
Practical Extraction Techniques for Java

FRANK TIP and PETER F. SWEENEY
IBM T. J. Watson Research Center
CHRIS LAFFRA and ALDO EISMA
Object Technology International
and
DAVID STREETER
IBM Toronto Laboratory

Reducing application size is important for software that is distributed via the internet, in order to
keep download times manageable, and in the domain of embedded systems, where applications are
often stored in (Read-Only or Flash) memory. This paper explores extraction techniques such as the
removal of unreachable methods and redundant fields, inlining of method calls, and transformation
of the class hierarchy for reducing application size. We implemented a number of extraction tech-
niques in Jax, an application extractor for Java, and evaluated their effectiveness on a set of large
Java applications. We found that, on average, the class file archives for these benchmarks were
reduced to 37.5% of their original size. Modeling dynamic language features such as reflection, and
extracting software distributions other than complete applications requires additional user input.
We present a uniform approach for supplying this input that relies on MEL, a modular specifica-
tion language. We also discuss a number of issues and challenges associated with the extraction of
embedded systems applications.

Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program Analysis; D.3.4 [Programming Languages]: Processors—
Compilers; Optimization

General Terms: Algorithms, Languages, Performance, Experimentation, Measurement

Additional Key Words and Phrases: Application extraction, call graph construction, class hierarchy
transformation, whole-program analysis, packaging

This paper borrows material from three previously published conference papers [Tip et al. 1999;
Sweeney and Tip 2000; Tip and Palsberg 2000]. More information about the Jax project can be
found at: www.research.ibm.com/JAX. A free evaluation copy of Jax (along with documentation
and examples) can be downloaded from: www.alphaWorks.ibm.com/tech/JAX.
Authors’ addresses: F. Tip and P. F. Sweeney, IBM T. J. Watson Research Center, P.O. Box 704,
Yorktown Heights, NY 10598; email: tip@watson.ibm.com; pfs@us.ibm.com. C. Laffra and A. Eisma,
Object Technology International, Burg. Haspelslaan 131, 1181 NC Amstelveen, The Netherlands;
email: {Chris Laffra; Aldo Eisma}@oti.com; D. Streeter, IBM Toronto Laboratory, 1150 Eglinton
Ave. East, Toronto, Ontario, Canada; email: daves@ca.ibm.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax+1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0164-0925/02/1100-0625 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002, Pages 625–666.

626 • F. Tip et al.

1. INTRODUCTION

Application size is an important limiting factor for software distribution over
the internet, because the time required to download an application is propor-
tional to that application’s size. In the embedded systems domain, where mem-
ory is a scarce resource and where applications are often stored in Read-Only
or Flash memory, it is also desirable to keep applications as small as possible,
in order to keep costs and power-consumption low. At odds with these size re-
quirements is the increasing use of third-party class libraries and components
in both PC-based and embedded applications. Vendors of applications that rely
on third-party libraries often cannot assume that the user has installed (the
correct version of) these libraries, and are therefore forced to include such pre-
requisite libraries in their distribution, resulting in a significant size increase.

Extraction tools reduce the size of applications and other types of software
distributions by removing unused functionality and applying size-reducing pro-
gram transformations. The contributions of this paper are as follows:

—We study several compiler optimizations and program transformations that
can be used as extraction techniques (e.g., removal of unreachable methods,
and transformations of the class hierarchy), and investigate the pragmatic
issues that arise when applying these techniques to a full-scale programming
language.

—We implemented these extraction techniques in Jax,1 an application extrac-
tor for Java2 [Joy et al. 2000], and determined their effectiveness on a set of
large Java benchmarks ranging from 45 to 2,326 classes (with correspond-
ing class file archives of 55,765 to 3,810,120 bytes). We measured that, on
average, the class file archives for these benchmarks were reduced to 37.5%
of their original size.3 More dramatic size reductions are not uncommon for
large, library-based applications in which much unused library functionality
can usually be pruned away.

—The extraction of applications that use reflection and dynamic loading, and of
software distributions other than complete applications requires information
that cannot be determined with static analysis alone. We analyze these issues
in detail, and present a modular specification language that allows a user
to specify the extraction of various kinds of software distributions, while
allowing an extractor to treat all types of distributions uniformly. A small
case study is presented in which a number of extraction scenarios is applied
to one of our benchmarks.

—A number of the extraction techniques performed by Jax have also been im-
plemented in SmartLinker, a packaging tool that is incorporated into IBM’s

1Jax has been available from IBM’s alphaWorks web site (www.alphaWorks.ibm.com/tech/jax)
since June 1998, and is one of the most popular tools there, having received over 30,000 downloads.
Several commercial software products (developed both inside and outside IBM) have been processed
with Jax before being shipped.
2Java and all Java-based marks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.
3All average ratios reported in this paper are computed using the geometric mean.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 627

WebSphere Studio Device Developer (WSDD), an environment for developing
Java applications for embedded systems. SmartLinker shares a significant
amount of infrastructure with Jax, but also incorporates functionality that
is specific to the embedded systems domain, such as support for partially
pre-linked libraries.

The remainder of this paper is organized as follows. Section 2 surveys the ex-
traction techniques implemented in Jax. Many of these techniques rely on call
graphs, and Section 3 presents a number of call graph construction algorithms
that we experimented with. Section 4 presents the results of applying Jax to
set of large benchmark applications. Section 5 is concerned with MEL, a mod-
ular language for specifying various kinds of software distributions. Section 6
examines issues that arise in the embedded systems domain, and discusses the
extraction techniques incorporated in SmartLinker. Related work is presented
in Section 7. Finally, Section 8 presents conclusions and directions for future
work.

2. EXTRACTING APPLICATIONS

This section presents a high-level overview of the transformations and opti-
mizations that Jax employs as extraction techniques. We will use the example
Java application of Figure 1(a) to illustrate the transformations performed by
Jax. This application comprises classes AA, BB, CC, and Example, and an in-
terface II. II declares a method foo() that is overridden in AA, BB, and CC,
and AA defines a method bar() that is overridden in BB. Moreover, AA declares
three fields xx, yy, and zz. The program contains two direct call sites (the calls
to methods ff() and gg()), and three dynamically dispatched call sites (the
calls i1.foo(), i2.foo(), and this.bar()). Figures 1(b-d) show several steps
in the transformation process that will be discussed shortly. Although shown
as source-to-source transformations here, in reality these transformations are
performed at the class file level.

2.1 Loading the Application

Jax begins by reading in the application from the original archive(s), and con-
structing an in-memory representation of the Java class files for that applica-
tion. Jax only loads classes that contain the application’s entry points, and any
classes that are directly or indirectly referenced from those classes.

Java provides a mechanism (in the Java literature referred to as dynamic
loading) that allows an application to load a class (and create an object of
that type) by providing the class name as a string. Because these strings are
run-time values, it is in general not possible for a static analysis to determine
which classes are dynamically loaded by an application. Therefore, Jax relies
on the user to specify all classes that are dynamically loaded (the specification
language that is used to provide this information will be presented in Section 5).
Dynamically loaded classes are treated as additional entry points for the class
loading process.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

628 • F. Tip et al.

Fig. 1. (a) Example program. (b) View of the program after Jax has removed: unreachable method
BB.bar(), the body of unreachable method AA.foo(), unaccessed field AA.xx, and write-only field
AA.yy. Removed code fragments have been blacked out. (c) The program after merging class BB

into class AA, and interface II into class AA. The affected code fragments are shown boxed. (d) The
program after name compression has been applied. The affected code fragments are shown boxed.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 629

2.2 Removal of Redundant Class File Attributes

Bytecode attributes that are unnecessary for executing the program such as
local variable name tables and line number tables are discarded during loading.

2.3 Call Graph Construction and Removal of Unreachable Methods

In general, only a subset of the methods in the loaded classes are required by an
application. Unreachable methods may arise for many reasons. One reason is
that, as systems grow, programmers tend to lose track of the methods that are
used. More importantly, breaking up applications into components that are de-
signed and implemented separately leads to unreachable methods, because the
creators of a component cannot always anticipate what functionality is needed.
The scenario where applications use general-purpose class libraries that are de-
veloped elsewhere is a well-known example of this situation. Section 3 presents
several call graph construction algorithms that have been incorporated in Jax to
detect unreachable methods. After applying one of these algorithms, unreach-
able methods are removed. As we shall see shortly, there are cases where an
unreachable method cannot be removed for syntactic reasons. In such cases, Jax
can still remove the body of this method and replace it with a return statement.

Figure 1(b) shows the program after removing unreachable method BB.bar(),
and removing the body of unreachable method AA.foo() (method AA.foo() is
unreachable, but it cannot be removed because class AA implements interface II,
which declares method foo()).

2.4 Redundant Field Elimination

Any field that is only accessed from unreachable methods can be removed from
the application. Fields that are only written to (but not read) can also be re-
moved because their value cannot affect the program’s behavior [Sweeney and
Tip 1998]. In addition to removing the field itself, this involves removal of the
instructions that store the value in the field.

In Figure 1(b), unaccessed field AA.xx and write-only field AA.yy have been
removed (along with the assignments to field yy in methods AA.bar() and
BB.foo()).

2.5 Class Hierarchy Transformations

Jax applies a number of semantics-preserving transformations to the class hi-
erarchy. These transformations reduce archive size by eliminating classes en-
tirely, and by merging adjacent classes in the hierarchy. Merging classes may
enable the transformation of virtual method calls into direct method calls, and
may reduce the duplication of literals across the constant pools of different
classes (this will be discussed in more detail in Section 2.8). The class hierarchy
transformations used in Jax are an adaptation of the ones in Tip and Sweeney
[1997, 2000], where they serve as a simplification phase after the generation
of specialized class hierarchies (the relationship with this work is discussed in
Section 7).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

630 • F. Tip et al.

One of the simplest transformations is the removal of an uninstantiated
class that does not have any derived classes, and that does not contain any live
methods or fields. More interesting is the transformation where a base class X
and a derived class Y are merged if there is no live non-abstract method f that
occurs in both X and Y , and: (1) X is uninstantiated, or (2) Y does not contain
any live non-static fields. By requiring that (1) or (2) holds, we ensure that no
object created by the application becomes larger (i.e., contains more fields) as a
result of the merge.

Merging a base class X with a derived class Y involves a number of steps.
All live methods and fields of Y are moved to X . Cases where X and Y have
fields or static methods with identical names pose no problem, because we can
simply rename any field or static method in cases where name conflicts occur.
Constructors require special treatment because X and Y may have constructors
with identical signatures, and constructors cannot be renamed. In such cases, a
new signature for the constructor is synthesized by adding dummy arguments,
and constructor calls are updated accordingly by pushing null elements on
the stack. If X and Y both have static initializer methods, we turn the static
initializer for X into an ordinary static method, and insert a call to that method
at the beginning of the initializer for Y .4 If X and Y both contain an instance
method f , then at least one of these methods must be abstract due to the
preconditions stated above. If both methods f are abstract, Y . f is simply
removed. Otherwise, the non-abstract method is preferred over the abstract
method. Finally, all references to Y , as well as methods and fields in Y are
updated to reflect their new “location” in class X .

Other class hierarchy transformations include the merging of classes with
interfaces, and are very similar to the transformation described above. For
more details on class hierarchy transformation, we refer the reader to Tip and
Sweeney [2000]. However, a few more issues pertaining to class merging should
be mentioned. In order to allow the merging of classes across package bound-
aries, classes, methods and fields need to be made public. Finally, classes that
are explicitly referenced using reflection cannot be merged with other classes.

Figure 1(c) shows the example program after merging BB into AA, and II
into AA. Note that the new BB statement in Example.main() has changed to
new AA, and that the types of variables i1 and i2 have changed from II to AA.
The affected declarations are shown in a box. Observe that merging BB and AA
was not possible in the original class hierarchy, because classes AA and BB both
contained non-abstract methods foo() and bar(). Hence, this class merging
operation was enabled by the fact that methods AA.foo() and BB.bar() were
found to be unreachable.

