
4

A Data-Centric Approach to Synchronization

JULIAN DOLBY, IBM T.J. Watson Research Center
CHRISTIAN HAMMER, Saarland University
DANIEL MARINO, Symantec Research Labs
FRANK TIP and MANDANA VAZIRI, IBM T.J. Watson Research Center
JAN VITEK, Purdue University

Concurrency-related errors, such as data races, are frustratingly difficult to track down and eliminate in
large object-oriented programs. Traditional approaches to preventing data races rely on protecting instruc-
tion sequences with synchronization operations. Such control-centric approaches are inherently brittle, as
the burden is on the programmer to ensure that all concurrently accessed memory locations are consistently
protected. Data-centric synchronization is an alternative approach that offloads some of the work on the
language implementation. Data-centric synchronization groups fields of objects into atomic sets to indicate
that these fields must always be updated atomically. Each atomic set has associated units of work, that
is, code fragments that preserve the consistency of that atomic set. Synchronization operations are added
automatically by the compiler. We present an extension to the Java programming language that integrates
annotations for data-centric concurrency control. The resulting language, called AJ, relies on a type system
that enables separate compilation and supports atomic sets that span multiple objects and that also supports
full encapsulation for more efficient code generation. We evaluate our proposal by refactoring classes from
standard libraries, as well as a number of multithreaded benchmarks, to use atomic sets. Our results suggest
that data-centric synchronization is easy to use and enjoys low annotation overhead, while successfully pre-
venting data races. Moreover, experiments on the SPECjbb benchmark suggest that acceptable performance
can be achieved with a modest amount of tuning.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—Paral-
lel programming; D.2.4 [Software Engineering]: Software/Program Verification—Reliability; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—Data types and structures; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Languages, Theory

Additional Key Words and Phrases: Concurrent object-oriented programming, data races, serializability,
programming model

ACM Reference Format:
Dolby, J., Hammer, C., Marino, D., Tip, F., Vaziri, M., and Vitek, J. 2012. A data-centric approach to synchro-
nization. ACM Trans. Program. Lang. Syst. 34, 1, Article 4 (April 2012), 48 pages.
DOI = 10.1145/2160910.2160913 http://doi.acm.org/10.1145/2160910.2160913

This material is based on work supported by National Science Foundation grants CCF-1048398, CCF-
0938232, and CNS-0716659. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Authors’ addresses: J. Dolby, F. Tip, and M. Vaziri, IBM T. J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY 10598; C. Hammer, Cyber Security Lab, Saarland University, 66123 Saarbrücken, Germany; J.
Vitek, Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN
47907; D. Marino, Symantec Research Labs, 900 Corporate Pointe, Culver City, CA 90230; corresponding
author’s email: tip@acm.org
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0164-0925/2012/04-ART4 $10.00

DOI 10.1145/2160910.2160913 http://doi.acm.org/10.1145/2160910.2160913

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:2 J. Dolby et al.

1. INTRODUCTION

Writing correctly synchronized concurrent programs is challenging. Whenever two
threads access the same memory location, there is the potential for a data race and for
inconsistent results. Traditional techniques for concurrent programming have an op-
erational, control-centric flavor. Programmers must ensure that any access to a shared
data location is protected by synchronized blocks or other system-specific concurrency
control primitives. The challenge is that protecting all accesses to shared locations
requires non-local reasoning: all control flow paths leading to a memory operation on
shared data must be dominated by a synchronization operation. A data race may occur
if the programmer forgets to synchronize even a single path. To make matters worse,
even if every access to shared data is protected, the program may still end up in an
inconsistent state due to a high-level data race [Artho et al. 2003]. This can occur
when there exists a consistency relation between multiple memory locations, and the
programmer’s use of synchronization fails to ensure that this relation is maintained
at every instant. Analysis of real-world software defects suggests that these kinds of
races occur frequently [Lu et al. 2007, 2008]. Avoiding high-level data races requires
the same kind of non-local reasoning but is further complicated by the fact that multiple
locks may have to be acquired in a specific order.

Data-centric synchronization is a declarative approach to concurrency control first
proposed by some of the present authors [Vaziri et al. 2006]. Data-centric synchro-
nization advocates that instead of focusing on the flow of control, programmers should
identify sets of memory locations that share some consistency property and group those
locations in atomic sets that will be updated atomically. Programmers need not specify
where or what kind of synchronization operations to insert; instead, each atomic set
has an associated set of units of work—code fragments that preserve the consistency
of their associated atomic set. Synchronization code is automatically generated by a
compiler, which is free to choose where and what type of synchronization to insert. Such
a declarative approach has the benefit that it is possible to change the concurrency-
control mechanism, for example, going from standard locks to read/write locks or even
to transactional memory, without changing the program’s source code. In a data-centric
approach, the non-local reasoning that permeates traditional approaches to synchro-
nization is replaced by a focus on shared data. High-level data races are naturally
avoided as an atomic set can protect multiple locations and multiple atomic sets can
be manipulated atomically within the same unit of work.

The purpose of this article is to evaluate the applicability and benefits of data-
centric synchronization in the context of a mainstream object-oriented language. To
this end, we have extended the Java programming language with language features
for data-centric synchronization and implemented a compiler that synthesizes concur-
rency control operations. The changes to the source language are unobtrusive, and are
limited to five optional annotations on classes and variable declarations. Like Java, the
resulting language permits separate compilation, and the compiled code is in the stan-
dard Java bytecode representation and is backwards-compatible with plain Java. We
refer to the extended language as AJ. The criteria which we consider in our evaluation
are the following.
—Expressiveness. Are there significant limitations to the range of concurrent problems

which can be solved with AJ?
—Programmer effort. How many program edits are required to make code thread-safe?
—Performance. How does the performance of code generated by our AJ compiler compare

to that of traditional Java implementations?

While data-centric synchronization takes fine-grained control over the placement
and selection of synchronization operations from the programmer and may thus lead

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:3

to reduced concurrency, it provides strong consistency guarantees. By making the trade-
off explicit, we allow programmers to make an informed choice between the two ap-
proaches.

In our previous work [Vaziri et al. 2006], we relied on static whole-program program
analysis to infer where synchronization operations should be placed, in order to ensure
that units of work are serializable from the perspective of each atomic set—a property
we call atomic-set serializability. Preliminary experiments suggested that atomic sets
require fewer annotations than implementations based on synchronized blocks in Java,
while eliminating known concurrency-related errors [Wang and Stoller 2006b; Ham-
mer et al. 2008]. However, while promising, the approach’s reliance on whole-program
analysis limited applicability and dimmed the prospects for adoption. Whole-program
analysis is prohibitively expensive for large code bases and does not easily accommo-
date dynamic loading, native methods, and reflection, which are integral parts of the
Java platform. Furthermore, that work did not support atomic sets spanning multiple
objects, which led to inefficient code.

In this article, we present a variant of the atomic sets model of Vaziri et al. [2006].
We introduce a new mechanism for constructing atomic sets that span multiple objects
and for internal objects that provide strong encapsulation for data whose concurrency
is managed externally. The new approach obviates the need for whole-program anal-
ysis with a type system that guarantees that any well-typed program is atomic-set
serializable, which means that all operations performed on locations that belong to an
atomic set are serializable. To empirically evaluate the applicability of our ideas on
real-world code, we implemented AJ within the Eclipse development environment.

We then refactored classes from the Java Collections Framework and a set of Java
applications that includes the SPECjbb performance benchmark into AJ and measured
annotation overhead. We found that the collection classes required approximately 40
annotations per KLOC, and that the annotation overhead for the other applications
ranged from 0.6 to 11.5 annotations per KLOC. For all but one of the applications, we
found that our data-centric approach required fewer annotations than the number of
synchronized blocks that were present in the original Java code. A number of minor
refactorings was needed to transform the subject programs into valid AJ programs, as
will be discussed in Section 7. For example, in several of our subject programs, field
accesses were replaced with calls to getter/setter methods, and calls to wait() and notify()
were replaced with uses of condition variables on atomic sets, a feature that will be
discussed in Section 6.

We also report on extensive performance measurements with AJ versions of the
SPECjbb benchmark. While the version that we obtained by naively introducing atomic
sets did not scale well, we were able to achieve nearly the same performance as the
original Java version after some performance tuning, without affecting annotation
overhead materially. Specifically, our tuned AJ version of SPECjbb achieves a through-
put of 90.8% of that of the original Java implementation when run with 98 threads.
We consider these results an indication that our approach is capable of generating
code with acceptable performance while providing a correctness guarantee that Java’s
current synchronization mechanism does not offer. In summary, we make the following
contributions.

—A data-centric approach to synchronization that permits separate compilation, multi-
object atomic sets and strongly encapsulated objects.

—A formalization of the type system for a core calculus and a proof that any well-typed
program is atomic-set serializable.

—A prototype implementation in a mainstream object-oriented language and an inte-
gration with a development environment.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:4 J. Dolby et al.

—An empirical evaluation on several Java applications, including widely used libraries
and a well-known performance benchmark.

Our prototype implementation does not support multiple atomic sets in a single
class, and our type system does not deal with generics. Adding multiple atomic sets is
simply a matter of engineering, so we do not foresee any major challenges. Supporting
generics would complicate the formal treatment without fundamentally affecting our
results.

The remainder of this article is organized as follows. Section 2 reviews related work
on language designs and type systems that aim to prevent concurrency-related errors.
Section 3 presents an informal overview of the AJ language, using several motivating
examples. The implementation of AJ is presented in Section 5. Section 6 proposes a
number of small extensions to the core AJ language, including a generalized form of the
unitfor construct and condition variables. Section 7 presents an empirical evaluation
of our language design by measuring annotation overhead and performance. Finally,
Section 8 presents conclusions and discusses possible avenues for future work.

2. BACKGROUND AND INFLUENCES

This article builds on the atomic set programming model of Vaziri et al. [2006]. That
work also introduced a notion of problematic interleaving scenarios and then used this
notion to define a correctness criterion, named atomic-set serializability, which rules
out high-level data races. Subsequent work by a subset of the authors and by an unre-
lated group explored how to detect concurrency-related errors based on this criterion
(statically [Kidd et al. 2011] and dynamically [Hammer et al. 2008; Lai et al. 2010]).
Atomic sets share characteristics with data groups [Leino 1998] and regions [Green-
house and Boyland 1999], which group mutable fields to enable modular verification
and reasoning about program transformations. Like atomic sets, regions and groups
may be extended in subclasses, but unlike atomic sets, both are hierarchical and re-
gions overlap. Another data-centric approach was proposed by Ceze et al. [2008] with
a sketch of a possible transactional memory implementation. Demsky and Lam [2010]
recently presented views, a language construct that permits programmers to asso-
ciate names with groups of members in a class. Threads that acquire a shared state
must first acquire a view that permits access to this state. Programmers explicitly
declare which views are compatible with each other, and consistent use of views is
enforced by the type checker. Unlike our approach, the declaration of views is in ad-
dition to explicit acquire synchronization operations, which suggests that the views
approach incurs higher annotation overhead than atomic sets. Atomic sets can also
be viewed as a generalization of Hoare monitors [Hoare 1974] to multiple objects. In
particular, we provide two mechanisms, unitfor and aliasing, for merging distinct atomic
sets, as well as a data-centric notion of condition variables. Bergan et al. [2010] pro-
posed a hardware-assisted approach for data-centric atomicity violation detection and
avoidance.

Data-centric concurrency control is but one alternative to explicit locking. Trans-
actional memory [Herlihy and Moss 1993] approaches concurrency control from a
database angle. Certain code fragments are specified to execute atomically, and it
is up to the implementation to enforce mutual exclusion. While programmers need not
worry about which data will be accessed in a transaction, they still have to identify
where to place atomic sections, and thus, some of the same non-local reasoning as with
synchronized statements is required. The main simplification is that it is not neces-
sary to identify and name locks. Another way to avoid explicit locking is to perform
lock inference. Like transactional memory, programmers must annotate programs with
atomic sections, but instead of relying on a transactional memory mechanism, static

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:5

analysis is used to determine which locks to acquire [Cherem et al. 2008; McCloskey
et al. 2006]. While more efficient than transactions, as there is no need to support
abort/undo semantics, lock inference relies on whole-program information and thus
cannot deal with the dynamic features of Java.

Type systems for atomicity and race freedom are another influence on our work. The
type system of Abadi et al. [2006] guarantees the absence of data races. The general
approach is to have a programmer provide redundant type annotations on top of a pro-
gram with explicit lock operations. The type system thus only needs to check that the
synchronization and the type annotations are consistent. In that approach, methods
declare the locks they require and a guarded by construct is used to indicate which lock
protects a field. With 20 annotations per KLOC for the Java collections framework, the
approach is relatively lightweight, but unlike atomic sets, the programmer must add
explicit synchronization to the code. Moreover, atomic-set serializability is a higher-
level property than data race freedom. The type system of Flanagan et al. [Flanagan
and Qadeer 2003; Flanagan et al. 2008] guarantees atomicity, that is, equivalence to
a serial execution. Similarly, fields are annotated with guarded by or write guarded by
to indicate that (write) access to the field must be protected by a lock. Methods are
annotated with atomic to indicate their atomicity and with requires to indicate which
locks must be held by callers. Atomic-set serializability recognizes some benign inter-
leavings as correct that global serializability does not. Flanagan and Qadeer evaluated
their type system on Java library classes and report an average of 23.3 annotations
per KLOC of code. However, similar to the approach by Abadi et al. [2006] and unlike
atomic sets, it is assumed that the programmer has added synchronization to the code.
Inference [Flanagan et al. 2008] reduces the annotation burden. More recent work has
looked at incorporating atomicity [Kulkarni et al. 2010] and determinism [Bocchino
et al. 2009] directly in the programming language.

Our type system was influenced by ownership type systems which started out as an
attempt to control the sharing of references [Noble et al. 1998] and is typically used
to enforce a strong form of encapsulation. Our treatment of internal objects is close to
traditional ownership, as all references to these objects are encapsulated. But unlike
the early owner-as-dominator type systems [Clarke et al. 1998], there is no single access
point. Indeed, in order to support iterators, we have loosened the restriction of a single
owner and allow the elements of atomic sets that are not part of internal classes to
be viewed and manipulated from the outside. The ownership type system of Boyapati
and Rinard [2001] ensures that Java-like programs are data race-free. In that work,
classes are parameterized with a list of owners, and methods may require that their
callers hold particular locks. A simple unification-based form of local type inference is
used to reduce the annotation burden. While no direct comparison is possible, as the
implementation of Boyapati and Rinard [2001] is not available, we believe that atomic
sets have lower annotation overhead overall, and that they are better integrated into
Java. Deadlocks can also be ruled out by ownership type systems [Boyapati et al. 2002],
but this comes at the price of expressiveness and an increased annotation burden. We
feel that some form of static analysis may be a better fit for addressing deadlocks but
have left the matter to future work.

