
Generic Techniques for Source-Level Debugging and
Dynamic Program Slicing

Frank Tip�

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
tip@cwi.nl

Abstract. Algebraic specifications have been used successfully as a formal basis
for software development. This paper discusses how the origin and dynamic
dependence relations implicitly defined by an algebraic specification can be used
to define powerful language-specific tools. In particular, the generation of tools
for source-level debugging and dynamic program slicing from specifications of
interpreters will be addressed.

1 Introduction

Algebraic specifications [4] have been used successfully for the generation of a variety
of software development tools, such as typecheckers [9], interpreters [10], and program
analysis tools [11, 12, 21]. The present paper discusses how two previously developed
language-independent techniques, origin tracking [8] and dynamic dependence tracking
[13], can be used to derive powerful language-specific debugging tools from algebraic
specifications of interpreters. In particular, we show that—in addition to “standard”
debugger features such as single-stepping, state inspection, and breakpoints—a variation
of dynamic program slicing [1, 17] can be defined with surprisingly little effort. The
main contribution of this paper is to show that the information required to construct such
debugging tools is to a very large extent language-independent and implicitly present in
a language’s specification.

We assume that specifications are executed by conditional term rewriting [16].
Specifically, an algebraic specification of an interpreter expresses the execution of a
program as the rewriting of a term consisting of a function execute applied to the
abstract syntax tree (AST) of that program. Rewriting this term produces a sequence of
terms that effectively represent the consecutive internal states of the interpreter. Origin
tracking is a method for tracing occurrences of the same subterm in a sequence of terms,
and is used for the definition of single-stepping and breakpoints. Dependence tracking
establishes certain minimal dependence relations between terms in a rewriting sequence,
and is used to obtain dynamic slices.

2 Specification of an interpreter

We illustrate our ideas by way of a simple language L that features assignments, if
statements, while statements, and statement sequences. L-expressions are constructed
� Supported in part by the European Union under ESPRIT project # 5399 (Compiler Generation

for Parallel Machines—COMPARE).



from constants, variables, arithmetic operators ‘+’, ‘-’, and ‘*’, and the equality test
operator ‘=’. Fig. 1 shows an algebraic specification of an L-interpreter. The execution
of an L-programP corresponds to the rewriting of the termexecute(tP) according to
this specification, where tP is the term that constitutes the AST ofP ; this will ultimately
result in a (term that represents a) list containing the final value of each variable.

/* top-level function for execution of programs */

[L1] execute(declare DeclSeq begin StatSeq end) = exec(StatSeq, create(DeclSeq, �e))

/* functions for creation and manipulation of environments */

[L2] create(�d, Env) = Env
[L3] create(Var;DeclSeq, Env) = create(DeclSeq, Var �� 0; Env)
[L4] lookup(Var �� Constant;Env, Var) = Constant
[L5] lookup(Var �� Constant;Env, Var�) = lookup(Env, Var�) when Var �� Var�

[L6] update(Var �� Constant;Env, Var, Constant�) = Var �� Constant� ;Env
[L7] update(Var �� Constant;Env, Var�, Constant�) = Var �� Constant; update(Env, Var�, Constant�) when Var �� Var�

/* evaluation of expressions */

[L8] eval(Constant, Env) = Constant
[L9] eval(Var, Env) = lookup(Var, Env)
[L10] eval((Exp + Exp�), Env) = intadd(eval(Exp, Env), eval(Exp�, Env))
[L11] eval((Exp - Exp�), Env) = intsub(eval(Exp, Env), eval(Exp�, Env))
[L12] eval((Exp * Exp�), Env) = intmul(eval(Exp, Env), eval(Exp�, Env))
[L13] eval((Exp = Exp�), Env) = inteq(eval(Exp, Env), eval(Exp�, Env))