2.6 Name Compression

A Java class file is a self-contained unit of executable code. References to other
classes, methods, and fields are made through string literals. For example, if a
class contains a method call Thread.sleep(500), the constant pool for that class

4This assumes that programs do not rely on the execution order of static initializers of different
classes.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 631

contains the strings “java/lang/Thread”, “sleep”, and “(J)V”, representing the
fully qualified class name, the method name, and a string representation of
the method’s signature (one argument of type long; returning void). Because
all linking information is represented in string form, and is replicated in each
class file, it is obvious that replacing class, method, and field names by shorter
ones will result in smaller archives. Jax currently renames classes, methods,
and fields a, b, c, . . .but more ambitious naming schemes, in which methods
with different signatures get the same name are possible. Certain names can-
not be compressed. This includes any reference to a class, method, or field in
an external library, methods that override methods in external libraries, any
program component accessed using reflection, the name of class containing the
main routine, and and the names of constructors and static initializers.

Figure 1(d) shows the program after name compression has been applied.
Here, classes AA and CC have been renamed to a and b, respectively, and all
references to these types have been updated correspondingly. Moreover, meth-
ods foo(), bar(), ff(), and gg() have been renamed to a(), b(), c(), and d(),
respectively, and field zz was renamed to a. Note that class Example and method
Example.main() cannot be renamed because this would affect the external entry
point to the application.

2.7 Performance Optimizations

Thus far, we have primarily focused on archive size reduction; optimization
was only a secondary goal. However, a few simple and easy-to-implement op-
timizations have been implemented in Jax. Non-overridden methods are in-
lined in cases where this does not increase application size. Moreover, in cases
where a virtual dispatch has only one potential target, we “devirtualize” the call
by replacing an invokevirtual with an invokespecial bytecode [Calder and
Grunwald 1994; Aigner and Hölzle 1996]. Unfortunately, the Java Virtual
Machine Specification [Lindholm and Yellin 1997] only permits this in a very
limited number of situations: the callee has to occur in a superclass of the caller
class, or has to be a private method. Jax marks non-overridden virtual methods
final so that a just-in-time compiler can inline these calls where appropriate.

The example program of Figure 1 illustrates how transformations enable
each other. We have already seen how elimination of (the body of) unreach-
able methods enables class merging. Note that, in the resulting program of
Figure 1(d) only a single method b() remains in the entire class hierarchy. This
implies that the call to b() can be inlined.

2.8 Constant Pool Compression

Removing unreachable methods and redundant fields may render constant pool
entries unnecessary. In the in-memory representation of class files constructed
by Jax, references to constant pool entries are replaced by explicit references
to objects representing the classes, methods, fields, and constants normally
contained in the constant pool. After the transformations described above have
been performed by Jax the class is written out again, and a new constant pool is
created from scratch. Only the classes, methods, fields, and constants that are

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

632 • F. Tip et al.

actually referenced will be added to this constant pool. The resulting constant
pool has minimal size and is typically much smaller than the constant pool
originally found in the class file.

Class merging has interesting repercussions for the size of constant pools.
Adjacent classes in the hierarchy are likely to share many literal values, which
are duplicated in their constant pools. Merging these classes allows us to elimi-
nate this duplication. We will see in Section 4.5 that the contribution of class
hierarchy transformation to archive size reduction can be significant.

3. CALL GRAPH CONSTRUCTION

3.1 Call Graph Construction Algorithms

The key step in call graph construction is to conservatively approximate the
“target” methods that can be invoked by a dynamic dispatch. Various algorithms
have been proposed to determine the potential targets of a dynamic dispatch,
including Class Hierarchy Analysis (CHA) [Dean et al. 1995], 0-CFA [Shivers
1991; Grove et al. 1997], VTA [Sundaresan et al. 2000], and algorithms for
alias or points-to analysis [Pande and Ryder 1996; Shapiro and Horwitz 1997;
Steensgaard 1996].

Jax initially used CHA and Rapid Type Analysis (RTA) [Bacon and Sweeney
1996; Bacon 1997]. Later, we adopted the more precise XTA algorithm [Tip and
Palsberg 2000]. Ignoring a number of details,5 each of these call graph con-
struction algorithms relies on the following steps to compute a set of reachable
methods N :

(1) The set N is initialized with a set of initially reachable methods, such as
the main() method of an application.

(2) The body of each method n in N is analyzed, and the call sites that occur
in the body of n are stored in a set Call Sites(n).

(3) For each call site s in Call Sites(n), the set of method definitions that may
be reached from that call site is determined, and added to N .

It is important to realize that steps 2) and 3) must be performed iteratively until
no additional reached methods can be found. The final value for N represents
the set of nodes in the call graph. The CHA, RTA, and XTA algorithms differ
in the way a virtual call site v.m(· · ·) is resolved in step 3:

—CHA only uses information that is available in the class hierarchy, and as-
sumes that all methods W.m(· · ·) may be reached, where W is any subtype
of the declared type V of receiver v.

—RTA keeps track of the classes that have been instantiated, and stores them
in a set S. To this end, the analysis of method bodies in step 2) above is
extended. In particular, for each instruction “new C” that is encountered, class
C is added to S. In order to determine the set of methods reachable from

5In particular, we ignore the construction of the edges of a call graph here. For an in-depth
comparison of these algorithms, the reader is referred to Tip and Palsberg [2000].

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 633

call site v.m(· · ·), RTA uses the set S to approximate the possible run-time
types of variable v. Specifically, for any type X ∈ S that is a subtype of
V , RTA determines class W = static-lookup(X , m(· · ·))6 and adds method
W.m(· · ·) to N .

—XTA is similar to RTA, in the sense that it tracks allocation sites in order
to approximate dynamic dispatch behavior. However, whereas RTA uses a
single set S that represents types that may be available anywhere in the ap-
plication, XTA uses a distinct set of types Sm for each method m, representing
the types of objects that may occur in m, and a distinct set S f for each field f
representing the types that may be stored in field f . XTA computes these
sets of types by iteratively propagating types between callers and callees
(modeling the flow of objects passed through parameters), between callees
and callers (modeling object flow via return values) from methods to fields
(by examining which fields are written to by methods), and from fields to
methods (corresponding to fields read by methods). In each case, informa-
tion about declared types is used to restrict the flow of types between sets.
For example, when a method calls another method, the declared types of the
callee’s parameters are used to determine which types may flow from caller
to callee.

3.2 Example

To better understand the workings of these algorithms, we will examine the
call graphs constructed for the program of Figure 1(a) by CHA, RTA, and XTA:

—CHA determines that AA.foo(), BB.foo(), and CC.foo() can be reached from
call sites i1.foo() and i2.foo(), because classes AA, BB, and CC each pro-
vide an overriding definition of I.foo(). Following a similar argument, CHA
determines that both AA.bar() and BB.bar() can be reached from call site
this.bar().

—RTA uses the fact that no object of type AA is created anywhere in the program
to rule out AA.foo() as a potential target of the calls i1.foo() and i2.foo(),
and determines that only BB.foo() and CC.foo() can be reached. RTA is
unable to detect that method BB.bar() is unreached, because it finds that
both AA.bar() and BB.bar() may be reached from call site this.bar().

—XTA finds that the BB-object created in method ff() cannot reach method
gg(), by analyzing how objects are passed around via parameter passing and
reads/writes to fields. Likewise, XTA determines that the CC-object created
in gg() cannot reach ff(). Hence, XTA finds that the call site i1.foo() in
ff() can only invoke BB.foo(), and that the call site i2.foo() in gg() can
only invoke CC.foo(). Moreover, XTA determines that no objects of type BB
reach call site this.bar(), and finds that method BB.bar() is unreached.
This situation was illustrated earlier in Figure 1(b).

6Here, static-lookup(X , m(· · ·)) is a function that determines the definition of method m(· · ·) that is
invoked if the receiver of the method call has run-time type X .

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

634 • F. Tip et al.

Table. I. Characteristics of the benchmark applications used
to evaluate Jax: For each benchmark, the initial number of
classes, methods, and fields is shown. The size of the initial
archive shown here is in bytes and excludes any resource files
contained in the shipped archives

3.3 Pragmatic Issues

Implementing a call graph construction algorithm for the full Java language
requires that a number of pragmatic issues be addressed.

Class initializer methods are executed upon the first active use of a class (i.e.,
when the class is instantiated, when a static method in the class is called, or
when a non-final static field in the class is accessed [Joy et al. 2000, Section
12.4]). Our analysis adds an initializer method to the set of reached methods
when an active use of its class is observed.

When applications make use of class libraries, methods in the application
may be invoked from callbacks within those libraries. Consider a situation
where a class C in the application extends a library class L, and suppose that C
provides an overriding definition for a method L. f (). Then, a virtual dispatch
inside L can resolve to method C. f () in the application’s code. If the code for
the library is unavailable, worst-case assumptions have to be made regarding
such callbacks (for details, see Tip and Palsberg [2000]).

Java’s reflection mechanism [Arnold et al. 2000] allows one to invoke a
method by specifying as a string (computed at run-time) its name and signa-
ture. In general, it is not possible to predict all possible run-time values of such
strings at analysis time. Therefore, Jax relies on the user to specify the methods
that are invoked via reflection and dynamic loading. This will be discussed at
length in Section 5.

4. RESULTS

4.1 Overview of the Benchmarks

Table I lists the Java applications used to evaluate Jax. The benchmarks cover
a wide spectrum of programming styles and are publicly available (except for
mBird and Reservation System). For each benchmark, the initial number of
classes, methods, and fields are shown, as well as the initial size of the archive.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 635

Hanoi is an interactive applet version of the well-known “Towers of Hanoi”
problem, and is shipped with Jax. An earlier version of Jax itself (version 7.1)
was used as a benchmark. javac7 is the SPEC JVM 98 version of Sun’s source
to byte-code compiler. bloat8 is a byte-code optimizer developed at Purdue Uni-
versity. mBird is a proprietary IBM tool for multi-language operability. It re-
lies on, but uses only limited parts of, several large class libraries (including
Swing, now part of the standard libraries, and IBM’s XML parser). Jinsight 9

is a performance analysis tool developed at IBM Research. JavaFig10 (version
1.43 (22.02.99)) is a Java version of the xfig drawing program. Cinderella11 is
an interactive geometry tool used for education and self-study in schools and
universities. CindyApplet is an applet that allows users to solve geometry exer-
cises interactively. It is contained in the same class file archive as Cinderella.
Lotus eSuite Sheet12 is an interactive spreadsheet applet, which is part of the
examples shipped with Lotus’ eSuite, a productivity suite. Lotus eSuite Chart
is an interactive charting applet, another example shipped with Lotus eSuite.
Hyper/J13 is a system for advanced separation of concerns developed at IBM
research. Reservation System is an interactive front-end for an airline, hotel,
and car rental reservation system developed by an IBM customer.

4.2 Measurement Issues

For a number of the benchmarks, the shipped version of the initial archive
contains resource files such as properties files and image files. Since our tech-
niques only address the transformation of class files, we moved all resource
files to a separate archive. This “resources archive” is unaffected by Jax, and
its contents should be added to the archive produced by Jax in order to run the
compressed application. Currently, our techniques do not address the issue of
determining which resources are actually used by an application, and we have
observed cases where archives contained many unneeded resources.

Another issue is that different implementations of zip and jar tend to
produce slightly different results. In order to give a consistent evaluation, all
archives mentioned in this paper have been unzipped, and subsequently re-
zipped (into a single archive) using WinZip 7.0.14

4.3 Reductions in Archive Size, Classes, Methods, and Fields

Table II shows the overall size reductions obtained by applying Jax (version 7.4)
to the benchmarks of Table I, as well as the time required by Jax to process the

7See www.specbench.org.
8See www.cs.purdue.edu/homes/hosking/pjama.html.
9See www.research.ibm.com/jinsight.
10See tech-www.informatik.uni-hamburg.de/applets/javafig.
11See www.cinderella.de.
12See www.esuite.lotus.com.
13See www.research.ibm.com/hyperspace.
14See www.winzip.com.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

636 • F. Tip et al.