Attention to high-level data races is relatively recent. Many static [Engler and
Ashcraft 2003; Leino et al. 1999] and dynamic race detectors [O’Callahan and Choi
2003; Savage et al. 1997], as well as type systems [Boyapati and Rinard 2001; Flana-
gan and Freund 2000] that guarantee race freedom are based on the common definition
of data races and, therefore, do not handle high-level races. An extension to ESC/Java
detects a class of high-level data races called stale-value errors [Burrows and Leino
2004]. The value of a local variable is stale if it is used beyond the critical section in
which it was defined. View consistency [Artho et al. 2003] is a correctness criterion that

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:6 J. Dolby et al.

ensures that multiple reads in a thread observe a consistent state. A view is defined to
be the set of variables that a lock protects. Two threads are view consistent if all the
views in the execution of one, intersected with the maximal view of the other, form a
chain under set inclusion. View consistency can be checked dynamically [Artho et al.
2003] or statically [von Praun and Gross 2004]. In our approach, however, the program-
mer indicates explicitly which sets of locations form an atomic set, so this information
does not need to be extracted from the locking structure of the code, which may not
be correct. Recently, Lucia et al. [2010] presented an approach for detecting atomicity
violations that involve multiple memory locations. In Lucia et al.’s work, related mem-
ory locations are identified by giving them the same color, and architectural support is
proposed to implement the technique efficiently.

The Serializability Violation Detector [Xu et al. 2005] is a tool that dynamically
infers atomic sections based on data and control dependences and then detects if these
sections are non-serializable by checking a rule based on strict 2-Phase Locking. One
of its key features is that it does not rely on the possibly buggy locking structure of the
program to infer atomic sections. We share a similar viewpoint by having a definition
of data races that does not rely on locks. The detector produces both false positives and
false negatives, depending on the precision of the inferred atomic sections.

Deng et al. [2002] present a method that allows the user to specify synchronization
patterns that are used to synthesize synchronized code. The generated code can then
be verified using the Bandera toolset. In this approach, the user must specify explicitly
the regions of code that need synchronization, but we do not require this. Unlike them,
we focus on only one kind of synchronization pattern: exclusion between two regions
that access the same atomic set.

3. DATA-CENTRIC SYNCHRONIZATION WITH AJ

AJ extends the syntax of the Java programming language with annotations needed to
support the data-centric programming model of Vaziri et al. [2006]. An AJ class can have
zero or more atomicset declarations. Each atomic set has a symbolic name and intuitively
corresponds to a logical lock protecting a set of memory locations. Associated with each
atomic set is a set of units of work—code fragments that, when executed sequentially,
preserve the consistency of their associated atomic sets. By default, the units of work
for an atomic set declared in a class C consist of all non-private methods in C and its
subclasses. Given data-centric synchronization annotations, AJ infers the placement
of concurrency control operations in such a way that units of work are serializable
from the perspective of each atomic set, a property we call atomic-set serializability.
The inferred synchronization ensures that any execution is equivalent to one in which,
for each atomic set, its units of work occur in some serial order. One may think of a
unit of work as being an atomic section [Harris and Fraser 2003] that is only atomic
with respect to a particular set of memory locations. Accesses to locations not in the
set are visible to other threads. The AJ implementation is free to choose the type of
concurrency control operations and to optimize their placement. Thus, for instance,
methods declared private or called through this usually do not require synchronization
as their calling context has established atomicity. Methods that do not operate on
locations that are within an atomic set will typically not be synchronized either.

Figure 1 shows an integer counter class with atomic increment and decrement meth-
ods. Each instance of Counter has its own instance of its atomic set a. The locations
protected by the atomic sets are identified by annotating the corresponding fields with
atomic(a). Atomic set declarations are inherited by subclasses, so every instance of a
subclass of Counter has its own a and can add some of its fields to the atomic set. AJ
requires that fields belonging to an atomic set must be accessed through the (implicit)
this reference. Note that this is a stronger property than labeling the field private, as

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:7

Fig. 1. A simple counter class.

Fig. 2. Aliased atomic sets.

Fig. 3. Adding atomic sets to a unit of work using unitfor.

in Java, private fields can be accessed from other references, in the context of their
declaring class.

It is often the case that an atomic set must protect fields belonging to more than one
object. While it is not possible to refer directly to another object’s atomic set, AJ allows
merging atomic sets using aliasing annotations. An atomic set a in an object pointed
to by a variable x may be aliased with an atomic set b in the object pointed to by this
by placing the alias annotation |a= this.b| on the declaration of x. This has the effect of
merging the atomic sets in these objects. Figure 2 shows a PairCounter class which has
two integer counters, low and high, and a method, incHigh(), that updates the difference
between them. To this end, it introduces a new atomic set b for the diff field, and it
aliases the atomic sets of the counters with b to form a single atomic set.

There are cases where a method needs to coarsen the granularity of atomicity for
some of its arguments. This is achieved by declaring additional units of work by an-
notating arguments with unitfor(a). If this annotation appears on some parameter p of
some method m of a class D, this indicates that m is an additional unit of work for
atomic set a of object p. Such cases—where a method is a unit of work for multiple
atomic sets—are treated as if the method is a unit of work for the union of these atomic
sets. Alias annotations have a similar effect. Figure 3 illustrates this with a transfer
method which must atomically update two Counter objects with different atomic sets.

For performance reasons, it may be advantageous to avoid synchronization around
objects that are used to implement the representation of a given data structure. This
is safe only if it is guaranteed that no reference to these representation objects ever
leaks to clients where it could be manipulated without synchronization. The internal
annotation is used to declare a class or interface and all of its subclasses as being
private to a data structure. Internal classes must always have their atomic sets aliased
to some enclosing data structure, which can be viewed as their owner. The AJ type
system enforces encapsulation of internal classes. The example of Figure 4 illustrates

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:8 J. Dolby et al.

Fig. 4. An internal class.

Fig. 5. Data-centric annotations in AJ.

the use of internal classes. Here, class Cell is internal. Class Main creates an instance
of Cell, aliases its atomic set b to its own atomic set a, and stores it in field c. Hence, the
type system ensures that the Cell object will only be manipulated by the corresponding
Main object.

It is noteworthy to observe that the internal annotation does not change the semantics
of the application; its purpose is to enable the implementation to remove some redun-
dant synchronization operations. While it would be possible to infer this annotation,
doing so would require interprocedural analysis, which we avoid in this work.

Figure 5 summarizes AJ’s data-centric synchronization annotations.

3.1. Motivating Example

Figure 6 shows some key fragments of a simplified version of the LinkedList class, a
representative of the Java Standard Collections framework, made thread-safe using
data-centric synchronization. The figure shows the abstract class AbsList, which defines

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:9

Fig. 6. AbsList, LinkedList and Entry classes.

the interface of all lists and a concrete list, LinkedList. The designer of the abstract list
has chosen to equip it with an atomic set a, which is inherited by subclasses. Within
AbsList, the only field that needs protection is the integer size. It is annotated atomic(a)
to denote that it belongs to a. The methods of AbsList and its subclasses are the units
of work for a.

The method addAll(unitfor(a) AbsList c) must operate on multiple atomic sets, namely
the receiver and the argument c. Logically, the list c must remain unchanged during
the entire execution of addAll. By annotating parameter c with unitfor(a), we merge the
atomic set a in the receiver object with the atomic set a in the argument object for the
duration of the method’s execution.

In class LinkedList, the header field points to a doubly linked list of Entry objects.
LinkedList adds header to the atomic set a of its parent class to ensure that any method
accessing both header and size will have a consistent view of these fields. However, note
that this is not sufficient for the data structure to be thread-safe: it is also necessary to
protect the doubly linked list itself. This requires defining an atomic set b in class Entry
to protect the fields next and prev. Furthermore, units of work for the LinkedList object
must encompass the units of work for the Entry objects it refers to. This is achieved
by placing the alias annotation |b=this.a| on all allocation sites and variables of type
Entry inside LinkedList to indicate that the atomic set b of these Entry objects should be
combined with the list’s atomic set a. Similar annotations, |b=this.b|, are placed on the
fields next and prev of Entry. These imply that the atomic sets b of objects pointed to by
these fields are merged with the atomic set b of this. Together with the annotation on
header, they cause the entire backbone of the LinkedList to be in a single atomic set. Any
unit of work for the list, including its Entry objects, will be performed atomically with
respect to this merged atomic set. As an optimization, Entry is declared internal. This
means that the type system will guarantee that no instance of Entry can be accessed
without going through the methods of LinkedList. Thus, an implementation can omit
synchronization for all of Entry’s methods and leave concurrency control to the list
object.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:10 J. Dolby et al.

Each expression in our type system potentially has alias information. If there is no
alias information, this means that either the expression represents an object that has
no atomic sets, or that the object is an independent object that performs its own syn-
chronization. The type system tracks aliasing annotations and prevents, for example,
the Entry object of one linked list from ending up within another linked list. Practically,
this means that some types of casts are disallowed. Casting away an alias annota-
tion (thus losing information) is allowed but forging an alias annotation is not. For
instance, the iterator() method creates an object of type ListItr (a class that is private to
class LinkedList), which has an atomic set aliased to that of the linked list. This alias
information is cast away in the return statement of the method.

A non-internal class such as LinkedList can be instantiated in two ways: new LinkedList()
and new LinkedList|a=this.x|(). The former signifies a new instance of LinkedList that is
responsible for its own synchronization, while the latter means that the atomic set of
the new instance is the same as the atomic set x of the current object. The latter is
especially useful when defining new data structures in terms of other data structures.
For example, one could define a Stack in terms of a LinkedList and achieve correct
synchronization behavior by having an atomic set in Stack that is aliased to the atomic
set in the underlying LinkedList. This kind of compositionality is a key contribution
of this article and was not supported in the original work by Vaziri et al. [2006]. For
internal classes, such as Entry, an aliased allocation site, such as new Entry|b=this.a|, is
the only valid instantiation, because an internal object must share the atomic set of its
creator. As usual with type-based approaches, the bindings created by aliasing cannot
be modified after creation.

3.2. Arrays

Arrays are fully handled by our implementation. Supporting arrays requires being able
to specify atomicity constraints at three different levels. The declaration

atomic(a) B[] vals;

indicates that the reference to array vals is part of atomic set a; however, the contents
of the array can be updated without synchronization. The declaration

atomic(a) B[] vals|this.a[]|;
indicates that not only is the reference to the array to be accessed atomically, but
the contents of the array are also part of atomic set a and must be accessed in a
synchronized manner. Finally, the declaration

atomic(a) B[] vals|this.a[]b=this.a|;
indicates that, additionally, the atomic set b of each of the objects contained within the
array should be merged with atomic set a. In our experience, we found all three of these
forms of array annotation to be useful.

3.3. Data Races and Deadlocks

AJ does not completely prevent programmer errors. Data races can occur within a unit
of work if the code manipulates data that is not part of the unit’s atomic set. Thus it is
incumbent on the programmer to correctly annotate all fields which share a consistency
property and to place unitfor annotations on method parameters, as needed. Forgetting
to annotate a field or method parameter can result in concurrency errors.

Our implementation of atomic set associates locks with atomic sets. There is thus
the potential for deadlocks when multiple non-aliased atomic sets are manipulated
by the same unit of work. We support a form of deadlock avoidance for methods that

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:11

1

6

2

3

4

5

String

internal
Entry
|a|

ListIter
|a|

LinkedList
|a|

internal
Entry
|a|

String

Fig. 7. Example: The instance 1 of LinkedList is the owner of the atomic set composed of objects 1, 2, 3 and
6. Since the two Entry objects are declared internal to the atomic set, the type system will ensure that no
references to these object may be leaked outside of the atomic set. The ListIterator i (object 6) belongs to the
atomic set but can also be accessed from the outside. The elements contained in the collection (4 and 5) are
not protected by the atomic set and could potentially be modified concurrently.

have unitfor annotations, by atomically acquiring the locks for all atomic sets that the
method is a unit of work for. However, we cannot prevent deadlock when a thread
executes a unit of work for some atomic set a that (transitively) invokes a unit of work
for another atomic set b, and where another thread invokes a unit of work for atomic
set b that (transitively) invokes a unit of work for atomic set a. In this respect, AJ
programs are neither more nor less prone to deadlock than standard Java programs
that acquire multiple locks out of order. We do, however, believe that the declarative
nature of synchronization annotations in AJ simplifies the design of static analyses for
detecting possible deadlocks, and this is a topic that we are currently investigating.

3.4. Complete LinkedList Example

Figures 8 and 9 show the complete LinkedList example, including a small client. Figure 7
illustrates the structure of the atomic sets in the example program. Notice that only a
small number of data-centric synchronization annotations (highlighted) are needed to
ensure correct synchronization behavior. Consider the call to the ListItr() constructor on
line 34. The alias annotation |I=this.L| ensures that the atomic set I of ListItr is merged
with this.L. The constructor is declared on line 59. It requires a LinkedList parameter
l with an atomic set L that is merged with this.I. This alias annotation, together with
the one at the constructor call site, ensures that iterator() returns a ListItr object that
corresponds to the list in question. Effectively, the methods in the iterator become
additional units of work for L and will provide the same atomicity constraints as any
non-private method of the list. Notice that the return value of the iterator() method is cast
to ListIterator (line 34). In our type system, there are no implicit casts, and therefore,
these upcasts must be applied explicitly. The ListItr constructor call results in an object
with alias information |I=this.L|. This information must be erased explicitly with a cast
before returning the object, since the return type has no alias information. It is a type
error to erase the alias information of internal objects.

Finally, consider the Client class. The main() method first creates LinkedLists x, y, and
z, and executes two threads that concurrently add the contents of the lists y ({a,a})
and z ({b,b}) to the list x. The client uses an iterator to traverse list x in the forward
direction to replace each b with a c. It then uses the same iterator to traverse the list
in the backward direction to print the contents of each node in the list. This example
was chosen to illustrate that our type system is capable of handling complex iterators
that can modify the state of an underlying collection.

In the absence of any synchronization (i.e., if we assume that the highlighted code
fragments have been omitted from the program), the execution of the two calls to

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:12 J. Dolby et al.

Fig. 8. Complete example program: LinkedList.

addAll() on line 88 may be interleaved in arbitrary ways. As a result, the addition of the
elements from the lists y and z to the list x may be intermixed, so that the list x may
contain, for example, a, c, c, a, or c, a, a, c upon program termination. In fact, other
interleavings exist in which the program terminates with a NullPointerException (e.g.,
this may happen as a result of a thread being suspended in the middle of executing
add(), when the prev and next pointers associated with the newly inserted list element
are in an inconsistent state). We assume that it is the programmer’s goal to ensure that

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:13

Fig. 9. Complete example program: LinkedList.

all operations on lists are executed atomically. With the data-centric synchronization
annotations, the two concurrent calls to addAll() happen atomically. Therefore, when
the threads finish, the list x will contain either a, a, b, b, or b, b, a, a. Executing the
remaining statements will result in replacing all b’s with c’s and printing the contents
of the list in reverse order. Hence, the program will print c, c, a, a, or a, a, c, c. Since
the program is properly synchronized, NullPointerExceptions cannot occur.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:14 J. Dolby et al.

