
Precise Data Flow Analysis in the Presence
of Correlated Method Calls

Marianna Rapoport1(B), Ondřej Lhoták1, and Frank Tip2

1 University of Waterloo, Waterloo, Ontario, Canada
{mrapoport,olhotak}@uwaterloo.ca

2 Samsung Research America, San Jose, CA, USA
ftip@samsung.com

Abstract. When two methods are invoked on the same object, the dis-
patch behaviours of these method calls will be correlated. If two cor-
related method calls are polymorphic (i.e., they dispatch to different
method definitions depending on the type of the receiver object), a pro-
gram’s interprocedural control-flow graph will contain infeasible paths.
Existing algorithms for data-flow analysis are unable to ignore such infea-
sible paths, giving rise to loss of precision.

We show how infeasible paths due to correlated calls can be elimi-
nated for Interprocedural Finite Distributive Subset (IFDS) problems, a
large class of data-flow analysis problems with broad applications. Our
approach is to transform an IFDS problem into an Interprocedural Dis-
tributive Environment (IDE) problem, in which edge functions filter out
data flow along infeasible paths. A solution to this IDE problem can be
mapped back to the solution space of the original IFDS problem. We for-
malize the approach, prove it correct, and report on an implementation
in the WALA analysis framework.

1 Introduction

A control-flow graph (CFG) is an over-approximation of the possible flows of
control in concrete executions of a program. It may contain infeasible paths that
cannot occur at runtime. The precision of a data-flow analysis algorithm depends
on its ability to detect and disregard such infeasible paths. The Interprocedural
Finite Distributive Subset (IFDS) algorithm [16] is a general data-flow analysis
algorithm that avoids infeasible interprocedural paths in which calls and returns
to/from functions are not properly matched. The Interprocedural Distributive
Environment (IDE) algorithm [18] has the same property, but supports a broader
range of data-flow problems.

This paper presents an approach to data-flow analysis that avoids a type
of infeasible path that arises in object-oriented programs when two or more
methods are dynamically dispatched on the same receiver object. If the method

This research was supported by the Natural Sciences and Engineering Research
Council of Canada and the Ontario Ministry of Research and Innovation.

c© Springer-Verlag Berlin Heidelberg 2015
S. Blazy and T. Jensen (Eds.): SAS 2015, LNCS 9291, pp. 54–71, 2015.
DOI: 10.1007/978-3-662-48288-9 4

Precise Data Flow Analysis in the Presence of Correlated Method Calls 55

calls are polymorphic (i.e., the method invoked depends on the run-time type
of the receiver), then their dispatch behaviours are correlated, and some of the
paths between them are infeasible. A recent paper [21] made this observation
but did not present any concrete algorithm to take advantage of it.

Our approach transforms an IFDS problem into an IDE problem that pre-
cisely accounts for infeasible paths due to correlated calls. The results of this
IDE problem can be mapped back to the data-flow domain of the original IFDS
problem, but are more precise than the results of directly applying the IFDS
algorithm to the original problem. We present a formalization of the transfor-
mation and prove its correctness: specifically, we prove it still soundly considers
all paths that are feasible, and that it avoids flow along all paths that are infea-
sible due to correlated calls.

We implemented the correlated-calls transformation and the IDE algorithm
in Scala, on top of the WALA framework for static analysis of JVM bytecode [5].
Our prototype implementation was tested extensively by using it to transform
an IFDS-based taint analysis into a more precise IDE-based taint analysis, and
applying the latter to small example programs with correlated calls. Our pro-
totype along with all tests will be made available to the artifact evaluation
committee.

The remainder of this paper is organized as follows. Section 2 presents a
motivating example. Section 3 reviews the IFDS and IDE algorithms. Section 4
presents the correlated-calls transformation, states the correctness properties1,
and discusses our implementation. Related work is discussed in Sect. 5. Finally,
Sect. 6 presents conclusions and directions for future work.

2 Motivation

We illustrate our approach using a small example that applies our technique to
improve the precision of taint analysis. A taint analysis computes how string val-
ues may flow from “sources”, which are typically statements that read untrusted
input, to “sinks”, which are typically security-sensitive operations such as calls
to a database. In previous research [2,6], taint analysis algorithms have been
formulated as IFDS problems.

Figure 1 shows a small Java program. The program declares a class A with
a subclass B, where A defines methods foo() and bar() that are overridden in
B. We assume that secret values are created by an unspecified function secret(),
which is called in A.foo() on line 2. Any write to standard output is assumed
to be a sink (e.g., the call to System.out.println() in B.bar()). Depending on the
number of arguments passed to the program, the main() method of the example
program creates either an A-object or a B-object. The program then calls foo()
on this object on line 18, which is followed by a call to bar() on the same object.

We wish to answer the following question: Is it possible for the untrusted
value that is read on line 2 to flow to the print statement? Consider the control-
flow supergraph for the example program that is shown in Fig. 2. The nodes
1 Detailed proofs of our lemmas and theorems can be found in the Technical

Report [15].

56 M. Rapoport et al.

Fig. 1. Example program containing
correlated calls

Fig. 2. Control flow supergraph for the exam-
ple program of Fig. 1. Dashed lines depict
interprocedural edges. An infeasible path is
shown in bold.

in this graph correspond to statements, method entry points (start nodes) and
method exit points (end nodes). For each method call, the graph contains a
distinct call-node and a return-node. Edges in the graph reflect intraprocedural
control flow, flow of control from a caller to a callee (edges from call-nodes to
start-nodes), or flow of control from a callee back to a caller (edges from end-
nodes to return-nodes).