Table. II. The number of classes, methods, and fields and the archive size for
the benchmark applications of Table I after processing by Jax. The rightmost
column shows the time (in seconds) required by Jax to process the application

Fig. 2. Size of the extracted benchmark applications of Table I as a percentage of the size of the
original archive. Resource files are excluded from both the initial and processed archives.

benchmarks.15 Reservation System, the largest benchmark, was processed in
about 4.5 minutes. We consider these processing times to be quite acceptable,
especially since application extraction is typically an infrequent activity that
is only performed when applications are shipped.

Figure 2 depicts the size of the extracted archives as a percentage of the size
of the original archive. As can be seen from the figure, the size of the extracted
archives ranges between 9.4% and 80.5% of the original size (37.5% on average).
Figure 3 depicts the number of classes, methods, and fields in the extracted
benchmarks, as a percentage of the original number of classes, methods, and
fields, respectively. As is shown in the figure, the number of classes in the
extracted benchmarks ranges between 11.2% to 94.3% (53.9% on average) of the
original number of classes. Moreover, the number of methods in the extracted
benchmarks ranges between 10.8% to 88.8% (50.3% on average) of the original
number of methods, and the number of fields in the extracted benchmarks

15All measurements were taken on a Pentium III/800Mhz PC with 1 processor, a 64K L2-cache and
512MB memory running Windows 2000. All measurements were conducted using Sun JDK 1.2.2,
in combination with a Just-In-Time compiler developed at IBM [Ishizaki et al. 1999].

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 637

Fig. 3. Number of classes, methods, and fields in the extracted benchmark applications of Table I,
shown as a percentage of the original number of classes, methods, and fields, respectively.

ranges between 11.0% to 69.1% (38.5% on average) of the original number of
methods.

We have conducted measurements of the reductions in download times over
56K modem connections and fast LAN connections and found that, in general,
the reduction in download time is similar to the reduction in archive size (within
a few percentage points).

4.4 Evaluation

A number of observations can be made about the results reported above.
The benchmark for which we measured the smallest reduction in archive

size is Jinsight. A discussion with the developers revealed that this benchmark
does not rely on any class libraries other than the standard libraries, and that
most of the removed methods correspond to future extensions that were never
fully implemented, and to functionality that had become obsolete.

The benchmark for which we measured the greatest reduction in archive
size, mBird, is a special case. mBird consists of two distinct components: a
tool with an interactive GUI and a command-line “batch” tool. These tools are
usually shipped together as a single class file archive. In our evaluation, we
extracted only the batch component from this archive. The main reason for the
very large size reduction is that Jax is very effective in removing the unused
GUI-related library classes. Other benchmarks for which we measure large
reductions such as Hanoi (37.8% of the original size remaining), Lotus eSuite
Sheet (26.4% remaining), Lotus eSuite Chart (38.1% remaining), and Hyper/J
(27.8% remaining) either rely on class libraries, or are structured as a class
library with a client application. The large size reductions we measure for these
benchmarks are in agreement with the general perception that applications
typically use only a small fraction of the functionality in class libraries that they
rely on, and it shows that our techniques are quite successful in eliminating
redundant library functionality.

The Cinderella and Cinderella Applet benchmarks are another interesting
case because they are derived from the same original archive. In this case,
Cinderella Applet contains (roughly) a subset of the Cinderella’s functionality.
For development purposes, it is desirable to have the two applications share
the same archive, but for distribution purposes it is undesirable to ship the en-
tire archive for Cinderella Applet. A common solution to such problems consists

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

638 • F. Tip et al.

Table. III. Detailed Measurements for the Hyper/J Benchmark

of splitting the classes into a package with “core functionality”, and separate
packages with additional functionality that is used by different components.
This approach has some obvious organizational drawbacks. In such cases, an
application extractor can extract the desired functionality for each applica-
tion. The fact that Jax is capable of eliminating unused functionality is evident
from the fact that we see a much larger reduction for Cinderella Applet (20.4%
remaining) than for Cinderella (43.8% remaining). Section 5.5 explores differ-
ent distribution scenarios for Cinderella in more detail. Encouraged by these
results, the creators of Cinderella decided to use Jax to create their various
distributions.

4.5 Breakdown of the Results

Measuring the individual contributions of each transformation performed by
Jax is complicated by the fact that each transformation’s effectiveness strongly
depends on the preceding transformations. For example, the removal of use-
less fields is performed after the removal of unreachable methods (otherwise,
we would not be able to remove fields that are only referenced within un-
reached methods). Hence, correlating the contributions of dead fields or meth-
ods in isolation to the reduction in archive size would be meaningless. Another
argument along these lines is that the number of classes that can be merged
is strongly dependent on removal of unused fields and methods in a previous
step. Consequently, what we will study in the remainder of this section is the
cumulative effect of each step. By selectively disabling steps performed by Jax,
we measure the additional impact of each step.

Table III shows detailed statistics gathered for the Hyper/J benchmark, in-
dicating the size of the archive, and the numbers of classes, methods, and fields
after each step. Figures 4 and 5 show the contributions of the successive steps
in graphical form. These figures reveal several interesting facts. A substantial
number of classes in the initial archive (132 out of 921) are not loaded. Removal
of these unreferenced classes reduces the archive to 86.0% of its original size.
Most of these unused classes are library classes that are shipped with, but not
used by the application. Removal of redundant attributes such as line num-
ber tables and local variable name tables contributes 18.9% to the reduction in
archive size, reducing the archive to 67.1% of its original size. Removal of un-
reachable methods results in an additional reduction of 20.4%, further reducing
the archive to 46.7% of its original size. The contribution of useless field removal

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 639

Fig. 4. Archive size for Hyper/J as a percentage of the original archive size after (1) loading, (2)
removal of unreachable methods, (3) removal of useless fields, (4) method inlining/devirtualizing,
(5) class hierarchy transformations, and (6) name compression.

Fig. 5. Number of classes, methods, and fields for Hyper/J as a percentage of the original version
after (1) loading, (2) removal of unreachable methods, (3) removal of useless fields, (4) method
inlining/devirtualizing, (5) class hierarchy transformations, and (6) name compression.

is relatively small: 4.0%. Many of the removed fields are static final fields. Java
compilers apply constant propagation and replace each occurrence of such a
field by its value. The original field remains, even though it is now redundant.
In the case, of Hyper/J, almost 2,800 fields are removed from the application.
Method inlining and devirtualizing have only a small effect on the result (0.1%).
The contribution of class hierarchy transformations is a noticeable 7.8%, reduc-
ing the archive to 35.2% of its original size. The Hyper/J benchmark is written
in a highly object-oriented style, with heavy use of interfaces. Large sections
of the class hierarchy are flattened by Jax, as is evidenced by the fact that the
number of classes is reduced from 789 to 428. From Table III and Figure 5 it
can be seen that the class hierarchy transformations remove an additional 3.0%
of the methods (260 methods). These are abstract methods that disappear as
a result of class merging. Name compression reduces the resulting archive by
another 7.4%, resulting in a final archive that is only 27.8% of its original size.

4.6 The Impact of Call Graph Precision

All previously discussed results are based on the use of the XTA algorithm
[Tip and Palsberg 2000] for identifying unreachable methods (see Section 3). In
order to determine the impact of call graph precision, we also extracted Hyper/J
using the CHA and RTA algorithms. Table IV shows a comparison of the archive
size, and number of classes, methods, and fields we obtained for Hyper/J using
CHA, RTA, and XTA. These results are depicted in Figure 6. As can be seen
from the chart, using CHA results in an extracted application containing 52.9%
of the methods in the original application. RTA and XTA are far more effective

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

640 • F. Tip et al.

Table. IV. Comparative Measurements for Hyper/J using Class Hierarchy Analysis and Rapid
Type Analysis

Fig. 6. Effect of different call graph construction algorithms (Class Hierarchy Analysis, Rapid
Type Analysis, and XTA) on the the number of classes, methods, fields, and archive size of the
extracted Hyper/J application. The results are shown as a percentage of the original size of the
application.

and reduce the number of methods to 41.0% and 40.8%, respectively. The use of
CHA results in an archive that is 36.4% of its original size, as opposed to 28.2%
for RTA, and 27.8% for XTA. Observe that the removal of additional methods
has a measurable impact on the number classes that can be merged or removed.
Extracting Hyper/J using CHA results in an archive with 551 classes, compared
with 434 classes using RTA, and 428 classes using XTA.

It is clear from Table IV and Figure 6 that XTA is only marginally more pre-
cise than RTA as far as detecting unreached methods is concerned. However,
XTA can be noticably more effective than RTA when it comes to detecting redun-
dant call graph edges. A closer look revealed that XTA constructs a call graph
with 19,826 edges compared to an RTA call graph with 20,754 edges. Upon fur-
ther examination, we found that the RTA call graph contained 4,592 monomor-
phic call sites and 2,385 polymorphic call sites. XTA found a unique target for
380 of these RTA-polymorphic call sites: in 16.1% of all cases. Although Jax
could not devirtualize many of these call sites due to the constraints imposed
on Java byte codes, XTA may enable more devirtualization and inlining when
a target representation other than class files is used or when class file annota-
tions are used in conjunction with a JIT. Section 8.2 discusses annotations as
future work.

4.7 Execution Time Speed-Up

Table V shows the running time for the four non-interactive benchmarks (Jax,
javac, mBird, and Hyper/J) before and after applying Jax. The other bench-
marks are all interactive GUI-based applications, so that direct speedup mea-
surements are difficult to conduct. For Jax, javac and mBird the speedups are
small: 3.1%, 3.9%, and 3.5%, respectively. For Hyper/J, the speedup is a more
noticeable 14.3%.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 641

Table. V. Speed-Up Measurements for the Noninteractive Benchmarks. Times shown are in
seconds

Fig. 7. Illustration of different distribution scenarios.

5. EXTRACTING OTHER KINDS OF SOFTWARE DISTRIBUTIONS

Thus far, we have only studied the extraction of applications. To illustrate the
issues that arise when extracting other kinds of software distributions, Figure 7
depicts several distribution scenarios that frequently arise in practice. In this
figure, a library vendor l is responsible for creating and distributing a class
library L, an application vendor a is responsible for creating and distributing
an L-based application A, and two users named u and v, use application A.

Scenario 1: Extract a library without assumptions about its clients.
In general, library vendor l will want to make library L as small as possible.
Hence, l creates an extracted version Lext of L, and distributes Lext instead of
L. Clearly, Lext should offer the same functionality as L, since l cannot make
assumptions about the way in which L is used by applications. In particular,
it has to be assumed that any public and protected method16 in L may be
called by client applications. However, size-reducing transformations may still
be applied to parts of L not exposed to users. In particular, private methods
that cannot be called (directly or indirectly) by any public or protected method
may be removed.

16This assumes that the client application is not in the same package as the library. If this assump-
tion is false, methods with package-level access have to be taken into account as well.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

642 • F. Tip et al.

Another issue that arises when extracting libraries is whether or not the
client should be able to create subclasses of the library classes. As we will
see shortly, this will impact certain optimizations such as devirtualization and
inlining.

Scenario 2: Extract a library in the context of a specific application.
Application vendor u downloads Lext for use during development of application
A. When application A is ready for distribution, there are two options, depend-
ing on whether or not a user already has the prerequisite library L installed.
For users such as u who do not have (the correct version of) L installed, it
is desirable to extract L under the assumption that A is the only application
that uses L. In this case, we can safely remove from L any method that is not
transitively reachable from A’s main() method. One setting where this scenario
frequently arises is in the area of embedded system applications, where an ap-
plication is packaged with the parts of the run-time libraries that it uses into
a single executable (see Section 6).

