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1. INTRODUCTION

Type-checkers are tools for determining the constructs in a program that do
not conform to a language’s type system. Type-checkers are usually incor-
porated in interactive programming environments and compilers, where
they provide programmers with rapid feedback on the nature and locations
of type errors. The effectiveness of a type-checker crucially depends on two
factors:

—The “informativeness” of the error messages reported by the tool.

—The quality of the positional information associated with these messages.

In our opinion, high-quality positional information is especially important
because it assists the programmer with the tedious task of having to
determine the program locations that need to be changed in order to fix
type errors.

Many type errors are actually inconsistencies between the types of two
expressions, and it is often the case that several noncontiguous program
locations are involved in a type error. For example, consider an assignment
statement x : 5 y where x and y are of two incompatible types. What is the
source of the error? In this case, three program fragments are potentially
involved: the assignment itself, and the two locations where the x and y are
declared. Ideally, all three of these locations are reported along with the
error message, since any of these fragments may need to be changed to fix
the problem.

Few type-checking tools provide positional information for type errors
that is accurate and complete. The type-checkers embedded in present-day
compilers typically provide only a limited amount of positional information.
For example, for the above x : 5 y error, the type-checkers embedded in
the gcc1 and in the javac [Gosling et al. 1996] compilers only report the
number of the line containing the assignment. For languages with more
complex type systems such as ML, the generation of precise positional
information for type errors is known to be a difficult problem, and several
approaches have been presented that rely on adapting or extending the
underlying type system, or inference algorithm (e.g., see Bernstein and
Stark [1995], Wand [1986], Johnson and Walz [1986], and Duggan and
Bent [1996]).

In specification-based approaches to type-checking, a type-checker is
derived from a high-level specification of the language’s typing rules, which
usually takes the form of sets of equations (e.g., see Klint [1993]) or
inference rules (e.g., see Kahn [1987]). Keeping track of positional informa-
tion at the specification level has the significant drawback that it clutters
the specification and makes it less readable. Several approaches for auto-
matically keeping track of positional information have been proposed
previously, but all of these have the drawback providing incomplete information

1See www.gnu.org/software/gcc/gcc.html .
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(e.g., see van Deursen et al. [1993]), and/or considering only restricted
classes of specifications (e.g., see van Deursen [1994a; 1994b]).

1.1 Outline of Approach

This paper presents a semantically well-founded approach where high-
quality positional information is automatically computed for each type
error. In our approach, the behavior of a type-checker is algebraically
specified by way of a set of conditional equations [Bergstra et al. 1989],
which are interpreted as a conditional term rewriting system (CTRS) [Klop
1992]. These rewriting rules express type-checking as the transformation of
a program’s abstract syntax tree (AST) into a list of error messages.

We use dependence tracking [Field and Tip 1994; 1998] to compute a slice
[Tip 1995b; Weiser 1979] of the original program as the positional informa-
tion associated with an error message. Dependence tracking is a fully
automatic technique for establishing dependence relations between terms
that occur in a term rewriting process. For a given sequence s of rewrite
steps T0 3 · · · 3 Tn, and a given context Cn (i.e., a contiguous set of
function symbols) in term Tn, dependence tracking will compute a context
C0 in term T0 such that C0 can be rewritten to Cn using a subset of the
rewrite steps in the original sequence s. This context C0 in term T0 is a

Fig. 1. The CLaX environment. The top window is a program editor with two buttons
attached to it for invoking a type-checker and an interpreter, respectively. The bottom window
shows a list of four type errors reported by the type-checker. After selecting an error message
in the bottom window, the Slice button can be pressed to obtain the associated slice.
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“slice” of T0 that omits any function symbol that is not necessary for
creating context Cn. This approach has the following advantages:

—The tracking of positional information is completely language-indepen-
dent and automated; no information needs to be maintained at the
specification level.

—Unlike previous approaches [Dinesh 1994; van Deursen et al. 1996], no
constraints are imposed on the style in which the type-checker specifica-
tion is written. Error locations are always available, regardless of the
specification style being used.

—The approach is semantically well-founded. If type-checking a program P
yields an error message e, then the location Pe associated with e is a
projection of P that, when type-checked, will produce the same error
message e.

Although positional information is always available for any error message,
the accuracy2 of these locations depends inversely on the degree to which
the specified type-checker explicitly traverses syntactic structures such as
lists. This issue will be explored in Section 3.3.

1.2 A Prototype Implementation

We implemented a prototype type-checking system using the ASF1SDF
Meta-environment [Klint 1993; van Deursen et al. 1996], a programming
environment generator that implements algebraic specifications by way of
term rewriting. Dependence tracking was previously implemented in the
ASF1SDF system’s term rewriting engine for the purpose of supporting
dynamic slicing in generated debugging environments [Tip 1995a], and for
computing constrained program slices [Field et al. 1995]. The main differ-
ence between the present work and these previous applications of depen-
dence tracking is the fact that, to a type-checker, a program is a piece of
data, and that dependence tracking is not used to compute a dynamic slice
of the program that executes during type-checking (i.e., the type-checker
itself), but to produce a slice of that program’s data (i.e., the program being
type-checked).

Figure 1 shows a snapshot of a type-checking environment for the
language CLaX, a Pascal-like language. The most interesting features of
CLaX are nested scopes, overloaded operators, arrays, goto statements, and
procedures with reference and value parameters. The top window of Figure
1 is a program editor that has two buttons labeled ‘TypeCheck’ and
‘Execute’ attached to it, for invoking the type-checker and the interpreter,
respectively. The bottom window shows a list of four error messages
reported by the type-checker for this program.

2Accuracy indicates the quality of the slice obtained. Generally, “small” slices, which contain
few program constructs, are desirable because they convey the most insightful information.
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(1) The first error, not-defined-label i , indicates that the program
contains a reference to a label i , but there is no statement with label i
in the same scope.

(2) The second error message, multiple-declaration-in-same-scope
n, points out that an identifier n is declared more than once in the same
scope.

(3) The third error, expected-label-found INTEGER , indicates that the
program contains an identifier that is declared as an integer, but used
as a label.

(4) The fourth error, in-call expected-arg VAR INTEGER found-arg
REAL, points out a type error in a procedure call. In particular, that a

Fig. 2. (a) The error messages reported by the CLaX environment. (b)–(e) Slices reported by
the CLaX environment for each of the type errors shown above.

A Slicing-Based Approach for Locating Type Errors • 9

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.



procedure is called with a argument type REAL when it was expecting
an argument of type INTEGER.

Note that these error messages do not provide any information as to
where the type violations occurred in the program text.

However, positional information may be obtained by selecting an error
message and clicking on the ‘Slice’ button. In Figures 2(b)–(e), the slices
obtained for each of the four error messages of Figure 1 are shown.3 Each
slice is a view of the program’s source indicating the program parts that
contribute to the selected error. Placeholders, indicated by ‘,?.’ in the
figure, indicate program components that do not contribute to the error
under consideration. The semantics of “not contributing toward an error
message e” may be characterized informally as follows: There exists a
mapping from placeholders to subterms such that type-checking the pro-
gram obtained by replacing the placeholders in the slice with these sub-
terms is guaranteed to produce the same error, e.

(1) Figure 2(b) shows the slice for the not-defined-label error. Clearly,
the GOTO istatement is the source of the error, because no statement is
labeled i .

(2) Figure 2(c) shows the slice for the multiple-declaration-in-same-
scope error. The problem here is that n is a parameter as well as a
local variable of procedure square . Note that both declarations of n
occur in the slice.

(3) Figure 2(d) shows the slice obtained for the expected-label-found
INTEGERerror. Note that, in addition to the GOTO i statement and the
declaration of i as an INTEGER, all names declared in the inner scope
occur in the slice. Informally, this is the case because replacing any of
these declarations by declarations for variable i may affect the outcome
of the type-checking process, in the sense that the expected-label-
found INTEGER error would no longer occur.

(4) Figure 2(e) shows the slice obtained for the in-call expected-arg
VAR INTEGER found-arg REAL error. Observe that the slice precisely
indicates the program components responsible for this problem: (i) the
call site square(x) that gave rise to the problem, (ii) the type,
INTEGER, of square ’s formal parameter (note that the name of this
parameter is irrelevant), and (iii) the declaration of variable x as a
REAL.

The reader may observe at this point that, in addition to the program
constructs responsible for a type error, a slice generally also contains
structural information such as BEGIN and END keywords and declaration
and statement list separators that are not directly related to an error. In

3An alternative way for displaying slices would be to highlight the corresponding text areas in
the program editor of Figure 1.
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addition, slices may contain “partial” statements such as IF and WHILE
constructs whose condition and body are omitted from the slice (e.g., see
Figure 2(e)). Section 4.8 discusses how such “syntactic noise” can be
removed from slices.

