) (18)

method call E1.moveFrom(E2) to
void Stack<T1>.

moveFrom(Stack<? extends T1>)
T1(E2)≤T1(E1) (19)

method call E1.moveTo(E2) to
void Stack<T1>.

moveTo(Stack<? super T1>)
T1(E1)≤T1(E2) (20)

method call E1.add(E2) to
boolean Vector<E>.add(E)

[E2]≤E(E1) (21)

line(s) constraint(s) rule(s)
4 Integer≤T1(s1) (11),(17)

6,7 Float≤T1(s2) (11),(17)
8 T1(s2)≤T1(s1) (19)
9 T1(s2)≤T1(s1) (20)
13 [ s1.pop() ]=T(s1) (18)
13 Number≤E(v1) (21)

(a) (b)

Fig. 6. (a) Additional constraint generation rules needed for the Infer Generic

Type Arguments refactoring, automatically derived from method signatures (only
constraints for methods used in the example program are shown). (b) Type constraints
generated for the example program using the rules of (a). Only nontrivial constraints
relevant to the inference of type parameters in uses of Stack and Vector are shown.
Line numbers refer to Figure 2, and rule numbers refer to Figures 6(a) and 1.

target type. For example, for the downcast (Number)s1.pop() on line 13, we
inferred [s1.pop()] = Number enabling us to remove the cast.

4.2 Introduce Type Parameter

Consider a scenario where a programmer wants to apply Introduce Type Pa-

rameter to replace the type of the formal parameter o of Stack.push() with
a new type parameter. Our solution requires a new form of constraint variable
called context variable4. A context variable is of the form Iα′(α) and represents
the interpretation of a constraint variable α in a context given by a constraint
variable α′. As an example, consider the type Stack<T1>. In the context of an in-
stance Stack<Number>, the interpretation of T1 is Number. Now, if we have a vari-
able x of type Stack<Number>, then the interpretation of T1 in the context of the
type of x is Number and we will denote this fact by I[x](T 1) = Number. Here, I[x]
is an interpretation function that maps the formal type parameter5 T1 of Stack
to the type with which it is instantiated in type [x]. For a more interesting exam-
ple, consider the call s1.push(new Integer(1)) on line 4 of Figure 2. For this
call to be type-correct, the type Integer of actual parameter new Integer(1)
must be a subtype of the formal parameter o of Stack.push() in the context of
the type of s1. This can be expressed by a constraint Integer≤I[s1]([o]). Note
that we cannot simply require that Integer≤[o] because if Stack becomes a
parameterized class Stack<T1>, and the type of o becomes T1, then T1 is out of
scope on line 4 (in addition, Integer is not a subtype of T1).

4 Also required are wildcard variables to model cases where Java’s typing rules require
the introduction of wildcard types due to method overriding [13].

5 For parameterized types with multiple type parameters such as HashMap, the inter-
pretation function provides a binding for each of them [13].
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line(s) constraint(s)
30 [ o ] ≤ E(v2) (i)
33 E(v2) ≤ [ Stack.pop() ] (ii)
36 I[s3]([Stack.pop()]) ≤ [ o ] (iii)
39 [ Stack.pop() ] ≤ I[s4]([o]) (iv)

constraint variable inferred type
o T1
E(v2) T1
[ Stack.pop() ] T1
I[s3]([Stack.pop()]) ? extends T1

I[s4]([o]) ? super T1

(a) (b)

Fig. 7. (a) Type constraints generated for class Stack of Figure 2 when applying Intro-

duce Type Parameter. (b) Solution to the constraints computed by our algorithm.

Figure 7(a) shows some of the constraints generated for class Stack of
Figure 2. For these constraints, the algorithm by Kieżun et al. [13] computes
the solution shown in Figure 7(b). This solution can be understood as follows.
The type of o has become a new type parameter T1 because this declaration
was selected by the user. From constraints (i) and (ii) in Figure 7, it follows
that E(v2) and [ Stack.pop() ] must each be a supertype of T1, and from con-
straint (iii) it can be seen that I[s3]([Stack.pop()]) must be a subtype of T1. The
only possible choices for [ Stack.pop() ] are T1 and Object because wildcard
types are not permitted in this position, and T1 is selected because the choice of
Object would lead to a violation of constraint (iii).

Taking into account constraint (ii), it follows that E(v2) = T1. Now, for
Is3([Stack.pop()]), the algorithm may choose any subtype of T1, and it heuris-
tically6 chooses ? extends T1. Likewise, the type ? super T1 is selected for
I[s4]([o]).