Scenario 3: Extract a client without assumptions about its libraries.
There is yet another case to consider: we may want to extract a client application
A without making assumptions about the code in library L. This situation may
occur when a needs to ship A to a user who has (a different implementation
of) L, who wants to share L between different L-based applications, or when
L contains code that is platform-specific. This is illustrated in Figure 7 by the
distribution Aext that is being shipped by application vendor a to user v. In this
case, determining the set of reachable methods in A requires that worst-case
assumptions be made in cases where methods in A override methods defined
in L. The experiments reported on in Section 4 are an instance of this scenario.
Here, the standard Java libraries were not analyzed or extracted because we
could assume these to be available on the client side, and to avoid making
platform-specific assumptions.

For each of these distribution scenarios, different assumptions about the
deployment environment must be made. The remainder of this section ex-
plores the issues that arise, discusses the additional information that needs
to be supplied by the user to extract different kinds of software distributions,
and presents a uniform solution in the form of MEL, a modular specification
language for specifying extraction.

5.1 Requirements and Design Issues

In the subsequent discussion, we will use the term software unit to denote
any collection of classes that constitutes a logical entity. Extracting software
distributions other than complete applications requires information that cannot
be obtained using static analysis alone, and that has to be provided by the user:

—Different kinds of software distributions (e.g., complete applications, web-
based applications that execute in the context of a browser, and extensible
frameworks) have different sets of entry points, and require an extractor to
make different assumptions about the deployment environment. As Figure 7
illustrates, the same unit of software may even play different roles, depending

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 643

on the deployment scenario. Hence, the user needs to specify what role is
played by a software unit.

—Modern object-oriented applications typically rely on independently devel-
oped class libraries. With the advent of virtual machine technology, libraries
and applications are amenable to the same analyses, because the same rep-
resentation is used. When an application is distributed separately from the
libraries it depends upon, an extraction tool needs to be aware of the bound-
ary between the two.

—Dynamic features such as reflection pose additional problems for extraction
tools because a static analysis alone is incapable of determining the pro-
gram constructs that are used, and hence the program constructs that can
be removed.

—Some interesting interactions between the above issues exist. For example,
consider a situation where an application A is distributed together with an
independently developed class library L that uses reflection. Then, the use
of reflection in L may depend on the features in L that are used by A.

We will now investigate each of these issues in more detail.

5.1.1 Roles of Software Units. The same representation is used for library
code and application code, and only the way in which software units are used
and composed determines how they should be extracted. The term role will be
used to refer to the way in which a software unit is used. We consider four roles
that frequently occur in practice:

—An application is an executable software unit with an external interface con-
sisting of a single main() method. It is assumed that classes in applications
are not extended by derivation after extraction.

—An applet is a software unit that is executed in the context of a browser. An
applet extends class java.applet.Applet and its external interface consists
of the methods of that class that it overrides. We assume that classes in
applets are not extended by derivation after extraction.

—A library is an incomplete program that is used as a building block by other
units. Classes in libraries may be extended by derivation. A library’s external
interface consists of any method and field with public or protected access
rights.

—A component is another type of incomplete program. Unlike a library, classes
in a component are assumed not to be extended after extraction. The external
interface of a component contains every public method and field.

Other roles such as JavaBeans [Sun Microsystems 1997] and Servlets
[Callaway 1999] can be modeled similarly.

5.1.2 Specifying the Extraction Domain. As the same representation is
used for software units with different roles, it becomes necessary to specify
the “boundaries” between software units when performing extraction. In our
approach, the user selects the set of classes that should be extracted, and worst-
case assumptions are made about the behavior of classes that are not selected.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

644 • F. Tip et al.

import java.io.*;
import java.lang.Class;
import java.lang.reflect.Method;

public class Example1 {
public static void main(String args[]){

T t = new T();
Class c = t.getClass();
Method[] methods = c.getDeclaredMethods();
for (int i=0; i < methods.length; i++){

Method m = methods[i];
String methodName = m.getName();
System.out.print(methodName);
}
}
};
class T {

void foo(){ · · · };
void bar(){ · · · };
};

import java.io.*;
import java.lang.Class;

public class Example2 {
public static void baz(String name){

try {
Class c = Class.forName(name);
Object o = c.newInstance();
I i = (I)o;
i.zap();
}
catch (ClassNotFoundException e){

System.out.println("Error: " +
"Could not find " + name); }

catch (IllegalAccessException e){
System.out.println("Error: " +

"Illegal access to " + name); }
catch (InstantiationException e){

System.out.println("Error: " +
"Abstract " + name); }

}
};
interface I {

public void zap();
};

(a) (b)

Fig. 8. (a) Example Java program that uses structural reflection. (b) Example Java program that
uses dynamic loading.

It is important to realize that specifying the boundary between software units is
not merely an issue of avoiding redundant work and shipping redundant code,
but potentially also one of correctness. For example, if an application class con-
tains a call to a method in a class that is not extracted, inlining that call on one
platform may result in code that does not work on another platform.

5.1.3 Dealing with Dynamic Features. Java’s reflection mechanism allows
programs to do various forms of self-inspection. For example, in the program
of Figure 8(a), the class that represents the type T of object t is retrieved by
calling java.lang.Object.getClass(). Then, java.lang.Class.getDeclared
Methods() is called to obtain an array of objects representing the methods in T,
and the name of each method is accessed by calling java.lang.reflect.Method.
getName(). Hence, the program prints: “foobar”. Clearly, program behavior de-
pends on the presence and name of T’s methods, even though these methods
are not invoked anywhere. Obviously, this use of reflection precludes program
transformations such as the removal or renaming of methods in T that affect
program behavior.

Dynamic Loading, another form of reflection, is a heavily-used17 mechanism
for instructing a Java Virtual Machine to load a class X with a specified name
s, and return an object c representing that class. Reflection can be applied to c
to create X -objects on which methods can be invoked. The crucial issue is that s
is computed at run-time. This implies that, in general, a static analysis cannot

17Nine of the thirteen benchmarks studied in Section 4 use dynamic loading.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 645

determine which classes are dynamically loaded.18 The program of Figure 8(b)
exhibits a fairly typical use of dynamic loading. Class Example2 contains a
method baz() which takes a single argument of type String, and dynamically
loads a class with that name by calling method java.lang.Class.forName().
The program then calls method java.lang.Class.newInstance() to create an
object of the dynamically loaded type, casts it down to an interface type I, and
calls method zap() on the object. Observe that class instantiation (of the dy-
namically loaded class) and method invocation (of the default constructor of
that class) occur implicitly. This poses problems for call graph construction al-
gorithms that need to know which classes are instantiated, and which methods
are invoked (see Section 3).

Java provides a mechanism for implementing methods in a platform-
dependent way, typically using C. The mechanism works roughly as follows:
The native keyword is used to designate a method as being implemented in a
different language, and the corresponding code is provided in an object file (e.g.,
a dynamically linked library) associated with the Java application. The native
code may instantiate classes, invoke methods, and access fields, which obvi-
ously poses problems for any program transformation that relies on accurate
information about class instantiation and method invocation, because object
code is notoriously hard to analyze.

It should be evident from the above examples that, without additional in-
formation, the use of reflection, dynamic loading, and native methods requires
that extremely conservative assumptions be made during extraction: It would
essentially be impossible to remove, rename, or transform any program con-
struct. The approach taken in this paper relies on the user19 to specify a list of
program constructs (i.e., classes, methods, and fields) that are accessed using
these mechanisms, and to make the appropriate worst-case assumptions about
these constructs.

5.1.4 Modeling Different Usage Contexts. Consider Figure 9(a), which
shows a small class library consisting of three classes L, M and N. Class L has
two methods: f() and g(). A call to f() results in the dynamic loading of class
M, and a call to g() results in the dynamic loading of class N. Hence, a client
that calls f() but not g() will only access M, and a client that calls g() but
not f() will only access N. A specification of the library’s behavior stating that
any client may access both M and N is clearly overly conservative. We therefore
allow conditional specifications of the form “program construct X should be
preserved if method m is reachable”. This allows one to express how reflection

18In some cases, the type of a dynamically loaded class can be inferred by constant propagation of
the string literals that represent the class name. However, we have observed that these names are
often read from files or manipulated in non-trivial ways.
19Determining where reflection is used in unfamiliar code can be difficult, especially if source is
unavailable. To assist users with this task, the Jax distribution includes a tool that instruments
calls to the reflection API. Running the instrumented application produces a file that lists the
classes, methods, and fields that are accessed via reflection in that specific execution. Although
there is no guarantee that all uses of reflection are exposed by the tool, in practice it usually
suffices to exercise all menus, buttons and other GUI components.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

646 • F. Tip et al.

import java.lang.Class;

public class L {
public static void f(){
· · ·
Class c = Class.forName("M");
· · ·
}
public static void g(){
· · ·
Class c = Class.forName("N");
· · ·
}
};
class M { · · · };
class N { · · · };

import L;

public class A {
public static void main(String args[]){
· · ·
L l = new L();
l.g();
· · ·
}
};

(a) (b)

path · · ·
include L
library L
preserve M when reached L.g()
preserve N when reached L.f()

path · · ·
include A
application A
import L.mel

(c) (d)

Fig. 9. (a) Example class library that uses dynamic loading. (b) Example application that uses
the library of (a). (c) Specification L.mel for the class library of Figure 9(a) (d) Specification A.mel
for the application of Figure 9(b).

MELScript ::= Item∗
Item ::= DomainSpecifier | Statement | Import
DomainSpecifier ::= ClassPath | Include
ClassPath ::= path <Directory> | path <ZipFile>
Include ::= include <Class> | include <PackageName>
Statement ::= Role | Preserve
Role ::= application <Class> | applet <Class> | library <Class> |

component <Class>
Preserve ::= SimplePreserve | CondPreserve
SimplePreserve ::= preserve <Class> | preserve <Method> | preserve <Field>
CondPreserve ::= SimplePreserve when reached <Method>
Import ::= import <FileName>

Fig. 10. BNF Grammar for the user-level information in MEL.

depends on the usage of a software unit’s functionality, and enables the creation
of a single, reusable configuration file that can be used to accurately extract a
software unit in the context of any client.

5.2 A Specification Language

Figure 10 presents a BNF grammar for a simple specification language, MEL
(Modular Extraction Language), that allows users to specify at a high level how
to extract a library-based application. A MEL script comprises:

(1) A domain specification, consisting of a class pathwhere classes can be found,
and a set of include statements that specify the extraction domain. Any
class that is not included is considered “external” in the sense that it will

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 647

Assertion ::= SimpleAssertion | ConditionalAssertion
SimpleAssertion ::= LHS Assertion | extendible <Class> | overridable <Method>
LHS Assertion ::= instantiated <Class> | reached <Method> | accessed <Field> |

preserveIdentity <Class> | preserveIdentity <Method> |
preserveIdentity <Field>

CondAssertion ::= LHS Assertion when reached <Method>

Fig. 11. BNF grammar for the extractor-level information in MEL.

not be extracted, and that worst-case assumptions will be made about its
behavior.

(2) A set of statements. Role statements designate the role of classes in the
extraction domain as application, applet, component, or library (see
Section 5.1.1). Preserve statements specify that classes, methods, or fields
should be preserved because they are accessed using reflection or from
within native methods, and that worst-case assumptions should be made
about these constructs. Following the discussion of Section 5.1.4, program
constructs can be conditionally preserved depending on the reachability of
a specified method.

(3) A list of imported configuration files. The semantics of the import feature
consist of textual expansion of the imported file into the importing file.

Figure 9(b) shows an example application A that uses the library of
Figure 9(a). Observe that A’s main() routine creates an L-object and invokes
L’s method g(). Figures 9(c) and (d) present MEL scripts L.mel and A.mel for L
and A, respectively. The conditional preserve statements in L.mel ensure that
class M is preserved if method L.g() is reached, and that class N is preserved if
method L.f() is reached. Since A only calls method L.g(), class N will not be
extracted.