1.3 Organization of this Paper

The remainder of the paper is organized as follows. Section 2 presents our
approach for specifying type-checkers. In Section 3, the use of term rewrit-
ing for executing specifications, as well as dependence tracking, the mech-
anism for computing slices are presented. Section 4 presents a case study
in which our techniques are applied to CLaX, a Pascal-like imperative
language. We describe some experiments we conducted using the CLaX
prototype, in particular, the effect of certain specification changes on the
accuracy of the computed slices is discussed. In Section 5, we study how a
number of other features of type systems such as subtyping can be
modeled, and we report on experiments with a type-checker for an ML
subset. Section 6 discusses related work. Conclusions and future work are
presented in Section 7.

2. SPECIFICATION OF STATIC SEMANTICS AND TYPE-CHECKING

A static semantics specification determines only the validity of a program
and is not concerned with pragmatic issues such as the source location
where a violation of the static semantics occurred, or even what program
construct caused the violation. A type-checker specification typically uses
the static semantics specification as a guideline, and specifies the presen-
tation and source location of type errors in invalid programs. Adding such
reporting information to a static semantics specification is a cumbersome
and error-prone task, because keeping track of positional information can
be nontrivial, especially if multiple program fragments together constitute
a type error. For example, in order to determine the type-correctness of an
assignment statement x : 5 y , information from (at least) three sources is
involved: In addition to the assignment itself, the declaration of x and the
declaration of y are required, which may occur in different scopes. In cases
where there is a mismatch between the types of x and y , an informative
error message ideally involves positional information from all three
sources. In the absence of automated mechanisms for tracking positional
information, specifications tend to become cluttered with extra function
arguments and additional machinery for combining positional information,
making the specification harder to understand.

In a previous paper [Dinesh and Tip 1992], we introduced an abstract
interpretation style for writing static semantics specifications. In a nut-
shell, this style advocates the following:

—Rewriting program constructs to their type. This is accomplished by
distributing type information over each program construct, and replacing
each construct with its type. For example, an expression x 1 y where
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both x and y are declared as NATURALnumbers is transformed into
NATURAL1 NATURAL.

—Evaluating type expressions at an abstract level. For example, the
expression NATURAL1 NATURALis reduced to NATURAL.

—Only specifying the type-correct cases. Consequently, only type-incom-
patible expressions remain after the rewriting process terminates.

—In a separate step, the remaining irreducible expressions are rewritten
into human-readable error messages. For example, an expression NATU-
RAL 1 STRING is rewritten to a message “Operands of 1 should have
the same type .”

Operationally, the static semantics specification describes a transformation
of a program to a set of type-expressions for program constructs that are
type-incompatible. By only specifying type-correct cases, specifications are
very compact and easy to understand.

We will illustrate these ideas using a small example language L of
straight-line flow programs. An L program consists of the keyword de-
clare , followed by a list of zero or more declarations, a keyword begin , a
list of zero or more assignment statements, and a keyword end . L contains
an overloaded “1” operator that can be used for adding natural numbers,
and for concatenating strings, but that cannot be applied to arguments of
different types. Figure 3 shows a BNF grammar for L. In grammars such as
the one of Figure 3, we will use notation of the form $ X “; ” }* to denote a
list of zero or more elements of type X, separated by semicolons. Similarly,
we will use $ X “; ” }1 to denote a list of one or more elements of type X,
separated by semicolons.

Figure 4 shows a static semantics specification for determining the
validity of L-programs.4 In the rules of Figure 4, we will follow the
convention that typewriter font is used for function symbols, and italics
font is used for variables. Each variable has a sort (i.e., a specification-level
type), roughly corresponding to the nonterminals of the grammar of Figure
3, and only matches subterms of that sort. For example, the sort of variable

4The reader should be aware that this specification only serves to illustrate the general style
of specifying a static semantics and is incomplete; for example, it does not verify if variables
are declared more than once.

Fig. 3. BNF grammar for language L.
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Decls in rule [Tc1] corresponds to the nonterminal Decls, and only
matches a list of declarations. We will typically use the nonterminals of
Figure 3 with numbered subscripts so that the sort of a variable can be
inferred from its name.

We will now address the rules of Figure 3 in some detail. Rule [Tc1]
defines the top-level function tc for checking a program, which states that
checking a program involves (i) creating an initial type-environment that
contains variable-type pairs, and (ii) distributing the type-environment
over the program’s statements, using an auxiliary function symbol dist .
For the simple language we study here, the type-environment consists of
the declaration section of the program, to which a constructor function
tenv is applied. Rule [Tc2] expresses the distribution of type-environ-
ments over lists of statements. The sort of variable Stat1 in rule [Tc2] is
$ Stat “;” }1, which implies that it matches a list of statements of length
one or more. Rule [Tc3] distributes the type environment over the left-
hand side and right-hand side of an assignment statement. Function
symbol check is introduced in the right-hand side of [Tc3] in order to
perform some additional checks on the validity of assignment statements.
While it is possible to rewrite the specification without the check function,
the current form of the specification will make it easier to accommodate
language extensions such as pointers, records, and subtyping in Section 5.
Rule [Tc4] distributes type environments over the operands of the ‘1’
operator. The next rule, [Tc5] , specifies how an identifier is reduced to its
type, using an auxiliary function type-of , which is defined in [Tc6] . Note
that the variables Decl1

* and Decl2
* in [Tc6] match any sublist of (zero or

more) declarations in the type environment. Rule [Tc7] expresses the
abstract evaluation of 1-expressions. It is important to understand that the
left-hand side of the rule contains two occurrences of the same variable,
BasicType, and that the rule is therefore only applicable to terms that
contain two identical subterms at the corresponding locations. Finally, rule
[Tc8] states that the assignment of an assignment is correct if the
left-hand side and the right-hand side of the assignment correspond to the
same basic type.

As an example, consider checking the following program block:
tc(declare x :natural; y:string begin x : 5 x 1 x; x : 5 y 1 x end)

Application of [Tc1] results in:

Fig. 4. Static semantics specification for determining the validity of assignments.
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dist(x : 5 x 1 x; x : 5 y 1 x, tenv(x:natural; y:string))

Application of [Tc2] yields:

dist(x : 5 x 1 x, tenv(x:natural; y:string));
dist(x : 5 y 1 x, tenv(x:natural; y:string))

At this point, [Tc3] can be applied to both components, producing:

check(dist(x, tenv(x:natural; y:string)): 5
dist(x 1 x, tenv(x:natural; y:string)),
tenv(x:natural; y:string));

check(dist(x, tenv(x:natural; y:string)) : 5
dist(y 1 x, tenv(x:natural; y:string)),
tenv(x:natural; y:string))

The left-hand sides of both assignments can be reduced to their types using
[Tc5] and [Tc6] , resulting in:

check(natural : 5
dist(x 1 x, tenv(x:natural; y:string)),
tenv(x:natural; y:string));

check(natural : 5
dist(y 1 x, tenv(x:natural; y:string)),
tenv(x:natural; y:string))

Using [Tc4] , [Tc5] , and [Tc6] , the right-hand sides of the assignments
can be simplified:

check(natural : 5 natural 1 natural, tenv(x:natural; y:string));
check(natural : 5 string 1 natural, tenv(x:natural; y:string))

Using rule [Tc7] to abstractly evaluate the first 1-expression, we obtain:

check(natural : 5 natural, tenv(x:natural; y:string));
check(natural : 5 string 1 natural, tenv(x:natural; y:string))

Finally, application of [Tc8] yields the final result:

correct;
check(natural : 5 string 1 natural, tenv(x:natural; y:string))

The fact that this term contains a subterm that cannot be reduced to
correct indicates that the program contains a type error. Note that the
non-correct subterm already gives a rough indication of the nature of the
type violation.

Figure 5 shows a set of rewriting rules that define a function msgs that
transforms the cryptic terms produced by the specification of Figure 3 into
human-readable messages. The rules of Figure 5 assume that the term to
which they are applied is fully normalized with respect to the rules of
Figure 4.

Rule [Er1] distributes the msgs function over a list of type-checking
results (i.e., transformed statements) that was produced by the specifica-
tion of Figure 4. The concat function introduced in the right-hand side of
[Er1] is defined in [Er4] and serves to concatenate error messages. Rule
[Er2] transforms the correct constant that was produced from a type-
correct statement into a message no-errors . Since the programmer is
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generally not interested in such messages, rule [Er3] removes any no-
errors message from the list of error messages.