In our example, the control flow within each method is straightforward and
all interesting issues arise from interprocedural control flow. In particular, since a
may point to either an A-object or a B-object, the call on line 18 may dispatch to
either A.foo() or to B.foo(), as is reflected by edges from the node labeled callfoo
to the nodes labeled startA.foo() and startB.foo() and by edges from the nodes
labeled endA.foo and endB.foo to the node labeled returnfoo . Similarly, there are
edges from the node labeled callbar to the nodes startA.bar() and startB.bar() , and
edges from the nodes labeled endA.bar and endB.bar to the node labeled returnbar .

An IFDS analysis propagates data-flow facts along the edges of a control
flow supergraph such as the one in Fig. 2. The IFDS algorithm already avoids
flow along infeasible paths from one call site, through a target method, and
returning to a different call site of the target method. However, in this example,
all methods are called in exactly one place, so IFDS is unable to eliminate data
flow along any of the paths shown in the figure. As a result, IFDS-based taint
analysis algorithms such as [2,6] would report that the secret value read on line 2
might flow to the print statement on line 10.

Precise Data Flow Analysis in the Presence of Correlated Method Calls 57

As we discussed previously, the calls to foo() and bar() may dispatch to the
implementations in classes A and B, because the receiver variable a may be
bound to objects of type A or B at run time. However, the methods foo() and
bar() are invoked on the same object. Thus the behaviours of the method calls
are correlated : if the call to foo() dispatches to A.foo(), then the call to bar()
must dispatch to A.bar(), and analogously for B.foo() and B.bar(). Consequently,
paths such as the one shown in bold in Fig. 2 where the calls dispatch to A.foo()
and B.bar() are infeasible.

Our main contribution is an algorithm for transforming an IFDS problem
into an IDE problem that expresses the feasibility of paths in light of correlated
calls. The approach associates with each interprocedural CFG edge a function
that records the types of variables that are used as the receiver of correlated
method calls. Paths that are composed of edges in which the same receiver
expression has different types are infeasible, and the propagation of data-flow
facts along such paths is prevented. Applying our technique to an IFDS-based
taint analysis would enable the resulting IDE-based taint analysis to determine
that no secret value can flow from line 2 to the print statement on line 10.

While the discussion in this section has focused on the specific problem of
taint analysis, our technique generally applies to any data-flow-analysis prob-
lem that can be expressed in the IFDS framework. This includes many common
analysis tasks such as reaching definitions, constant propagation, slicing, types-
tate analysis, pointer analysis, and lightweight shape analysis.

2.1 Occurrences of Correlated Calls

How often do correlated calls occur in practice? To assess the benefit of the
correlated-calls analysis, we counted the number of correlated calls that occur in
programs of the Dacapo benchmarks [3], using the WALA framework [5]. Our
goal was to obtain an upper bound on the number of redundant IFDS-result
nodes that could be potentially removed by our analysis. The results are shown
in the Technical Report [15].

In these programs, on average, 3 % of all call sites C are polymorphic call
sites CP . Out of these polymorphic call sites, a significant fraction (39 %) are
correlated call sites C�. We also see that, on average, each correlated-call receiver
is involved in approximately three correlated calls.

2.2 An Example from the Scala Collections Library

The Scala collections library contains the trait TraversableOnce that is shared
by both collections and iterators over them. The toArray method of this trait
creates an array and copies the contents of the collection or iterator into it:

val result = new Array[B](this. size)
this .copyToArray(result , 0)

When this refers to an iterator rather than a collection, the call to this.size
extracts all elements of the iterator to count them. At the call to copyToArray,

58 M. Rapoport et al.

the iterator is already empty, so nothing is copied to the newly created array.
One could design an IFDS analysis to detect this kind of bug.

However, the implementation of TraversableOnce.toArray is actually correct
because the above code is guarded with a test: if (this.isTraversableAgain) ...
When the isTraversableAgain method returns false, as it does for an iterator, the
toArray method uses a different (less efficient) implementation. The bug report
would therefore be a false positive. The isTraversableAgain method is easy to
analyze: it returns the constant true in a collection and the constant false in an
iterator. However, in order to eliminate the false positive bug report, an analysis
would need to rule out infeasible paths using correlated calls. Specifically, the
following path triggers the bug, but is infeasible: first, call isTraversableAgain
on a collection, returning true, then call size and copyToArray on an iterator.
Our correlated calls analysis could determine that this path is infeasible because
it calls the collection version of isTraversableAgain but the iterator versions of
size and copyToArray. The relevant code from TraversableOnce and other related
traits is shown in the Technical Report [15].

3 Background

This section defines terminology and presents the IFDS and IDE algorithms.

3.1 Terminology and Notation

The control-flow graph of a procedure is a directed graph whose nodes are
instructions, which contains an edge from n1 to n2 whenever n2 may execute
immediately after n1. A CFG has a distinguished start node startp and end
node endp. Following the presentation of Reps et al. [16,18], we follow every call
instruction with a no-op instruction, so that every call node is immediately fol-
lowed by a return node in the CFG. The control-flow supergraph of a program
contains the CFGs of all of the procedures as subgraphs. In addition, for each
call instruction c, the supergraph contains a call-to-start edge to the start node
of every procedure that may be called from c, and an end-to-return edge from
the end node of the procedure back to the call instruction.