5.3 Implementation Strategy

The specification language of Figure 10 was designed to make the specification
of the extraction process convenient. However, the transformations applied by
extraction tools typically require low-level information (e.g., potentially reached
methods and instantiated classes). To bridge the gap between user-level and
extractor-level information, we add a number of assertion constructs to MEL,
and provide a translation from user-level statements to assertions. An impor-
tant benefit of this approach is that all roles and usage scenarios can be treated
uniformly by the extractor.

Figure 11 shows a BNF grammar for MEL assertions. The instantiated,
reached, and accessed assertions are provided for expressing that a class
is instantiated, a method is reached, or a field is accessed, respectively. The
preserveIdentity assertions express that a program construct’s name or sig-
nature may not be changed because it may be accessed from outside the ex-
traction domain through reflection. There is also a conditional form of each of
these constructs, to model the conditional preserve statements of Figure 10.
The extendible and overridable assertions express that a class/method may
be extended/overridden after extraction.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

648 • F. Tip et al.

Table VI. Translation of Statements into Assertions

statement derived assertions
application C preserveIdentity C

reached C.main(java.lang.String[])
preserveIdentity C.main(java.lang.String[])

applet C instantiated C
preserveIdentity C
preserveIdentity C.m for every C.m that

overrides java.applet.Applet.m
reached C.m for every C.m that overrides java.applet.Applet.m

component C preserveIdentity C
preserveIdentity C.m for every public method C.m
reached C.m for every public method C.m
preserveIdentity C. f for every public field C. f
accessed C. f for every public field C. f

library C preserveIdentity C
extendible C
reached C.m for every public or protected method C.m
preserveIdentity C.m for every public or protected method C.m
overridable C.m for every public or protected method C.m
accessed C. f for every public or protected field C. f
preserveIdentity C. f for every public or protected field C. f

preserve C instantiated C when C is not an interface or an abstract class
preserveIdentity C

preserve C.m reached C.m
preserveIdentity C.m

preserve C. f accessed C. f
preserveIdentity C. f

preserve C when instantiated C when reached D.n
reached D.n preserveIdentity C when reached D.n

preserve C.m when reached C.m when reached D.n
reached D.n preserveIdentity C.m when reached D.n

preserve C. f when accessed C. f when reached D.n
reached D.n preserveIdentity C. f when reached D.n

Table VI shows how each type of MEL statement is translated into a set of
assertions. The translation process for roles can be summarized as follows:

—For each role, the appropriate methods are assumed to be invoked from out-
side the extraction domain. For example, for classes that play a library
role all public and protected methods are assumed to be invoked. Each
such method is assumed to be reached, and its identity is preserved to ac-
count for the fact that external references to its name and signature may
exist.

—For each role, the appropriate fields are assumed to be accessed from outside
the extraction domain, and accessed and preserveIdentity assertions are
generated. For example, all public fields of components are assumed to be
accessed.

—Any class that plays an applet role is instantiated by the JVM when the
applet is started. We model this by asserting that each applet class is
instantiated.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 649

—For classes that play a library role, we assume that subclassing and method
overriding may take place after extraction. To this end, we assert that
the class is extendible and all of its public and protected methods are
overridable.

A preserveIdentity assertion is generated for any program construct ref-
erenced in a preserve statement, because explicit references to the construct’s
name and signature may exist (e.g., using reflection). We conservatively assume
that a preserved class is instantiated if it is not abstract or an interface, that
a preserved method is reached, and that a preserved field is accessed. Trans-
lating conditional preserve statements involves carrying over the condition
from the statement to the assertion, but is completely analogous otherwise.

It is hard to make completeness arguments about MEL. In designing MEL’s
statements, our goal has been to make specification of commonly occurring ex-
traction scenarios convenient. MEL assertions are sufficient to ensure that a
program construct will not be transformed in any way. In our implementation,
we have given the user direct access to MEL assertions as a fall-back option
for extraction scenarios that are not currently supported. One instance where
this has already been useful is a situation where the main class of an appli-
cation contained an unaccessed field called “copyright” containing a copyright
message. Since this field was not accessed, an explicit preserveField assertion
had to be supplied to preserve it.

5.4 Implementation

In our implementation of MEL, we added mechanisms for specifying the name of
the generated zip file, and for selectively disabling optimizations and transfor-
mations. We will now describe how several extraction techniques introduced in
Section 2 were adapted to accommodate MEL assertions. While we do not claim
to be the first to adapt these optimizations to software distributions other than
complete applications, we are not aware of any previous systematic treatment
of the subject.

Call graph construction. In order to accommodate MEL assertions in
our implementation of XTA,20 the algorithm outline of Section 3.1 was adapted
as follows. In step 1), the initial set of reachable methods is made to include any
method m for which an assertion reached m exists. In addition, all sets S f and
Sm are initialized to contain each class C for which an assertion instantiated
C exists. Then, in the iterative part of the algorithm, the following additional
steps are performed:

—whenever a method m is added to N such that an assertion instantiated C
when reached m exists, C is added to Sm if it does not occur in Sm, and

—whenever a method m is added to N such that an assertion reached m′ when
reached m exists, m′ is added to N if it does not occur in N .

20RTA was adapted similarly.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

650 • F. Tip et al.

Removal of dead methods and fields. Dead method removal relies
solely on call graph information. No information is needed beyond what was
discussed above. Dead field removal is adapted to handle MEL assertions
by considering a field C. f to be read-accessed if there exists an assertion
accessed C. f . Conditional accessed assertions are treated similarly as con-
ditional reached assertions.

Call devirtualization. A dynamically dispatched call to a method C.m
can be transformed into a direct call if only one method can be reached from
the call site under consideration, and if method C.m cannot be overridden after
extraction of the application. The first condition can be verified by inspection
of the call graph, and the second condition is met if there is no assertions
overridable C.m or extendible C, where C.m is the method invoked at call
site x.

Other optimizations that rely on closed-world assumptions such as inlining
[Scheifler 1977] can be adapted similarly. In the presence of MEL assertions,
a call to a virtual method C.m for which an assertion overridable C.m exists
cannot be inlined, because the method may be overridden after extraction, and
we conservatively assume that the call site may resolve to these overriding
method definitions.

Name compression. The presence of MEL assertions imposes additional
constraints on the renaming of program constructs. Any program construct x
for which there exists an assertion preserveIdentity x cannot be renamed,
any method m for which there exists an assertion overridable m cannot be
renamed, and any class c for which there exists an assertion extendible c
cannot be renamed.

Method finalization and class finalization. MEL assertions are accom-
modated by not finalizing any class C for which an assertion extendible C
exists, and by not finalizing any method m for an assertion overridable m
exists.

Class hierarchy transformations. In order to accommodate MEL as-
sertions, any class C for which there exists an assertion preserveIdentity C
should not be removed, or merged into its base class.

5.5 A Case Study

We studied several extraction scenarios for Cinderella, an interactive geometry
tool used for education and self-study in schools and universities. Cinderella
consists of an application, used for constructing interactive geometry exercises,
and an applet with which students can attempt to solve these exercises. Both
are derived from a single code base, which is contained in a single zip file.
Another fact of interest is that Cinderella relies on a class library called Antlr
for parsing.

Table VII shows several distribution scenarios. The first two rows
(Application + Applet (unprocessed) and Antlr (unprocessed)) show the
original distributions of Cinderella and Antlr, respectively. The columns of the

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 651

Table. VII. Results of Multiple Distribution Scenarios for “Cinderella”

table show the numbers of classes, methods, and fields, and the size of the zip
file, respectively. The next row (Antlr (processed)) shows the result of extract-
ing Antlr as a stand-alone library. The next three rows, (Applet (processed),
Application (processed) and Applet + Application (processed)) show the
size of extracting the application, the applet, and their combination without
Antlr. The bottom three rows show the application, applet, and their combina-
tion, extracted with the parts of Antlr that they use. The following observations
can be made:

—The applet contains (roughly) a subset of the application’s functionality, since
the Application + Applet (processed) distribution (400,593 bytes) is only
marginally bigger than the Application (processed) distribution (390,833
bytes).

—On the other hand, the size of the extracted applet (176,397 bytes) is signifi-
cantly smaller than the combined distribution (400,593 bytes). Hence, users
who only require the applet will prefer this distribution.

—The distributions that include Antlr are not much bigger than the distri-
butions without Antlr. Hence, we can infer that Cinderella uses only a
small subset of Antlr’s functionality. In fact, the distribution of Cinderella
without Antlr (Application (processed), 390,833 bytes) is larger than the
distribution of Cinderella with Antlr (Application + Antlr (processed),
385,900 bytes). This is due to the fact not including Antlr forces Jax to make
conservative assumptions about the Antlr library that increase distribution
size.

—Extracting Antlr by itself results in a nontrivial (about 20%) reduction of
distribution size (due to the removal of several methods and fields and to
the removal of redundant class file attributes). This confirms that extracting
stand-alone class libraries is worthwhile.

5.6 Semantic Requirements and Challenges

The extraction techniques implemented in Jax have been designed with the
preservation of program behavior in mind. Specifically, for a software unit U
that is extracted by Jax, our goal has been to guarantee that:

(1) The behavior of the code in U itself is preserved.
(2) The behavior of a unit V that uses U is preserved if V ’s usage of U matches

the assumptions made about U during extraction (e.g., if U was extracted

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

652 • F. Tip et al.

as a component, V ’s behavior is preserved only if it does not extend classes
in U).

There is an interesting analogy with the concept of binary compatibility. The
Java Language Specification (JLS) [Joy et al. 2000, Chapter 13] states that a
number of changes may be made to a class C without requiring recompilation
of pre-existing binaries compiled against C. For example, deleting a private
field from a class does not necessitate recompilation of any other classes and
is therefore a binary-compatible change. Extracting an incomplete application
raises similar issues: We need to ensure that the interactions between the ex-
tracted software unit and other software units in its deployment environment
are not affected by any transformations performed by Jax. Note that this is a
stronger requirement than binary compatibility because being able to compile a
software unit against an extracted version of U does not guarantee behavioral
equivalence by itself.

Our approach to achieve goal (2) above is to rely on information about the
deployment environment that the user has provided in MEL scripts, and to
limit the transformations applied to U in such a way that software units that
interact with U are not affected. We will now discuss the implications for the
specific transformations performed by Jax.

Removal of classes, methods, and fields. Classes, methods, and fields that
are accessed by other software units may not be removed because this would
break binary compatibility [Joy et al. 2000, Section 13.4.11] (and therefore
change program behavior). Moreover, a method m() in U that overrides a
method in another software unit can only be removed if it can be determined
that method calls outside U will never dispatch to m().

Renaming of classes, methods, and fields. The JLS [Joy et al. 2000,
Section 13.4.12] states that the renaming of a method should be considered
as a deletion and an addition of a method for the purposes of determining
binary (in)compatibility. Following a similar argument as above, this implies
that no class, method, or field can be renamed if it is referenced from outside U .
Moreover, methods in U that override methods in other software units, or that
may be overridden by clients of U cannot be renamed because this might cause
behavioral changes. Additional restrictions on renaming due to reflection and
native methods were already discussed in Section 5.1.3.

Finalization of classes and methods. The JLS [Joy et al. 2000, Section
13.4.2] states that making a class final will result in a VerifyError being
thrown if a binary of a pre-existing subclass is loaded. Jax relies on the user to
specify the classes that may be subclassed after extraction (such classes must
be declared as library classes in MEL scripts), and assumes that any other class
may be made final. The finalization of methods raises similar issues.

Method call inlining. Inlining a call site s amounts to changing the body
of the method containing s, and does not break binary compatibility by itself
[Joy et al. 2000, Section 13.4.20]. However, the method m() that is invoked at s
must be part of U . Otherwise, behavioral changes may occur if U is deployed

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 653

in an environment with a different implementation of m. A method in U for
which all call sites have been inlined may only be removed if the conditions for
removal (see above) have been met.

Class merging. Merging a class B into a class A has the effect of removing
class B and adding B’s methods to class A. This is only allowed if the conditions
for removing class B have been met (see above). Moving a method from class B
to class A does not affect binary compatibility [Joy et al. 2000, Section 13.4.11]
or program behavior (even in the case where an abstract method is removed
from A). Conditions related to class merging not specific to the extraction of
incomplete applications were previously discussed in Section 2.