/* execution of (lists of) statements */

[L14] exec(�s, Env) = Env
[L15] exec(Var := Exp;StatSeq, Env) = exec(StatSeq, update(Env, Var, eval(Exp, Env)))
[L16] exec(if Exp then StatSeq else StatSeq� end;StatSeq�� , Env) = exec(StatSeq�� , exec(StatSeq, Env))

when eval(Exp, Env) �� 0
[L17] exec(if Exp then StatSeq else StatSeq� end;StatSeq�� , Env) = exec(StatSeq�� , exec(StatSeq� , Env))

when eval(Exp, Env) = 0
[L18] exec(while Exp do StatSeq end; StatSeq�, Env) = exec(while Exp do StatSeq end; StatSeq� , exec(StatSeq, Env))

when eval(Exp, Env) �� 0
[L19] exec(while Exp do StatSeq end; StatSeq�, Env) = exec(StatSeq� , Env)

when eval(Exp, Env) = 0

Fig. 1. Algebraic specification of an L-interpreter.

Term rewriting is a cyclic process where each cycle involves determining a subterm
t and a rule l � r such that t and l match. This is the case if a substitution � can be
found that maps every variable X in l to a term ��X� such that t � ��l� (� distributes
over function symbols). For rewrite rules without conditions, the cycle is completed by
replacing t by the instantiated right-hand side��r�. A term for which no rule is applicable
to any of its subterms is called a normal form; the process of rewriting a term to its
normal form (if it exists) is referred to as normalizing. A conditional rewrite rule (e.g.,
[L16]) is only applicable if all its conditions succeed; this is determined by instantiating
and normalizing the left-hand side and the right-hand side of each condition. Positive
conditions (of the form t1 � t2) succeed iff the resulting normal forms are syntactically
equal, negative conditions (t1 �� t2) if they are syntactically different.



The specification of Fig. 1 is based on the manipulation of an environment, i.e., a
list containing the current value of each variable. [L1] defines the top-level function
execute in terms of two other functions, create and exec. The former, create,
uses the declarations of the program to create an initial environment, where each variable
has the value 0 ([L2] and [L3])2. The latter, exec, specifies the execution of a list of
statements; it “uses” the functions lookup ([L4]–[L5]) for retrieving a value from
an environment, and update ([L6]–[L7]) for updating the value of a variable in an
environment. Rules [L8]–[L13] define a recursive function eval for evaluating L-
expressions. The specification of the primitive operationsintadd,intsub, intmul,
and inteq is omitted here. [L14] states that executing the empty list of statements
does not affect the environment. In [L15]–[L19], the cases are specified where the
statement list is non-empty. [L15] defines the execution of an assignment in terms of
the evaluation of its right-hand side expression, and an update of the environment. In
[L16]–[L17] the execution of a non-empty statement list beginning with an if–then–
else construct is defined by conditional rules; [L16] and [L17] correspond to situations
where the control predicate evaluates to any non-zero value and zero, respectively. The
execution of a while statement is specified in a similar way ([L18]–[L19]).

Fig. 2 (a) shows an example L-program. By applying the equations of Fig. 1, the
environment of Fig. 2 (b) is produced.

declare
i; s; p;

begin
i := 5;
s := 0;
p := 1;
while i do

s := (s + i);
p := (p * i);
i := (i - 1);

end;
end

p �� 120;
s �� 15;
i �� 0;

(a) (b)

Fig. 2. (a) Example L-program. (b) Environment obtained by executing the program of (a)
according to the specification of Fig. 1.

3 Basic techniques

In this section, we will briefly present origin tracking and dynamic dependence tracking.
Due to space limitations, only an informal description of these techniques is presented
here; the reader is referred to [8, 13, 21] for formal definitions.

3.1 Origin tracking

In the discussion below, it is assumed that a term S is rewritten to a term T in zero
or more steps: S �� T . In [8, 21], the origin relation is formally defined as a relation

2 This specification assumes that every variable is properly declared.



between subterms of S and subterms of T ; associated with every subterm T � of T is
a set of subterms, OriginOf�T ��, of the initial term S—the origin of T �. The principal
properties of the origin relation are that: (i) relations involve equal terms (in the sense
of rewriting): for each subterm S � � OriginOf�T �� we have that S��� T �, and that (ii)
relations are defined in an inductive manner. For a reduction of length zero, the origin
relation is the identity relation; for a multi-step reduction S�� T

r
� U , the origin of a

subtermU � of U is defined in terms of the origins of subterms of T , and the structure of
the applied rule, r.

p

(1)
(2)

[L18]

;

while

;

:=

;

while

;

:=

;

:=

(3)

(4)

(5)

(6)

(7)

U V

exec exec

exec

i

s

,

=

1p

i

s

s

,

=

1

Fig. 3. Origin relations.