A call site is monomorphic if it always calls the same procedure. In an object-
oriented language, a call site r.m(. . .) can dynamically dispatch to multiple meth-
ods depending on the runtime type of the object pointed to by the receiver r.
A call site that calls multiple procedures is called polymorphic. We define a func-
tion lookup to specify the dynamic dispatch: if s is the signature of m and t is
the runtime type of the object pointed to by r, lookup(s, t) gives the procedure
that will be invoked by the call r.m(. . .). We also define a function τ that may
be viewed as the inverse of lookup: given a signature s and a specific invoked
procedure f , τ(s, f) gives the set of all runtime types of r that cause r.m(. . .) to
dispatch to f : τ(s, f) = {t | lookup(s, t) = f}.

A path in the control-flow supergraph is valid if it follows the usual stack-
based calling discipline: every end-to-return edge on the path returns to the site

Precise Data Flow Analysis in the Presence of Correlated Method Calls 59

of the most recent call that has not yet been matched by a return. The set of all
valid paths from the program entry point to a node n is denoted VP(n).

A lattice2 is a partially ordered set (S,�) in which every subset has a least
upper bound, called join or �, and a greatest lower bound, called meet or �.
A meet semilattice is a partially ordered set in which every subset only has a
greatest lower bound. The symbols ⊥ and � are used to denote the greatest
lower bound of S and of the empty set, respectively.

We denote a map m as a set of pairs of keys and values, with each key
appearing at most once. For a map m, m(k) is the value paired with the key k.
We denote by m[x → y] a map that maps x to y and every other key k to m(k).

3.2 IFDS

The IFDS framework [16] is a precise and efficient algorithm for data-flow
analysis that has been used to solve a variety of data-flow analysis prob-
lems [4,9,12,22]. The IFDS framework is an instance of the functional approach
to data-flow analysis [19] because it constructs summaries of the effects of called
procedures. The IFDS framework is applicable to interprocedural data-flow prob-
lems whose domain consists of subsets of a finite set D, and whose data-flow func-
tions are distributive. A function f is distributive if f(x1 � x2) = f(x1) � f(x2).

The IFDS algorithm is notable because it computes a meet-over-valid paths
solution in polynomial time. Most other interprocedural analysis algorithms are
either: (i) imprecise due to invalid paths, (ii) general but do not run in polynomial
time [7,19], or (iii) handle a very specific set of problems [8].

The input to the IFDS algorithm is specified as (G∗, D, F, MF , �), where
G∗ = (N∗, E∗) is the supergraph of the input program with nodes N∗ and
edges E∗, D is a finite set of data-flow facts, F is a set of distributive data-flow
functions of type 2D → 2D, MF : E∗ → F assigns a data-flow function to each
supergraph edge, and � is the meet operator on the powerset 2D, either union
or intersection. In our presentation, the meet operator will always be union, but
all of the results apply dually when the meet is intersection.

The output of the IFDS algorithm is, for each node n in the supergraph, the
meet-over-all-valid-paths solution MVPF (n) =

�
q∈VP(n) MF (q)(�), where MF

is extended from edges to paths by composition.

Overview of the IFDS Algorithm. The key idea behind the IFDS algorithm
is that it is possible to represent any distributive function f from 2D to 2D by a
representation relation Rf ⊆ (D ∪ {0}) × (D ∪ {0}). The representation relation
can be visualized as a bipartite graph with edges from one instance of D∪{0} to
another instance of D ∪ {0}. The IFDS algorithm uses such graphs to efficiently
represent both the input data-flow functions and the summary functions that it
computes for called procedures. Specifically, the representation relation Rf of a
function f is defined as:
2 The definitions that we give here are of complete lattices and semilattices. Since all

of the (semi)lattices discussed in this paper are required to be complete, we omit
the complete qualifier.

60 M. Rapoport et al.

Rf = {(0, 0)} ∪ {(0, dj) | dj ∈ f(∅)} ∪ {(di, dj) | dj ∈ f({di}) \ f(∅)}.

Example 1. Given D = {u, v, w} and f(S) = S \ {v} ∪ {u}, the representation
relation Rf = {(0, 0), (0, u), (w, w)}, which is depicted in Fig. 3.

The representation relation decomposes a flow function into functions (edges)
that operate on each fact individually. This is possible due to distributivity:
applying the flow function to a set of facts is equivalent to applying it on each
fact individually and then taking the union of the results.

The meet of two functions can be computed as simply the union of their
representation functions: Rf�f ′ = Rf ∪ Rf ′ . The composition of two functions
can be computed by combining their representation graphs, merging the range
nodes of the first function with the corresponding domain nodes of the second
function, and finding paths in the resulting graph.

0 u v w

Rf

Fig. 3. Rf = {(0, 0), (0, u), (w, w)}

0 u v w

Rf

Rg

0 u v w

Rg ◦ Rf

Fig. 4. Rg ◦ Rf

Example 2. If g(S) = S \ {w} and f(S) = S \ {v} ∪ {u}, then Rg ◦ Rf =
{(0, 0), (0, u)}, as illustrated in Fig. 4.

Composition of two distributive functions f and f ′ corresponds to finding
reachable nodes in a graph composed from their representation relations Rf

and Rf ′ . Therefore, evaluating the composed data-flow function for a control
flow path corresponds to finding reachable nodes in a graph composed from the
representation relations of the data-flow functions for individual instructions.