6. EXTRACTION OF EMBEDDED SYSTEMS APPLICATIONS

Embedded devices have a number of special characteristics that make the
applications running on these devices excellent candidates for extraction:

—Embedded devices tend to have little RAM, and less powerful CPUs than
desktop computers, because of cost, size, and power consumption considera-
tions.

—Embedded devices tend to be diskless, and operating system and applications
are stored in ROM or flash memory.

—Battery-powered devices often need to be turned off or hibernated when not
in use, but long start-up times are generally not acceptable.

Several of the present authors have been involved in the development of
a packaging tool called SmartLinkertm, which is is incorporated into IBM’s
WebSphere Studio Device Developer 4.0 (WSDD),21 an environment for de-
veloping Java applications for embedded systems. SmartLinker incorporates
most of the previously presented extraction techniques,22 and shares a signifi-
cant amount of code with Jax.

This section is concerned with issues specific to the extraction of embedded
systems applications, and with additional extraction techniques and optimiza-
tions that are implemented in SmartLinker.

6.1 Additional Distribution Scenario: Partially Pre-Linked Libraries

In addition to the distribution scenarios discussed in Section 5, SmartLinker
supports the extraction of custom libraries. A custom library contains a sub-
set of a library’s functionality, and address situations where several applica-
tions deployed on a single embedded device use a common subset of a library’s
functionality, but where each deployed application may use additional library
features not in the common subset.

21See www.ibm.com/embedded.
22Name compression is currently not incorporated in SmartLinker, and only limited class hierarchy
transformations are performed. SmartLinker optionally includes line number and local variable
attributes in the output it generates for debugging purposes. In order to avoid the overhead of these
attributes on the target device, debugging information is stored in a separate file which is read by
a debug proxy in order to translate internal JVM addresses and offsets to symbolic names.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

654 • F. Tip et al.

Fig. 12. Schematic view of SmartLinker’s support for packaging partially pre-linked libraries.
Commonly used library classes are pre-packaged in a shared JAR file, and other library classes are
packaged in another JAR distribution along with the application.

The extraction of the custom library itself is essentially an instance of Sce-
nario 1 of Section 5, but SmartLinker provides an additional mechanism to sup-
port the precise extraction of applications in the presence of custom libraries.
When a custom library Lc is extracted from a complete library L, a map file
is created that summarizes the dependences in Lc. This map file contains for
every method in Lc: (i) internal references to other methods, fields and classes
in Lc, and (ii) external references to methods, fields and classes not contained
in Lc but contained in L.

In general, extracting an application A that depends on Lc requires: (i) the
classes associated with A itself, (ii) the classes in Lc, and (iii) additional classes
in L that are not in Lc, but that are used by A. However, only the classes of (i)
and (iii) occur in the resulting distribution because the classes of (ii) are already
available in the separately shipped custom library. The key issue is to avoid
including too many of the classes in L with the extracted application A. This is
accomplished by examining the map file of Lc during call graph construction. In
particular, if a method m in Lc is found to be reached, the externally referenced
classes, methods, and fields associated with m determine the additional parts of
L that must be distributed with A, and the internal references are examined
recursively to identify additional external references that must be taken into
account.

Figure 12 depicts this process. The top part of the figure shows how a map file
runtime.map is generated when extracting a custom library runtime.jar from
a complete run-time library classes.zip. In the figure, the extracted subset of
classes.zip’s functionality is shown as A. The bottom part of Figure 12 shows
the extraction of an application “Sticks” (sticks.jar) that was developed using

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 655

Table. VIII. Results of applying SmartLinker to the PalmOS “Sticks” application. The JAR files
in this figure contain uncompressed entries

the complete library classes.zip. During the extraction of the Sticks appli-
cation, the map file runtime.map is analyzed in conjunction with the complete
run-time library classes.zip to determine the functionality in classes.zip
that is required by Sticks, but which is not in runtime.jar. This additional
functionality is shown as B in the figure.

6.2 Peephole Optimizations

SmartLinker performs a number of peephole optimizations that often have sig-
nificant benefits in terms of application size and execution speed. These peep-
hole optimizations include: (1) replacing consecutive identical load instructions
with load, dup, (2) removing load, pop combinations, (3) removing jumps to
the immediately following instruction, (4) replacing load, const, add, store in-
struction sequences with iinc, (5) removing no-ops, (6) removing store (load)
when there are no more stores (loads) of the same local, and (7) removing store
instructions that are followed by a return instruction.

6.3 Conversion to Other Representations

Embedded systems applications are typically not deployed using the stan-
dard Java class file representation, but in various device-specific formats.
SmartLinker supports the Java Executable (JXE) format, a format specifically
designed for packaging embedded applications in the context of WSDD. The
JXE format has the property that it can be executed in-place by the JVM, which
enables one to store applications in flash memory or ROM. Key differences be-
tween the JXE format and the standard Java class file representation are that
the former uses a single, shared representation for strings and other constants
(as opposed to using a copy per class), and that significantly less indirection
is used. From the JXE representation, various device-specific representations
can be produced, such as the PRC format in the case of PalmOS applications.

6.4 An Example: Packaging a PalmOS Application

Table VIII shows some results that were obtained for the “Sticks” PalmOS
application, one of the examples shipped with WSDD. The top three rows of
Table VIII show the inputs to the packaging process: the Sticks application it-
self (5 classes contained in a 10,956 byte JAR file), a small library containing
several high-level PalmOS utility classes (13 classes in a 28,727 byte JAR file),
and the WCE (WebSphere Custom Environment) run-time PalmOS libraries

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

656 • F. Tip et al.

(344 classes in a 1,068,560 byte JAR file), which provides a (small) subset of
the functionality of the standard Java class library and a (large) subset of
the PalmOS API. The rightmost column of Table VIII shows the size of the
JXE representations of these three archives: 9,544 bytes, 18,117 bytes, and
617,481 bytes, respectively. This brings the total size of the original distribu-
tion to 362 classes and 645,142 bytes (in the JXE format). Because PalmOS
devices typically only have a few megabytes of storage, it is clear that some
reduction in footprint is needed.

The next row of the table (labeled “WCE PalmOS run-time libraries (sub-
set)”) refers to a custom library that has been independently extracted and
contains a subset of the functionality of the complete run-time libraries. This
custom library contains 78 classes (JXE size: 83,002 bytes) and packages
the classes that are required by nearly every PalmOS application. When the
Sticks application is extracted, none of the 78 classes of this custom library
are included, as it is expected to be installed separately on the embedded
device.

The last three rows of Table VIII illustrate the impact of some of the
steps in the packaging process. The row labeled Sticks (packaged, no
reduction/optimization) shows the extracted Sticks application before any
classes, methods and fields have been removed. These 63 classes consist of:
the 5 classes of the Sticks application itself, 1 utility class, and 57 classes
from the complete libraries that do not occur in the custom library. The size
of this distribution (JXE size: 240,748 bytes) is due to the fact that some of the
classes in the complete library that Sticks refers to are very large (and includes,
among other things, a 128KB class containing all 1200+ PalmOS function
wrappers).

The row labeled Sticks (packaged, reduction, no optimization) shows
the application after removal of unused classes (i.e., uninstantiated classes
that do not contain live methods or fields), methods, and fields. Clearly, not
much functionality in the 63 classes is actually used, because the application
now comprises 12 classes, and a JXE size of 12,751 bytes.

The bottom row shows the application after inlining and peephole optimiza-
tions. This has further reduced the application to 10 classes (the 5 Sticks appli-
cation classes, 1 utility class, and 4 run-time classes not in the custom library),
and a JXE size of 10,999 bytes. The removal of two classes in this last step
is due to the fact that all calls to the methods in these classes are inlined
away.

6.5 Other Optimizations

In addition to size, speed is also an important issue for embedded systems ap-
plications. SmartLinker incorporates advanced optimizations such as: profile-
directed inlining a user-specified percentage of the “hottest” call sites (i.e., the
most frequently executed calls), and profile-directed ahead-of-time compilation
of methods whose execution time is some user-specified percentage of the total
measured execution time. We refer the interested reader to Eisma [2001] for
details.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 657

7. RELATED WORK

7.1 Historical Perspective

Several of the techniques incorporated into Jax borrow from previous work by
some of the present authors. Jax implements the RTA [Bacon and Sweeney
1996; Bacon 1997] and XTA [Tip and Palsberg 2000] call graph construction
algorithms. Accurate treatment of methods that override methods in external
class libraries is very important for reducing archive size due to the importance
of class libraries in Java. The detection of useless fields, including write-only
fields, was previously studied by Sweeney and Tip [1998], and Tip et al. [1996]
for C++. In this work, RTA was used to construct a call graph, and an aver-
age of 12.5% useless fields was measured for a set of C++ applications. In the
context of Jax, we found that, on average, 38.5% of all fields remain after ex-
traction. We conjecture that this difference is partly due to the pervasive use of
class libraries in Java, and that these libraries tend to contain a lot of unused
functionality. Furthermore, the larger percentage of unaccessed fields in Java
applications could be due to the fact that Java lacks a macro facility and that
Java programmers use static final fields to define constants. Java compilers
propagate these constants so that no accesses to these fields remains, but the
fields themselves are not removed.

The class hierarchy transformations used by Jax were originally proposed in
the context of specializing class hierarchies [Tip and Sweeney 1997]. The goal
of this work is to remove members from objects. Ignoring a number of details,
the specialization algorithm constructs a new class hierarchy in which a new
class is constructed for each variable and each member in the program. In-
heritance relations between these classes reflect member access relationships
between variables and class members, and subtype relationships between vari-
ables that must be retained to preserve program behavior. The class hierarchy
transformations used in Jax were introduced in order to reduce the complexity
of the resulting class hierarchy.

7.2 Application Extraction for Other Languages

The extraction of applications was pioneered in the Smalltalk community,
where it is usually referred to as “packaging” [IBM Corporation 1995; Digitalk
Inc. 1993; ParcPlace Systems 1992]. Smalltalk packaging tools typically have
mechanisms for excluding certain standard classes and objects from consider-
ation, and for forcing the inclusion of objects and methods. While the latter
mechanism is sufficient to handle programs that use reflection, we are not
aware of any Smalltalk extractor that models different types of applications, or
that provides a feature to preserve certain program constructs conditionally.

Agesen and Ungar [1994] and Agesen [1995] describe an application extrac-
tor for the Self language that eliminates unused slots from objects (a slot corre-
sponds to a method or field). In his PhD thesis, Agesen [1995, page 146], writes
that there is no easy solution to dealing with reflection other than “rewriting
existing code on a case by case basis as is deemed necessary” and suggests “en-
couraging programmers writing new code to keep the limitations of extraction

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

658 • F. Tip et al.

technology in mind”. In contrast, we allow the user to specify where reflection
occurs, so that applications that use reflection can be extracted.

Chen et. al [1998] describe Acacia, an extraction tool for C/C++ based on a
repository that records several relationships between program entities. Several
types of reachability analyses can be performed, including a forward reacha-
bility analysis for determining entities that are unused. Chen et al. identify
several issues that make extraction difficult such as the use of libraries for
which code is unavailable, and situations where functionality should be pre-
served because source modules are shared with other applications. Unlike our
work, Acacia is an analysis tool aimed at providing information to the user, and
does not actually perform any program transformations such as dead code elim-
ination. A number of issues that we study such as the use of reflection are not
discussed, and no mechanism appears to be available for supplying additional
information to the extractor.