The next four rules, [Er5] –[Er8] are concerned with irreducible con-
structs of the form check( Exp1 : 5 Exp2, Tenv) . Such conditional
rewriting rules are only applicable if all of their conditions hold. In order to
evaluate conditions, each side of the condition is reduced to normal form
(i.e., a term that cannot be rewritten further), and the resulting normal
forms are checked for syntactic equality. In the case of [Er5] –[Er8] , the
conditions use auxiliary functions is-type and is-error-exp (which will
be discussed shortly) to determine if the subterms matched against Exp1

and Exp2 represent a valid type, or an irreducible subterm derived from a
type-incorrect expression. Rule [Er8] addresses the case where both
subterms are type-correct, and the assignment is irreducible because two
incompatible types are used (e.g., natural : 5 string ), and generates a
message about this problem. The other three rules deal with situations
where the right-hand side ([Er5] ), the left-hand side ([Er6] ) or both
([Er7] ) contain a type error. In each case, a message is generated for the
incorrect side(s) of the assignment by applying the msgs function to the
appropriate expression(s).

Fig. 5. Specification for postprocessing irreducible subterms in order to obtain human-
readable error messages.
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Rules [Er9] –[Er12] are concerned with expressions of the form Exp1 1

Exp2, and rely on auxiliary functions is-builtin-type and not-buil-
tin-type that will be discussed shortly. Such expressions are valid if both
operands are of the same built-in type. Rule [Er9] deals with the situation
where 1 is applied to two different built-in types, and generates an
appropriate error message, operands-of- 1-should-have-same-type .
The other three rules, [Er10] –[Er12] , address situations where one or
both operands are irreducible terms that were derived from a type-incorrect
expression, and distribute the msgs function over these expressions. Rule
[Er13] is concerned with postprocessing irreducible terms of the form
type-of (Id, Tenv). Such expressions are irreducible because there is no
entry for Id in the type environment, and an error message undeclared-

variable: Id is generated.
Rules [Er14] –[Er19] define auxiliary functions is-builtin-type , is-

type , is-error-exp , and not-builtin-type that inspect the syntactic
structure of their argument to determine if the expression corresponds to a
valid built-in type, a valid type, an irreducible term that was derived from
a type-incorrect expression, and a nonbuilt-in type, respectively. The
reader may have observed that the auxiliary functions defined in rules
[Er14] –[Er19] could be specified a bit more succinctly, for example by
combining the is-type and is-builtin-type functions. However, the
adopted approach will allow us to extend L with pointers, records, and
subtyping in Section 5 without making any changes to the existing rules.

As an example, we will postprocess the term we obtained earlier by
applying the rules of Figure 5:

msgs(correct;
check(natural : 5 string 1 natural, tenv(x:natural;y:string)))

Applying [Er1] produces:
concat(msgs(correct),

msgs(check(natural : 5 string 1 natural,
tenv(x:natural;y:string))))

At this point, [Er5] can be applied because only the left-hand side of the
assignment is a valid type. Note that the conditions of this rule are
satisfied because is-type(natural) can be reduced to true , and is-
error-exp(string 1 natural) can be reduced to true . Hence, we
obtain:

concat(msgs(correct), msgs(string 1 natural))

The first msgs-subterm can be rewritten to no-errors using [Er2] , and
the second msgs-subterm can be rewritten using [Er9] . The term now
looks as follows:

concat(no-errors, operands-of- 1-should-have-same-type)

The no-errors subterm is eliminated by applications of rules [Er4] and
[Er3] . Hence, the final result is:

operands-of- 1-should-have-same-type
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3. TERM REWRITING AND DEPENDENCE TRACKING

3.1 Term Rewriting

In the previous section, specifications were “executed” by repeatedly apply-
ing rewriting rules to terms—a mechanism referred to as term rewriting.
Both theoretical properties of term rewriting systems [Klop 1992] such as
termination behavior, and efficient implementations of rewriting systems
[Kamperman 1996; Kamperman and Walters 1996] have been studied
extensively.

Term rewriting [Klop 1992] can be viewed as a cyclic process where each
cycle begins by determining a subterm t and a rule l 5 r such that t and l
match. This is the case if a substitution s can be found that maps every
variable X in l to a term s~ X ! such that t [ s~l! (s distributes over
function symbols). For rewriting rules without conditions, the cycle is
completed by replacing t by the instantiated right-hand side s~r!. A term
for which no rule is applicable to any of its subterms is called a normal
form; the process of rewriting a term to its normal form (if it exists) is
referred to as normalizing. A conditional rewriting rule [Bergstra and Klop
1986] (such as [Er5] in Figure 4) is only applicable if all its conditions
succeed; this is determined by instantiating and normalizing the left-hand
side and the right-hand side of each condition. Positive (equality) condi-
tions (of the form t1 5 t2) succeed iff the resulting normal forms are
syntactically equal, negative (inequality) conditions (t1 Þ t2) succeed if
they are syntactically different.

3.2 Dependence Tracking

Thus far, we have described the process of specifying a type-checker, and
the execution of such specifications by way of term rewriting. In order to
obtain positional information, we use a technique called dependence track-
ing that was developed by Field and Tip [1994; 1998]. Dependence tracking
establishes relationships between function symbols that occur in the terms
that arise during a term rewriting process. Informally, these relationships
reflect the (parts of) an initial term that are responsible for the occurrence
of (parts of) a result term.

We will now present a brief overview of dependence tracking; for a
complete formal treatment, the reader is referred to Field and Tip [1998].
Dependence tracking assumes the existence of a sequence r of rewriting
steps that reduce a term T0 to a term Tn. A slicing criterion in this setting
consists of a subcontext Cn of term Tn, where a subcontext is defined as a
set of function symbols that occur contiguously in a term. A term slice is
defined as any subcontext C0 of the initial term T0 such that: (i) C0 can be
rewritten to a subcontext Dn of Tn using a subreduction r9 of r (roughly
speaking, a subset of the rewriting steps in r), and (ii) Dn is a supercontext
of Cn. This definition of a term slice is shown pictorially in Figure 6.
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Dependence tracking is a method for computing term slices that relies on
an analysis of rewriting rules to determine how the application of rewriting
rules causes creation of new function symbols, and the residuation (i.e.,
copying, moving around, or erasing) of previously existing subterms. We
will use the following simple specification of integer arithmetic (taken from
Tip [1995a]) to illustrate these principles:

@A1# intmul ~0, X! 5 0

@A2# intmul ~intmul ~X, Y!, Z ! 5 intmul ~X, intmul ~Y, Z!!

By applying these rules, the term intsub(3,intmul(intmul(0,1),2))
may be rewritten as follows (subterms affected by rule applications are
underlined):

T0 5 intsub ~3, intmul ~intmul ~0, 1!, 2!! 3 @A2#

T0 5 intsub ~3, intmul ~0, intmul ~1, 2!!! 3 @A1#

T2 5 intsub ~3, 0!

By carefully studying this example, one can observe the following:

—The outer context intsub ~3, ●! of T0 (‘● ’ denotes a missing subterm) is
not affected at all, and therefore reappears in T1 and T2.

T
r

r’

C’

C’

D’ T’

D’

C

C

Fig. 6. Depiction of the definition of a term slice. For a given sequence r of rewrite steps that
reduce a term T to a term T9, a slicing criterion is defined as a subcontext (i.e., a contiguous
set of function symbols) C9 that occurs in T9. Then, a term slice C is a subcontext of the
original term T such that C can be rewritten to a subcontext D9 of T9 using a subset r9 of the
reduction steps in r, and such that D9 contains C9.
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—The occurrence of variables X, Y, and Z in both the left-hand side and the
right-hand side of A2 causes the respective subterms 0, 1, and 2 of the
underlined subterm of T0 to reappear in T1.

—Variable X only occurs in the left-hand side of A1. Consequently, the
subterm intmul(1,2) (of T1) that is matched against X does not
reappear in T2. In fact, we can make the stronger observation that the
subterm matched against X is irrelevant for producing the constant 0 in
T2: the “creation” of this subterm 0 only requires the presence of the
context intmul(0, ●) in T1.

The above observations are the cornerstones of the dynamic dependence
relation of Field and Tip [1994; 1998]. Notions of creation and residuation
are defined for single rewrite steps, based on the syntactic structure5 of the
applied rules. Roughly speaking, the dynamic dependence relation for a
sequence of rewriting steps r consists of the transitive closure of creation
and residuation relations for the individual steps in r. The implementation
computes the transitive creation and residuation relationships incremen-
tally, with respect to all function symbols.

Figure 7 shows all residuation and creation relations for the example
reduction discussed above. The term slice with respect to the entire term T2

can be determined by tracing back all creation and residuation relations to
T0. The reader may verify that the term slice with respect to intsub(3,0)
consists of the context intsub(3, intmul(intmul(0, ●), ●)) . Accord-
ing to the semantics of term slices, there exists a sequence of rewriting
steps that reduce the context intsub(3, intmul(intmul(0, ●), ●)) to
the slicing criterion intsub(3,0) . In fact, any term obtained by replacing

5In the presence of so-called left-nonlinear rules and collapse rules, the notions of creation and
residuation become more complicated and also depend on the “history” of previously applied
rewriting rules. This is discussed at greater length in Field and Tip [1994; 1998].