It is this graph of representation relations that the IFDS algorithm operates
on. In this graph, called the exploded supergraph, each node is a pair (n, d),
where n ∈ N∗ is a node of the control-flow supergraph and d is an element of
D∪{0}. For each edge (n → n′) ∈ E∗, the exploded supergraph contains a set of
edges (n, di) → (n′, dj), which form the representation relation of the data-flow
function MF (n → n′). The IFDS algorithm finds all exploded supergraph edges
that are reachable by realizable paths in the exploded supergraph. A path is
realizable if its projection to the (non-exploded) supergraph is a valid path (i.e.,
if it is of the form (n0, d0) → (n1, d1) → · · · → (nm, dm) and where n0 → n1 →
· · · → nm is a valid path).

Example 3. The exploded supergraph for Listing 1 is shown in Fig. 5. The labels
on the edges will be explained in Sect. 3.3 We can see that there is a realizable
path, highlighted in bold, from the start node of the exploded graph to the vari-
able s at the node print(s) in the B.bar method. This means that s is considered
secret at that node.

Precise Data Flow Analysis in the Presence of Correlated Method Calls 61

Fig. 5. An example program demonstrating correlated-call edge functions on the 0-
node path for Listing 1. All non-labeled edges are implicitly labeled with identity
functions id. The variable ret denotes the return value of the A.foo method.

3.3 IDE

The IDE algorithm [18] extends IFDS to interprocedural distributive environment
problems. An IDE problem is one whose data-flow lattice is the lattice Env(D,L)
of maps from a finite set D to a meet semilattice L of finite height, ordered
pointwise. Like IFDS, IDE requires the data-flow functions to be distributive.

The input to the IDE algorithm is (G∗, D, L, MEnv) where G∗ is a control-
flow supergraph, D is a set of data-flow facts, L is a meet semilattice of finite
height, and MEnv : E∗ → (Env(D, L) → Env(D, L)) assigns a data-flow function
to each supergraph edge.

The output of the IDE algorithm is, for each node n in the supergraph, the
meet-over-all-valid-paths solution MVPEnv(n) =

�
q∈VP(n) MEnv(q)(�Env), where

�Env = λd.� is the top element of the lattice of environments, and MEnv is
extended from edges to paths by composition.

Overview of the IDE Algorithm. Just as any distributive function from
2D to 2D can be represented with a representation relation, it is also possible to
represent any distributive function from Env(D,L) to Env(D,L) with a pointwise
representation. A pointwise representation is a bipartite graph with the same
nodes3 and edges as a representation relation, except that each edge is labelled
with a micro-function, which is a function from L to L.

3 The IDE literature uses the symbol Λ for the node that is denoted 0 in the IFDS
literature. We use 0 throughout this paper for consistency.

62 M. Rapoport et al.

Thanks to distributivity, every environment transformer t : Env(D,L) →
Env(D,L) can be decomposed into its effect on �Env and on a set of environments
�Env[di → l] that map every element to � except one (di). Formally,

t(m)(dj) = λl.t(�Env)(dj) �
�

di∈D

λl.t(�Env[di → l])(dj).

The functions λl. · · · in this decomposition are the micro-functions that appear
on the edges of the pointwise representation edges from 0 to each dj and from
each di to each dj .4 The absence of an edge in the pointwise representation from
some di to some dj is equivalent to an edge with micro-function λl.�.

Example 4. In the exploded supergraph in Fig. 5, the micro-functions are shown
as labels on the graph edges. Every edge without an explicit label has the iden-
tity as its micro-function. The micro-functions on the three edges from the node
return secret() to the node endA.foo together represent the environment trans-
former λe.e[ret → λm.⊥ � λm.m].

To eliminate infeasible paths due to correlated calls, we encode the taint
analysis using environments e ∈ Env(D,L), where D is the set of variables and
L is a map from receiver variables to sets of possible types. The interpretation
of such an environment e is that a given variable v ∈ D may contain a secret
value in an execution in which the runtime types of the objects pointed to by
the receiver variables are in the sets specified by e(v).

The meet of two environment transformers t1, t2 is computed as the union
of the edges in their pointwise representations. When the same edge appears in
the pointwise representations of both t1 and t2, the micro-function for that edge
in t1 � t2 is the meet of the micro-functions for that same edge in t1 and in t2.

The composition of two environment transformers can be computed by com-
bining their pointwise representation graphs in the same fashion as IFDS rep-
resentation relations, and computing the composition of the micro-functions
appearing along each path in the resulting graph.

The IDE algorithm operates on the same exploded supergraph as the IFDS
algorithm (but its edges are labelled with micro-functions). For each pair (n, d)
of node and fact, IDE computes a micro-function equal to the meet of the micro-
functions of all the realizable paths from the program entry point to the pair.

In order to do this efficiently, the IDE algorithm requires a representation of
micro-functions that is general enough to express the basic micro-functions of
the data-flow functions for individual instructions, and that supports computing
the meet and composition of micro-functions.

A practical implementation of the IDE algorithm requires the input data-flow
functions to be provided in their pointwise representation as exploded super-
graph edges labelled with micro-functions. Specifically, the input is generally
provided as a function EdgeFn : (N∗ ×D)× (N∗ ×D) → F , where F is the set of

4 The IDE paper defines a more complicated but equivalent set of micro-functions
that eliminate some duplication of computation.