As an example, Fig. 3 depicts an application of [L18] to a while-term. Dotted lines
in the figure indicate origin relations. The relation labeled (1) is the relation between the
roots of U and V —such a relation is always present. Variables that occur in both the
left-hand side and the right-hand side of [L18] cause more origin relations to appear—
variable Exp gives rise to the relation labeled (6), variable StatSeq to the sets of relations
labeled (5) and (7), and variable Env to the relations labeled (4). The relation labeled (3)
is caused by the occurrence of a subterm while Exp do StatSeq end in both the left-hand
side and the right-hand side of [L18]. Relation (2) is also caused by a common subterm.

Note that the rightmostexec function symbol in term V is not related to any symbol
in U—its origin is the empty set. In general, a term will have a non-empty origin if it
was derived directly from a subterm of the initial term (here: the program’s AST). In
[8, 21], a number of sufficient constraints on specifications is stated that guarantee that
origin sets of subterms with a specific root function symbol, or of a specific sort, contain
at least one, or exactly one element. The specification of Fig. 1 satisfies the constraints
necessary to guarantee that each “statement” subterm will have an origin set containing
exactly one element. For specifications that do not conform to these constraints, the
origin relation of [7, Chapter 7] may be used, which is applicable to any specification
of a compositional nature.



3.2 Dynamic dependence tracking

Consider the following simple rules for integer arithmetic:

[A1] intmul�0�X� = 0
[A2] intmul�intmul(X, Y)� Z� = intmul�X�intmul(Y, Z)�

By applying these rules, the term intsub(3, intmul(intmul(0, 1), 2)) may
be rewritten as follows (subterms affected by rule applications are underlined):

T0 � intsub�3�intmul(intmul(0, 1), 2)� �� [A2]

T1 � intsub�3�intmul(0, intmul(1, 2))� �� [A1]

T2 � intsub�3�0�

By carefully studying this example reduction, we can make the following observations:

– The outer context intsub(3, �) of T0 (‘�’ denotes a missing subterm) is not
affected at all, and therefore reappears in T1 and T2.

– The occurrence of variables X, Y, and Z in both the left-hand side and the right-hand
side of [A2] causes the respective subterms 0, 1, and 2 of the underlined subterm
of T0 to reappear in T1.

– Variable X only occurs in the left-hand side of [A1]. Consequently, the subterm
(of T1) intmul(1, 2) matched against X does not reappear in T2. In fact, we can
make the stronger observation that the subterm matched against X is irrelevant for
producing the constant 0 in T2: the “creation” of this subterm 0 only requires the
presence of the context intmul(0, �) in T1.

The above observations are the cornerstones of the dynamic dependence relation of [13,
21]. Notions of creation and residuation are defined for single rewrite-steps. The former
involves function symbols produced by rewrite rules whereas the latter corresponds to
situations where symbols are copied, erased, or not affected by rewrite rules3. Fig. 4
shows all residuation and creation relations for the example reduction discussed above.

Roughly speaking, the dynamic dependence relation for a multi-step reduction �

consists of the transitive closure of creation and residuation relations for the individual
rewrite steps in �. In [13, 21], the dynamic dependence relation is defined as a relation
on contexts, i.e., connected sets of function symbols in a term. The fact that C is a
subcontext of a term T is denoted C v T . For any reduction � that transforms a term T

into a term T �, a term slice with respect to some C� v T � is defined as the subcontext
C v T that is found by tracing back the dynamic dependence relations from C �. The
term slice C satisfies the following properties:

1. C can be rewritten to a term D� w C � via a reduction ��, and
2. �� is a subreduction of the original reduction �. Intuitively, �� contains a subset of

the rule applications in �.