Fig. 10. Summary of the main judgements used in AJ’s static and dynamic semantics.

4. A FORMAL ACCOUNT OF AJ

We formalize AJ in a core calculus in the style of Wrigstad et al. [2009], which is an
idealized version of Java extended with some of the key features of our proposal. The
goal of the formalization is to prove soundness of the type system and illustrate its
key properties. In particular, the type system ensures that references to instances of
internal classes are encapsulated and that atomic set aliasing constraints are preserved
by reduction. This notion of correctness is expressed by the definitions of well-formed
configurations and runtime subtyping of Section 4.4. These properties allow us to show
the soundness of an implementation that associates a single lock with all objects that
have the same atomic set. The concurrency-control policy enforced by AJ is specified in
Section 4.5, and a proof of atomic-set serializability is given in Section 4.6.

We focus on the essential features of AJ, namely atomic sets, atomic annotations on
fields, alias annotations, and internal types. For simplicity, we restrict the formaliza-
tion to a single atomic set per class and exclude unitfor annotations. While both are
important, they do not affect the type system which tracks aliases and internal classes.
Adding multiple atomic sets would require a small change to the semantics, which
currently uses the addresses of objects as identifiers for atomic sets (instead, fresh
values would have to be created for each atomic set). Adding unitfor would only require
more complex traces; details are provided in Section 4.7. For brevity we omit orthogo-
nal features of Java, such as interfaces, control constructs, exceptions, final variables,
primitive data types, arrays, generics, and thread creation and thread death. We start
with a presentation of the syntax (Section 4.1) and static and dynamic semantics (Sec-
tions 4.2 and 4.3, respectively). Figure 10 summarizes the main judgments of the static
and dynamic semantics of the calculus; definitions are given in the following sections.

4.1. Syntax

The AJ syntax is given in Figure 11. In our core calculus, fields are strongly private
(they can only be accessed by dereferencing this) and methods are public. Without loss
of generality, we use a named form, where the results of fields and variable accesses,
method calls, and instantiations must be immediately stored in a variable. A further
simplification is the elimination of implicit upcasts for arguments, return values, and
assignments. All casts are performed explicitly by cast statements, which simplifies the
other rules, as they can assume type equality. Downcasts are safe in AJ because, as in
Java, there is a runtime test to check that the object belongs to the target type. All AJ-
specific properties are preserved by subtyping, that is, subtypes have the same atomic
sets and are internal if their parent is internal. Upcasts are more interesting, as they

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:15

Fig. 11. AJ’s syntax. C, D are class names, f, m are field and method names, and x, y, z are names of
variables or parameters. this is a distinguished variable. For simplicity, we assume that names of classes,
fields, methods and variables are unique.

involve loss of type information. For brevity, we assume the existence of a well-formed
class table CT . Auxiliary functions are given in Figure 12. We use the shorthand x <: τ
to denote the pointwise subtype relation x1 <: τ1, . . . , xn <: τn. The subtyping relation is
standard with the exception of the rule for types with alias annotations, which restricts
subtyping to be annotation invariant.

C <: D
C|a= this.b| <: D|a= this.b|

We define the viewpoint adaption predicate adapt such that the value of adapt(τ, τ ′)
is the view of type τ from type τ ′. If τ is a raw type C, then it is unchanged. If τ
has an alias annotation, such as C|a = this.b| and is viewed from a type D|b = this.c|,
then the value of this.b is substituted with this.c, yielding C|a= this.c|. In cases where
adapt is undefined, a type error will be reported as the type is not accessible from that
particular viewpoint.

adapt(C, τ) = C

adapt(C|a= this.b|, D|b= this.c|) = C|a= this.c|

4.2. Type System

4.2.1. Classes, Fields, and Methods. A class definition C is well-typed if its fields are
well-typed in the context of C. Furthermore, all methods (including non-overridden
inherited methods) must be well-typed. In case the class inherits an atomic set, then it
is not allowed to define a new one. If the class is declared internal it must have an atomic
set or inherit one. Finally, internal annotations must be preserved by inheritance. In
the following definitions, we use the notation C has a to indicate that class C declares
or inherits an atomic set a.

(T-CLASS)

fd OK in C methods(C) = md ′ md ′ OK in C (D has a implies as = ε)
(ι = internal implies C has a) (D is internal implies ι = internal)

ι class C extends D {as fd md} OK

Atomic sets referred to in field declarations must exist.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:16 J. Dolby et al.

Fig. 12. Auxiliary definitions.

(T-FIELD)

(τ ≡ D|a= this.b| implies (D has a) and (C has b)) (α = atomic (a) implies C has a)

α τ f OK in C

Checking a method requires typing its body in an environment E constructed by
composing the disjoint sets of parameters x, local variables z, and the distinguished

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:17

variable this. If class C has an atomic set, the type of this is C|a = this.a|; This is the
default case when an object is in charge of its own synchronization (i.e., its atomic
set has not been aliased) and is needed to ensure that adapt is defined. The type of
the local variable y appearing in the return statement must match the return type of
the method, and if the method overrides an inherited method, the signature must be
unchanged.

(T-METHOD)

E ≡ x : τx, z : τz, this : τthis E � s; return y E(y) = τ C extends D
(if C has a then (τthis ≡ C|a= this.a|) else (τthis ≡ C)) override(m, D, τx → τ)

τ m(τx x){τz z; s; return y} OK in C

Observant readers will note that we are checking inherited methods with the type of
this bound to the subclass C and not to the defining class of the method (we are using
the dynamic type of this). This prevents the implicit upcast in method invocation from
being used to subvert the type system. Consider the following program which, without
the preceding treatment of inherited methods, would leak a reference to an internal
object.

class Id extends Object {
Id id() {

Id x;
x = this;
return x;

}
}

internal class E extends Id {
atomicset a;

}

class C extends Object {
atomicset b;
Id m() {

E|a=this.b| y;
Id z;
y = new E|a=this.b|();
z = y.id();
return z;

}
}

The instance of E is an internal class and should remain private to its owner (an
instance of class C). Yet, if the invocation of id() were allowed, it would be possible to pass
off the E object as an Id which is not protected. In our type system the assignment x=this
does not type-check in the context of class E. This problem is standard in ownership
type systems. One could avoid type-checking inherited methods repeatedly by declaring
inherited methods anonymous, that is, that they do not leak the this reference [Vitek
and Bokowski 2001] or inferring the property by whole-program analysis, as in the
work by Grothoff et al. [2007]. In AJ, the only methods that need this are methods
inherited by an internal class.

4.2.2. Statements. There are two type rules for object creation. The first rule, (T-NEW-
RAW), covers the case where the object being created is not annotated with an alias. If
class C has an atomic set, this means we are requesting the construction of an object
that can take care of its own synchronization. The only restriction that must be enforced
in this case is that the class not be declared internal, as internal classes always depend
on an owner. The second rule, (T-NEW-ASET), covers the case when a C object is created
with an alias |a = this.b|. In this case, we check that C indeed has an atomic set a and
that this refers to an object which has an atomic set b.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:18 J. Dolby et al.

(T-NEW-RAW)

E(x) = C
C not internal

E � x = new C()

,

(T-NEW-ASET)

E(x) = C|a= this.b|
C has a E(this) has b

E � x = new C|a= this.b|()

There are three type rules for upcasts. (T-CAST-PLAIN) covers the case where neither
type has an alias annotation. Rule (T-CAST-ASET) allows annotation invariant upcasts.
Finally, (T-CAST-OFF) strips the annotation from a type. This is only allowed for non-
internal classes.

(T-CAST-PLAIN)

E(x) = D E(y) = C D <: C

E � y = (C)x

(T-CAST-ASET)

E(x) = D|a= this.b| E(y) = C|a= this.b|
C has a E(this) has b D <: C

E � y = (C|a= this.b|)x

(T-CAST-OFF)

E(x) = C|a= this.b| C not internal E(y) = C

E � y = (C)x

The rule for method calls, (T-CALL), checks the types of arguments and the return
type. Viewpoint adaption is necessary to ensure that the types of arguments and the
return value are visible from the viewpoint of the receiver.

(T-CALL)

E(y) = τy typeof (τy.m) = τ → τ E(z) = τz

τz = adapt(τ , τy) τ ′ = adapt(τ, τy) E(x) = τ ′

E � x = y.m(z)

Consider, for instance, calls (1) and (2) to method m() in the following example.
The return type of m is τ ≡ C|c = this.a|. At call (1), τy ≡ A|a = this.b|, the value of
adapt(τ, τy) = C|c = this.b|, indicating (as expected) that the C object shares the same
atomic set as the receiver. On the other hand, a2 is created with its own atomic set.
Thus, at call (2), the result of adapt(τ, A) is undefined. The call does not type check
because it would return a value with an unknown alias.

class A extends Object {
atomicset a;
C|c=this.a| m(){

C|c=this.a| x;
x=new C|c=this.a|();
return x;

}
}
class C extends Object {

atomicset c;
}

class B extends Object {
atomicset b;
A f() {

A|a=this.b| a1; C|c=this.b| c1; A a2;
a1 = new A|a=this.b|();
c1 = a1.m(); //(1) OK
a2 = new A();
c1 = a2.m(); //(2) ERROR
return a2;

}
}

The rules for field selection and update check that the type of the field matches that
of the variable into which it is stored.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:19

Fig. 13. Syntax for heaps, threads, stacks, frames and objects.

(T-SELECT)

E(this) = τ E(x) = τf
typeof (τ.f) = τf

E � x = this.f

,

(T-UPDATE)

E(this) = τ E(y) = τf
typeof (τ.f) = τf

E � this.f = y

4.3. Dynamic Semantics

We formulate AJ’s dynamic semantics as small-step operational semantics. Figure 13
shows the syntax used for heaps, threads, stacks, frames, and objects. An AJ configu-
ration H; T consists of a single heap H of locations mapped to objects and a collection
of threads T . Each thread T has its own stack S plus a unique thread ID denoted ρ. A
stack S is a sequence of triples 〈m F s〉 consisting of a method name m, a stack frame
F mapping variables to locations, and a statement s. At runtime, an object C|ω|(r),
consists of a class C, an atomic set owner ω (either a location r or empty), and values r
for the object’s fields (either locations or null).

We model multithreaded Java programs with a fixed set of threads, T , each of
which initially starts with a call to a run method. Threads are terminated either when
the run method returns or by a null pointer exception (NPE). The reduction relation

�−→ρ represents a step of evaluation. The label � describes the action, and the thread
identifier ρ specifies the thread that performed it. Action labels can be one of the
following: ↑ r.f (field select), ↓ r.f (field update), ← r.m (method return), → r.m (method
call), or ε (empty action). Labels will be used in Section 4.5 to define traces; they record
operations that may lead to a data race (reads/writes) and operations that correspond
to potential unit of work boundaries (calls/returns). Basic thread-scheduling is modeled
as a nondeterministic choice in (D-SCHEDULE). Given a set of threads T T T ′, the rule picks
randomly one of the threads, T , for reduction.

(D-SCHEDULE)

H; T T ′ T
�−→ρ H′; T T ′ T ′

H; T T T ′ �−→ρ H′; T T ′ T ′

We abuse syntax a little bit and treat return y as a statement. Returning from a
call implies popping the topmost frame off the stack and capturing the return value.
Upcasts and skip statements have the expected semantics.

(D-RETURN)

F(y) = r F(this) = r′

H; T ρ S 〈m′ F ′ x = y′.m(z); s′〉〈m F return y〉 ←r′.m−→ ρ H; T ρ S 〈m′ F ′[x �→ r] s′〉

(D-CAST)

H; T ρ S 〈m F x= (τ)y; s〉 ε−→ρ H; T ρ S 〈m F[x �→ F(y)] s〉

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:20 J. Dolby et al.

Field selection extracts one of the references stored in the object, while field update
modifies the content of the object at the proper location. We define H(r.fi) as H(r.fi) = ri
if H(r) = C|ω|(r1 . . . ri . . . , rn) and fields(C) = f1, . . . fi . . . , fn.

(D-SELECT)

F(this) = r H(r.fi) = ri

H; T ρ S 〈m F x= this.fi; s〉 ↑r.fi−→ρ H; T ρ S 〈m F[x �→ ri] s〉

(D-UPDATE)

F(this) = r F(x) = rx H(r) = C|ω|(r, ri, r′) H′ ≡ H[r �→ C|ω|(r, rx, r′)]

H; T ρ S 〈m F this.fi =x; s〉 ↓r.fi−→ρ H′; T ρ S 〈m F s〉
Object creation comes in three flavors. (D-NEW-PLAIN) covers the construction of plain

Java objects where the owner is empty. (D-NEW-SELF) takes care of creation of an instance
of a class that has an atomic set and for which no alias annotation is specified. In
this case, the owner is the newly created object itself. Lastly, (D-NEW-ALIAS) is for the
construction of objects which have an alias annotation of the form |a = this.b|. For
those, we look up the owner of this and set it as the owner of the newly created object.

(D-NEW-PLAIN)

v ≡ C|ε|(null1...nulln) r is fresh not C has a
H′ ≡ H[r �→ v] length(fields(C)) = n F ′ ≡ F[x �→ r]

H; T ρ S 〈m F x = new C(); s〉 ε−→ρ H′; T ρ S 〈m F ′ s〉

(D-NEW-SELF)

v ≡ C|r|(null1...nulln) r is fresh C has a
H′ ≡ H[r �→ v] length(fields(C)) = n F ′ ≡ F[x �→r]

H; T ρ S 〈m F x=new C(); s〉 ε−→ρ H′; T ρ S 〈m F ′ s〉

(D-NEW-ALIAS)

v ≡ C|r′|(null1...nulln) r is fresh C has a D has b
H′ ≡ H[r �→ v] |fields(C)|=n H(F(this)) = D|r′|(r)

H; T ρ S 〈m F x=new C|a= this.b|(); s〉 ε−→ρ H′; T ρ S 〈m F[x �→r] s〉
Method calls push a new frame on the stack with local variables initialized to null

and parameters bound to corresponding arguments. For brevity, null-pointer exceptions
cause threads to immediately get stuck. More accurate treatment of exceptions (e.g.,
catch blocks and stack unwinding) is unnecessary for the problem at hand.