Precise Data Flow Analysis in the Presence of Correlated Method Calls 63

representations of micro-functions from L to L. Given an exploded supergraph
edge e = (n, d) → (n′, d′), EdgeFn((n, d), (n′, d′)) returns the micro-function
that appears on the exploded supergraph edge e. In an implementation, it can
be convenient to split the function EdgeFn into separate functions that han-
dle the cases when n → n′ is an intraprocedural edge, a call-to-return edge,
a call-to-start edge, or an end-to-return edge.

4 Correlated Calls Analysis

4.1 Transformations from IFDS to IDE

Let G# be the exploded supergraph of an arbitrary IFDS problem. A transfor-
mation T : (G#) → (G#, L, EdgeFn) converts the IFDS problem into an IDE
problem. We consider two IFDS-to-IDE transformations: an equivalence trans-
formation T ≡ (pronounced “t-equiv”) and a correlated-calls transformation T �

S

(pronounced “t-c-c”) for a set of receivers S. Both transformations keep the
exploded supergraph G# the same, and only generate different edge functions.
The solution of the IDE problem can be mapped back to an IFDS solution. If
the equivalence transformation was used, then this solution is identical to the
solution that would be computed by the IFDS algorithm for the original IFDS
problem. If the correlated-calls transformation was used, then this solution is
more precise because it excludes flow along infeasible paths due to correlated
calls.

Equivalence Transformation. The lattice for the equivalence transformation
T ≡ is the two-point lattice L≡ = {⊥, �}, where ⊥ means “reachable”, and �
means “not reachable”. The edge functions EdgeFn≡ are defined as

EdgeFn≡ =

{
λe . λm .⊥ if e = (n1,0) → (n2, d2), where d2 �= 0;
λe . id otherwise.

(1)

At a “diagonal” edge from a 0-fact to a non-0-fact d, the micro function returns ⊥
to make the fact d reachable. All other micro-functions are the identity function.

Correlated-Calls Transformation. In the correlated-calls transformation
T �
R , the lattice elements are maps from receivers to sets of types: L� ={
m : R → 2T

}
, where R is the set of considered receivers and T is the set

of all types. For each receiver r, the map gives an overapproximation of the pos-
sible runtime types of r. Sets of types are ordered by the superset relation, and
this is lifted to maps from receivers to sets of types, so the bottom element ⊥�
maps every receiver to the set of all types, and the top element �� maps every
receiver to the empty set of types. During an actual execution, every receiver r
points to an object of some runtime type. Therefore, a data-flow fact is unreach-
able along a given path if its corresponding lattice element maps any receiver to
the empty set of types.

64 M. Rapoport et al.

A micro-function f ∈ L� → L� defines how the map from receivers to
types should be updated when an instruction is executed. The micro-function
for most kinds of instructions is the identity. On a call to and return from a
specific method m called on receiver r, the micro-function restricts the receiver-
to-type map to map r only to types consistent with the polymorphic dispatch
to method m. Finally, when an instruction assigns an object of unknown type
to a receiver r, the corresponding micro-function updates the map to map r to
the set of all types. This is made precise by the following definition:

Definition 1. Given a previously fixed set S ⊆ R of receivers, the micro-
function εS(e) of a supergraph edge e is defined as:

εS(e) = λm . (2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m[r → m(r) ∩ τ(s, f)], if e is a call-start edge r.c() → startf that calls
procedure f with signature s, and r ∈ S;

m[r → m(r) ∩ τ(s, f)]
[v1 → ⊥T] . . . [vk → ⊥T],

if e is an end-return edge endf → returnr.c() from
method f with signature s to the return node cor-
responding to the call r.c(), v1, . . . , vk ∈ S are
the local variables in f , and r ∈ S;

m [r → ⊥T] , if e = n1 → n2 and n1 contains an assignment to
r ∈ S;

m otherwise.

In the above definition, the purpose of the set S is to limit the set of consid-
ered receivers. We will use S in Sect. 4.5.

We can now define EdgeFn, which assigns a micro-function to each edge in
the exploded supergraph. Along a 0-edge, the micro function is the identity. On
a “diagonal” edge from 0 to a non-0 fact that corresponds to some data-flow
fact becoming reachable, εS(e) is applied to ⊥� that maps every receiver to an
object of every possible type. On all other edges, εS(e) is applied to the existing
map before the edge. The is formalized in the following definition.

Definition 2. For each edge e = (n1, d1) → (n2, d2), EdgeFn�
S (e) is defined as

follows:

EdgeFn�
S (e) =

⎧⎪⎨
⎪⎩
id if d1 = d2 = 0,

λm . εS(e)(⊥�) if d1 = 0 and d2 �= 0,

λm . εS(e)(m) otherwise.
(3)

Example 5. Consider the program from Fig. 1, whose exploded supergraph
appeared in Fig. 5. Returning a secret value in method A.foo creates a “diago-
nal” edge from the 0-fact to the method’s return value r. The diagonal edge is
labeled with λm .⊥�, so every receiver is mapped to the set of all types ⊥T . On
the end-return edge from A.foo to main, the set of types of a is restricted by the
micro function λm .m[a → m(a) ∩ {A}] corresponding to the assignment of the

Precise Data Flow Analysis in the Presence of Correlated Method Calls 65

return value r to v. On the call-start edge from main to B.bar, the possible types
of a are further restricted by the micro-function λm .m[a → m(a) ∩ {B}] on the
edge that passes the argument v to the parameter s. The composition of these
micro functions results in the empty set as the possible types of a, indicating
that this path is infeasible.