3 The notions of creation and residuation become more complicated in the presence of so-called
left-nonlinear rules and collapse rules. This is discussed at greater length in [13, 21].



(A2) (A1)

T1T0 T2

creation

residuation

0

intmul

intmul

intsub intsub

intmul

intmul

intsub

0

3

1

2

3

0

1 2

3

Fig. 4. Example of creation and residuation relations.

In cases where no confusion arises, we will write C � SliceOf�C �� to indicate that C is
the term slice with respect to C� for some reduction � : T��T �, C v T , and C � v T �.

Returning to the example, we can determine the term slice with respect to the entire
term T2 by tracing back all creation and residuation relations to T0; the reader may
verify that SliceOf(intsub(3, 0)) = intsub(3, intmul(intmul(0, �), �)).

3.3 Application to specifications of interpreters

Fig. 5 depicts some of the relations established by origin tracking and dynamic depen-
dence tracking as a result of executing the program of Fig. 2. The figure shows the
initial term S, the final term T and an intermediate term U that occur in the process of
executing the program according to the specification of Fig. 1. The intermediate term
U corresponds to the situation where the while loop is entered for the first time.

Subterms of U and S that are related by the origin relation are indicated by dotted
lines in Fig. 5. Also shown in Fig. 5 is a subcontextS � of S that is related to the subterm
U � of U via the dynamic dependence relation. Observe that S � excludes the right-hand
sides of two of the assignment statements in the program. One of the key properties
of the dynamic dependence relation is that replacing these right-hand sides by any L-
expression will yield a term that can be rewritten (via a subreduction of r) to a term that
contains a subcontext p �� 1.

Although origin and dependence relations are computed in a similar manner, using
similar information as input, the nature of these relations is different. This is mainly
due to the fact that these relations were designed with different objectives in mind.
Origin information always involves equal terms. In the example of Fig. 5, origin track-



ee

ee

es

es

es

0

ed

.

;

;

;

;

;

*

S

T

U
U’

dynamic dependence relations

origin relations

,

,

,

,

,

,

S’
;

;

while

;

;

:=

;

;

while

;

;

:=

:=

:=

:=

+

:=

*

-

+

*

-

execute exec

i ;

s

p

:=

:=
i 5

s 0
:=

p 1

i

s

s i

p

p i

i

i 1

r

i

s

s i

p

p i

i

i 1

es p 1

s 0

i 5

*

s

p 120

s 15

i

Fig. 5. Illustration of origin and dynamic dependence relations.

ing establishes relations between a number of syntactically4 equal terms; in this case
corresponding to the statements of the program. Equality (via convertibility of terms)
also plays an important role in the notion of dependence tracking. Dynamic dependence

4 For the purpose of debugging, origin relations rarely involve terms that are not syntactically
equal. Examples of origin relations involving terms not syntactically equal are mainly to be
found in the area of error-reporting [10, 9, 7].



relations are in principle defined for any subcontext of any term that occurs in a rewriting
process: associated with a subcontext s is the minimal subcontext of the initial term
that was necessary for “creating” a term that contains s. In the sequel, we are primarily
interested in the dynamic dependence relations for subcontexts that represent values
computed by a program (such as the subterm U � in Fig. 5). It will be shown below that
for these subcontexts, the dynamic dependence relation will compute information that
is similar to the notion of a dynamic program slice [1, 17].

3.4 Implementation

Origin tracking and dynamic dependence tracking have been implemented in the rewrite
engine of the ASF+SDF Meta-environment [15]. All function symbols of all terms that
arise in a rewriting process are annotated with their associated origin and dependence
information; this information is efficiently represented by way of bit-vectors. Whenever
a rewrite rule is applied to a term t, and a new term t� is created, origin and dependence
information is propagated from t to t�. These propagations are expressed in terms of
operations on sets. In [21], it is argued that the cost of performing these propagation
steps is at worst linear in the size of the initial term of the reduction.