At this point, determining how the rewrite the source code is straightfor-
ward. From Figure 7(b), it can be seen that type of o and the return type of
Stack.pop() become T1. Moreover, from E(v2) = T1, it follows that v2 be-
comes Vector<T1>. The type of s3 is rewritten to Stack<? extends T1> be-
cause the return type of Stack.pop() is T1 and the type ? extends T1 was
inferred for I[s3]([Stack.pop()]). By a similar argument, the type of s4 is rewrit-
ten to Stack<? super T1>. The right column of Figure 5 shows the result.

5 A Refactoring for Replacing Classes

As applications evolve, classes are occasionally deprecated in favor of others with
roughly the same functionality. In Java’s standard libraries, for example, class
Hashtable has been superseded by HashMap, and Iterator is now preferred over
Enumeration. In such cases it is often desirable to migrate client applications to
make use of the new idioms, but manually making the required changes can be
labor-intensive and error-prone. In what follows, we will use the term migration
to refer to the process of replacing the references to a source class with references
to a target class.
6 Other possible choices include T1, or a new type parameter that is a subtype of T1.

The paper by Kieżun et al. [13] presents more details on the use of heuristics.
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In the program of Figure 2, Vectors are used in two places (variable v1
declared on line 11 and field v2 declared on line 25). Class ArrayList was intro-
duced in the standard libraries to replace Vector, and is considered preferable
because its interface is minimal and matches the functionality of the List inter-
face. ArrayList also provides unsynchronized access to a list’s elements whereas
all of Vector’s methods are synchronized, which results in unnecessary over-
head when Vectors are used by only one thread. The example program illustrates
several factors that complicate the migration from Vector to ArrayList:

– Some methods in Vector are not supported by ArrayList. E.g, the ex-
ample program calls Vector.addElement() on line 30, a method not de-
clared in ArrayList. In this case, the call can be replaced with a call to
ArrayList.add(), but other cases require the introduction of more complex
expressions, or preclude migration altogether.

– Opportunities for migration may be limited when applications interact with
libraries. For example, variable v1 declared on line 11 serves as the actual
parameter in a call to a constructor JTree(Vector) on line 19. Changing the
type of v1 to any supertype of Vector would render this call type-incorrect.
Hence, the allocation site labeled A1 cannot be migrated to ArrayList.

– Migrating one class may require migrating another. Consider the call
on line 45 to Vector.elements(), which returns an Enumeration.
ArrayList does not declare this method, but its method iterator()
returns an Iterator, an interface with similar functionality7. In this
case, we can replace the call to elements() with a call to iterator(),
provided that we replace the calls to Enumeration.hasMoreElements()
and Enumeration.nextElement() on lines 46 and 47 with calls to
Iterator.hasNext() and Iterator.next().

– If a Vector is accessed concurrently, then preservation of synchronization
behavior is important. This is accomplished by introducing synchronization
wrappers. This issue does not arise in the program of Figure 2 because it is
single-threaded; the paper by Balaban et al. [1] presents an example.

We have developed a Replace Class refactoring that addresses these migra-
tion problems. This refactoring relies on a migration specification that specifies
for each method in the source class how it is to be rewritten. Figure 8 shows
the fragments of the specification for performing the migration from Vector to
ArrayList and from Enumeration to Iterator needed for the example pro-
gram (the complete specification can be found in [1]). Migration specifications
only have to be written once for each pair of (source,target) classes.

We adapt the type constraints formalism of Section 2 as follows to implement
Replace Class. For each source class S and target class T in a migration, the
type system is extended with types S� and S⊥, such that S≤S�, T≤S�, S⊥≤S,

7 The methods hasNext() and next() in Iterator correspond to hasMoreElements()
and nextElement() in Enumeration, respectively. Iterator declares an additional
method remove() for the removal of elements from the collection being iterated over.
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(1) new Vector(), unsynchronized → new ArrayList()
(2) new Vector(), synchronized → Collections.synchronizedList(

new ArrayList())
(3) boolean Vector:receiver.add(Object:v) → boolean receiver.add(v)
(4) void Vector:receiver.addElement(Object:v) → boolean receiver.add(v)
(5) Object Vector:receiver.remove(int:i) → Object receiver.remove(i)
(6) int Vector:receiver.size() → int receiver.size()
(7) boolean Vector:receiver.isEmpty() → boolean receiver.isEmpty()
(8) Enumeration Vector:receiver.elements() → Iterator receiver.iterator()
(9) boolean Enumeration:receiver.hasMoreElements() → boolean receiver.hasNext()
(10) Object Enumeration:receiver.nextElement() → Object receiver.next()

Fig. 8. Specification used for migrating the example program

line(s) constraint(s)

11 [ A1 ]≤[ v1 ], [ A1 ]≤Vector�, Vector⊥≤[ A1 ] (i),(ii),(iii)
19 [ v1 ]≤Vector (iv)
27 [ A2 ]≤[ v2 ], [ A2 ]≤Vector�, Vector⊥≤[ A2 ] (v),(vi),(vii)
30 [ o ]≤Object (viii)