(A2) (A1)

T1T0 T2

creation

residuation

0

intmul

intmul

intsub intsub

intmul

intmul

intsub

0

3

1

2

3

0

1 2

3

Fig. 7. Example of creation and residuation relations.
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the holes in intsub(3, intmul(intmul(0, ●), ●)) with arbitrary
subterms will yield a term that can be rewritten to intsub(3,0) .6

The bottom window of the CLaX environment shown earlier in Figure 1
is a textual representation of a term that represents a list of errors. The
slices shown in Figures 2(b)–(e) are computed by tracing back the depen-
dence relations from each of the four “error” subterms.

3.3 The Effect of Explicit List Traversal on Slice Accuracy

We have argued that our approach for obtaining positional information
does not rely on a specific specification style. Nevertheless, experimenta-
tion with the CLaX type-checker revealed that the accuracy of the com-
puted slices inversely depends on the degree to which the specification
explicitly traverses lists of syntactic constructs (e.g, statements or declara-
tions). As a general principle, more explicit traversal of syntactic structures
in a specification lead to less accurate slices. To understand why this is the
case, consider the nature of dynamic dependence relations. Suppose that
type-checking a program P involves a sequence of rewrite steps r that
ultimately lead to an error e. The slice Pe associated with e has the
property that it can be rewritten to a term containing e, using a subset r9 of
the rewrite steps in r. If the rewrite steps in r encode the explicit traversal
of a list of statements, this behavior will also be exhibited by r9, to the
extent that it contributed to the creation of e.

As an example, consider rewriting the term:
type-of(y, tenv(x: integer; y: string; z: integer))

according to the specification of Figure 4. By applying rule [Tc6] , this term
rewrites to the constant string . By tracing back the dynamic dependence
relations, we find that the context

type-of(y, tenv( ●; y: string; ●))

was needed to create this result. Now suppose that instead of rule [Tc6] ,
we use the following two rules for reducing the same term:

[Tc6a] type-of( Exp, tenv ( (Exp: Type; Decl * )) 2. Type
[Tc6b] type-of( Exp1, tenv ( Exp2: Type; Decl * )) 2.
type-of (Exp1, tenv (Decl*))

when Exp1 !5 Exp2

The resulting term would be the same as before: the constant string ,
which is obtained by first applying rule [Tc6b] followed by applying rule
[Tc6a] . However, the subcontext needed for creating this result would now
consist of:

type-of(y, tenv(x: ●; y: string; ●))

The variable x in the first element of the type environment is now
included in the slice because the order in which the type environment is

6This stronger property does not necessarily hold in cases where N rewriting processes are
staged such that the input to rewriting process I 1 1 is a normal form of rewriting process I.
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traversed is made explicit in the specification. Informally, the result
string now depends on the fact that the first element of the type
environment is not an entry for variable y .

The use of list functions and list matching in specifications (i.e., allowing
function symbols with a variable number of arguments and variables that
match sublists) reduces order-dependence, and therefore improves slice
accuracy. It should be mentioned, however, that the use of list-matching is
potentially more expensive than explicit traversal of lists constructed with
binary cons operators. Performing a single list match is not inherently
more expensive than is the case with explicit traversal, because in each
case the list is traversed sequentially, either during the matching of the
rule’s left-hand side, or as a series of explicit rewrite steps. However, in
cases where operations are repeatedly applied to different elements of a list
(e.g., distributing an operation over all elements of a list), a subterm may
be matched repeatedly. If we make the simplifying assumption7 that the
cost of matching a list of length n involves n elementary match operations
on the subterms that represent list elements, the explicit traversal ap-
proach would require O~n! of such operations, whereas the list match
approach may require O~n2! operations.8 In practice, we have not observed
performance problems due to the use of list matching, and it is interesting
to note that, in our experience, a specification based on list matching is
nearly always more concise and readable, and preferable from a pure
specification point of view.

4. A CASE STUDY: TYPE-CHECKING THE CLAX LANGUAGE

In order to validate our method, we applied our techniques to an existing
static semantics specification for a Pascal-like imperative programming
language named CLaX. CLaX features nested scopes, overloaded operators,
arrays, goto statements, and procedures with reference and value parame-
ters, and was originally developed as the demonstration language of the
ESPRIT-II Compare (Compiler Generation for Parallel Machines) project
[Alt et al. 1994]. The original (informal) description of the semantics of
CLaX can be found in The COMPARE Consortium [1991]. Since then, CLaX
has been used as a basis for various software tools, including type-checkers,
interpreters, and debuggers [Dinesh 1994; 1996; Dinesh and Tip 1992; van
Deursen et al. 1996; Tip 1995a], as well as a test-bed for origin-tracking
techniques [van Deursen 1994a; van Deursen et al. 1993; Field and Tip
1994].

The type-checker specification for CLaX has essentially the same struc-
ture as the L-specification we presented earlier, but is significantly larger
(about 16 pages of specification text for the syntax and static semantics).

7These assumptions no longer hold if the same (list) variable occurs more than once in the
rewriting rule’s left-hand side.
8Although optimizations to avoid redundant repeated list matching are conceivable, we are not
aware of any work on this topic.
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Language features such as gotos, nested scopes, procedures, and arrays
introduce some additional complexity, but pose no fundamental problems.
The remainder of this section will address some of the highlights of the
CLaX specification; a complete annotated listing of this specification ap-
pears in Dinesh and Tip [1997a]. The snapshots of Figures 1 and 2 were
obtained by applying dependence tracking to the CLaX type-checker.

We use the combined formalism ASF1SDF to define the syntax, the
static semantics, and the dynamic semantics of CLaX. ASF1SDF is a
combination of the Algebraic Specification Formalism ASF [Bergstra et al.
1989] and the Syntax Definition Formalism, SDF [Heering et al. 1989].
ASF features first-order signatures, conditional equations, modules, and
facilities for import, export, and hiding. SDF allows for the simultaneous
definition of a language’s lexical syntax, context-free syntax, and abstract
syntax. The combined formalism, ASF1SDF [van Deursen et al. 1996], is
unusually flexible in the sense that it allows one to specify the syntax of a
language, and then define equations in terms of that user-defined syntax.
The ASF1SDF Meta-environment [Klint 1993] is an implementation of
ASF1SDF. By interpreting equations as rewriting rules, specifications can
be executed as term rewriting systems.

4.1 Specification of the CLaX Syntax in ASF1SDF

In order to give the reader an impression of what an ASF1SDF specifica-
tion looks like, we briefly address some of the highlights of the ASF1SDF-
specification of CLaX, starting with the definition of the CLaX syntax. For
a full overview of ASF1SDF, the reader is referred to van Deursen et al.
[1996] and Klint [1993].

Figure 8 shows two of the modules that together define the CLaX syntax.
Module SyntaxProgram is the top-level module that defines the syntax of
CLaX programs. Since module SyntaxProgram relies on several sorts (i.e.,
specification-level types) that are not defined locally, it needs to import the
modules in which these sorts are defined. The imports section of Syntax-
Program consists of:

imports SyntaxHeaders SyntaxStats

stating that two auxiliary modules, SyntaxHeaders and SyntaxStats , are
imported. Module SyntaxProgram defines a sort PROGRAM, and contains
grammar rules for constructing programs. For instance, the rule

“DECLARE” DECL-LIST “BEGIN” STAT-SEQ “END” 2. BLOCK

states that a BLOCK may consist of a keyword ‘DECLARE’ followed by a
declaration list (sort DECL-LIST ), a keyword ‘BEGIN’, a sequence of state-
ments (sort STAT-SEQ), and a keyword ‘END’. Note that there is another
grammar rule for the case where a BLOCKdoes not contain any declara-
tions. Grammar rule

“PROGRAM” ID “;” BLOCK “.” 2. PROGRAM
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Fig. 8. Some modules of the ASF1SDF specification of the CLaX syntax.
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subsequently defines a PROGRAMto consist of the keyword ‘PROGRAM’ fol-
lowed by an identifier (sort ID ), a BLOCK, and a period. Finally, the
variables section of module SyntaxProgram

[_]Program[0-9’]* 2. PROGRAM

defines variables of sort PROGRAMthat can be used in the equations of any
module that imports SyntaxProgram . This rule defines the lexical syntax
of a variable of sort Program to consist of an underscore character, followed
by character sequence ‘Program ’, followed by zero or more occurrences of a
digit or a quote character. During rewriting, variables will only match
subterms of the corresponding sort (or subsorts thereof). In the above case,
the variable will only match sort PROGRAM.