4 Definition of debugger features

Below, we describe how a number of debugger features can be defined using the tech-
niques of the previous section. We will primarily concentrate on the mechanisms needed
for defining debugger features, and ignore issues related to a debugger’s user-interface.

4.1 Single stepping/visualization

Step-wise execution of a program at the source code level is the basic feature of any
debugger.

Observe that in the specification of Fig. 1, the execution of a statement corresponds
to the rewriting of a term of the following form:

exec(Stat;StatList, Env)

where Stat represents any statement, StatList any list of statements, and Env any en-
vironment. Consequently, the fact that some statement is executed can be detected by
matching the above pattern against the current redex5.

Origin tracking can be used to determine which statement is currently being executed.
We assume that the rewriting process is suspended whenever a redex T matches the
above pattern. At this point, the subterm T � of T that is matched against variable Stat is
determined. The origin of T �, OriginOf�T ��, will consist of the subtree of the program’s
AST that represents the currently executed statement. Thus, program execution can be
visualized at the source level by highlighting this subterm of the AST.

5 We will use the term “redex” (short for reducible expression) to denote the subterm that has
been matched against some equation. For conditional rules, it is assumed that no conditions
have been evaluated yet.



4.2 Breakpoints

Another standard source-level debugger feature is the breakpoint. The idea is that the
user selects a statement s in the program, and execution continues until s is reached.

A breakpoint on a statement s can be implemented as follows. Let Ts be the subterm
of the AST that corresponds to s. Then the rewriting process should be suspended
when: (i) a redex T matches the pattern exec(Stat;StatList, Env) (indicating that some
statement is being executed), and (ii) Ts � OriginOf�T ��, where T � is the subterm of T
matched against variable Stat.

4.3 State inspection

At any moment that execution is suspended, either while single-stepping or due to a
breakpoint, one may wish to inspect the values of variables or, more generally, arbitrary
source-level expressions.

State inspection may be implemented as follows. We assume that execution was
suspended at the moment that some statement was executed, i.e., a redex T matches the
pattern exec(Stat;StatList, Env) Let Tz be the subterm of T that was matched against
variable Env. Then an arbitrary source-level expression e (with an AST Te) can be
evaluated by rewriting the term eval(Te, Tz) according to the specification of Fig. 1.
The result of this rewriting process will be a term representing the “current” value of
expression e.

4.4 Watchpoints

Watchpoints [18] are a generalization of breakpoints. The user supplies a source-level
expression e (with AST Te), and execution continues until the value of e changes.

A watchpoint may be implemented as follows. First, an initial value u (with AST
Tu) of expression e is computed (using the technique of Sec. 4.3) and stored by the
debugger. Whenever a statement is executed, the current value v (with AST Tv) of e
is determined and is compared with u by rewriting a term inteq(Tu, Tv). Execution
(i.e., the rewriting process) is suspended when this test fails (i.e., yields the value zero).

4.5 Data breakpoints

A data breakpoint [22] is yet another variation on the breakpoint theme. A data break-
point on a variable v (with AST Tv) is effective when v is referenced (or modified).

Data breakpoints can be implemented by suspending the rewriting process when a
redex matches the pattern lookup(Tv �� Constant;Env, Tv) (for a data breakpoint on a
reference to v), or update(Tv �� Constant;Env, Tv, Constant�) (for a data breakpoint
on an update to v).

4.6 Call stack inspection

In the presence of procedures, the notion of an “environment” needs to be generalized to
a stack of activation records, where each record contains the values of the local variables



and parameters for a procedure call. Call-stack inspection can be defined in way that is
similar to the techniques of Sec. 4.3, by visualizing the procedure calls in each record.
One can easily imagine a tool that allows interactive traversal of the stack of activation
records, and enables one to inspect the values of arbitrary source-level expressions in
each scope.

5 Dynamic program slicing

Myriad variations on the notion of a dynamic program slice [1, 17] can be found in the
literature [20]. For the purposes of this paper, we define a dynamic slice with respect to
the current value of a variable v to be the parts of the program that are necessary for
obtaining the current value of v. To see why dynamic slicing is useful for debugging,
consider a situation where an incorrect value is computed for v—only the statements in
the dynamic slice with respect to v had an effect on the value of v. This allows one to
ignore many statements in the process of localizing a bug6.