7.3 Compaction of Object Code

Optimizations aimed at reducing application size have also been applied at
the object-code level, where such techniques are generally referred to as code
compaction. Fraser et al. [1984] presented an algorithm based on suffix trees
that detects repeated sequences of instructions, and replaces these with a single
instance of the sequence and a set of branch/jump instructions. One can think of
this code factoring as a form of procedural abstraction, although the algorithm
goes beyond that by allowing tail merging (i.e., having the instruction sequences
of procedures overlap). A number of improvements over this basic technique
were later proposed by Cooper and McIntosh [1999] and by De Sutter et al.
[2002] and De Sutter [2002]. Code factoring can be worthwhile at the object-code
level, because the overhead of introducing additional procedures is relatively
low. It is unclear how worthwhile code factoring would be in our setting, because
of the overhead associated with introducing additional methods, and because
syntactic constraints on byte codes may prevent the exploitation of factoring
opportunities.

Debray et al. [2000] incorporated code factoring as well as a collection of
traditional compiler-optimizations such as dead code elimination, strength re-
duction, and interprocedural constant propagation in squeeze, a code compactor
that targets binaries for the Alpha processor. They report an average reduction
in executable size of about 30%. In contrast to our work, where a program’s
call graph is the central data structure, the analyses in squeeze operate on an
interprocedural control flow graph representation of the program. De Sutter
et al. [2001] extended squeeze with techniques for compacting a binary pro-
gram’s data area. This is accomplished by using constant propagation to deter-
mine the values of addresses in code and data areas, and using the obtained in-
formation to determine code and data values that can be eliminated. De Sutter
et al. report an average data size reduction of 24.3%, as well as an additional
code size reduction of about 3% due to the removal of code that was only referred
to from pointers stored in unused data (e.g., unused virtual function tables).
Squeeze was further extended with improved code factoring capabilities that

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 659

specifically target code duplication that is due to templates and inheritance
in C++ [De Sutter et al. 2002]. The factoring transformations in the resulting
compaction tool (named squeeze++) identify similar but not identical procedures
and merge these into a combined procedure that takes additional parameters.
An average size reduction of 45% is reported on a set of C++ benchmarks.

7.4 Extraction and Obfuscation Tools for Java

There are several Java tools, DashO-Pro,23 SourceGuard,24 Jshrink,25

Jmangle,26 and JZipper27 aimed at obfuscation (i.e., to make decompilation
of class files into understandable source code more difficult) that perform some
form of compression of class names, method names, field names, and package
names. Of these tools, only DashO-Pro and SourceGuard go beyond simple name
compression, and perform other transformations such as modifying an applica-
tion’s control flow. We are not aware of any published work on the algorithms
used in any of these tools, nor on their internal architecture.

Rayside and Kontogiannis [1999] present a technique that uses an entity-
relationship dependency graph for extracting embedded systems applications.
A crucial difference with our work is that Rayside and Kontogiannis do not use
call graph information as the basis for detecting unused program constructs,
and only remove program constructs that are not referred to. The techniques
by Rayside and Kontogiannis are much less accurate than ours, because they
are incapable of removing anything that is referred to from dead code. Unlike
Jax, this work does not explore the extraction of software distributions other
than complete applications.

Thies [1999a, 1999b] presents a static analysis of class libraries where the
goal is to compute “summary” information that concisely represents the side-
effects of method invocations on actual parameters. This information can be
used by a JIT at run-time to detect additional opportunities for optimizations
such as common subexpression elimination, and loop invariant code motion.
The analysis information that Thies computes is similar in spirit to the infor-
mation captured in our MEL configuration files, although it is different in the
sense that it is computed automatically. Thies does not discuss how he han-
dles the use of reflection and dynamic loading in class libraries. It appears that
Thies uses Class Hierarchy Analysis as the basis for computing the side-effects
of methods that call other methods. It would be interesting to investigate how
much precision can be gained by using a more sophisticated call graph con-
struction algorithm.

Zaks et al. [2000] present an algorithm for devirtualizing call sites that ex-
ploits sealing of Java packages. Sealed packages were introduced in JDK 1.2.2
[Sun Microsystems 1999] for security reasons and to enforce consistency within
a version of a JAR file. If a package is sealed within a JAR file, all classes defined

23See www.preemptive.com.
24See www.4thpass.com.
25See www.e-t.com.
26See www.elegant-software.com/software/jmangle.
27See www.vegatech.net/jzipper.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

660 • F. Tip et al.

Table. IX. Results of converting the archives of Tables I and II to the JXE format (see Section 6),
Pugh’s packed representation, and to the Jazz representation. For each of the benchmarks, we show
the size of the original archive, and the size the archive produced by Jax (both after conversion)

in that package must be loaded from that JAR file. Zaks et al. found that a sig-
nificant portion of the virtual call sites in the run-time library rt.jar could be
devirtualized using this technique.

7.5 Alternative Representations for Java Class Files

Recently, Pugh [1999], Horspool and Corless [1998], and Bradley et al. [1998]
proposed alternative, more space-efficient representations for Java class files.
These representations rely on techniques such as the use of a global constant
pool, efficiently representing names that share a common prefix, and separating
different streams of information (e.g., opcodes and operands) and compressing
the resulting streams separately. Similar “wire-format” representations that
rely on creating streams of opcodes and operands that can be compressed sepa-
rately were explored previously by Ernst et al. [1997] for compressing x86 ma-
chine code. Pugh reports archives that range between 17% and 49% of the size
of the original representation for a representative set of benchmarks. Pugh also
evaluates the Jazz representation by Horspool and Corless on his benchmarks,
and measures archives ranging in size from 31% to 181% of the original rep-
resentation. An important advantage of these representations is the enabling
of information sharing between different class files. Jax can only introduce a
limited amount of sharing by merging classes. On the other hand, applica-
tion extractors can achieve significant size reductions by eliminating unused
methods, classes, and fields. This is not addressed by compression techniques.
Therefore, one would expect application extraction and more efficient class file
representations to be largely orthogonal techniques for reducing application
size.

In order to verify this conjecture, we converted the original class file archives
of Table I and the archives produced by Jax as shown in Table II to the Jazz
representation [Bradley et al. 1998], and to Pugh’s Packed representation [Pugh
1999]. We also converted these archives to the JXE format used in SmartLinker
(see Section 6). Table IX shows the archive sizes for the original application and
the corresponding extracted application in ZIP files, JXE files, Pugh’s packed
representation, and the Jazz representation.

Figure 13 depicts the size of the extracted benchmarks in each of the four
representations. In summary, we measured that the size of the extracted

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 661

Fig. 13. Comparison of the archive size reductions obtained with Jax in each of the four class
file representations under consideration. For each benchmark, the four bars indicate, from left to
right, the size of the extracted benchmark using the standard class file representation, the size of
the extracted benchmark using the JXE format, the size of the extracted benchmark using Pugh’s
representation, and the size of the extracted benchmark using the Jazz representation. All sizes of
extracted benchmark are given as a percentage of the original size of that benchmark in the same
representation.

applications ranges from 9.4% to 80.5% of the original size (average: 37.5%)
when the standard zipped class file representation is used, from 14.0% to 83.0%
of the original size (average: 47.3%) if the JXE representation is used, from
16.8% to 84.0% (average: 46.7%) when Pugh’s packed representation is used,
and from 20.3% to 89.1% (average: 46.7%) when the Jazz representation is used.
These results demonstrate that application extraction clearly remains a highly
useful size reduction technique when alternative representations are used, and
that the benefits of application extraction are largely independent of the specific
representation that is used.

A different approach is taken by Kistler and Franz [1997, 1999] who, instead
of representing Java byte-codes more efficiently, propose a new intermediate
representation called slim binaries as an alternative to Java byte-codes. This
representation is based on a high-level abstract syntax tree and encoded using
an adaptive compression scheme.

Rayside et al. [1999] proposed a new and smaller interpretable format for
Java binaries instead of compressing the existing structure by focusing on the
constant pool and code array. Unlike the work of Pugh and Horspool and Corless
but like Jax, this representation does not require decompression before exe-
cution. Nevertheless, the new interpretable format requires either a slightly
modified virtual machine or a customized class loader.

Clausen et al. [2000] explored an alternative approach to compression of
Java byte codes that aims at reducing the memory footprint of low-end embed-
ded systems applications. The approach by Clausen et al. replaces frequently
recurring sequences of byte code instructions by new “macro” instructions, and
requires minor modifications to a VM to recognize and expand these macros at
run-time. Similar techniques were previously applied to x86 machine code by
Ernst et al. [1997]. Clausen et al. report a memory footprint reduction of 15%,
and a speed penalty that varies between 2% and 30%. It is important to real-
ize that the work by Clausen et al. only addresses compression of instruction
sequences, and not, for example, compression of constant pool entries.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

662 • F. Tip et al.

Krintz et al. [1998] study an approach for reducing application start-up time
by using a less strict execution model in which an application starts executing
even as parts of it (classes and methods) are still being downloaded. The benefits
of this work are likely to be orthogonal to those of application extraction.

8. CONCLUSIONS AND FUTURE WORK

8.1 Summary of Contributions

We have implemented a number of extraction techniques such as the removal of
redundant methods and fields, inlining of method calls, class hierarchy trans-
formations, and name compression in a practical extraction tool named Jax. We
applied Jax to a set of large Java applications and measured that, on average,
the class file archive for an application is reduced to 37.5% of its original size.

For a variety of reasons, extraction tools may need additional information
that cannot be determined through static analysis. In particular, the use of
dynamic language features such as reflection and dynamic loading, and the
extraction of software distributions other than complete applications requires
additional user input. We have defined a small, modular language for specify-
ing the extraction of various types of software distributions, and described an
approach in which all of these can be handled uniformly in an extraction tool.
A small case study was presented in order to illustrate the practicality of the
approach.

Several of the extraction techniques that were prototyped and validated in
Jax have been applied successfully in IBM’s WebSphere Studio Device De-
veloper, an environment for programming embedded systems applications in
Java. They make a crucial difference for scaling Java to embedded systems. We
discussed a number of issues specific to the embedded systems domain, such
as the support for partial (pre-)linking of libraries, and conversion to other
representations.

8.2 Future Work: Optimization of Embedded Applications

Plans for future work in the area of optimization for embedded systems ap-
plications include various interprocedural optimizations of the generated code
such as object inlining, interprocedural liveness analysis, and demand-driven
context-sensitive analysis driven by profiling feedback. We have already con-
ducted some initial experiments with an approach in which we continue to gen-
erate optimized bytecodes, using a translation to a register-based intermediate
representation (IR) [Burke et al. 1999], followed by regeneration of bytecodes
from this IR (similar to Pominville et al. [2001]). However, bytecode-level opti-
mizations have their limitations. For example, there are many cases where a
given invokevirtual call site always resolves to a specific method, but where
the call cannot easily be devirtualized because the use of the invokespecial
bytecode is restricted to certain situations [Lindholm and Yellin 1997]. An al-
ternative approach would be to store analysis information as attributes in class
files. A JIT could be adapted to recognize this information and exploit it by

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 663

performing more on-line optimizations, or by making existing optimizations
more efficient.

8.3 Future Work: Interactive Program Development Tools

We plan to incorporate the analysis performed by Jax to visualize unnecessary
program components in an interactive program development environment. One
can easily imagine the benefits of a tool that could provide information about
unreachable methods and unaccessed fields, enabling the user to determine if
these components are simply redundant, or unreachable as the result of a bug.
Such a tool could also provide hints to the user about classes and methods that
can be declared final. Other software engineering applications that can benefit
from analysis information such as call graphs include change impact analysis
[Ryder and Tip 2001], refactoring [Fowler 1999], and regression test selection
[Rothermel and Harrold 1997].

ACKNOWLEDGEMENTS

Lisa Martin and Sarvamangala Jagadeesh are gratefully acknowledged for
their help with the development of Jax. The bug reports and comments from the
many people who participated in the Jax discussion group on alphaWorks have
been invaluable. We are grateful to Robert Berry, John Field, Harold Ossher,
Ramalingam, Vivek Sarkar, Gregor Snelting, Alan Stevens, Robert Weir, and
the anonymous TOPLAS referees for their constructive comments and feed-
back. We are also grateful to Bill Pugh, Quetzalcoatl Bradley, Nigel Horspool,
and Jan Vitek for making their class file compression tools available.