Module SyntaxHeaders , which defines the syntax of declarations and
procedure headers, is also shown in Figure 8. Various kinds of declarations
are defined. Label declarations (sort LABEL-DECL) consist of an identifier,
followed by a colon, and the keyword ‘LABEL’. Variable declarations consist
of an identifier, a colon, and a TYPE (defined in module SyntaxTypes not
shown here). Procedure declarations consist of a procedure header (sort
PROC-HEAD), followed by a BLOCK. Finally, empty declarations (sort EMPTY-
DECL) have no concrete syntax at all. Sort DECL is introduced to represent
all of these kinds of declarations, so that they can be uniformly represented
in declaration lists (sort DECL-LIST ). Sort DECL-LIST illustrates the use of
lists in ASF1SDF:

{DECL “;” }* 2. DECL-LIST

defines declaration list to be a sequence of zero or more declarations
separated by semicolons. Formal parameters (sort FORMAL) are defined to
consist of variable declarations, optionally preceded by the keyword ‘VAR’
(for reference parameters). Procedure headers are defined as follows:

“PROCEDURE” ID 2. PROC-HEAD
“PROCEDURE” ID “(” {FORMAL “;”} 1 “)” 2. PROC-HEAD

indicating that a procedure header consists of the keyword ‘PROCEDURE’,
followed by an identifier, and optionally followed by an open bracket, a list
of one or more formal parameters separated by semicolons, and a close
bracket.

Figure 9 shows an example of a CLaX program.

4.2 High-Level Overview of the CLaX Type-Checker specification

Before delving into some of the more interesting details of the CLaX
type-checker specification, we will briefly overview the global design of the
specification. As can be seen from the import diagram of the type-checker
modules (see Figure 10), the type-checker specification imports the CLaX
syntax of module mod SyntaxProgram that was discussed previously. The
CLaX type-checker performs (roughly) the following steps in order to
type-check a BLOCKof statements:
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—The declarations of a block are processed, yielding a local type environ-
ment. A type-environment essentially represents the context in which a
particular statement, block, or expression is type-checked.

—Some checks are performed on the local type environment. For example,
we check if each identifier is unique within its scope, and if the index
ranges of arrays contain at least one element.

—The local type environment is combined with the type environments
corresponding to the BLOCK’s surrounding scopes, and this combined type
environment is distributed over every program construct.

—All IF and WHILE statements are flattened: the statements inside these
constructs are hoisted, and the condition of the IF or WHILE is trans-
formed into an “abstract” TEST statement. This allows us to localize the
checking of the validity of all conditional expressions in one place.

—Identifiers and values are rewritten to a common abstract representa-
tion. We use types for abstract representations. For example, any con-
stant ‘17 ’ is rewritten to ‘INTEGER’, and any identifier declared as a real
is rewritten to ‘REAL’.

Fig. 9. Example of a CLaX program.

TcErrors

TcLabel

SyntaxConsts

TcBooleans

TcSyntaxExt

SyntaxProgram

TcNint

TcTenv

TcExpr

TcProc

Tc

Fig. 10. Import diagram for the type-checking modules. The dashed line indicates the
separation between the type-checking phase, and the postprocessing phase in which human-
readable error messages are produced.
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—Expressions are interpreted abstractly using the abstract values obtained
in the previous step. Any type-correct expression is rewritten to its
abstract value. For example, an expression ‘INTEGER 1 INTEGER’ is
rewritten to ‘INTEGER’.

—Type-correct statements (e.g., assignments whose left-hand side and
right-hand side are both rewritten to ‘INTEGER’) are reduced to the
constant ‘true ’.

—Human-readable error messages are generated from the list of remaining
abstract expressions. Any statement that was reduced to ‘true ’ in the
previous step is simply removed at this point, since it did not contribute
to the list of type errors.

4.3 Type-Environments

The ASF1SDF syntax definitions we have seen so far were used to describe
the syntax of the CLaX language. It is important to understand that exactly
the same kind of syntax definitions are used to define the auxiliary data
structures used by the type-checker. To illustrate this point, Figure 11
shows module TcTenv of the CLaX type-checker specification, which speci-
fies the syntax of type-environments. The rule

“[” {DECL “;”}* “]” 2. TENV

defines a type-environment (sort TENV) to consist of a list of zero or more
semicolon-separated declarations between square brackets. Combined type
environments (sort TENV-LIST ), which capture the declarations of multiple
nested scopes, are simply defined as a list of zero or more TENVs.

Module TcTenv also defines an auxiliary function type-of for computing
the type of an expression in the context of a given combined type environ-
ment. The inclusion of this operation in TYPE indicates our intention that
it reduce an expression to an abstract value.

In order to be able to rewrite expressions to their abstract value (i.e.,
their type), sort TYPE is injected into sort EXPRby the following grammar
rule:

TYPE 2. EXPR

This enables us to write equations that rewrite constants that occur in
expressions to their abstract value, since the evaluation of constants does
not rely on the type environment. Equations [1] –[3] of Figure 11 (over
sort EXPR) rewrite all constants found in expressions to their abstract
values. The variables _IntConst, _RealConst, and _BoolConst in these
equations will only match terms that represent integer constants, real
constants, and boolean constants, respectively.

4.4 Processing Expressions and Statements

To give the reader an impression of the equations that evaluate expressions
in the abstract domain, two representative equations of module TcExpr are
shown below:
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[t14] INTEGER _Op INTEGER 5 INTEGER when _Op 5 _Aop
[t17] _SimpleType _Op _SimpleType 5 BOOLEAN when _Op5 _Cop

In these equations, variable _Op is of sort OP(operator), variable _Aop is of
sort AOP (arithmetic operator), variable _Cop is of sort COP (comparison
operator), and variable _SimpleType is of sort SIMPLE-TYPE. Equation
[t14] states that an expression consisting of an arithmetic operator
applied to two subexpressions of sort INTEGER evaluates to sort INTEGER.
Equation [t17] states that an expression consisting of an comparison
operator applied to two subexpressions of the same simple type evaluates to
type BOOLEAN. Note that we use a variable of sort SIMPLE-TYPE here
instead of a variable of sort TYPE because comparison operations on
nonsimple types such as arrays are not allowed in CLaX.

Below we show two of the equations (taken from module Tc) that
abstractly evaluate statements.

[R1] _SimpleType : 5 _SimpleType 5 true
[R4] WRITE (_SimpleType) 5 true

Equation [R1] rewrites an assignment to true if its left-hand side and
right-hand side are of the same simple (i.e., nonarray) type. Equation [R4]
rewrites type-correct WRITEstatements to true .

4.5 Generating Error Messages

The result of type-checking a CLaX program is a list of abstract values
representing incorrect constructs. These constructs can be transformed into
human-readable error messages in a modular manner, by applying the

Fig. 11. Module TcTenv of the ASF1SDF specification of the CLaX type-checker.
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function errors of module TcErrors to the output of the type-checking
function. This function is distributed over all transformed statements that
remain after type-checking. Each equation for the function errors handles
one particular type error.

As an example, we show the processing of LABEL : 5 EXPR; here an
error-message cannot-assign-to-label is generated by the following
equation:

[S03] errors(LABEL-TYPE : 5 _Expr) 5 cannot-assign-to-label

In order to guarantee that all irreducible abstract values are transformed
into human-readable error-messages, it suffices to determine that exactly
one of the following properties holds for each abstract expression t:

—A rewriting rule of the static semantics specification can be applied to t
(assuming that the appropriate arguments such as type environments
are supplied as well). In this case, t is a term that can be simplified
further, and no error message needs to be generated.

—A rewriting rule of the error-message generator can be applied to t.

If neither of the above properties holds, additional rules need to be added to
the error message generator. In practice, we found that the set of type-
incorrect abstract expressions is fairly small, and that determining the
appropriate set of error-message generation rules is not very difficult. In
the presence of expressions with multiple errors the question arises

Fig. 12. Example CLaX program that contains several type errors.
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whether to attempt the generation of a separate error message for each
problem. Our approach is to generate a message for the top-level problem
only, since it is likely that multiple errors are interrelated.

4.6 An Extended Example

As an example, we will study the type-checking of the CLaX program of
Figure 12 in some detail. After changing constants to their abstract values,
the main program will look as follows:

BEGIN
i : 5 INTEGER;
WHILE i , INTEGER DO

WRITE(“Enter number greater than 0”) ;
READ(i) ;

END;
square (n)

END.

Note that integer constants are now represented by their type, INTEGER.
However, since strings are not first class TYPEs in CLaX (there are no
operations on strings), they do not have an abstract value, and hence are
not affected in this step.