4.2 Converting IDE Results to IFDS Results

An IFDS solution RIFDS has type N∗ → 2D: it maps each program point n to a
set of facts d that may be reached at n. An IDE solution RIDE pairs each such
fact d with a lattice element �, so its type is N∗ → (D → L).

In the equivalence transformation lattice L≡, ⊥ means reachable and �
means unreachable. Therefore, an IDE solution ρ computed using T ≡ is con-
verted to an IFDS solution as: U≡(ρ) = λn.{d | ρ(n)(d) �= �}. In the correlated-
calls transformation lattice L�, a map that maps any receiver to the empty
set of possible types means that the corresponding data-flow path is infeasi-
ble. Therefore, an IDE solution ρ computed using T �

S is converted to an IFDS
solution as

U�(ρ) = λn.{d | ∀r ∈ S . ρ(n)(d)(r) �= �T }. (4)

4.3 Implementation of Correlated Calls Micro-Functions

Conceptually, micro-functions are functions from L to L, where L is the IDE
lattice, either L≡ or L� in our context. The IDE algorithm requires an efficient
representation of micro-functions. The representation must support the basic
micro-functions that we presented in Sect. 4.1, and it must support function
application, comparison, and be closed under function composition and meet.
We now propose such a representation for the correlated-calls micro-functions.

The representation of a micro-function is a map from receivers to pairs of
sets of types I(r) and U(r), where U(r) is required to be a subset of I(r). We
use the notation 〈I, U〉 to represent such a map, and I(r) and U(r) to look up
the sets corresponding to a particular receiver r. The micro-function takes the
existing set of possible types of the receiver r, intersects it with I(r), then unions
it with U(r): [[〈I, U〉]] = λm . λr . (m(r) ∩ I(r)) ∪ U(r).

All of the basic micro-functions defined in Definition 1 can be expressed
in this representation. The following lemmas show how function comparison,
composition, and meet can be implemented using basic set operations on I and
U . The proofs of all of the lemmas and theorems are in the Technical Report [15].

Lemma 1. For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,

∀r . I(r) = I ′(r) ∧ U(r) = U ′(r) ⇐⇒ [[〈I, U〉]] = [[〈I ′, U ′〉]]. (5)

Lemma 2. For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,

[[〈I, U〉 ◦ 〈I ′, U ′〉]] = [[〈I, U〉]] ◦ [[〈I ′, U ′〉]],

66 M. Rapoport et al.

where the composition of two micro-function representations is defined as follows:

〈I, U〉 ◦ 〈I ′, U ′〉 = 〈λr . (I(r) ∩ I ′(r)) ∪ U(r), λr . (I(r) ∩ U ′(r)) ∪ U(r)〉 .

Lemma 3. Let [[〈I, U〉]] � [[〈I ′, U ′〉]] = λm.λr.[[〈I, U〉]](m)(r) ∪ [[〈I ′, U ′〉]](m)(r).
For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,

[[〈I, U〉 � 〈I ′, U ′〉]] = [[〈I, U〉]] � [[〈I ′, U ′〉]], (6)

where the meet of two micro-function representations is defined as follows:

〈I, U〉 � 〈I ′, U ′〉 = 〈λr . I(r) ∪ I ′(r), λr . U(r) ∪ U ′(r)〉 .

4.4 Theoretical Results

The following lemma shows that our analysis is sound, i.e. that the resulting
IDE problem still considers all data-flow paths that are actually feasible.

Lemma 4 (Soundness). Let P be an IFDS problem and p = [startmain, . . . , n]
a concrete execution path, and let d ∈ D. If d ∈ MF (p)(∅), then

d ∈ U� (
RIDE(T �

R (P))
)
(n) .

We also show that the result of an IDE problem obtained through a
correlated-calls transformation is a subset of the original IFDS result.

Lemma 5 (Precision). For an IFDS problem P and all n ∈ N∗,

U� (
RIDE(T �

R (P))
)
(n) ⊆ RIFDS(P)(n) . (7)

4.5 Correlated-Call Receivers

We will now show that in a correlated-calls transformation, it is enough to con-
sider only some of the receivers of set R.

Definition 3. If r ∈ R is the receiver of at least two polymorphic call sites,
then we call r a correlated-call receiver, and we define R� as the set of all such
receivers.

We will show that it is sufficient for the correlated-calls micro-functions to
be defined only on correlated-call receivers. Specifically, a “reduced” correlated-
calls transformation that considers only correlated-call receivers in the micro-
functions yields the same solution as the full correlated-calls transformation (i.e.
no precision is lost).

Lemma 6. Let P be an IFDS problem. Then

U� (
RIDE

(
T �
R�(P)

))
= U�(RIDE

(
T �
R (P)

)
) . (8)

Precise Data Flow Analysis in the Presence of Correlated Method Calls 67

4.6 Efficiency

Both the IFDS and IDE algorithms have been proven to run in O(ED3)
time [16,18], where E is the number of edges in the (non-exploded) supergraph,
and D is the size of the set of facts. The IDE algorithm may evaluate micro-
functions up to O(ED3) times, so this running time must be multiplied by the
cost of evaluating a micro-function. We show that the micro-functions in the
correlated-calls IDE analysis can be evaluated in time O(R�T), where R� is
the number of correlated-call receivers R� and the T is the number of run-time
types. Therefore, the overall worst-case cost of the correlated-calls IDE analy-
sis is O(ED3R�T). In practice, R� is much smaller than R, so Lemma 6 is
significant for performance.