(D-CALL)

F(y) = r F(z) = r H(r) = C|ω|(r′) mbody(C.m) = (τx x′; τy y; s′; return y′)

F ′ ≡ [y �→ null][x′ �→ r][this �→ r] S′ ≡ S 〈m′ F x=y.m(z); s〉〈m F ′ s′; return y′〉
H; T ρ S 〈m′ F x=y.m(z); s〉 →r.m−→ρ H; T ρ S′

(D-CALL-NPE)

H; T ρ S 〈m′ F[y �→ null] x=y.m(z); s〉 ε−→ρ H; T ρ NPE

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:21

4.4. Properties

We now proceed to establish preservation and progress for our type system. As usual,
the proofs rely on a notion of well-formed heaps, threads, and configurations, as well
as runtime subtyping. We start with these auxiliary definitions. In a heap H, let
ownerH (r) = ω, if H(r) = C|ω|(r). Let internalH (r) hold if H(r) = C|ω|(r) and C is internal.
We write τ is raw to mean that type τ is of the form C and has no alias annotation, and
τ not raw is the negation of τ is raw.

4.4.1. Runtime Subtyping Relation. The runtime subtyping relation r <:ro
H τ indicates

that a reference r is an instance of type τ at runtime, in the context of a reference ro
and a heap H. Since types may contain alias annotations that refer to this, we need a
reference ro to give meaning to this. There are three cases: (i) if H(r) is null then the
relation holds for all τ ; (ii) if H(r) is C|ω|(r); then if τ is a raw type, D, the relation holds
if C <: D and if C is not an internal class (to prevent leaking an internal object); and
(iii) if τ is an aliased type D|a= this.b|, we must check that r has the same owner as ro.

null <:ro
H τ

H(r) = C|ω|(r) C <: D
C not internal

r <:ro
H D

H(r) = C|ω|(r) C <: D
ownerH (r) = ownerH (ro)

r <:ro
H D|a= this.b|

Notice that the runtime subtyping relation satisfies the following property. If r <:ro
H τ

and r �= null, then if τ is raw then not internalH (r), and if τ not raw then ownerH (r) =
ownerH (ro).

4.4.2. Well-Formed Configurations. A configuration is well-formed (written H; T is WF) if
the heap and threads are well-formed and the class table is well-typed (written � CT).
A heap H is well-formed if it is empty or if all fields of all objects it contains are well-
typed, meaning that the reference corresponding to each field is a runtime subtype of
the static type of that field. A thread T is well-formed (written T is WF in H), if it
is stuck on a nullpointer exception. Otherwise, a thread is well-formed if the topmost
frame is well-formed and if the remainder of the stack is well-formed. If the receiver
of the topmost stack frame is an instance of a class annotated as internal, then the
remainder of the stack may have zero or more frames with internal receivers followed
by at least one frame with a non-internal receiver, and the owners of the receivers of
all the frames must be identical. A frame F is well-formed if for each variable x in the
domain of F, the corresponding reference is a runtime subtype of the static type of x.
The rules appear in Figure 14.

4.4.3. Type Soundness. We prove type soundness of AJ by showing preservation and
progress. Here, preservation means that reduction of a well-formed configuration re-
sults in a well-formed configuration, and the proof of preservation states that after a
step of reduction, a well-formed configuration remains well-formed.

We first define the notion of an active thread as a thread that has not stumbled on
an NPE or returned from its bottommost stack frame.

Definition 4.1. A thread T ≡ ρ S is active, denoted active(T), if S �≡ NPE and
S �≡ 〈run F return y〉.

For simplicity, the proof will assume that the statements of Figure 11 include the
expression return y.

THEOREM 4.2 (PRESERVATION). If H; T T T ′ is WF and H; T T T ′ �−→ρ H′; T T ′ T ′,
then H; T T ′ T ′ is WF.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:22 J. Dolby et al.

Fig. 14. Well-formedness rules.

PROOF. We proceed by structural induction on the derivation of H; T T T ′ �−→ρ

H′; T T ′ T ′ with a case analysis on the last step, as H′; T T ′ T is obtained by repeated
application of (D-SCHEDULE). By (WF-CONFIGURATION) and active(T), we have T ≡ ρ S〈m F s〉,
F(this) = rthis, H(rthis) = Cthis|ω|(r), and mbody(Cthis.m) = (x; τz z; sm; return y) and
typeof (Cthis.m) = τm → τm. By (WF-CONFIGURATION), � CT implies that all methods are
well-typed and, in particular, there is an E such that E � sm.

Case (D-RETURN).
1. T ≡ ρ S′〈m′ F ′ x = y′.m(z); s′〉〈m F return y〉 by (D-RETURN).
2. 〈m′ F ′ x = y′.m(z); s′〉 is WF in H by (WF-FRAME).
3. E(y) = τm by (T-METHOD).
4. F(y) = ry and ry <:rthis

H τm by (WF-FRAME).
5. T ′ ≡ ρ S′〈m′ F ′[x �→ ry] s′〉 by (D-RETURN).
6. F ′(this) = r′

this, H(r′
this) = C|ω′|(r′), mbody(C.m′) = (xm′ ; τm′ zm′ ; sm′ ; return y′), and

E(x) = τx and E(y′) = τy′ by (WF-CONFIGURATION).
7. τx = adapt(τm, τy′) by (T-CALL).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:23

8. Show that ry <:r
′
this

H τx, by case analysis on ry.

8.1. If ry = null, then immediate by definition of runtime subtyping.
8.2. If ry �= null. Let H(ry) = Cy|ωy|(r′′). We know that ry <:rthis

H τm.

8.2.1. If τm = D. Then τx = D by definition of adapt and Cy <: D, by the
definition of runtime subtyping. E(y) = τm is raw, so not internalH (F(y)).
Thus, Cy is not internal. Therefore, by the definition of runtime subtyping,
ry <:rthis′

H τx.
8.2.2. If τm = D|a = this.b|. Cy <: D, by the definition of runtime subtyping.

Since τm not raw, we have ownerH (ry) = ownerH (rthis). We have E(y′) = τy′

not raw, for otherwise τx would be undefined, by the definition of adapt.
We have F ′(y′) <:rthis′

H τy′ , by (WF-FRAME).
Therefore, ownerH (F ′(y′)) = ownerH (r′

this). But F ′(y′) = F(this) = rthis, by
(T-CALL). So ownerH (rthis) = ownerH (r′

this). Thus, ownerH (ry) = ownerH (r′
this).

By the definition of runtime subtyping, ry <:rthis′
H τx.

9. T ′ is WF in H by (WF-THREAD-*).

Case (D-CAST).
1. T ≡ ρ S〈m F x = (τ)y′; s′〉, by (D-CAST).
2. E(x) = τx and E(y′) = τ ′

y, by (T-METHOD).
3. F(y′) = r′

y, and r′
y <:rthis

H τ ′
y, by (WF-FRAME).

4. τx = τ , by (T-CAST-*).
5. Show that r′

y <:rthis
H τx by case analysis on τx and τ ′

y:

5.a. If τ ′
y = D and τx = C, then τ ′

y <: τx by (T-CAST-PLAIN). Since τ ′
y is raw,

then not internalH (r′
y). So τ ′

y is not internal. Therefore, by the definition of
dynamic subtyping, r′

y <:rthis
H τx.

5.b. If τx = D|a = this.b| and τ ′
y = C|a′ = this.b′|, then a = a′, b = b′,

and τ ′
y <: τx by (T-CAST-ASET). τ ′

y not raw, and since r′
y <:rthis

H τ ′
y, we have

ownerH (r′
y) = ownerH (rthis), by (WF-FRAME). Therefore r′

y <:rthis
H τx, by the defi-

nition of runtime subtyping.
5.c. If τx = D and τ ′

y = C|a= this.b|, then C = D and C not internal, by (T-CAST-OFF).
Therefore r′

y <:rthis
H τx, by the definition of runtime subtyping.

5.d. The case τx = D|a= this.b|, and τ ′
y = C, has no type derivation.

6. 〈m F ′[x �→ ry] s′〉 is WF in H by (WF-FRAME) and (5).
7. T ′ ≡ ρ S〈m F ′[x �→ ry] s′〉 is WF in H by (WF-THREAD-*) and (6).

Case (D-SKIP). Immediate.

Case (D-SELECT).
1. T ≡ ρ S〈m F x = this.fi; s′〉 by (D-SELECT).
2. typeof (Cthis.fi) = τf by (T-SELECT).
3. H(r.fi) = r′ and r′ <:rthis

H τf by (WF-HEAP).
4. E(x) = τf by (T-SELECT).
5. r′ <:rthis

H E(x).
6. 〈m F[x �→ r′] s′〉 is WF in H by (5) and (WF-FRAME).
7. T ′ ≡ ρ S〈m F[x �→ r′] s′〉 is WF in H by (6) and (WF-THREAD-*).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:24 J. Dolby et al.

Case (D-UPDATE). Similar to Case (D-SELECT).

Case (D-NEW-PLAIN).
1. T ≡ ρ S〈m F x = new C(); s′〉 by (D-NEW-PLAIN).
2. r′ is fresh, v = C|ε|(null), H′ = H[r′ �→ v], F ′ = F[x �→ r′] and not C has a by

(D-NEW-PLAIN).
3. E(x) = C and C not internal by (T-NEW-RAW).
4. r′ <:rthis

H′ C by definition of runtime subtyping.
5. H′(r′. f) <:r

′
H′ typeof (C.f)

6. 〈m F[x �→ r′] s′〉 is WF in H′ by (4) and (WF-FRAME).
7. T ′ ≡ ρ S〈m F[x �→ r] s′〉 is WF in H′ by (6) and (WF-THREAD-*).
8. H′ = H[r′ �→ v] is WF in H′ by (5) and (WF-HEAP).

Case (D-NEW-SELF).
1. T ≡ ρ S〈m F x = new C(); s′〉 by (D-NEW-SELF).
2. r′ is fresh, v = C|r′|(null), H′ = H[r′ �→ v], F ′ = F[x �→ r′], and C has a by

(D-NEW-SELF).
3. E(x) = C and C not internal, by (T-NEW-RAW).
4. r′ <:rthis

H′ C by definition of runtime subtyping.
5. H′(r′. f) <:r

′
H′ typeof (C.f)

6. 〈m F[x �→ r′ s′〉 is WF in H′, by (4) and (WF-FRAME).
7. T ′ ≡ ρ S〈m F[x �→ r] s′〉 is WF in H′ by (6) and (WF-THREAD-*).
8. H′ = H[r′ �→ v] is WF in H′ by (5) and (WF-HEAP).

Case (D-NEW-ALIAS).
1. T ≡ ρ S〈m F x = new C|a= this.b|(); s′〉 by (D-NEW-ALIAS).
2. H(F(this)) = D|r′′ = this.r|, r′ is fresh, v = C|r′′|(null), H′ = H[r′ �→ v] and C has a

by (D-NEW-ALIAS). Let F ′ = F[x �→ r′].
3. ownerH (r′) = ownerH (rthis), by (2).
4. r′ <:rthis

H′ C|a= this.b| by definition of runtime subtyping.
5. E(x) = C|a= this.b| by (T-NEW-ASET).
6. F ′(x) <:rthis

H′ E(x) by (4) and (5).
7. 〈m F[x �→ r′] s′〉 is WF in H′ by (6) (WF-FRAME).
8. T ′ ≡ ρ S〈m F[x �→ r] s′〉 is WF in H′ by (7) (WF-THREAD-*).
9. H′(r′.f) <:r

′
H′ typeof (C.f), by the definition of runtime subtyping.

10. H′ = H[r′ �→ v] is WF in H′ by (9) and (WF-HEAP).

Case (D-CALL).
1. T ≡ ρ S〈m′ F x = y.m(z); s′〉 by (D-CALL).
2. F(y) = r′, F(z) = r, H(r′) = C|ω|(r′), mbody(C.m) = (x′; τy y; s′′; return y′), F ′ ≡

[y �→ null][x′ �→ r][this �→ r′], and S′ ≡ S 〈m′ F x=y.m(z); s〉〈m F ′ s′; return y′〉, by
(D-CALL).

3. typeof (C.m) = τ → τ , E(y) = τy, E(z) = τz, τz = adapt(τ , τy), τx = adapt(τ, τy),
E(x) = τx by (T-CALL).

4. r <:rthis
H τz by (WF-FRAME).

5. Show r <:r′
H τ . Consider ri, show ri <:r

′
H τi, by case analysis on τi.

5.a. If τi is raw. We have τzi = adapt(τi, τy), so τzi = τi. ri <:rthis
H τi, by (4). So

not internalH (ri). Therefore ri <:r
′

H τi by the definition of runtime subtyp-
ing.

5.b. If τi not raw. We have τzi = adapt(τi, τy). τy not raw for otherwise, adapt
would be undefined, and τzi not raw. ownerH (ri) = ownerH (rthis), since

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:25

ri <:rthis
H τzi . ownerH (r′) = ownerH (rthis), since r′ <:rthis

H τy. So ownerH (ri) =
ownerH (r′). Therefore ri <:r

′
H τi by the definition of runtime subtyping.

6. Show r′ <:F ′(this)
H E(this), by case analysis on C.

6.a. If not C has a. Then E(this) is raw. C not internal, by (T-CLASS). So r′ <:F ′(this)
H

E(this), by the definition of runtime subtyping.
6.b. If C has a. Then E(this) not raw. We have ω �= ε by (WF-HEAP). So

ownerH (r′) �= ε, and r′ <:F ′(this)
H E(this), by the definition of runtime sub-

typing.
7. 〈m F ′ s′; return y′〉 is WF in H, by (5) and (6).
8. Show ∃〈m′′ F ′′ s′′〉 ∈ S′ such that ownerH (F ′′(this)) = ownerH (F ′(this)) and not

internalH (F ′′(this)), by case analysis on r′.
8.a. If not internalH (r′). Immediate, 〈m′′ F ′′ s′′〉 is

〈m F ′ s′; return y′〉.
8.b. If internalH (r′). Then τy not raw. ownerH (r′) = ownerH (rthis), since r′ <:rthis

H
τy. We know that ρ S〈m′ F x = y.m(z); s′〉 is WF in H. So ∃〈m′′ F ′′ s′′〉 ∈
S〈m′ F x = y.m(z); s′〉 such that ownerH (F ′′(this)) = ownerH (rthis) =
ownerH (r′) and
not internalH (F ′′(this)).

9. ρS′ is WF, by (7), (8), and (WF-THREAD-*).

Case (D-CALL-NPE). Immediate by (WF-NPE-THREAD).

Progress requires that if there exists an active thread in a well-formed configuration,
this thread should be allowed to make a step.

THEOREM 4.3 (PROGRESS). If H; T T T ′ is WF and active(T), then H; T T T ′ �−→ρ

H′; T T ′ T ′.

PROOF. We obtain H′; T T ′ T by repeated application of (D-SCHEDULE). We proceed by
structural induction on s when T ≡ ρ S〈m F s〉. By (WF-CONFIGURATION) and active(T),
H(F(this)) = C|ω|(r) and mbody(C.m) = (xm; τm zm; sm; return y). By (WF-CONFIGURATION),
� CT implies all methods are well-typed, and there is an E such that E � sm.