Next, the type environment for checking the statements is constructed by
a recursive function collect that collects the declarations in a set of
nested scopes into a combined type environment (sort TENV-LIST , see
Section 4.3). Function collect has two arguments: a TENV-LIST of type
environments constructed so far, and a BLOCKthat needs to be processed.
Whenever a procedure declaration is encountered, an entry for the proce-
dure is added to the type environment for the current scope, and a separate
collect “process” is spawned for the type-checking of the statements in
the procedure’s body, to which the declarations in the procedure body will
be added. For instance, before entering the type-checking of the statements
in procedure square , a snapshot would look as follows:

collect( [n: REAL; i: INTEGER; square: PROC (INTEGER)]
[x: REAL; step: LABEL],
DECLARE

BEGIN
x : 5 INTEGER;
step : 5 n;

step : 5 step * REAL; · · ·
END)

&
collect( [ n: REAL; i: INTEGER; square: PROC (INTEGER)],

DECLARE
BEGIN

i : 5 INTEGER; · · ·
END)

Next, some checks are performed on the local type environment and the
consistency of GOTOstatements is checked before checking the individual
statements in a BLOCK. For instance, before distributing the type environment
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over the statements in procedure square, an irreducible term unique(step
step) is produced, expressing the fact that label step is defined twice.
This subterm will later be transformed into a human-readable error
message indicating that more than one statement has label step associated
with it. The parts of the term corresponding to procedure square now look
as follows:

unique(step step) &
distribute([n: REAL; i: INTEGER; square: PROC (INTEGER)]

[x: REAL; step: LABEL],
BEGIN x : 5 INTEGER;

step : 5 n;

step : 5 step * REAL; · · ·
END) · · ·

After distribution of the type environment, evaluation of the expressions
over the abstract domain of types, and rewriting type-correct statements to
true the situation looks as follows:

unique(step step)
true &
true &
LABEL-TYPE : 5 INTEGER &
LABEL-TYPE : 5 LABEL-TYPE * REAL &

· · ·

Note that the assignment x : 5 INTEGERwas rewritten to true because
CLaX allows assignments of integer-typed expressions to real-typed vari-
ables.

Finally, human-readable error messages are generated by distributing
function errors of module TcErrors over the previous term. The resulting
normal form is:

multiply-defined-label step;
cannot-assign-to-label;
cannot-assign-to-label;
label-used-as-operand;
in-call expected-arg INTEGER found-arg REAL

The translator has converted LABEL-TYPE : 5 LABEL-TYPE * REAL into
the error-message cannot-assign-to-label .9 There are two occurrences
of this error-message—the other message is generated for the assignment
step : 5 n.

We will now briefly discuss the main steps involved in type-checking the
procedure call square(n) in the body of the main program. After the
constructing the type environment from the declarations of the main
program, and distributing this environment over each statement in the
main program’s body, the part of the rewritten term that corresponds to the
call site looks as follows:

9Applying the multiplication operator to an operand of type LABEL is also a type error, but no
message is generated because the current implementation does not attempt to generate
separate error messages for erroneous subexpressions.
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distribute([n: REAL; i: INTEGER; square: PROC (INTEGER)] ,
BEGIN square(n) END)

In order to type-check a procedure, two conditions need to be verified. First,
we must verify that the symbol square is indeed declared as a procedure
whose formal parameter types match the types of the supplied arguments.
Second, we have to check that any formal VAR parameter i.e., call-by-
reference parameter) corresponds to an actual parameter that is a variable
because it is a type error to pass a constant value or nontrivial expression
as an actual by-reference parameter. The distribute function rewrites
the above term as follows:

isproc(type-of([n:REAL; i:INTEGER; square:PROC(INTEGER)], square)
(types-of([n:REAL; i:INTEGER; square:PROC(INTEGER)], n))) &

vararg(type-of([n:REAL;i:INTEGER;square:PROC(INTEGER)],square)(n))

Two auxiliary functions, isproc and vararg , perform the two checks
mentioned above, and rely on functions type-of and types-of to look up
the type of a name, and a list of names, respectively. Reducing all type-of
and types-of subterms yields:

isproc( PROC( INTEGER) (REAL)) & vararg(PROC( INTEGER) (n))

Function isproc reduces to true if the types of the formal and actual
parameters correspond. In this case, the formal parameter type INTEGER
does not correspond to the actual parameter type REAL, and the resulting
expression will therefore remain. A vararg -subterm reduces to true if
each formal reference parameter corresponds to an actual parameter that
is a variable. Since this is the case, the resulting term is:

isproc( PROC( INTEGER) (REAL)) & true

In the error-processing phase, the isproc -subterm is rewritten to:
in-call expected-arg INTEGER found-arg REAL

4.7 Lessons Learned

We will now discuss a number of changes we made to the specification in
order to improve the accuracy of the computed slices. In addition to the
changes discussed below, we “undid” the changes that were made to the
specification in order get reasonable error locations using origin tracking
(this will be discussed in more detail in Section 6). As it turns out, almost
all of the issues discussed below have the flavor of eliminating explicit list
traversals or “overspecification.”

4.7.1 Overspecification: Unnecessarily Specific Matching. In a number
of places, the type-checker specification of Dinesh and Tip [1992] was
matching unnecessarily specific subterms, which gave rise to spurious
symbols in the slice. For example, the original specification contained an
equation:

[NA1] nonemptyarray([_Id: LABEL]) 5 true

to express the fact that any declaration of the form _Id: LABEL is not a
declaration of an array with 0 elements. Since the ‘LABEL’ subterm of the
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declaration is explicitly matched in the equation, ‘,?.: LABEL ’ subterms
inadvertently showed up in the slices reported by the tool. It turned out
that using the following, slightly more general equation instead:

[NA1] nonemptyarray([_LabelDecl]) 5 true

had the desired effect of omitting the entire label declaration from the slice.

4.7.2 Flattening of Control-Flow Structures. Control-flow structures
such as IF and WHILE statements have little to do with type-checking. For
both types of statements, we need to verify that the control predicate is of
type BOOLEAN, but the type-(in)correctness of any statement that occurs
inside the “branches” of an IF and WHILE construct does not depend in any
way on the control predicate. We exploit this observation by hoisting all
statements that occur inside IF and WHILE constructs, in a process that we
will refer to as “flattening” of control-flow structures. Flattening has the
important benefit that it allows any operation to assume that statement
lists are flat. This makes the specification more concise and declarative,
because it obviates the need for distributing various operations over IF and
WHILE constructs, and it isolates the structural traversal of these con-
structs in one place.

Figure 13(a) shows how we use list matching to specify flattening.
Equation flat1 transforms a statement list containing a WHILE statement
by hoisting its body and transforming the WHILE into a TEST statement.
Equations flat2 and flat3 perform similar transformations on IF–THEN
and IF–THEN–ELSE constructs. It is important to realize that these equa-
tions may be applied to any statement list at any time; there is no explicit
call to a flattening function. The TESTstatement generated by each of these
rules is a “generic” conditional statement for which we check if its control
predicate is of type BOOLEANusing equations [D10] and [R5] . The dis-
tribute function of [D10] distributes a type environment over a TEST
statement, and the resulting expression is eventually rewritten to its type.
Following our strategy to only specify type-correct cases, rule [R5] rewrites
type-correct TEST statements to true so that in the end only TEST state-
ments derived from type-incorrect control predicates remain.

Figure 13(b) shows how flattening was specified in a previous version of
the CLaX specification [Dinesh and Tip 1992]. Here, a function flat was
explicitly applied to a statement list before type-checking any statements
in that list. This function flat explicitly traversed a list of statements by
recursively applying itself to sublists (rule [FL12] ). Statements other than
IF and WHILEare left unchanged by flat (equations [FL0] –[FL8] ). For IF
and WHILE constructs, flat hoisted the nested statement lists outside
these constructs (equations [FL9] –[FL11] ). The drawback of this approach
is that a dependency of each statement in a “flattened list” on the
surrounding DECLARE–BEGIN–ENDor BEGIN–ENDsymbol(s) is established,
and all such symbols were consequently showing up as “noise” in the
computed slices. The new approach we discussed above does not suffer from
this problem.
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4.7.3 Elimination of Correct Program Constructs. In the original ver-
sion of module TcBooleans , the following equation was used for the
simplification of conjunctions (here, ‘&’ denotes boolean conjunction):

[Bool1] _Bool & true 5 _Bool

This equation served to eliminate the true constants that originated from
type-correct program constructs. Although this had the desired effect of
removing the redundant true constants, it overspecified our intention in a
subtle way. Instead of expressing the fact that a program is correct if it
contains no incorrect statements, it specifies that the correctness of a list of
statements depends on the correctness of all the elements in the list. The
locations produced by dependence tracking reflected this: Since the boolean
simplification took place before the distribution of the errors function of
module TcErrors , the locations associated with an error message e contained

Fig. 13. Flattening of control-flow constructs. (a) Current solution based on list-matching. (b)
Previous solution based on explicit list traversal.
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adjacent type-correct constructs. The solution to this problem was to
eliminate the type-correct constructs after distribution of the errors
function. In the current situation, true subterms remain until distribution
of the errors function. Then, errors(true) is reduced to no-errors by
the following equation:

[E0] errors(true) 5 no-errors

Subsequently, the list-match equation below eliminates no-errors sub-
terms, when the rest of the list is not empty. This causes the list symbol to
depend on correct statements, but this is no problem, since we are only
interested in slices with respect to individual statements.