Specifically, the complexity proof for the IDE algorithm requires the imple-
mentation of the micro-functions to be efficient according to a list of specific
criteria. Our micro-function implementation does satisfy the criteria:

Lemma 7. The correlated-call representation of a micro function is efficient
according to the IDE criteria [18] and the required operations on micro-functions
can be computed in time O(R�T).

4.7 Implementation of the Correlated-Calls Analysis

We implemented the correlated-calls analysis in Scala [14]. Our implementation
analyzes JVM bytecode compiled from input programs written in Java. We use
WALA [5] to retrieve information about an input program, such as its control-
flow supergraph and the set of receivers and their types. Since WALA does
not contain an implementation of the IDE algorithm, we implemented it from
scratch; we are working on contributing our infrastructure to WALA.

We tested our correlated-calls analysis using an IFDS taint-analysis as a
client analysis. To this end, we converted the IFDS taint analysis into an IDE
problem with an implementation of T �

R� . We extensively tested the correlated-
calls analysis to ensure that, in the absence of correlated calls, the analysis
produces the same results as an IFDS-equivalent analysis, and that it produces
more precise results in the presence of correlated calls as expected.

To evaluate the practicality of our approach, we applied two variants of the
IFDS taint analysis to the SPEC JVM98 benchmarks: (i) an equivalent IDE
taint analysis obtained using T ≡, and (ii) an IDE taint analysis obtained using
T �
R� that avoids imprecision due to correlated method calls.

The equivalence analysis is there for two reasons: (i) to explain how a
correlated-calls-IDE problem can be derived from an IDE problem that has the
same meaning as the original IFDS problem, and (ii) to provide a base line
against which to compare the efficiency of the correlated-calls analysis. We com-
pare the efficiency of the correlated-calls analysis against the equivalence-IDE
analysis instead of the IFDS analysis because the time complexities of an IFDS
and an equivalent IDE analysis are the same: an equivalent IDE analysis is just
an IFDS analysis in which all edges are labeled with identity micro functions,
and all operations on those functions are optimized to be constant-time.

68 M. Rapoport et al.

The running times t� of the correlated-calls and t≡ equivalence analyses
are shown in Table 1. In the table, N∗

r is the number of reachable nodes in the
control-flow supergraph, and N#

r the number of reachable nodes in the exploded
supergraph.

Table 1. Running times of the analyses

Benchmark N∗
r N#

r t≡ t�

Compress 2,155 24,730 0:00:02 0:00:04

Db 2,285 22,938 0:00:06 0:00:12

Jack 17,602 284,625 0:06:06 0:11:31

Javac 40,430 510,810 0:46:06 1:45:57

Jess 14,448 316,418 0:10:19 0:13:33

Mpegaudio 11,959 224,886 0:01:57 0:00:54

Mtrt 3,597 88,267 0:00:34 0:00:33

Raytrace 3,597 88,267 0:00:38 0:00:37

The results suggest that the overhead of tracking correlated calls is accept-
able. In particular, the correlated-calls analysis takes at most twice as long as
the equivalence analysis. The absolute times range from a few seconds on the
smaller SPEC programs to about two hours on javac.

Our implementation is a research prototype and many opportunities for opti-
mization remain. For the specific combination of this IFDS client analysis and
these benchmark programs, tracking correlated calls did not impact precision.

5 Related Work

The IFDS algorithm is an instance of the functional approach to data-flow analy-
sis developed by Sharir and Pnueli [19]. IFDS has been used to encode a variety
of data-flow problems such as typestate analysis [12,23] and shape analysis [9].
IFDS has been used [2,22] and extended [10] to solve taint-analysis problems.

Naeem and Lhoták [13] proposed several extensions of IFDS. In particular,
they propose several techniques for improving the algorithm’s efficiency, as well
as a technique that improves expressiveness by extending applicability to a wider
class of dataflow analysis problems. These extensions are orthogonal to, and
could be combined with the approach presented in this paper. Our work differs
from theirs by targeting analysis precision, not efficiency or expressiveness.

Bodden et al. [4] presents a framework for applying IFDS analyses to soft-
ware product lines. Their approach enables the analysis of all possible products
derived from a product line in a single analysis pass. Like our approach, their
approach transforms IFDS problems to IDE problems. The micro-functions keep
track of the possible program variations specified by the product line. Rodriguez
and Lhoták evaluate a parallelized implementation of the IFDS algorithm using
actors [17] that can take advantage of multiple processors.

Precise Data Flow Analysis in the Presence of Correlated Method Calls 69

The idea of using correlated calls to remove infeasible paths in data-flow
analyses of object-oriented programs was introduced by Tip [21]. The possibility
of using IDE to achieve this is mentioned, but not elaborated upon. Our work
is the first to present and implement a concrete solution.

Recent work on correlation tracking for JavaScript [20] also eliminates infea-
sible paths. Instead of infeasible paths between dynamically dispatched method
calls, their approach eliminates infeasible paths between reads and writes of dif-
ferent properties of an object. The approach differs from ours in that it targets
points-to analysis rather than IFDS analyses, in that it targets infeasible paths
due to different property names rather than different dynamically dispatched
methods, and in that it employs context sensitivity to improve precision.

Our approach superficially resembles, but is orthogonal to, context sensi-
tivity, including the CPA algorithm [1] and such variations as object sensitiv-
ity [11]. Context-sensitive points-to analysis is orthogonal to our work because
it analyzes the flow of data (pointers), whereas we analyze control flow paths.
Also, object-sensitive points-to analysis is flow-insensitive, while IFDS and IDE
are flow-sensitive analyses. Note that our transformation only makes sense in a
flow-sensitive setting since a flow-insensitive analysis already introduces many
infeasible control flow paths.