Case [s ≡ return y].
(a) By � CT and (WF-THREAD), E(y) = τy, F(y) = ry, F(this) = r.
(b) By active(T) and (WF-THREAD), S = S′〈m′ F ′ x = y′.m(z); s′〉.
(c) By (b), we can apply (D-RETURN) to obtain

H; T T ′ ρ S′〈m′ F ′ x = y′.m(z); s′〉.
Case [s ≡ s′; s′′]. Follows immediately by the induction hypothesis.

Case [s ≡ skip; s′].
(a) By (D-SKIP), we obtain H; T T ′ ρ S〈m F s′〉.

Case [s ≡ x = y.fi; s′].
(a) By � CT and (WF-THREAD), E(y) = τy, F(y) = ry, F(this) = r.
(b) By (a), either ry = null or H(ry) = D|ω′|(r′).
(c) By (b), if ry = null, then by application of (D-SELECT-NPE) we obtain H; T T ′ ρ NPE.
(d) By (b), if H(ry) = D|ω′|(r′), by (T-SELECT) and (WF-HEAP) there is a ri ∈ r′ correspond-

ing to fi.
(e) By (d) and (D-SELECT), we obtain H′; T T ′ ρ S〈m F s′〉.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:26 J. Dolby et al.

Case [s ≡ x.fi = y; s′]. Similar to the previous case.

Case [s ≡ y = (τ)x; s′]. Immediate by application of (D-CAST).

Case [s ≡ x = new τ (); s′].
(a) Either τ ≡ D or τ ≡ D|a= this.b|.
(b) If τ ≡ D|a = this.b|, then by (T-NEW-ASET) C has a and E(this) has b, recall that

H(F(this)) = C|ω|(r), then by (D-NEW-ALIAS), we obtain
H[r �→ D|ω|(null)]; T T ′ ρ 〈m F[x �→ r] s′〉 with r fresh.

(c) If τ ≡ D, then if D has a, by (D-NEW-SELF) we obtain
H[r �→ D|r|(null)]; T T ′ ρ 〈m F[x �→ r] s′〉 with r fresh; otherwise by (D-NEW-PLAIN),
we obtain H[r �→ D|ε|(null)]; T T ′ ρ 〈m F[x �→ r] s′〉.

Case [s ≡ x = y.m′(z); s′].
(a) By (WF-THREAD), (WF-HEAP), and application of (D-CALL), we obtain

H; T T ′ ρ S〈m F s〉〈m′ F ′ s′〉.

4.5. Concurrency Control

The AJ semantics is purposefully silent about synchronization to allow for different
concurrency-control strategies. Our implementation uses mutual exclusion locks, our
previous work used read-write locks, and a transactional implementation would be an-
other possibility. The execution of a program can be characterized by a trace t, which is
a sequence of events e1 . . . en performed by individual threads. For any implementation
of AJ, we define the concurrency-control policy as a predicate over traces. We say that
any trace accepted by an implementation is well-formed. The current implementation
disallows multiple invocations of methods on objects having the same owner to execute
concurrently by associating mutual exclusion locks to atomic set instances. We formal-
ize this with the following definition of valid event. Let an event e be a tuple (H, T , �, ρ)
consisting of a configuration, an action label, and a thread ID. We say that an event is
valid if it has any action label other than a method call. An event with a method call
on an object of an internal class is valid. For calls to non-internal classes, an event is
valid if there are no outstanding method calls of objects with the same owner in other
threads.

Definition 4.4. An event e = (H, T , �, ρ) is valid if and only if.
when � =→ r.m, H(r) = C|r′|(r) and C not internal,
then �∃ ρ ′S ∈ T .ρ ′ �= ρ, 〈m F s〉 ∈ S, and H(F(this)) = D|r′|(z).

In our implementation, a well-formed trace is a trace in which every event is valid
and every configuration is WF. This property, enforced by the AJ runtime system, is
not sufficient in itself to prevent data races. The type system provides the additional
guarantee that all objects belonging to an atomic set are accessed only through methods
that are units of work for the atomic set.

4.6. Atomic-Set Serializability

Serializability of atomic set operations follows from the preceding restriction to valid
traces (mutual exclusion of methods of non-internal classes operating on the same
atomic set) and the fact that all fields labeled atomic(a), including those of internal
classes, are accessed within a method of a non-internal class operating on that atomic
set. Given a well-formed trace t and an event e in t, asett(e) gives the owner atomic set

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:27

accessed by e, if any.

asett(e) =

⎧⎪⎨
⎪⎩

r′ if e = (H, T , �, ρ) ∧ � ∈ {↑ r.f,↓ r.f}
∧ H(r) = C|r′|(r) ∧ C.f is atomic

ε otherwise.

We introduce unit of work identifiers, ranged over by metavariable u, in a trace t as
follows. We consider the projection of t onto each thread ρ, which is a succession of
events from the same thread. By considering method calls and returns (→ r.m, ← r.m),
we determine where units of work start and end. We assign each unit of work a unique
identifier u and update all frames in the trace t to reflect not only the method name
but also the unit of work identifier u, as follows: 〈m u F s〉. Given a well-formed trace
t and an event e, uowt(e) is the unit of work to which e belongs. uowt(e) is computed
by examining the call stack of the thread that performs e, finding the first frame on
the stack with a method on an object having the same owner as asett(e), declared in
a non-internal class, and returning the unit of work identifier corresponding to this
method.

uowt(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u if e = (H, T ρS, �, ρ) ∧ ∃〈m u F s〉 ∈ S s.t.
ownerH (F(this)) = asett(e)
∧ not internalH (F(this))
∧ � ∃〈m′ u′ F ′ s′〉 . . . 〈m u F s〉 ∈ S

s.t. ownerH (F ′(this)) = asett(e)
∧ not internalH (F ′(this))

⊥ otherwise

LEMMA 1. If e = (H, T , �, ρ) is an event in a well-formed trace t and asett(e) �= ε, then
uowt(e) �=⊥.

PROOF. Let e = (H, T ρS〈m′ F ′ s′〉, �, ρ). Since asett(e) = r′ �= ε, we have � ∈ {↑
r.f,↓ r.f}, H(r) = C|r′|(r), and C.f is atomic. Fields can only be accessed from this, so
r = F ′(this). By (WF-THREAD), we know that there exists a frame 〈m F s〉 in S such that
ownerH (F(this)) = ownerH (F ′(this)) = asett(e), and not internalH (F(this)). Therefore,
uowt(e) �=⊥.

The events of a unit of work u in a trace t are all the events e in t such that uowt(e)
= u. Given a well-formed trace t and an atomic set r, we define the set of units of work
corresponding to r as the set that contains uowt(e) for each e in t such that asett(e) = r.
By Lemma 1, we know that uowt(e) is well-defined for an event e such that asett(e) �= ε,
meaning each access to a location in an atomic set is performed within a unit of work
corresponding to that atomic set. Since valid traces provide mutual exclusion of units
of work, we obtain atomic-set serializability.

THEOREM 4.5 (ATOMIC-SET SERIALIZABILITY). Given a well-formed trace t and an atomic
set r, the events of each of the units of work corresponding to r happen serially.

PROOF. By contradiction. Assume that t contains 3 events e, e′, and e′′ in this order,
such that asett(e) = asett(e′) = asett(e′′) = r, and uowt(e) = uowt(e′′) �= uowt(e′). Assume
that e′ is performed by a different thread than e and e′′ and that e′ = (H′, T ,→ r.m, ρ).
Since trace t is well-formed, we know that e′ is valid. By the definition of valid event,
there is no other thread in the configuration of e′ that has an invocation of a method in
the same atomic set on its call stack. However, since e and e′′ belong to the same unit
of work, this means when e′ occurs, unit of work uowt(e) has not yet ended. Therefore,

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:28 J. Dolby et al.

e′ is not valid, which is a contradiction. Therefore, no invocation by another thread of
a method on atomic set r may be interleaved between e and e′′. Since all accesses to r
happen inside a method operating on r, no other event accessing r by another thread
may be interleaved. So units of work corresponding to r happen serially.

4.7. Adding unitfor

AJ provides a feature to dynamically expand a unit of work to multiple atomic sets.
This is done by annotation of method arguments with the unitfor modifier. At runtime,
the locks of all the named atomic sets are acquired, and the method is serializable with
respect to these atomic sets. Consider a hypothetical method addAll2() in the LinkedList
class:

class LinkedList extends AbsList {
...
void addAll2(unitfor(a) AbsList l1,unitfor(a) AbsList l2) {

...

The programmer specified that the method is a unit of work for the receiver of
the call, as well as for both arguments. This is the only way to ensure that neither
the receiver nor the arguments are modified concurrently. Semantically, the method
invocation will acquire all locks atomically. (Our implementation uses a lock-ordering
protocol to prevent deadlocks.) We now sketch the changes to the formalism to support
unitfor. First, the syntax of the calculus is extended with optional unitfor annotations on
method arguments such that

u ::= unitfor (a) | ε,
md ::= τ m (u τ x) {τ z; s;return y}.

Next, the typechecking rule for methods is adapted. As atomic sets are inherited, we
deem it natural to enforce the constraint that subclasses preserve the synchronization
behavior of their parent. The new type rule assumes that the override predicate checks
that the unitfor specifications u match those of the method declaration D.m.

(T-METHOD’)

E ≡ x : τx, z : τz, this : τthis E � s; return y E(y) = τ C extends D
(if C has a then τthis ≡ C|a= this.a| else τthis ≡ C) override(m, D, u τx → τ)

τ m(u τx x){τz z; s; return y} OK in C

The next change is in the dynamic semantics. Whereas before, it was sufficient to
record method calls as pairs of receiver objects and method names,

→r.m−→ρ , we now also
record the subset of the method’s arguments that have associated unitfor annotations,
→r.m ru−→ ρ . The new rule for a method call relies on predicate units(C, m, r) to return the
subset of the arguments ru corresponding to unitfor parameters. Call frames are extended
from triples 〈m F s〉 to quadruples 〈m F ru s〉 by addition of the unitfor arguments.

(D-CALL’)

F(y) = r F(z) = r H(r) = C|ω|(r′) mbody(C.m) = (τx x′; τy y; s′; return y′)

F ′ ≡ [y �→ null][x′ �→ r][this �→ r] ru = units(C, m, r)
S′ ≡ S 〈m′ F r′

u x=y.m(z); s〉〈m F ′ ru s′; return y′〉
H; T ρ S 〈m′ F r′

u x=y.m(z); s〉 →r.m ru−→ ρ H; T ρ S′

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:29

No other changes are required to the semantics. The definitions of well-formed config-
urations and the proofs are unchanged. The definition of valid events must be adjusted
to treat the extra arguments on call events as locks requiring mutual exclusion. This
is achieved by ensuring that the set of locks required by an event e are disjoint from
those of any stack frame in the configuration.

Definition 4.6. An event e = (H, T , �, ρ) is valid if and only if
when � =→ r.m ru, H(r) = C|r′|(r),
then � ∃ ρ ′S ∈ T .ρ ′ �= ρ, 〈m F r′

u s〉 ∈ S, and
(
H(F(this)) ∪ ru

) ∩ (
D|r′|(z) ∪ r′

u

) = ∅.

The treatment of concurrency must be adjusted slightly to account for the fact that
methods are protected by multiple atomic sets. This affects the definition of uow and
the statement of the theorem. The result follows as expected.

5. IMPLEMENTATION: TRANSLATING AJ TO JAVA

We implemented a proof-of-concept AJ-to-Java compiler as an Eclipse refactoring that
rewrites the original source into a new project that holds the transformed code. The
type checker assumes that data-centric synchronization annotations are given as Java
comments. It parses these annotations and enforces the type rules of Section 4. Type
errors are reported using markers in the Eclipse editor. The compiler uses standard
Java synchronized blocks to enforce exclusion for each atomic set. A limitation of our
prototype is that it supports only one atomic set per class. Furthermore, it does not
handle generics and nested classes. We emphasize that this is not a limitation of the
approach but an engineering trade-off. With Eclipse’s rudimentary support for AST
manipulation, handling those features would entail a considerable effort. Therefore,
when these features are encountered in Java code to be used in AJ, we perform manual
refactorings to side-step the problem. Generics are eliminated by removing type pa-
rameters and replacing occurrences of these type parameters with type Object. Nested
classes are dealt with in two steps. First, any non-static nested class is changed into a
static nested class by introducing an explicit pointer to the surrounding object. Then,
the nested classes are changed into top-level classes.

The prototype implements a four-step transformation that ensures that each non-
private method of a non-internal class acquires the locks for all atomic sets for which
it is a unit of work. We also experimented with an alternative implementation, based
on reentrant locks from java.util.concurrent but found the performance inferior to the
current implementation that is based on synchronized blocks.

5.1. Transformation Steps

5.1.1. Create Lock Fields. The compiler generates a lock field $lock S in any class C that
declares an atomic set S. Atomic sets declared in superinterfaces of C will have a lock
field in C unless that same atomic set is present in C’s superclass. For each lock field,
an accessor method getLockForS() is created.

5.1.2. Transform Constructors. Constructors of classes with atomic sets are transformed
to take additional parameters that are the lock objects to use. For classes that declare
atomic sets, the constructors assign these parameters to the lock fields; for classes that
inherit atomic sets, these lock objects are passed to superclass constructors.

5.1.3. Transform Object Allocations to Set Locks. For objects not involved in alias relation-
ships, new statements are transformed by passing a fresh lock object to the constructor.
For objects in an alias relationship, the lock to use is read from the owner by calling
the getLockForS() accessor method and passed to the constructor to initialize the lock
field.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:30 J. Dolby et al.

Fig. 15. Example where the compiler can determine that locks need not be reacquired.

5.1.4. Transform Units of Work to Acquire All Needed Locks. This involves taking the lock
of the atomic set for the declaring class and the locks for the atomic sets of any unitfor
parameters. If only a single lock is required, a single synchronized block suffices.
However, when multiple locks are needed, they must be acquired without inducing
unnecessary deadlock. This is accomplished by introducing an ordering: each lock
object is given an ID when allocated, and locks are acquired in order of increasing
ID. There is a minor complication here: when the type of the argument is too general
to denote an atomic set unambiguously, a unitfor must be used that omits the name
of the atomic set (this situation arises, e.g., for the argument of equals() methods, see
Section 6.2). To this end, each class with atomic sets implements an interface Atomic,
which declares a method getLock() that returns the lock for its atomic set.

A few straightforward optimizations were implemented. If the compiler can deter-
mine that all members of an atomic set accessed in a method and in any methods it may
call are final, then it will not introduce a locking code. Furthermore, all transformed
methods have two versions, one with locking code and one without; when the compiler
can determine that all needed locks are already held in a particular context, it will call
the version that does not take locks.

Consider the code in Figure 15 as an example. The compiler knows that while ex-
ecuting method foo(), locks for atomic sets this.f and b1.b are held. Furthermore, the
aliasing annotation on myB indicates that myB.b and this.f are in fact the same lock.
Therefore, the call b1.bar(myB) can be translated to use the version of bar that does
not acquire any locks, since all necessary locks are already held. The comments in the
figure indicate whether the locking or non-locking version of a method will be called at
each call site.