[M0] _MsgList; no-errors; _MsgList’ 5 _MsgList; _MsgList’
when _MsgList; _MsgList’ 5 _MsgList”; _Msg

4.7.4 Elimination of Explicit List Traversals: Duplicate Elements in
Lists. Overspecification is undesirable because it may result in overly
large slices. Unfortunately, overspecification can occur in subtle ways and
can be very hard to control. To illustrate this point, the original version of
the function unique (module TcLabel ) is shown below. Function unique
takes a LABEL-LIST , and returns true if the list contains no duplicate
elements. Originally, unique was defined in the following manner, using
an auxiliary function no-dups for determining if a list contains duplicate
elements.

[xU1] unique(_LabelList) 5 no-dups(_LabelList)
[xN0] no-dups() 5 true
[xN1] no-dups(_Id) 5 true
[xN2] no-dups(_Id _Id’) 5 true when _Id ! 5 _Id’
[xN3] no-dups(_Id _Id’ _Label 1) 5 no-dups(_Id _Id’) &

no-dups(_Id _Label 1) & no-dups(_Id’ _Label 1)

Hence, the specification states that a list is unique if it is true that there
are no duplicates.10 Consider the result of this approach: When a list is not
unique , the locations of the duplicate elements in the resulting term
become dependent on those of the other elements in the list. This will lead
to undesirably large error locations. Instead, we use the following defini-
tion of unique .

[U1] unique(_LabelList) 5true when no-dups(_LabelList) ! 5 false
[N1] no-dups(_Id* _Id _Id*’ _Id _Id*”) 5 false

In this definition of unique , a list is defined to be unique only if it is not
the case that it has duplicate elements. Thus, when a list is not unique, the
function no-dups does not match. Consequently, the locations obtained
with dependence tracking for duplicate elements will not be “polluted” with
other elements.

10Note that equation no-dups(_Id _Id) 5 false is deliberately not defined because we
were already trying to avoid some overspecification in the original version. We are only
interested in the case where unique is not true because we want to be able to postprocess the
resulting irreducible term into a human-readable error message.
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4.8 Removing Syntactic Noise

We have already observed that the computed slices may contain a certain
amount of syntactic “noise” such as list separators, BEGIN and END key-
words. Such constructs never convey any useful positional information, and
their highlighting can easily be suppressed.

More interesting are situations where the left-hand side of a declaration
shows up in the slice, but where the right-hand side is a subterm that was
not involved in the generation of the error message. Here, the construct in
question is only involved in the generation of the error message to the
extent that replacing it with another construct might yield a program that
does not produce the same error, when type-checked. For example, consider
the slice that was shown earlier in Figure 2(d):

PROGRAM;
DECLARE

,?.;
i: INTEGER:
PROCEDURE,?. (VAR n: ,?.);
DECLARE

n: ,?.
BEGIN

,?.;
GOTO i

END
,?.;

BEGIN

· · ·
END.

This slice was computed for the error message ‘expected-label-found
INTEGER’ shown in Figure 1. The source of the error consists of the
statement ‘GOTO i’ and the declaration ‘i: INTEGER ’. Note the occurrence
of the declaration ‘n: ,?.’ in the inner scope, and the parameter ‘VAR n:
,?.’ in the slice. These subterms do not show up as complete holes (‘,?. ’)
because the error message under consideration can only be derived in the
absence of redeclarations of i in the inner scope that would hide the i in
the outer scope. In this case, changing either of the declarations of n into a
declaration ‘i: LABEL ’ would yield a program that does not produce the
same error message, and the name of variable n therefore shows up in the
slice. While it is nearly always desirable to suppress the display of partial
assignments in a slice, there are a few situations where such declarations
are part of an error’s location in a legitimate way. For example, the slice of
Figure 2(c) contains two partial declarations for variable n that constitute
the source of the type error ‘multiple-declaration-in-same-scope n ’.
Therefore, we believe that the user should be able to select whether or not
to suppress the display of partial declarations.

4.9 Implementation

We have implemented our techniques in the context of the ASF1SDF
Meta-environment [Klint 1993; van Deursen et al. 1996]. Experimentation
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with the CLaX specification revealed that the computed slices provide
highly accurate positional information about type errors. Figures 1 and 2
show screendumps of the generated CLaX environment.

We consider the current implementation to be a proof-of-concept proto-
type. Our implementation is based on the ASF1SDF Meta-Environment
[Klint 1993], an interpretive, Lisp-based implementation of ASF1SDF that
is primarily intended for interactive language and tool design. The
ASF1SDF Meta-Environment supports incremental updates to specifica-
tions in such a way that the programming environments generated from
these specifications are automatically updated as well. Figure 14 shows a
snapshot of the ASF1SDF Meta-Environment. While we found this envi-
ronment to be extremely convenient for experimentation (changes to a
specification are immediately reflected in the generated type-checking
environment), the current implementation does not handle programs of
more than a few hundred lines.

We conjecture that the limitations of the current implementation are
mostly the repercussions of using an interpretive and interactive development
environment, and not inherent shortcomings of rewriting-based technology.

Fig. 14. A view of the ASF1SDF Meta-Environment. The top window contains a number of
menus that allow the user to edit specification modules and terms in the generated environ-
ments. The window on the left shows how module Tc of the CLaX specification is edited in a
syntax-directed module editor: The top part of the window contains grammar rules that define
the term structure, and the bottom part contains equations (cf. rewriting rules) over the
syntax defined in the top part. On the right, a term editor is shown in which CLaX programs
can be edited. The Execute and Typecheck buttons attached to this window invoke an
interpreter and the type-checker presented in this paper. Invoking the type-checker will result
in the appearance of a window containing a list of type errors, as was shown in Figure 1.
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In the past few years, the focus of the work on ASF1SDF has shifted from
language and tool design toward the generation of efficient standalone
environments. The compilation of term rewriting systems into abstract
machine instructions [Walters and Kamperman 1996; Kamperman 1996;
Fokkink et al. 1998] or directly into efficient C code [van den Brand et al.
1999] has been a fundamental part of this strategy, and a new version of
the ASF1SDF system based on the latter approach is nearing completion.
As a result of these recent advances in term rewriting technology, the new
ASF1SDF system is about two orders of magnitude faster than the
Lisp-based version of the system we used, and comparable in speed to
modern functional programming language implementations. Recently, van
den Brand et al. [1999] conducted a study in which the performance of
compiled ASF1SDF specifications is compared to similar benchmark pro-
grams in Standard ML [Milner et al. 1997], Concurrent Clean [Plasmeijer
and van Eekelen 1994], and Haskell [Hudak et al. 1992], and report
performance results in line with the best functional language implementa-
tions.

We implemented dependence tracking by extending the ASF1SDF sys-
tem’s rewriting engine. We used a preexisting term-annotation mechanism
to annotate each function symbol in a term with two bit-vectors represent-
ing its dependence information, and this information is updated whenever
a rewriting rule is applied. The overhead associated with dependence
tracking is linear in the size of the term being rewritten [Field and Tip
1998]. In practice, we measured a reduction in rewriting speed by at most a
factor of two. An alternative approach for implementing dependence track-
ing consists of transforming the rewriting rules and the term being rewrit-
ten in a way that encodes dependence tracking. This approach was pursued
by Fraer [1997], and will be discussed in Section 6.

5. ACCOMMODATING OTHER TYPE FEATURES

We have demonstrated how our techniques apply to imperative languages
with procedures. However, we believe that our techniques can in principle
accommodate any language feature. In order to illustrate how object-
oriented languages can be handled, we will extend the example language L

of Section 2 with pointers, records, and subtyping, and show how adding a
relatively small set of rules to the specification of Figure 4 suffices to
accommodate these features. The CLaX language can be extended simi-
larly, although this would involve more work, due to the interaction of the
new features with existing features such as arrays and static scoping.