It would be possible to simulate the effect of our correlated calls transfor-
mation in the following way inspired by context-sensitivity: we could re-analyze
each method in a number of contexts. There would be a separate context for
every possible assignment of concrete types to all of the pointers in the method
that are used as receivers at a call site. The number of such contexts for each
method would be O(RT), where R is the number of receiver pointers in the
method and T is the number of possible concrete types that could be assigned
to a receiver pointer. Our approach computes equally precise analysis results but
avoids this exponential cost.

6 Conclusions

Previous algorithms for data-flow analysis are unable to avoid propagating data-
flow facts along infeasible paths that arise in the presence of correlated polymor-
phic method calls. We present an approach for transforming an IFDS problem
into an IDE problem in which path feasibility is encoded into functions associ-
ated with edges in an exploded control-flow supergraph. The solution to this IDE
problem can be mapped back to the solution space of the original IFDS problem,
and is more precise for some client programs because data flow along infeasible
paths is prevented. We present a formalization of the transformation, prove its
correctness, and briefly report on preliminary experiments with our prototype
implementation. Full proof details are available in the Technical Report [15]. As
future work, it is possible to adapt our approach to work on IDE problems. We
would convert an initial IDE problem into a more complex IDE problem, such
that the solution of the latter generates a more precise solution to former, by
preventing data flow along infeasible paths.

70 M. Rapoport et al.

References

1. Agesen, O.: Concrete Type Inference: Delivering Object-Oriented Applications.
Ph.D. thesis, Stanford University (1995)

2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., McDaniel, P.: FlowDroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In: PLDI 2014, p. 29 (2014)

3. Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,
Jump, M., Lee, H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA 2006, pp. 169–190 (2006)

4. Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: SPLLIFT
- statically analyzing software product lines in minutes instead of years. In: Soft-
ware Engineering 2014, pp. 81–82 (2014)

5. Fink, S., Dolby, J.: WALA – the TJ Watson libraries for analysis (2012). http://
wala.sourceforge.net

6. Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J., Teilhet, S., Berg, R.: Saving the
world wide web from vulnerable JavaScript. In: ISSTA 2011, pp. 177–187 (2011)

7. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: CC 1992, pp.
125–140 (1992)

8. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: efficient and optimal bitvec-
tor analyses for parallel programs. ACM Trans. Program. Lang. Syst. 3, 268–299
(1996)

9. Kreiker, J., Reps, T., Rinetzky, N., Sagiv, M., Wilhelm, R., Yahav, E.: Interproce-
dural shape analysis for effectively cutpoint-free programs. In: Voronkov, A., Wei-
denbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 414–445. Springer,
Heidelberg (2013)

10. Lerch, J., Hermann, B., Bodden, E., Mezini, M.: FlowTwist: efficient context-
sensitive inside-out taint analysis for large codebases. In: FSE 2014, pp. 98–108
(2014)

11. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41 (2005)

12. Naeem, N.A., Lhoták, O.: Typestate-like analysis of multiple interacting objects.
In: OOPSLA 2008, pp. 347–366 (2008)

13. Naeem, N.A., Lhoták, O., Rodriguez, J.: Practical extensions to the IFDS algo-
rithm. In: CC 2010, pp. 124–144 (2010)

14. Odersky, M.: Essentials of Scala. In: LMO 2009, p. 2 (2009)
15. Rapoport, M., Lhoták, O., Tip, F.: Precise data flow analysis in the presence

of correlated method calls. Technical report CS-2015-07, University of Waterloo
(2015)

16. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL 1995, pp. 49–61 (1995)

17. Rodriguez, J.D.: A concurrent IFDS dataflow analysis algorithm using actors. Mas-
ter’s thesis, University of Waterloo (2010)

18. Sagiv, S., Reps, T. W., and Horwitz, S.: Precise interprocedural dataflow analysis
with applications to constant propagation. In: TAPSOFT 1995, pp. 651–665 (1995)

19. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–234 (1981)

http://wala.sourceforge.net
http://wala.sourceforge.net

Precise Data Flow Analysis in the Presence of Correlated Method Calls 71

20. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking
for points-to analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol.
7313, pp. 435–458. Springer, Heidelberg (2012)

21. Tip, F.: Infeasible paths in object-oriented programs. Sci. Comput. Program. 97,
91–97 (2015)

22. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: TAJ: effective taint
analysis of web applications. In: PLDI 2009, pp. 87–97 (2009)

23. Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement
for program analyses in Datalog. In: PLDI 2014, p. 27 (2014)

	Precise Data Flow Analysis in the Presence of Correlated Method Calls
	1 Introduction
	2 Motivation
	2.1 Occurrences of Correlated Calls
	2.2 An Example from the Scala Collections Library

	3 Background
	3.1 Terminology and Notation
	3.2 IFDS
	3.3 IDE

	4 Correlated Calls Analysis
	4.1 Transformations from IFDS to IDE
	4.2 Converting IDE Results to IFDS Results
	4.3 Implementation of Correlated Calls Micro-Functions
	4.4 Theoretical Results
	4.5 Correlated-Call Receivers
	4.6 Efficiency
	4.7 Implementation of the Correlated-Calls Analysis

	5 Related Work
	6 Conclusions
	References