5.2. Translation Example

To illustrate the translation previously described, we show the translated version of
the code in Figure 15: class F in Figure 16 and class B in Figure 17.

(1) Create lock fields. The lock fields themselves are added to each class that declares
an atomic set, as illustrated with the locks at line 42 in Figure 16 and at line 43 in
Figure 17. Note that the locks are of type OrderedLock; we impose a global order on
all locks allocated and use this global order to ensure that we do not get spurious
deadlocks from trying to acquire the same locks together in a different order at
different points in the code. The getLock() methods for the declared atomic sets are
shown in lines 8–14 in Figure 16 and lines 4–10 in Figure 17.

(2) Transform constructors. Classes F and B each declare an atomic set, so their con-
structors take a parameter that denotes the lock object to use. In class F, the

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:31

Fig. 16. Translation for class F in Figure 15.

constructor is on lines 3–6, and the assignment of the passed-in lock object is on
line 5. Class B is similar.

(3) Transform object allocations to set locks. This example has no instances of object
creation, but calls to constructors would receive additional lock objects as parame-
ters.

(4) Transform units of work to acquire all needed locks. The method inc() of class B
illustrates the simple case of a unit of work on a single atomic set, in this case b.
Two versions of the code are generated. One version takes the one needed lock in a
standard synchronized block; this is shown in lines 37–41 of Figure 17. The internal
version (line 35) takes no lock and is used when the caller is known to have the lock
already, for instance, in the calls within bar() on lines 30 and 31.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:32 J. Dolby et al.

Fig. 17. Translation for class B in Figure 15.

The method foo() in class F (lines 19–41 in Figure 16) illustrates some more trans-
lation issues. Note that myB is declared aliased with the F object, as indicated by the
b=this.f aliasing annotation on line 16. This means that the referent shares the same
lock as the F object itself and, hence, calls on the referent’s units of work require no
additional locking. This is implemented by using the special internal version of such
units of work that do not take locks, as shown on lines 21 and 37. The foo() method also
declares the parameter b1 to be unitfor, meaning foo() is a unit of work for that object
as well. This means that foo() must also take the lock for b1. The OrderedLock class
allows the system to take locks in a global order, so that multiple units of work trying

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:33

Fig. 18. (a) A problematic usage of wait()/notify() in AJ. (b) Example illustrating AJ’s data-centric wait()/notify()
construct.

in parallel to take multiple locks will not encounter spurious deadlocks. This locking
code is shown on lines 26–35 in Figure 16; the system determines which lock is earlier
in the global order and takes that lock first followed by the second needed lock.

6. EXTENDING AJ

This section presents extensions to the basic AJ programming model to support bet-
ter integration with traditional Java programming idioms. In particular, Section 6.1
defines a notion of condition variables at the level of atomic sets, in order to support
explicit synchronization between threads analogous to Java’s wait() and notify(). Sec-
tion 6.2 presents a generalized form of the unitfor construct, which is useful in cases
where the name of an atomic set in an object is not known at compile time. Section 6.3
presents dynamic casts, a feature for converting a raw type into an aliased type (which
requires a runtime check). In Section 6.4, we slightly extend the language to allow unit-
for constructs to refer to final fields. Section 6.5 defines a fastread modifier on methods
to achieve a relaxed synchronization policy that we found to be useful for achieving
good performance in optimal solution search problems. Finally, Section 6.6 presents a
notunitfor construct that programmers should use judiciously in cases where our com-
piler generates over-synchronized code, to indicate that a given method is not a unit of
work for the atomic set(s) in its declaring class.

6.1. Supporting Wait/Notify Synchronization

In Java, the Object class provides three additional methods for synchronizing the ex-
ecution of multiple threads: wait(), notify(), and notifyAll(). The Java monitor semantics
requires that, in order for a thread to evaluate an expression such as obj.wait(), the
thread must have acquired the receiver’s lock. The call to wait() has the effect of releas-
ing the lock associated with obj and suspending the thread. The thread is reactivated
when some other thread calls obj.notify() or obj.notifyAll().

In AJ, Java’s wait()/notify() mechanism cannot be used because this construct is not
aware of the locks associated with atomic sets. For instance, consider the Count class in
Figure 18(a), which declares an atomic set a and a method add(). Calling wait() within
the body of the method is not allowed by Java semantics, as the current thread does
not hold the lock on this.1

However, some common Java programming idioms rely on wait() and notify(), and it
would be very difficult to do without this feature (in particular, some of the bench-
mark programs that we refactored into AJ rely on this feature). Therefore, we ex-
tend AJ with a special form of wait()/notify() which lets programmers write expres-
sions, such as this.a.wait(), where a is an atomic set in the receiver object. Figure 18(b)
shows a revised version of the example that uses this construct. The semantics of this

1Our implementation does allow uses of Java’s wait()/notify() that involve locks unrelated to atomic sets.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:34 J. Dolby et al.

data-centric wait()/notify() construct are to release the lock(s) associated with the current
unit of work and block the current thread. This effectively turns the method into two
units of work, which are separated by the call to wait(). Thus, in the add() method in
Figure 18(b), wait() would release the lock associated with atomic set a in the receiver.
After notification, the thread will attempt to re-acquire the same lock atomically. At
present, our implementation supports wait()/notify() only in methods that are units of
work for one atomic set.

6.2. Generic unitfor

Maintaining backwards compatibility with libraries is sometimes inconvenient, as
the signatures of common methods are too general. This is nicely illustrated by the
equals(Object obj) method which does not expect an object with atomic sets. Of course,
usually the argument obj is of the same type as the receiver and has the same atomic
sets. Consider a Point class that has two mutable fields. To compare two objects of this
class it is desirable to observe consistent states of the points. In Java, this could be
achieved by declaring the equals() method synchronized and acquiring the lock on the
argument using a nested synchronized block.

class Point {
int x,y;
...
public synchronized boolean equals(Object o) {

if (o==null || !(o instanceof Point)) return false;
Point p = (Point)o;
synchronized(p) { return x == p.getX() && y == p.getY(); }

}
}

This of course, may result in a deadlock if two threads evaluate p.equals(q) and
q.equals(p) in parallel. The equivalent solution with atomic sets requires an additional
method, eq, with a unitfor argument to prevent concurrent modifications to the argument
Point object.

class Point {
atomicset a;
atomic(a) int x,y;
...
public boolean equals(Object o) {

if (o==null || !(o instanceof Point)) return false;
return eq((Point)o);

}
private boolean eq(unitfor(a) Point p) {

return x == p.getX() && y == p.getY();
}

}
Unfortunately, the AJ solution runs the same risks as the Java solution. A deadlock

can occur when two points are compared in parallel. This situation arises because a
lock on the receiver’s atomic set is automatically acquired when equals() is called, and
a second lock is acquired when eq() is called.

We propose a solution based on the notion of generic unitfor annotations. A generic
unitfor annotation does not specify the name of the atomic set that has to be acquired.
It has the semantics of atomically acquiring all atomic sets of the corresponding

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:35

argument. If the argument is null or doesn’t have atomic sets, nothing is done. The
equals method can now be expressed more naturally as

public boolean equals(unitfor Object o) {
if (o==null || !(o instanceof Point)) return false;
Point p = (Point) o;
return x == p.getX() && y == p.getY();

}
This solution does not run the risk of causing deadlocks, as the locks on all atomic sets
are acquired atomically. No changes to the type system are required.

6.3. Dynamic Casts

In order to support legacy code it is sometimes convenient to go from raw types to
aliased types. The AJ type system allows casts from alias types to raw types but not
the other way around. Supporting dynamic casts to aliased types requires comparing
types and atomic sets. To support this, we extend the type system with one additional
rule.

(T-DOWNCAST)

E(y) = C|a= this.b| C has a E(this) has b E(x) = D C <: D

E � y = (C|a= this.b|)x

Furthermore, the dynamic semantics must be extended with a downcast rule that
performs a dynamic check on classes and compares the atomic set of the object being
cast to the atomic set of the receiver.

(D-CAST’)

H(F(this)) = C|ω|(r, ri, r′) H(F(y)) = D|ω′|(r′, r′
i, r′′) D <: C ω = ω′

H; T ρ S 〈m F x= (C|a = this.b|)y; s〉 ε−→ρ H; T ρ S 〈m F[x �→ F(y)] s〉

As an example, consider an equals() method, which takes an Object as argument. In
order to call this method, it is necessary to convert the type of the argument to the
general Object type, even if the only sensible value for equals() is one that matches the
type of the receiver. Consider a Tree class with an equals() method. In this design, the
programmer chose coarse-grained locking. This choice is manifested by the constraint
that the left and right fields of a Tree instance must have the same atomic set a.

class Tree {
atomicset a;
atomic(a) Tree left|a=this.a|, right|a=this.a|;
Tree|a=this.a| getLeft() { return left; }
...
boolean equals(Object o) {

if (!o instanceof Tree) return false;
if (o == this) return true;
...

}
void setLeft(Tree t) { ... }

}

The body of the equals() method starts with the standard boilerplate Java idioms
testing for null values and subtyping and for reference equality. The ellipsis can be
filled by the following code fragment.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:36 J. Dolby et al.

Tree t = (Tree) o;
return left.equals(t.getLeft()) && right.equals(t.getRight());

Here argument o is cast to the raw type Tree. This means that there is no guarantee
that the object has the same atomic set. The call to t.getLeft() will have to acquire a lock.
Of course, if the argument has the same atomic set as the receiver, the lock is already
held, and it simply needs to be reentered.

With dynamic casts, the implementation could also include the following code.

Tree|a=this.a| t = (Tree|a=this.a|) o;
return left.equals(t.getLeft()) && right.equals(t.getRight());

In this case, since the AJ compiler knows that t is protected by the same atomic set,
no additional lock needs to be acquired. Putting all this together, the proper implemen-
tation of equals() would look as follows.

boolean equal(Object o) {
if (o == null || !o instanceof Tree) return false;
if (o == this) return true;
if (o instanceof Tree|a=this.a|) {

Tree|a=this.a| t = (Tree|a=this.a|) o;
return left.equals(t.getLeft()) && right.equals(t.getRight());

else { return eq((Tree)t) }
}
boolean eq(unitfor(a) Tree t) {

return left.equals(t.getLeft()) && right.equals(t.getRight());
}

Another reason for having dynamic casts is to support assignments. Consider the
setLeft(Tree) method. It takes a Tree object and should set the left field, but this is only
permitted if the argument has the same atomic set as the receiver. The implementation
of the methods would be

void setLeft(Tree t) {
if (t instanceof Tree|a=this.a|)

left = (Tree|a=this.a|) o;
else

... // error
}

In order to implement this feature, we rely on the fact that our implementation
stores the lock associated with an atomic set in a field. We use these lock fields as a
basis for comparisons. Every instance of a class that has an atomic set has a non-null
value, and comparing the values of two fields will tell us if the atomic sets are the same.
Internal classes can be treated specially, as the type system does not allow upcasts to
non-atomic set classes.

6.4. Generalized unitfor for Fields

In object-oriented code, it is natural for methods to manipulate fields of the object to
which they belong. As such, it is sometimes useful to specify atomicity requirements on
these fields. But the basic AJ programming model allows unitfor annotations to modify
only method parameters. While this doesn’t limit expressiveness, it leads to inelegant
code when a method is a unit of work for some component object’s atomic set; the method
must call a helper method that accepts the field as a parameter. To avoid this, we extend
our implementation to allow an additional form of unitfor annotations on methods. These
unitfor method annotations indicate that the method is a unit of work for an atomic set

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:37

Fig. 19. Generalized unitfor example.

of an object stored in a specified field. In order to avoid unsoundness arising from
concurrent field updates, we require that fields specified in unitfor annotations be final.
This restriction is conservative; a more permissive implementation could allow a non-
final field, as long as the field itself were part of an atomic set and the annotated
method was also a unit of work for that atomic set.

As an example of using the generalized unitfor, we can write a transfer function, see
Figure 19, for a linked account object that contains two bank account objects, each of
which has an atomic set a, as follows.

To allow programmers maximum flexibility, we allow the unitfor annotations to specify
atomic sets in fields of fields, fields of parameters, fields of fields of fields, and so on to
an arbitrary depth. Again, to avoid unsoundness, each of the fields involved in naming
the atomic set must be final or be part of an atomic set for which the method is also a
unit of work.

6.5. Fast-Read Annotations

While analyzing the performance impact on a benchmark that solves the traveling
salesman problem (see Section 7), we noticed that the AJ version was significantly
slower. Much of this slowdown was due to additional synchronization when reading a
field that indicates the length of the best solution found so far. In the original Java
version, this field was synchronized only for (relatively rare) updates. The original
synchronization discipline was correct, since the read of the field did not rely on its
consistency with any other field. A similar situation would arise in any optimal solution
search problem and certainly in other contexts, as well. Therefore, we generalized this
pattern and updated our AJ implementation to allow programmers to indicate when
certain field reads can be optimized. The typechecker enforces the following discipline.

(1) Any number of fields in an atomic set can be annotated as fastread.
(2) No unit of work may write to a fastread field more than once, nor may it write to

more than one fastread field from the same atomic set.

The AJ code generator may then leave unsynchronized those units of work whose only
access to an atomic set is a single read of a single fastread field. The code generator
also marks all fastread fields as volatile in order to ensure that a thread that repeatedly
reads a fastread field will eventually see updates from other threads. Figure 20 shows
a slightly simplified version of a class from the AJ version of the traveling salesman
problem along with the generated code.

The type-checker currently enforces condition 2 above using a simple, conservative,
intra-procedural analysis. A straightforward effect system could be added to maintain
modularity and make the analysis less conservative but was not needed for our bench-
marks. The fast-read optimization can be extremely beneficial: we observed a speedup
of over 60× for the traveling salesman problem when compared to the AJ version
without the minLength field annotated as fastread.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:38 J. Dolby et al.

Fig. 20. Fast-read example.

Fig. 21. Example for complex nesting of atomic set access.

6.6. notunitfor Annotation

In order to preserve atomic-set serializability at runtime, our type system needs to
make conservative assumptions about which atomic sets an invoked method might
access. Consider the example in Figure 21. Here, class Foo declares an atomic set
F that protects a field count. Method f() first calls aStaticMethod() and then calls the
instance method g() on the current object. The question is now whether f() needs to be
synchronized. On the surface, it contains only a single method call that could access
the atomic set F, so it should be sufficient to synchronize the call to g(). However,

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:39

examining the implementation of aStaticMethod() reveals that it accesses the current
object’s atomic set using an alias that was stored in a global variable. Thus, in order to
ensure atomic-set serializability, the entire body of f() needs to be synchronized, such
that it appears atomic to other threads that might, for example, call g() concurrently.