Below we pursue a two-phase approach for computing dynamic slices. Sec. 5.1
discusses the nature of the “raw” information provided by the dynamic dependence
relation of Sec. 3.2. In Sec. 5.2, we present an heuristic approach for post-processing
this information, in order to obtain dynamic slices similar to those of [1, 17].

5.1 Pure term slices

We assume that execution is suspended at a moment that some statement was executed,
i.e., a redex T matches the pattern exec(Stat;StatList,Env). Let Tz be the subterm of
T matched against Env, and letTp be the subterm ofTz that constitutes the variable-value
pair for variable x. Then, the dynamic dependence relation of Sec. 3.2 will associate
with Tp a minimal set of function symbols, SliceOf�Tp�, in the program’s AST.

Fig. 6 (a) shows a (textual representation of) the term slice that is determined for
the final value of variable p as obtained by executing the example program of Fig. 2.
Observe that the two holes in this term slice can be replaced by any L-expression without
affecting the computation of the value 120 for variable p.

One may wonder why the assignments to variable s are not completely omitted in
the term slice of Fig. 6 (a). This is best understood by keeping in mind that any hole in a
term slice may be replaced by any syntactically valid L-term. Note that the assignments
to s cannot be replaced by any other assignment; e.g., they can certainly not be replaced
by any assignment to p.

5.2 Post-processing of term slices

While term slices provide information that is semantically sound, they may contain a
certain amount of “clutter”, in the form of uninteresting information. An example of
such information are the two partial assignments to s in the term slice of Fig. 6 (a).

6 Even in cases where a statement is missing inadvertently, dynamic slices may provide useful
information. In such a case, it is likely that more statements show up in the slice than one would
expect.



declare
i; s; p;

begin
i := 5;
s := �;
p := 1;
while i do
s := �;
p := (p * i);
i := (i - 1);

end;
end

declare
i; s; p;

begin
i := 5;
p := 1;
while i do
p := (p * i);
i := (i - 1);

end;
end

(a) (b)

Fig. 6. (a) Term slice with respect to the final value of p. (b) Post-processed slice with respect
to the final value of p.

In order obtain dynamic slices similar to those in [1, 17], one may post-process
term slices by: (i) transforming any statement whose right-hand side is irrelevant into an
irrelevant statement (rule [P1]), and (ii) removing irrelevant statements from statement
lists (rule [P2]). A specification of this post-processing is shown in Fig. 7. Rewriting
the term slice of Fig. 6 (a) according to this specification yields the slice of Fig. 6 (b).

[P1] Var := � = �
[P2] �;StatSeq = StatSeq

Fig. 7. Specification for post-processing of term slices.

The specification of Fig. 7 is minimal—it only removes irrelevant assignments. In
practice, one would like more sophisticated post-processing that, for example, removes
all irrelevant declarations from the program. Post-processing becomes nontrivial in the
presence of procedures, where situations may occur in which different parameters are
omitted at different call sites.

6 Practical experience

To a large extent, the ideas in this paper have been implemented using the ASF+SDF
Meta-environment [15], a programming environment generator. In particular, origin
tracking, dynamic dependence tracking, and the matching of language-specific patterns
have been implemented successfully.

Fig. 8 shows some snapshots of a language-specific single-stepping tool for the
language CLaX [10, 19], a substantial subset of Pascal that features procedures with
nested scopes, unstructured control flow, and multi-dimensional arrays. This tool has
been implemented according to the techniques of Sec. 4.1.



(a) (b)

Fig. 8. Generated language-specific single-stepping tool.

Fig. 9 shows a screen dump of a dynamic slicing tool for the language CLaX, that
was created using the technique of Sec. 5. In this figure, the dynamic slice with respect
to the final value of variable product is shown, both in pure “term slice” form (here,
‘�?�’ indicates a missing subterm), and in post-processed form.