33,42 [ v2 ]≤Collection (ix)
45 [ s5.v2 ]=Vector → [ s5.v2.elements() ]=Enumeration (x)
45 [ s5.v2 ]=ArrayList → [ s5.v2.elements() ]=Iterator (xi)

Fig. 9. Some of the type constraints generated for the application of the Replace

Class refactoring to the program of Figure 2

S⊥≤T 8. Moreover, rule (11) of Figure 1 is adapted to generate constraints for
allocation sites that permit the migration from source types to target types. For
example, constraints (ii) and (iii) in Figure 9 are generated for the allocation
site labeled A1 on line 11 in Figure 2.

For a migration from a class S to a class T , a call to a method in S gives rise to
implication constraints of the form α = K → c. Here, α is a constraint variable,
K is a type, and c is an unconditional constraint that must be satisfied if the
condition holds. For example, consider the call s5.v2.elements() on line 45,
which can be rewritten to an expression s5.v2.iterator() (see Figure 8). The
implication constraints (x) and (xi) in Figure 9 state that the type of the call
expression s5.v2.elements() is Enumeration if the type of v2 remains Vector,
but becomes Iterator if the expression is rewritten to s5.v2.iterator().

Solving systems of implication constraints may require backtracking. How-
ever, it is often possible to perform simplifications that eliminate the need for
implications. As an example, consider the call v2.addElement(o) on line 30. If
the type of v2 remains Vector, we must constrain o to be a subtype of the formal
parameter of Vector.addElement(), which can be expressed by the constraint:
[ v2 ]=Vector → [ o ]≤[ Param(0,Vector:addElement(Object)) ]. Similarly, for
the case where the type of v2 becomes ArrayList, we have: [ v2 ]=ArrayList →
[ o ]≤[ Param(0,ArrayList:add(Object)) ]. These constraints can be combined
into a single unconditional constraint [o]≤Object (constraint (viii)) because both
Param-expressions evaluate to Object.

8 These types are only used during constraint solving. In other words, they are never
introduced in the refactored source code.
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class Client {
public static void main(String[] args){

Stack s1 = new Stack();
s1.push(new Integer(1));
Stack s2 = new Stack();
s2.push(new Float(2.2));
s2.push(new Float(3.3));
s1.moveFrom(s2);
s2.moveTo(s1);
Stack.print(s2);
Vector v1 = new Vector();
while (!s1.isEmpty()){
Number n = (Number)s1.pop();
v1.add(n);

}
JFrame frame = new JFrame();
frame.setTitle("Example");
frame.setSize(300, 100);
JTree tree = new JTree(v1);
frame.add(tree, BorderLayout.CENTER);
frame.setVisible(true);

}
}

class Stack {
private ArrayList v2;
public Stack(){

v2 = new ArrayList();
}
public void push(Object o){

v2.add(o);
}
public void moveFrom(Stack s3){

this.push(s3.pop());
}
public void moveTo(Stack s4){

s4.push(this.pop());
}
public Object pop(){

return v2.remove(v2.size() - 1);
}
public boolean isEmpty(){

return v2.isEmpty();
}
public static void print(Stack s5){

Iterator e = s5.v2.iterator();
while (e.hasNext())

System.out.println(e.next());
}

}

Fig. 10. The example program after the application of Replace Class refactoring

From constraints (i) and (iv) in Figure 9, it follows that [ A1 ]≤[ v1
]≤Vector, implying that the type A1 must remain Vector. However, the typ-
ing [ A2 ] ← ArrayList, [ v2 ] ← ArrayList satisfies the constraint system,
indicating that allocation site A2 can be migrated to ArrayList.

Producing the refactored source code requires keeping track of the choices
made for implication constraints and consulting the migration specification to
determine how expressions should be rewritten. The refactored source code for
the example program is shown in Figure 10.

A few additional complicating factors exist. In order to preserve synchroniza-
tion behavior, we rely on a simple escape analysis to determine whether Vectors
may escape their thread. Vectors that do not escape are migrated to ArrayLists
(if no constraints are violated). For escaping Vectors, we attempt a translation
that introduces a synchronization wrapper (rule (2) of Figure 8). Hence, there
are three alternatives for each Vector allocation site: it can remain a Vector,
become an unwrapped ArrayList, or a wrapped ArrayList. Preserving the be-
havior of downcasts requires additional constraints [1].

6 Related Work

Opdyke [15, page 27–28] identified some of the invariants that refactorings must
preserve. One of these, Compatible Signatures in Member Function Redefinition,
states that overriding methods must have corresponding argument types and
return types, corresponding to our constraints (8) and (9). Opdyke writes the
following about the Type-Safe Assignments invariant: “The type of each expres-
sion assigned to a variable must be an instance of the variable’s defined type, or
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an instance of one of its subtypes. This applies both to assignment statements
and function calls”. This corresponds to our constraints (1), (3), (12), and (14).