While further analysis could detect such aliasing situations, we decided to make code
generation conservative, so as to always acquire the lock for the respective atomic set
when a method calls another method. We found the overhead induced by this measure
to be acceptable for the vast majority of cases. SPECjbb was the only benchmark that
contained a complex situation where the over-synchronization introduced excessive
slowdown (see the evaluation in Section 7). For cases where further analysis or manual
inspection determines that introducing synchronization is unnecessary for atomic-set
serializability, we introduce the notunitfor annotation. A method with that annotation
will not acquire the lock(s) associated with atomic sets declared in its declaring class.
As an example, all private methods of a class are implicitly annotated with notunitfor, as
they can only be called from other methods in the same class that already synchronized
on the appropriate atomic sets.

7. EMPIRICAL EVALUATION

To evaluate the AJ language design, we performed several experiments. First, we con-
ducted an experiment in which we created AJ versions of a significant number of classes
from the Java Collections Framework; Section 7.1 reports on the annotation overhead
and effort involved. Second, we manually refactored several multithreaded Java appli-
cations into AJ; Section 7.2 reports on the annotation overhead and issues encountered
during these experiments. Finally, Section 7.3 reports on a number of performance mea-
surements using an AJ version of SPECjbb, a well-known performance benchmark.

7.1. Java Collections Framework

As a first experiment, we investigate the effort involved in using atomic sets to create
properly synchronized versions of representative classes from the Java Collections
Framework. Specifically, we selected ArrayList, LinkedList, HashMap, LinkedHashMap,
LinkedHashSet, HashSet, and TreeMap from package java.util in Sun’s JDK 1.5 class li-
braries, along with any types on which these classes transitively depend. Each of these
classes depends on several supertypes as well as several auxiliary classes (e.g., TreeMap
declares nested classes SubMap and EntryIterator, as well as several anonymous nested
classes). In total we included 63 types comprising 10,338 LOC. The collection classes
we consider here do not contain any synchronization and are assumed to be used in
conjunction with synchronization wrappers2 when accessed concurrently.

Determining the placement of atomicset and atomic annotations was straightforward.
The collection classes we consider are comprised of five distinct inheritance subhier-
archies, and we introduce one atomic set in each of the types Collection, Map, Iterator,
LinkedList Entry, and Map Entry, which are the roots of these subhierarchies. All instance
fields were added to the atomic set that we introduced for the sub-hierarchy in which
its declaring class occurs. This is accomplished by adding an atomic annotation to the
class declaration. We placed unitfor annotations on constructors that take other col-
lections as an argument, on bulk methods such as addAll(), and on equals() methods
in order to avoid concurrency bugs that could otherwise arise if the collection object
that is passed as an argument is modified concurrently during the manipulation of

2Synchronization wrappers are objects that add synchronization to an existing collection. They define the
same methods as the collection that they wrap around. These methods synchronize on a lock object that is
associated with the wrapper and then delegate the operation to the underlying collection. In Java, standard
synchronization wrappers are provided in class java.util.Collections.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:40 J. Dolby et al.

Table I. Annotations Required to Create AJ Versions of Several Java Applications

atomic atomic atomic alias alias not-
benchmark LOC files sync sets (class) (field) unitfor (ref.) (array) unitfor total
collections 10,846 63 N/A 0 5 0 53 330 40 0 428
elevator 609 6 8 0 1 0 0 6 0 0 7
tsp 754 6 6 0 2 0 0 0 0 0 2
weblech 1,971 14 8 2 0 4 0 0 0 0 6
jcurzez1 6,639 49 58 5 2 7 15 23 1 0 53
jcurzez2 6,633 49 48 4 3 2 6 3 1 0 19
tuplesoup 7,217 40 42 2 5 11 12 0 0 0 30
cewolf 14,002 129 14 0 6 0 0 2 0 0 8
mailpuccino 14,519 135 49 1 13 1 0 0 0 0 15
jphonelite 16,484 105 28 4 10 26 0 0 8 0 48
SPECjbb (naive) 17,639 64 187 0 18 0 2 13 24 0 57
SPECjbb (tuned) 17,730 64 187 2 15 34 1 0 24 4 80

The table shows, for each subject program, the number of lines of code, files and synchronized blocks
that were present in the Java version. The subsequent columns count the number of annotations of each
type, and the last column counts the total number of data-centric annotations.

the collection object pointed to by this. Such concurrency-related bugs are known to
be problematic in the Java Collections Framework, as was previously pointed out by
several researchers [Flanagan and Freund 2000; Wang and Stoller 2006a; Hammer
et al. 2008]. Our approach completely avoids them.

Introducing alias annotations required somewhat more thought, as this involves
atomic sets in two classes. For example, the allocation of an AbstractList ListItr object in
class AbstractList was annotated as follows: new AbstractList ListItr |I=this.L|(...), indicating
that atomic set I in the newly created iterator-object is aliased with atomic set L in
the list pointed to by this. Of the classes we annotated, only LinkedList Entry was made
internal. Map Entry could not be made internal because it is exposed to client code via
methods such as Map.entrySet() that provide a direct view on the map. Our type system
prohibits this, as internal types cannot be returned by public methods.3

The introduction of annotations required a few minor textual code changes. In partic-
ular, atomic fields must be accessed through accessor methods. Making LinkedList Entry
internal caused the LinkedList.addBefore() method to be rejected by our type-checker, as
it returned an internal class. This method could not be made private because it was
invoked by LinkedList ListItr.add(). However, as add() ignored the return value of this
method call, we resolved the problem by creating a method addBefore2() with identical
functionality as addBefore() but with return type void.

On the whole, the amount of effort that was needed to create AJ versions of the
collection classes was manageable. Ignoring the time that was spent eliminating the
Java features (generics and nested classes) that our implementation does not support
yet, we estimate that it took us a few days to convert the 63 classes under consideration
into AJ. Most of this time was spent on understanding the workings of the collection
classes, and only a small fraction of the time was spent on inserting the new AJ
language constructs. We conjecture that, for code developed from scratch, the amount
of effort involved in writing AJ code is the same or less as that of writing properly
synchronized Java code.

The first row of Table I classifies the annotations in the 63 annotated classes. As men-
tioned, these classes did not contain any synchronization originally, hence the ‘N/A’ in

3One could clearly work around this issue by making Map.entrySet() return a map with copies of map
entries and a link back to the original collection to handle mutations. However, this would have a substantial
cost. In general, the way the Collections API exposes mutable, derived data structures creates situations
where multiple distinct-seeming data structures are in fact linked in complex ways, such that operations on
one can result in failures in the other. Especially for concurrent code, this would ideally be avoided.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:41

the column that counts the number of synchronized blocks. As the table shows, we need
a total of 428 annotations in 63 classes comprising 10,846 LOC. The majority of these
annotations are related to ownership (aliasing), due to the pervasive use of iterators
and auxiliary data structures, such as list entries. This amounts to approximately 40
annotations per KLOC of source code, which is somewhat higher than the annotation
overhead of the type systems by Flanagan et al. that guarantee race freedom [Flana-
gan and Freund 2000; Abadi et al. 2006] or atomicity [Flanagan and Qadeer 2003].
However, in our case, we generate properly synchronized code and guarantee serializ-
ability from these annotations alone, whereas Flanagan et al. require a program that
is already synchronized using Java’s synchronized construct.

7.2. Refactoring Java Applications into AJ

In order to validate our approach further, we manually refactored several multi-
threaded Java applications into AJ. The bottom 11 rows of Table I show some key
characteristics of these applications, as well as the the number of data-centric annota-
tions of each type that we needed to introduce. The elevator and tsp benchmarks have
been used by several other researchers in projects related to data race detection (see
e.g., von Praun and Gross [2004]). The weblech program4 is a web crawler that recur-
sively downloads all pages from a website. The jcurzez program is a Java version of the
popular ncurses program, which allows building text-based user interfaces for simple
terminals. Since the original jcurzez code did not have clearly defined support for mul-
tithreading, we first created two new Java versions of the code with well-defined behav-
ior in the presence of concurrency: jcurzez1 achieves this behavior in a coarse-grained
fashion, while jcurzez2 does so using more fine-grained synchronization. jphonelite5 is
a Java SIP voice over IP implementation. tuplesoup6 is a small, easy-to-use Java-based
framework for storing and retrieving simple hashes. The cewolf 7 program is a frame-
work for creating various types of graphical charts. mailpuccino8 is a Java email client.
Finally, SPECjbb is a widely used multithreaded performance benchmark.9

The columns labeled “LOC”, “files”, and “sync” of Table I report the number of lines
of source code, the number of files, and the number of synchronized blocks that were
present in the Java versions of these programs. As can be seen from the number of
data-centric annotations reported for the subject programs in Table I, the annotation
overhead ranges between approximately 0.6 annotations per KLOC for cewolf to 11.5
annotations per KLOC for elevator, which seems quite manageable.

Moreover, as can be seen from Table I, in all benchmarks except jphonelite, the
number of data-centric annotations is less than the number of synchronized blocks
that were present in the original Java versions. These results are highly encouraging
because they suggest that data-centric synchronization combines low annotation over-
head with a correctness guarantee that standard synchronized blocks do not offer. With
the exception of SPECjbb, where we spent a significant amount of time on performance
tuning, as will be discussed later, the amount of effort involved in converting the subject
programs into AJ was quite modest and usually required a small number of hours, with
most of this time spent on understanding the existing concurrency in the programs.

We conclude this section with a few remarks on specific issues that we encoun-
tered while refactoring the subject programs from Java into AJ. In most cases, the

4http://weblech.sourceforge.net.
5http://jphonelite.sourceforge.net.
6http://sourceforge.net/projects/tuplesoup/.
7http://cewolf.sourceforge.net.
8http://www.kingkongs.org/mailpuccino/.
9http://www.spec.org/jbb2005.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:42 J. Dolby et al.

transformations were very straightforward and required only minor refactorings, such
as extracting code fragments into methods so that our unitfor annotations could indicate
the desired units of work.

7.2.1. jcurzez. The two versions of the jcurzez benchmark demonstrate that AJ is capa-
ble of expressing synchronization at different granularities. It is interesting to note that
converting the fine-grained Java version (jcurzez2) to AJ was more natural than con-
verting the coarse-grained version (jcurzez1). This is reflected in its lower annotation
overhead. The coarse-grained Java version was very close to the original source code
but with additional synchronized blocks included to enforce reasonable multithreaded
behavior. The fine-grained Java version required more changes to the original code,
mainly making method-local copies of some helper data structures that might be con-
currently updated. But, the resulting Java code was much more natural to convert to
AJ because most objects were responsible for their own synchronization, rather than
being aliased to containing objects. Simple tests show that the level of concurrency in
the AJ versions were roughly equal to their Java counterparts and that the fine-grained
versions indeed allowed much more concurrency than the coarse-grained versions.

7.2.2. elevator. The elevator benchmark is another example where AJ encourages a
more encapsulated style of object-oriented programming. The original elevator code
had a Controls object whose methods directly accessed data fields of a set of Floor
objects stored in an array. Before accessing the fields of a particular Floor, it would
synchronize on that object. We found the cleanest way to convert this code was to first
move some code from the Controls class into Floors, which arguably led to cleaner
Java code. Once this refactoring was complete, converting to AJ was straightforward.

7.2.3. tsp. After creating an initial AJ version of tsp, we noticed that this version was
significantly slower than the original Java version. Much of this slowdown was due
to additional synchronization when reading a field indicating the length of the best
solution found so far. In the Java version of tsp, this field was synchronized only for
(relatively rare) updates. The original synchronization discipline was correct since the
read of the field did not rely on its consistency with any other field. This issue can be
resolved by placing a fast-read modifier on the method, as discussed in Section 6.5.

7.2.4. jphonelite. This application is a Java SIP voice over IP implementation. The
original code contained 28 synchronized blocks. For all but one of these, replacing
them with AJ constructs was straightforward. We encountered a few synchronized
blocks that did not encompass an entire method body. We extracted such code frag-
ments into methods in newly created classes, in which we declared a new atomic
set containing the fields that needed to be protected. For one synchronized method,
javaforce.JFTextArea.OvertypeCaret.damage() in jphonelite that overrides a method in the
Swing libraries, we could not easily replace the existing synchronization with AJ con-
structs because that would require changing the synchronization inside the Swing
libraries, so we left the original synchronization in place. In general, care must be
taken to avoid deadlock when applications rely on both standard Java synchronization
and on synchronization introduced by AJ. However, in this case, the method only ac-
cesses states declared inside the Swing libraries, and its locking does not interact with
synchronization introduced by the AJ compiler, so no problems arise.

7.2.5. tuplesoup. This program is an open-source Java-based database program. It al-
locates low-level locks in a variety of files that implement the tables and storage of
tuples in the database and uses 42 synchronized blocks. Most of the locks semantically
protect the entire state of an object, so in these cases, the locks were simply replaced
by an atomic set declared in the corresponding class. However, one of the classes,

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:43

DualFileTable, needed multiple atomic sets, and since our current prototype implemen-
tation does not support this yet, we broke the class into multiple classes to have one
atomic set declaration per class. Many of the synchronized blocks were replaced by a
helper method that took an appropriate argument declared as unitfor to ensure that
the block of code is a unit of work for the atomic set corresponding to the original lock.
Many synchronized methods naturally became default units of work for the appropriate
atomic set.

7.2.6. mailpuccino. As a Swing application, this program uses a multitude of threads
to ensure responsiveness. Many of these classes use semaphore-style synchronization.
Our model for wait() and notify() was able to handle all of these cases. One class was
using a wait/interrupt combination instead of wait/notify. This pattern is compatible
with AJ. Another class contains a wait with a timeout value without a corresponding
call to notify, which we converted into a call to Thread.sleep.

As we currently don’t support inner classes with atomic set declarations, several
nested inner classes needed to be transformed to top-level classes. A particular issue
here was access to outer classes two levels up and more, which requires a getter for the
outer-level instance, as it is not accessible outside of inner classes.

7.2.7. SPECjbb. The SPECjbb benchmark simulates a server-side application with
classes representing entities like companies, customers, warehouses, and performing
activities such as generating orders and making deliveries. Customers are represented
by driver threads, and database storage is simulated using the TreeMap binary tree
class. SPECjbb uses synchronized statements and methods for ensuring mutual exclu-
sion during order processing and wait()/notify() for coordinated ramp up and shutdown
of threads. We studied the existing synchronization in SPECjbb’s source code in order
to understand how atomic sets could be introduced. In the course of this analysis, we
observed several issues.

Inconsistent synchronization. Synchronization appears to be somewhat haphazard.
For instance, class Customer initializes shared fields in its constructor and in set-
UsingRandom(). Some of these fields have synchronized accessors, whereas others,
like address, have unsynchronized accessors. Several methods (e.g., TreeMapDataStor-
age.deleteFirstEntities()) should logically be executed atomically, but there is no synchro-
nization to enforce this.

Redundant synchronization. Many accessor methods in class Stock are synchronized,
even though the accessed fields are written only once, in a method called only by the
constructor (e.g., Stock.getId()).