7 Related work

The work that is most closely related to ours was done in the context of the PSG
system [3]. A generator for language-specific debuggers was described in [2]. Language-
specific compilers are generated by compiling denotational semantics definitions to a
functional language. A standard, language-independent interpreter is used to execute the
generated functional language fragments. The behavior of a debugger is specified using
a set of built-in debugging concepts. In particular, trace functions are provided for the
visualization of execution. Other notions enable one to inspect the state of the interpreter,
and to define breakpoints. Bahlke et al. write that ‘correspondences between the AST
and the terms of the functional language are established in both directions’. These
correspondences are used to determine a language-specific notion of a step. However,
the nature of these “correspondences” is not described, making it impossible to conclude
how powerful these correspondences are, or what constraints on specifications they
imply7. By contrast, our method for keeping track of correspondences, origin tracking
[8], is well-defined, and has proven to be sufficiently powerful for realistic languages
[19]. A second difference between the work by Bahlke et al. is the information that
is used to define debugger features. In our approach, debugger features are defined in
terms of specification-level patterns in conjunction with language-independent origin
information. That is, the specification of the interpreter and the specification of debugger
features are uniform. It is unclear to what extent the debugging concepts of [2] are similar
to the interpreter’s specification. Finally, Bahlke et al. do not consider more advanced
debugger features such as watchpoints, data breakpoints, and dynamic slices.

7 The subset of Pascal that is considered in [2] does not contain goto statements. It is unclear
what complications these statements would cause.



Fig. 9. Generated language-specific dynamic slicing tool.

Bertot [6] contributes a technique called subject tracking to the specification lan-
guage Typol, which is based on natural semantics [14], for animation and debugging
purposes. A key property of Typol specifications is that the meaning of a language con-
struct is expressed in terms of its sub-constructs. A special variable, Subject, serves to
indicate the language construct currently processed. This variable may be manipulated
by the specification writer, when different animation or debugging behavior is required.
Bertot does not consider other debugger features besides single-stepping, animation,
and simple breakpoints.

Berry [5] presents an approach where animators are generated from structured
operational semantics definitions. These specifications are augmented with semantic
display rules that determine how to perform animation when a particular semantic rule is
being processed. Various views of the execution of a program can be obtained by defining
the appropriate display rules. Static views consist of parts of the AST of a program, and
dynamic views are constructed from the program state during execution. As an example
of a dynamic view, the evaluation of a control predicate may be visualized as the actual



truth value it obtains during execution. Although Berry considers highly sophisticated
animation features, he does not consider debugger features such as breakpoints and
dynamic program slices.

8 Conclusions and future work

We have presented a generic approach for deriving debugging and dynamic program
slicing tools from algebraic specifications. The main conclusion of this paper is that
the information needed for implementing such tools is to a very large extent language-
independent and implicitly present in the language’s specification. The three “building
blocks” we used to define debugger features are:

1. matching of patterns,
2. rewriting of terms, and
3. computation of origin/dependence information.

The first two items consist of functionality that is, at least in principle, already provided
by any rewriting engine. As was described in Sec. 3, the information used in the third
item can be computed automatically, as a side-effect of rewriting.

The only additional language-dependent information that is required to define de-
bugging and slicing features consists of the specification of a set of language-specific
patterns, and the actions that should be performed when a match with such a pattern
occurs.

The emphasis of this paper has been on generic techniques for constructing debug-
ging tools; we have ignored all aspects that have to do with user-interfacing. In the
future, we plan to develop a formalism in which one can specify such tools together with
their user-interfaces.

Acknowledgments

I am grateful to Paul Klint and T.B. Dinesh for their comments on a draft of this paper.

References

1. AGRAWAL, H., AND HORGAN, J. Dynamic program slicing. In Proceedings of the ACM
SIGPLAN’90 Conference on Programming Language Design and Implementation (1990),
pp. 246–256. SIGPLAN Notices 25(6).

2. BAHLKE, R., MORITZ, B., AND SNELTING, G. A generator of language-specific debugging sys-
tems. In Proceedings of the ACM SIGPLAN’87 Symposium on Interpreters and Interpretive
Techniques (1987), pp. 92–101. SIGPLAN Notices 22(7).