REFERENCES

AGESEN, O. 1995. Concrete type inference: Delivering object-oriented applications. Ph.D. thesis,
Stanford University. Appeared as Sun Microsystems Laboratories Tech. Rep. SMLI TR-96-52.

AGESEN, O. AND UNGAR, D. 1994. Sifting out the gold: Delivering compact applications from an
exploratory object-oriented programming environment. In Proceedings of the 9th Annual Con-
ference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’94).
Portland, OR, 355–370. ACM SIGPLAN Notices 29(10).

AIGNER, G. AND HÖLZLE, U. 1996. Eliminating virtual function calls in C++ programs. In Proceed-
ings of the 10th European Conference on Object-Oriented Programming (ECOOP’96). Lecture
Notes in Computer Science, vol. 1098. Springer-Verlag, Linz, Austria, 142–166.

ARNOLD, K., GOSLING, J., AND HOLMES, D. 2000. The Java Programming Language, Third Edition
Addison-Wesley.

BACON, D. F. 1997. Fast and effective optimization of statically typed object-oriented lan-
guages. Ph.D. thesis, Computer Science Division, University of California, Berkeley. Report No.
UCB/CSD-98-1017.

BACON, D. F. AND SWEENEY, P. F. 1996. Fast static analysis of C++ virtual function calls. In Pro-
ceedings of the 11th Annual Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’96). San Jose, CA, 324–341. ACM SIGPLAN Notices 31(10).

BRADLEY, Q., HORSPOOL, R. N., AND VITEK, J. 1998. Jazz: An efficient compressed format for Java
archive files. In CASCON’98. 294–302.

BURKE, M. G., CHOI, J.-D., FINK, S., GROVE, D., HIND, M., SARKAR, V., SERRANO, M. J., SREEDHAR, V. C.,
SRINIVASAN, H., AND WHALEY, J. 1999. The Jalapeño Dynamic Optimizing Compiler for Java. In
Proceedings of the ACM Java Grande Conference San Francisco, CA.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

664 • F. Tip et al.

CALDER, B. AND GRUNWALD, D. 1994. Reducing indirect function call overhead in C++ programs.
Proceedings of the 21st ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages (POPL’94), 397–408.

CALLAWAY, D. R. 1999. Inside Servlets: Server-Side Programming for the Java Platform. Addison-
Wesley.

CHEN, Y.-F., GANSNER, E. R., AND KOUTSOFIOS, E. 1998. A C++ data model supporting reachability
analysis and dead code detection. IEEE Trans. Soft. Eng. 24, 9 (Sept.), 682–694.

CLAUSEN, L. R., SCHULTZ, U. P., CONSEL, C., AND MULLER, G. 2000. Java bytecode compression for
low-end embedded systems. ACM Trans. Prog. Lang. Syst. 22, 3 (May), 471–489.

COOPER, K. D. AND MCINTOSH, N. 1999. Enhanced code compression for embedded RISC
processors. In Proceedings of the 1999 ACM SIGPLAN Conference on Programming Lan-
guages Design and Implementation (PLDI’99). Atlanta, GA, 139–149. ACM SIGPLAN Notices
34(5).

DE SUTTER, B. 2002. Compactie van programma’s na het linken. Ph.D. thesis, Gent University.
In Dutch.

DE SUTTER, B., DE BUS, B., AND DE BOSSCHERE, K. 2002. Sifting out the mud: Low level C++ code
reuse. Tech. rep., Ghent University. To appear in Proceedings OOPSLA’2002.

DE SUTTER, B., DE BUS, B., DEBRAY, S., AND DE BOSSCHERE, K. 2001. Combining global code and
data compaction. In Proceedings of the ACM SIGPLAN 2001 Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES’2001). Snowbird, UT.

DEAN, J., GROVE, D., AND CHAMBERS, C. 1995. Optimization of object-oriented programs us-
ing static class hierarchy analysis. In Proceedings of the 9th European Conference on Object-
Oriented Programming (ECOOP’95), W. Olthoff, Ed. Springer-Verlag, Aarhus, Denmark,
77–101.

DEBRAY, S. K., EVANS, W., MUTH, R., AND DE SUTTER, B. 2000. Compiler techniques for code com-
paction. ACM Trans. Prog. Lang. Syst. 22, 2, 378–415.

Digitalk Inc. 1993. Smalltalk/V for win32 Programming. Digitalk Inc. Chapter 17: Object
Libraries and Library Builder.

EISMA, A. 2001. Feedback directed ahead-of-time compilation for embedded Java applications. In
Java Optimization Strategies for Embedded Systems, U. Assmann, Ed. Genova, Italy, 105–112.
Workshop held at ETAPS’01.

ERNST, J., EVANS, W., FRASER, C., LUCCO, S., AND PROEBSTING, T. 1997. Code compression. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’97). Las Vegas, NV, 358–365. ACM SIGPLAN Notices 32(5).

FOWLER, M. 1999. Refactoring. Addison-Wesley.
FRASER, C., MYERS, E. W., AND WENDT, A. L. 1984. Analyzing and compressing assembly code. In

Proceedings of the ACM Symposium on Compiler Construction. 117–121. ACM SIGPLAN Notices
19(6).

GROVE, D., DEFOUW, G., DEAN, J., AND CHAMBERS, C. 1997. Call graph construction in object-oriented
languages. In Proceedings of the 12th Annual Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA’97). Atlanta, GA, 108–124. ACM SIGPLAN Notices
32(10).

HORSPOOL, R. N. AND CORLESS, J. 1998. Tailored compression of Java class files. Software—Practice
and Experience 28, 12, 1253–1268.

IBM Corporation 1995. IBM Smalltalk User’s Guide, Version 3.0 ed. IBM Corporation. Chapter
36: Introduction to Packaging, Chapter 37: Simple Packaging, Chapter 38: Advanced Packaging.

JOY, B., STEELE, G., GOSLING, J., AND BRACHA, G. 2000. The Java Language Specification, Second
Edition Addison-Wesley.

KISTLER, T. AND FRANZ, M. 1997. Slim binaries. Commun. ACM 40, 12 (Dec.), 87–94.
KISTLER, T. AND FRANZ, M. 1999. A tree-based alternative to Java byte-codes. Int. J. Parallel

Prog. 27, 1 (Feb.), 21–34.
KRINTZ, C., CALDER, B., LEE, H. B., AND ZORN, B. G. 1998. Overlapping execution with transfer using

non-strict execution for mobile programs. In Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-VIII). San
Jose, California, 159–169.

LINDHOLM, T. AND YELLIN, F. 1997. The Java Virtual Machine Specification. Addison-Wesley.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Practical Extraction Techniques for Java • 665

PANDE, H. D. AND RYDER, B. G. 1996. Data-flow-based virtual function resolution. In Proceedings
of the 3rd International Symposium on Static Analysis (SAS’96). 238–254. Springer-Verlag LNCS
1145.

ParcPlace Systems 1992. ParcPlace Smalltalk, ObjectWorks Release 4.1 ed. ParcPlace Systems.
Section 16: Deploying an Application, Section 28: Binary Object Streaming Service.

POMINVILLE, P., QIAN, F., VALLÉE-RAI, R., HENDREN, L., AND VERBRUGGE, C. 2001. A framework for
optimizing Java using attributes. In Proceedings of the International Conference on Compiler
Construction (CC’2001), R. Wilhelm, Ed. Eisenstadt, Austria, 334–354. Springer-Verlag LNCS
2027.

PUGH, W. 1999. Compressing Java class files. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’99). Atlanta, GA, 247–258. ACM
SIGPLAN Notices 34(5).

RAYSIDE, D. AND KONTOGIANNIS, K. 1999. Extracting Java library subsets for deployment on em-
bedded systems. In Proceedings of the European Conference on Software Maintenance and Re-
engineering (CSMR’99). Amsterdam, 102–110.

RAYSIDE, D., MANAS, E., AND HONS, E. 1999. Compact Java binaries for embedded systems. In
Proceedings of the 9th NRC/IBM Centre for Advanced Studies Conference (CASCON’99). Toronto,
CA, 1–14.

ROTHERMEL, G. AND HARROLD, M. J. 1997. A safe, efficient regression test selection technique. ACM
Trans. Soft. Eng. Method. 6, 2 (April), 173–210.

RYDER, B. G. AND TIP, F. 2001. Change impact analysis for object-oriented programs. In Proceed-
ings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE’01). Snowbird, UT.

SCHEIFLER, R. W. 1977. An analysis of inline substitution for a structured programming language.
Commun. ACM 20, 9 (Sept.), 647–654.

SHAPIRO, M. AND HORWITZ, S. 1997. Fast and accurate flow-insensitive points-to analysis. In
Proceedings of the 24th ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages (POPL’97). Paris, France, 1–14.

SHIVERS, O. 1991. Control-flow analysis of higher-order languages. Ph.D. thesis, CMU. CMU–
CS–91–145.

STEENSGAARD, B. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd
ACM SIGPLAN/SIGSOFT Symposium on Principles of Programming Languages (POPL’96).
St. Petersburg, FL, 32–41.

Sun Microsystems 1997. JavaBeans, Version 1.01 ed. Sun Microsystems, 2550 Garcia Avenue,
Mountain View, CA 94043.

Sun Microsystems 1999. Java 2 Software Development Kit, Version 1.2.2 ed. Sun Microsystems,
2550 Garcia Avenue, Mountain View, CA 94043. Available at http://java.sun.com/docs/books/
tutorial/ext/security/sealing.html.

SUNDARESAN, V., HENDREN, L., RAZAFIMAHEFA, C., VALLÉE-RAI, R., LAM, P., GAGNON, E., AND GODIN, C.
2000. Practical virtual method call resolution for Java. In Proceedings of the 15th Annual Con-
ference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’00).
Minneapolis, MN), 264–280. ACM SIGPLAN Notices 35(10).

SWEENEY, P. F. AND TIP, F. 1998. A study of dead data members in C++ applications. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’98). Montreal, Canada, 324–332. ACM SIGPLAN Notices 33(6).

SWEENEY, P. F. AND TIP, F. 2000. Extracting library-based object-oriented applications. In Proceed-
ings of the 8th International Symposium on the Foundations of Software Engineering (FSE-8).
San Diego, CA, 98–107. ACM SIGSOFT Software Engineering Notes 25(6).

THIES, M. 1999a. A closer look at inter-library dependencies in Java-software. In Java-
Informations-Tage 1999 (JIT’99). Informatik Aktuell. Springer Verlag.

THIES, M. 1999b. Static compositional analysis of libraries in support of dynamic optimization.
Technischer Bericht tr-ri-99-210, University of Paderborn. Aug.

TIP, F., CHOI, J.-D., FIELD, J., AND RAMALINGAM, G. 1996. Slicing class hierarchies in C++.
In Proceedings of the 11th Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’96). San Jose, CA, 179–197. ACM SIGPLAN Notices
31(10).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

666 • F. Tip et al.

TIP, F., LAFFRA, C., SWEENEY, P. F., AND STREETER, D. 1999. Practical experience with an application
extractor for Java. In Proceedings of the 14th Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’99). Denver, CO, 292–305. ACM SIGPLAN
Notices 34(10).

TIP, F. AND PALSBERG, J. 2000. Scalable propagation-based call graph construction algorithms. In
Proceedings of the 15th Annual Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’00). Minneapolis, MN, 281–293. ACM SIGPLAN Notices 35(10).

TIP, F. AND SWEENEY, P. 1997. Class hierarchy specialization. In Proceedings of the 12th
Annual Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’97). Atlanta, GA, 271–285. ACM SIGPLAN Notices 32(10).

TIP, F. AND SWEENEY, P. 2000. Class hierarchy specialization. Acta Informatica 36, 927–982.
ZAKS, A., FELDMAN, V., AND AIZIKOWITZ, N. 2000. Sealed calls in Java packages. In Proceedings of the

15th Annual Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’00). Minneapolis, MN), 83–92. ACM SIGPLAN Notices 35(10).

Received August 2001; revised May 2002; accepted July 2002

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