Use of wait/notify. The wait() and notify() methods are used to implement barriers that
coordinate the threads of the multiple warehouses so that they ramp up, run, and
shutdown in a synchronized manner.

Ownership issues. Several data structures rely on collections from the Java Collec-
tions Framework to store data. For example, TreeMapDataStorage relies on a TreeMap
to store its data. As mentioned, several methods of this class (e.g., deleteFirstEntities())
should logically be executed atomically but do not contain synchronization to achieve
this.

Our approach was to add atomic sets in a straightforward way. Since we did not know
the exact semantics of SPECjbb and the benchmark does not perform meaningful self-
checking, we assumed that it was correct and verified that any synchronized section
in the original code would be a unit of work in the AJ version. This check was done
manually, by comparing the translated AJ code to the original benchmark. The atomic
set annotations solved the issue of inconsistent synchronization, mentioned, previously,

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:44 J. Dolby et al.

as all accesses to fields that are part of an atomic set are guaranteed to be protected.
For the ownership issue related to collections, our code reused the AJ versions of the
collections of Section 7.1. Dealing with wait()/notify() required a bit of work, as care is
required to avoid deadlocks when calling wait(). We refactored SPECjbb to contain a
dedicated barrier class that has a single atomic set and that uses the AJ wait()/notify()
construct previously discussed in Section 6.1. Our compiler translates this construct to
wait()/notify() calls on the generated lock object associated with this atomic set.

In the next section, we will discuss further changes to the AJ version of SPECjbb that
were required to obtain decent performance. For comparison, we will henceforth refer
to the AJ version of SPECjbb discussed above as the naive AJ version of SPECjbb.

7.3. Performance Experiments

After writing the naive AJ version of the SPECjbb benchmark, we examined the over-
head our naive conversion induced. We found that the AJ version scaled almost linearly
up to at least 25 cores, with throughput ranging from 81.9% to 77.7% of the original
version.10 However, with more cores, the throughput of the naive AJ version degraded
significantly, reaching only 13.8% of that of the original Java version at 98 threads.

Therefore, we investigated how the performance of the AJ version of SPECjbb could
be improved, by examining the synchronization operations it performed at runtime.
After some profiling, we identified SPECjbb’s maps as a bottleneck and found that
these were not synchronized in the original Java version. Upon investigation, we found
that calls that access such a data structure are either already synchronized, or the data
structure is read-only after initialization (which happens before threads are started).
In such cases, the Java memory model guarantees that not having the data structure
synchronized is safe. Therefore, we removed the atomic set from the map class alto-
gether, and the read-only fields from the atomic sets of the classes that contained them.
We will refer to the resulting AJ version of SPECjbb as the basic AJ version of SPECjbb.

This basic version of SPECjbb scaled up to about 30 threads with throughput ranging
from 80.5% to 90.3% of that of the original Java version of SPECjbb. However, with
more than 30 threads, the throughput of the basic AJ version degraded again, reaching
only 28.0% of that of the original Java version at 98 threads.

Further profiling revealed that our AJ compiler still inserted synchronization opera-
tions in four methods that accessed only read-only maps, which were no longer declared
in the atomic set of the respective class. This is due to the fact that the compiler must
conservatively assume that such calls may access a field of the current atomic set (see
the discussion in Section 6.6.) As the memory model does not require synchronization
to access read-only data, we annotated these four methods with notunitfor to obtain the
tuned AJ version. This version scales well to 98 threads, as we will discuss shortly.
Table I shows the annotation overhead for both the naive and the tuned versions of
SPECjbb, which is very similar. These results show that tuning a program with data-
centric synchronization does not need to affect annotation overhead significantly.

Figure 22 compares the performance of the original Java implementation of SPECjbb
to that of the naive, basic, and tuned AJ implementations. It reports the number of
SPECjbb2005 bops, which is a measure of the number of transactions per second,
obtained from two-minute runs with increasing numbers of threads (ranging from 1 to
98) for each version. From these measurements, it can be seen that, for a single thread,
the naive AJ implementation of SPECjbb achieves a throughput of approximately 81.9%
of that of the original implementation and that the basic AJ implementation of SPECjbb

10All performance measurements reported in this section were taken on an Azul Vega 3 Series 3300 with two
54-core processors using 30GB of RAM with Azul’s Java 1.6.0 07-2. On this machine, ten cores are typically
reserved for OS purposes, so our experiments are performed with up to 98 threads.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:45

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95

Java
AJ−tuned
AJ−basic
AJ−naive

Fig. 22. Performance measurements for SPECjbb. The figure shows the number of bops (a measure of
throughput where higher is better) achieved by the original Java code and by the naive, basic, and tuned AJ
versions, for up to 98 threads.

achieves a throughput of approximately 90.3% of that of the original implementation.
The tuned implementation performs the same, reaching 90.2% of the throughput of
the original implementation. The graph shows that the naive AJ version scales up to
about 30 threads but degrades significantly with more than 40 threads, while the basic
AJ version scales only up to about 30 threads and degrades only slightly from there.
Specifically, for the situation with 98 threads, we measure a throughput of 13.8%,
28.0%, and 90.8% of that of the original Java version, for the naive, basic, and tuned
versions, respectively. The remaining overhead of the tuned version can be attributed
to some of the additional locking introduced by atomic sets, which at the same time
renders the synchronization much more consistent and, thus, safe.

8. CONCLUSIONS

We have presented a type-based approach for data-centric synchronization based on
atomic sets and units of work. Our new type system guarantees atomic-set serializabil-
ity, while enabling separate compilation and atomic sets that span multiple objects.
We implemented this approach in AJ, a significant subset of Java extended with atomic
sets, and created an AJ-to-Java compiler. We demonstrated that our approach has low
annotation overhead by manually rewriting into AJ several classes from the Java Col-
lections Framework, and a set of Java applications that includes SPECjbb, a widely
used multithreaded performance benchmark.

In our experiments, the annotation overhead was approximately 40 annotations for
each KLOC of source code in Java Collections and ranged from 0.6 to 11.5 annotations

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:46 J. Dolby et al.

per KLOC for the other applications. In all but one of these applications, this amounted
to fewer annotations than the number of synchronized blocks that were present in the
original Java version. Our performance experiments with SPECjbb revealed that the
naive AJ version did not perform well. However, with some minor performance tuning,
we were able to achieve nearly the same performance as the original Java version.

We expect SPECjbb to be representative of the majority of user-written code where
concurrency concerns affect only a small part of the code. As performance optimiza-
tions were not the main focus of this work, we consider the reported results to be an
encouraging indication that our approach is capable of generating code with acceptable
performance, while providing a correctness guarantee that Java’s current synchroniza-
tion mechanism does not offer.

In future work, we plan to explore several avenues for improving performance, in-
cluding the use of program analysis to tighten the scope of synchronization. We also
plan to explore the use of static analysis for detecting possible deadlock.

Additional information about this project is at http://sss.cs.purdue.edu/projects/aj.

REFERENCES

ABADI, M., FLANAGAN, C., AND FREUND, S. N. 2006. Types for safe locking: Static race detection for Java. ACM
Trans. Program. Lang. Syst. 28, 2, 207–255.

ARTHO, C., HAVELUND, K., AND BIERE, A. 2003. High-level data races. Softw. Test. Verification Reliab. 13, 4,
207–227.

BERGAN, T., ANDERSON, O., DEVIETTI, J., CEZE, L., AND GROSSMAN, D. 2010. Coredet: A compiler and runtime
system for deterministic multithreaded execution. In Proceedings of the Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 53–64.

BOCCHINO, R., ADVE, V., DIG, D., ADVE, S., HEUMANN, S., KOMURAVELLI, R., OVERBEY, J., SIMMONS, P., SUNG,
H., AND VAKILIAN, M. 2009. A type and effect system for deterministic parallel Java. In Proceedigs
of the Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA).
97–116.

BOYAPATI, C., LEE, R., AND RINARD, M. 2002. Ownership types for safe programming: Preventing data races
and deadlocks. In Proceedings of the Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA). 211–230.

BOYAPATI, C. AND RINARD, M. 2001. A parameterized type system for race-free Java programs. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA).
56–69.

BURROWS, M. AND LEINO, K. R. M. 2004. Finding stale-value errors in concurrent programs. Concurrency Pract.
Exper. 16, 12, 1161–1172.

CEZE, L., VON PRAUN, C., CASCAVAL, C., MONTESINOS, P., AND TORRELLAS, J. 2008. Concurrency control with data
coloring. In Proceedings of the Workshop on Memory Systems Performance and Correctness (MSPC).
6–10.

CHEREM, S., CHILIMBI, T., AND GULWANI, S. 2008. Inferring locks for atomic sections. In Proceedings of the
Conference on Programming Language Design and Implementation (PLDI). 304–315.

CLARKE, D., POTTER, J., AND NOBLE, J. 1998. Ownership types for flexible alias protection. In Proceedings of the
Conference on Object-Oriented Programming Languages, and Applications (OOPSLA). 48–64.

DEMSKY, B. AND LAM, P. 2010. Views: Object-inspired concurrency control. In Proceedings of the International
Conference on Software Engineering. 395–404.

DENG, X., DWYER, M. B., HATCLIFF, J., AND MIZUNO, M. 2002. Invariant-based specification, synthesis, and
verification of synchronization in concurrent programs. In Proceedings of the International Conference
on Software Engineering (ICSE). 442–452.

ENGLER, D. R. AND ASHCRAFT, K. 2003. RacerX: Effective, static detection of race conditions and deadlocks. In
Proceedings of the Symposium on Operating Systems Principles (SOSP). 237–252.

FLANAGAN, C. AND FREUND, S. N. 2000. Type-based race detection for Java. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI). 219–232.

FLANAGAN, C., FREUND, S. N., LIFSHIN, M., AND QADEER, S. 2008. Types for atomicity: Static checking and
inference for Java. ACM Trans. Programm. Lang. Syst. 30, 4.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

A Data-Centric Approach to Synchronization 4:47

FLANAGAN, C. AND QADEER, S. 2003. A type and effect system for atomicity. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI). 338–349.

GREENHOUSE, A. AND BOYLAND, J. 1999. An object-oriented effects system. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP). 205–229.

GROTHOFF, C., PALSBERG, J., AND VITEK, J. 2007. Encapsulating objects with confined types. ACM Trans. Pro-
gram. Lang. Syst. 29, 6, 32–73.

HAMMER, C., DOLBY, J., VAZIRI, M., AND TIP, F. 2008. Dynamic detection of atomic-set-serializability violations.
In Proceedings of the International Conference on Software Engineering (ICSE). 231–240.

HARRIS, T. AND FRASER, K. 2003. Language support for lightweight transactions. In Proceedings of the
Conference on Object-Oriented Programming Systems Languages, and Applications (OOPSLA) (Nov.).
388–402.

HERLIHY, M. AND MOSS, J. E. B. 1993. Transactional memory: Architectural support for lock-free
data structures. In Proceedings of the International Symposium on Computer Architecture (ISCA).
289–300.

HOARE, C. A. R. 1974. Monitors: An operating system structuring concept. Comm. ACM 17, 10, 549–557.
KIDD, N., REPS, T., DOLBY, J., AND VAZIRI, M. 2011. Finding concurrency-related bugs using random isolation.

Int. J. Softw. Tools Technol. Transfer 13, 495–518.
KULKARNI, A., LIU, Y. D., AND SMITH, S. F. 2010. Task types for pervasive atomicity. In Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA). 671–
690.

LAI, Z., CHEUNG, S. C., AND CHAN, W. K. 2010. Detecting atomic-set serializability violations in multithreaded
programs through active randomized testing. In Proceedings of the International Conference on Software
Engineering. 235–244.

LEINO, K. R. M. 1998. Data Groups: Specifying the modification of extended state. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA). 144–
153.

LEINO, K. R. M., SAXE, J. B., AND STATA, R. 1999. Checking Java programs via guarded commands. In Proceed-
ings of the European Conference on Object-Oriented Programming Workshop Reader. 110–111.

LU, S., PARK, S., HU, C., MA, X., JIANG, W., LI, Z., POPA, R. A., AND ZHOU, Y. 2007. Muvi: Automatically inferring
multi-variable access correlations and detecting related semantic and concurrency bugs. In Proceedings
of the Symposium on Operating Systems Principles (SOSP). 103–116.

LU, S., PARK, S., SEO, E., AND ZHOU, Y. 2008. Learning from mistakes: A comprehensive study on real world con-
currency bug characteristics. In Proceedings of the Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 329–339.

LUCIA, B., CEZE, L., AND STRAUSS, K. 2010. Colorsafe: Architectural support for debugging and dynamically
avoiding multi-variable atomicity violations. In Proceedings of the International Symposium on Com-
puter Architecture (ISCA’10). 222–233.

MCCLOSKEY, B., ZHOU, F., GAY, D., AND BREWER, E. 2006. Autolocker: Synchronization inference for atomic
sections. In Proceedings of the Conference Record of the Symposium on Principles of Programming
Languages (POPL). 346–358.

NOBLE, J., VITEK, J., AND POTTER, J. 1998. Flexible alias protection. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP). 158–185.

O’CALLAHAN, R. AND CHOI, J.-D. 2003. Hybrid dynamic data race detection. In Proceedings of the Symposium
on Principles and Practice of Parallel Programming (PPoPP). 167–178.

SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON, T. E. 1997. Eraser: A dynamic data race
detector for multi-threaded programs. In Proceedings of the Symposium on Operating Systems Principles
(SOSP). 27–37.

VAZIRI, M., TIP, F., AND DOLBY, J. 2006. Associating synchronization constraints with data in an object-oriented
language. In Proceedings of the Conference Record of the Symposium on Principles of Programming
Languages (POPL). 334–345.

VITEK, J. AND BOKOWSKI, B. 2001. Confined types in Java. Softw. Pract. Exper. 31, 6, 507–532.
VON PRAUN, C. AND GROSS, T. R. 2004. Static detection of atomicity violations in object-oriented programs. J.

Object Technol. 3, 6, 103–122.
WANG, L. AND STOLLER, S. D. 2006a. Accurate and efficient runtime detection of atomicity errors in concurrent

programs. In Proceedings of the Symposium on Principles and Practice of Parallel Programming (PPoPP).
137–146.

WANG, L. AND STOLLER, S. D. 2006b. Runtime analysis of atomicity for multithreaded programs. IEEE Trans.
Softw. Eng. 32, 2, 93–110.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

4:48 J. Dolby et al.

WRIGSTAD, T., PIZLO, F., MEAWAD, F., ZHAO, L., AND VITEK, J. 2009. Loci: Simple thread-locality for Java. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP). 445–469.

XU, M., BODIK, R., AND HILL, M. D. 2005. A serializability violation detector for shared-memory server pro-
grams. In Proceedings of the Conference on Programming Language Design and Implementation (PLDI).
1–14.

Received February 2011; revised January 2012; accepted February 2012

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 1, Article 4, Publication date: April 2012.