3. BAHLKE, R., AND SNELTING, G. The PSG system: from formal language definitions to
interactive programming environments. ACM Transactions on Programming Languages and
Systems 8, 4 (1986), 547–576.

4. BERGSTRA, J., HEERING, J., AND KLINT, P., Eds. Algebraic Specification. ACM Press Frontier
Series. The ACM Press in co-operation with Addison-Wesley, 1989.



5. BERRY, D. Generating Program Animators from Programming Language Semantics. PhD
thesis, University of Edinburgh, 1991.

6. BERTOT, Y. Occurrences in debugger specifications. In Proceedings of the ACM SIGPLAN’91
Conference on Programming Language Design and Implementation (1991), pp. 327–337.
SIGPLAN Notices 26(6).

7. DEURSEN, A. V. Executable Language Definitions—Case Studies and Origin Tracking Tech-
niques. PhD thesis, University of Amsterdam, 1994.

8. DEURSEN, A. V., KLINT, P., AND TIP, F. Origin tracking. Journal of Symbolic Computation
15 (1993), 523–545.

9. DINESH, T. Type checking revisited: Modular error handling. In International Workshop on
Semantics of Specification Languages (1993).

10. DINESH, T., AND TIP, F. Animators and error reporters for generated programming envi-
ronments. Report CS-R9253, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
1992.

11. FIELD, J. A simple rewriting semantics for realistic imperative programs and its application to
program analysis. In Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (1992), pp. 98–107. Published as Yale University
Technical Report YALEU/DCS/RR–909.

12. FIELD, J., RAMALINGAM, G., AND TIP, F. Parametric program slicing. In Conference Record
of the Twenty-Second ACM Symposium on Principles of Programming Languages (San
Francisco, CA, 1995). To appear.

13. FIELD, J., AND TIP, F. Dynamic dependence in term rewriting systems and its application
to program slicing. In Proceedings of the Sixth International Symposium on Programming
Language Implementation and Logic Programming (1994), M. Hermenegildo and J. Penjam,
Eds., vol. 844, Springer-Verlag, pp. 415–431.

14. KAHN, G. Natural semantics. In Fourth Annual Symposium on Theoretical Aspects of
Computer Science (1987), F. Brandenburg, G. Vidal-Naquet, and M. Wirsing, Eds., vol. 247
of LNCS, Springer-Verlag, pp. 22–39.

15. KLINT, P. A meta-environment for generating programming environments. ACM Transac-
tions on Software Engineering and Methodology 2, 2 (1993), 176–201.

16. KLOP, J. Term rewriting systems. In Handbook of Logic in Computer Science, Volume
2. Background: Computational Structures, S. Abramsky, D. Gabbay, and T. Maibaum, Eds.
Oxford University Press, 1992, pp. 1–116.

17. KOREL, B., AND LASKI, J. Dynamic slicing of computer programs. Journal of Systems and
Software 13 (1990), 187–195.

18. STALLMAN, R., AND PESCH, R. Using GDB, A guide to the GNU Source-Level Debugger.
Free Software Foundation/Cygnus Support, 1991. Version 4.0.

19. TIP, F. Animators for generated programming environments. In Proceedings of the First
International Workshop on Automated and Algorithmic Debugging (1993), P. Fritzson, Ed.,
vol. 749 of LNCS, Springer-Verlag, pp. 241–254.

20. TIP, F. A survey of program slicing techniques. Report CS-R9438, Centrum voor Wiskunde
en Informatica (CWI), 1994.

21. TIP, F. Generation of Program Analysis Tools. PhD thesis, University of Amsterdam, 1995.
22. WAHBE, R., LUCCO, S., AND GRAHAM, S. Practical data breakpoints: Design and implemen-

tation. In Proceedings of the ACM SIGPLAN’93 Conference on Programming Language
Design and Implementation (Albuquerque, NM, 1993), pp. 1–12. SIGPLAN Notices 28(6).

This article was processed using the LATEX macro package with LLNCS style