Fowler [7] presents a comprehensive classification of a large number of refac-
torings, which includes step-by-step directions on how to perform each of these
manually. Many of the thorny issues are not addressed. E.g., in the case of Ex-

tract Interface, Fowler only instructs one to “Adjust client type declarations
to use the interface”, ignoring the fact that not all declarations can be updated.

Tokuda and Batory [23] discuss refactorings for manipulating design patterns
including one called Substitute which “generalizes a relationship by replacing
a subclass reference to that of its superclass”. Tokuda and Batory point out that
“This refactoring must be highly constrained because it does not always work”.
Our model can be used to add the proper precondition checking.

Halloran and Scherlis [11] present an informal algorithm for detecting over-
specific variable declarations. This algorithm is similar in spirit to our General-

ize Declared Type refactoring by taking into account the members accessed
from a variable, as well as the variables to which it is assigned.

The Infer Type refactoring by Steimann et al. [20] lets a programmer select
a given variable and determines or creates a minimal interface that can be used
as the type for that variable. Steimann et al. only present their type inference
algorithm informally, but their constraints appear similar to those presented
in Section 2. In more recent work, Steimann and Mayer [19] observe that the
repeated use of Infer Type may produce suboptimal results (e.g., the creation
of many similar types). Their Type Access Analyzer performs a global analysis to
create a lattice that can be used as the basis for extracting supertypes, changing
the types of declarations, merging structurally identical supertypes, etc.

The KABA tool [21,18] generates refactoring proposals for Java applications
(e.g., indications that a class can be split, or that a member can be moved). In
this work, type constraints record relationships between variables and members
that must be preserved. From these type constraints, a binary relation between
classes and members is constructed that encodes precisely the members that
must be visible in each object. Concept analysis is used to generated a concept
lattice from this relation, from which refactoring proposals are generated.

Duggan’s approach for parameterizing classes [6] predates Java generics, and
his PolyJava language is incompatible with Java in several respects (e.g., the
treatment of raw types and arrays, no support for wildcards). Unlike our ap-
proach, Duggan’s takes a class as its input and relies on usage information to
generate constraints that relate the types of otherwise unrelated declarations. If
usage information is incomplete or unavailable, too many type parameters may
be inferred. To our knowledge, Duggan’s work was never fully implemented.

Donovan and Ernst [4] present solutions to both the parameterization and
the instantiation problems. For parameterization, a dataflow analysis is applied
to each class to infer as many type parameters as are needed to ensure type-
correctness. Then, type constraints are generated to infer how to instantiate
occurrences of parameterized classes. Donovan and Ernst report that “often the
class is over-generalized”, i.e., too many type parameters are inferred. Donovan
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and Ernst’s work predates Java generics (arrays of parameterized types are in-
ferred, which are not allowed in Java) and was never fully implemented.

Donovan et al. [5] present a solution to the instantiation problem based on
a context-sensitive pointer analysis. Their approach uses “guarded” constraints
that are conditional on the rawness of a particular declaration, and that require
a (limited) form of backtracking, similar to the implication constraints used
in Section 5. Our solution is more scalable than Donovan’s because it requires
neither context-sensitive analysis nor backtracking, and more general because it
is capable of inferring precise generic supertypes for subtypes of generic classes.
Moreover, as Donovan’s work predates Java 1.5, their refactoring tool does not
consider wildcard types and supports arrays of generic types (now disallowed).

Von Dincklage and Diwan [25] present a solution to both the parameteriza-
tion problem and the instantiation problem based on type constraints. Their
Ilwith tool initially creates one type parameter per declaration, and then uses
heuristics to merge type parameters. While the successful parameterization of
several classes from the Java standard collections is reported, some of the in-
ferred method signatures differ from those in the Java 1.5 libraries. It also ap-
pears that program behavior may be changed because constraints for overriding
relationships between methods are missing. As a practical matter, Ilwith does
not actually rewrite source code, but merely prints method signatures without
providing details on how method bodies should be transformed.

7 Conclusion

An important category of refactorings is concerned with manipulating types and
class hierarchies. For these refactorings, type constraints are an excellent basis
for checking preconditions and computing source code modifications. We have
discussed refactorings for generalization, for the introduction of generics, and for
performing migrations between similar classes, using slight variations on a com-
mon type constraint formalism. All of our refactorings have been implemented in
Eclipse, and several refactorings in the standard Eclipse distribution are based
on our research. A detailed evaluation of the performance and effectiveness of
our refactorings can be found in our earlier papers [8,1,13].
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