5.1 Pointers

We begin by adding a simple notion of pointers to L. Figure 15(a) shows the
BNF rules that need to be added to the grammar of Figure 3 to model
pointers. We allow types of the form ‘ˆ T ’, (i.e., pointer to T), for any type T.
Note that this allows multiple levels of indirection. In addition, operators
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‘&’ and ‘* ’ are added to the expressions syntax for taking the address of a
variable, and for dereferencing an expression, respectively.

Figure 15(b) shows additional rules that need to be added to the specifi-
cation of Figure 4 in order to check pointer usage.11 Rule [Tc9] expresses
the fact that taking the address of an expression whose type is T will yield
an expression whose type is ˆ T. Rule [Tc10] states that type-checking an
assignment of the form ˆ T :5 ˆ U succeeds if and only if type-checking an
assignment T :5 U succeeds. Rules [Tc11] and [Tc12] are concerned with
distributing type environments over ˆ-expressions and * -expressions, re-
spectively. Finally, rule [Tc13] states that type * ˆ T is equivalent with
type T.

Figure 15(c) shows additional rules that need to be added to the specifi-
cation of Figure 5 in order to produce human-readable error messages. Rule
[Er20] defines an auxiliary function is-pointer-type that checks if its
operand expression is of a pointer type. Next, [Er21] –[Er25] are fairly

11The reader should be aware that, in order to keep the amount of specification manageable,
certain aspects of pointers are not modeled (e.g., we do not check if the operand of the &
operator is an expression whose address can be taken). Adding such checks is straightforward.

Fig. 15. Extending L with pointers. (a) Additional grammar rules. (b) Additional type-
checking rules. (c) Additional postprocessing rules.
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straightforward rules that extend the previously introduced auxiliary func-
tions is-type , is-error-exp , and not-builtin-type to deal with
pointer expressions. Rule [Er26] generates an error message cannot-
dereference-type: Exp from an irreducible expression Exp that could
not be reduced due to incorrect usage of the * operator. Rule [Er27]
generates an error message incorrect-operand-type: ˆ Exp that will be
produced in situations where an expression of a pointer type is used as an
operand of the 1 operator. Finally, rules [Er28] and [Er29] process an
erroneous expression to which the * or the ˆ operator is applied, respec-
tively.

As an example, we will study the checking of the following program:

tc(declare x:natural; y: ˆ natural
begin y : 5 &x; x : 5 &y; *y : 5 x; *x : 5 *y end)

Applying Tc1 results in:

dist(y : 5 &x; x : 5 &y; *y : 5 x; *x : 5 *y,
tenv(x:natural; y: ˆ natural))

After several applications of [Tc2] and [Tc3] , the term looks as follows
(we will use S as a shorthand for the subterm tenv(x:natural; y: ˆ
natural) ):

check(dist(y, S) : 5 dist(&x, S), S);

check(dist(x, S) : 5 dist(&y, S), S);

check(dist(*y, S) : 5 dist(x, S), S);

check(dist(*x, S) : 5 dist(*y, S), S)

Using [Tc9] and [Tc11] to distribute the type environment over all
&-expressions and * -expressions, we obtain:

check(dist(y, S) : 5 ˆ dist(x, S), S);

check(dist(x, S) : 5 ˆ 1 dist(y, S), S);

check(* dist(y, S) : 5 dist(x, S), S);

check(* dist(x, S) : 5 * dist(y, S), S)

At this point, rule [Tc6] can be applied to each type-of -subterm, result-
ing in:

check(ˆ 1 natural : 5 ˆ natural, S);

check(natural : 5 ˆ ˆnatural, S);

check(* ˆ natural : 5 natural, S);

check(* natural : 5 * ˆ natural, S)

We can now apply [Tc13] to the third and fourth assignment. The term
now looks as follows:

check(ˆ natural : 5 ˆ 1 natural, S);

check(natural : 5 ˆ ˆ natural, S);

check(natural : 5 natural, S);

check(* natural : 5 natural, S)
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Rules [Tc10] and [Tc8] can be applied to the first statement, and [Tc8]
to the third statement. The second and fourth statements are irreducible
because they contain type errors. Hence, the final result is:

correct; check(natural : 5 ˆ ˆ natural,
tenv(x:natural; y: ˆ natural));
correct; check(* natural : 5 natural, tenv(x:natural; y: ˆ natural))

We will now consider how the above term is postprocessed into a
human-readable error-message, by applying the msgs function of Figures 5
and 15(c): After distributing the msgs function over the constructs using
rule [Er1] , we have:

concat(msgs(correct),
concat(msgs(check(natural : 5 ˆ ˆ natural,

tenv(x:natural; y: ˆ natural))),
concat(msgs(correct),

msgs(check(* natural : 5 natural,
tenv(x:natural; y: ˆ natural))))))

We can reduce both msgs(correct) subterms using rule [Er2] . Further-
more, rule [Er8] can be applied to the second msgs-subterm, using rules
[Er20] and [Er21] to evaluate [Er8] ’s conditions. The fourth msgs-
subterm is reduced via an application of [Er6] , using rule [Er22] to
evaluate [Er6] ’s conditions. The resulting term looks as follows:

concat(no-errors,
concat(assignment-incompatible: natural : 5 ˆ ˆ natural,
concat(no-errors, msgs(* natural))))

After applying [Er26] to the msgs(* natural) subterm, and using rules
[Er4] and [Er3] to eliminate the no-errors messages, we obtain the
final result:

assignment-incompatible: natural : 5 ˆ ˆ natural;
cannot-dereference-type: natural

5.2 Records

We will now add a simple notion of records to our example language L. Our
approach will be to allow variables to be declared as having a record type,
and to have separate declarations for fields of records. For example, a
declaration of a variable z of record type r , where r has a a field n of type
natural and a field s of type string looks as follows:

z: record r;
field r.n: natural;
field r.s: string;

In addition, we extend the expression syntax with a field-selection
operator ‘. ’ to select the field of a structured variable. This enables one to
write statements such as x : 5 x 1 z.n and x.n : 5 x . Figure 16(a)
shows how the grammar of Figures 3 and 15(a) is extended to accommodate
records. Note that while this grammar enables the construction of nested
records, we do not allow sequences of field-selection expressions such as
a.b.c in order to keep the specification simple.
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Records introduce a number of new type constraints that have to be
verified. Previously introduced conditions such as the compatibility of the
types used in assignments and 1-expressions must be generalized to
field-access expressions. Moreover, type violations such as the access to
nonexistent fields in a record, and the access of fields from nonrecord types
must be reported. Again, we will refrain from checking certain properties in
order to keep the example small and accessible. For example, we do not
check if records contain multiple fields with the same name but different
types.

Figure 16(b) shows how the static semantics specification of Figures 4
and 15(b) is extended to check these constraints. Rule [Tc14] distributes
type-environments over . -expressions by transforming an expression
dist( Id1. Id2, Tenv) , where T, the type of variable Id1, is determined
using a similar dist operation. The resulting term, dist(record T. Id2,
Tenv) is rewritten to a lookup for the type of the field, type-of(field T.
Id2, Tenv) by rule [Tc15] . Rule [Tc16] extends the previously intro-
duced check function to allow assignments between variables that have
the same record type, under the assumption that such assignments perform
a shallow copy of the object.

Figure 16(c) shows the additional postprocessing rules needed to handle
record types. Rule [Er30] introduces an auxiliary function is-record-
type . Next, [Er31] –[Er33] are simple conditional rules that define the

Fig. 16. Extending L with records. (a) Additional grammar rules. (b) Additional type-
checking rles. (c) Additional postprocessing rules.
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relationship between is-record-type and is-type , not-builtin-type ,
and is-error-exp . The remaining rules, [Er34] –[Er37] are concerned
with generating appropriate error messages from irreducible expressions.
For example, rule [Er36] generates an error message not-a-record-
type: Type from irreducible expressions that arise when accessing a field
from a nonrecord variable.

As an example, we will study type-checking the following program:

declare
n: natural;
x: record r;
field r.p: ˆ natural

begin
n : 5 x.s;
n : 5 *x.p;
n.n : 5 n

end

After a number of applications of [Tc2] and [Tc3] , the term looks as
follows (we will use T as an abbreviation for the subterm tenv(n:
natural; x:record r; field r.p: ˆ natural) ):

check(dist(n, T) : 5 dist(x.s, T), T);

check(dist(n, T) : 5 dist(*x.p, T), T);

check(dist(n.n, T) : 5 dist(n, T), T)

After reducing the dist(n, T) -subterms using rules [Tc5] and [Tc6] ,
applying rule [Tc11] to the right-hand side of the second assignment, and
applying rule [Tc14] to the field-access expressions in all three assign-
ments, the term looks as follows:

check(natural : 5 dist(dist(x, T).s, T), T);

check(natural : 5 * dist(dist(x, T).p, T), T);

check(dist(dist(n, T).n, T) : 5 natural, T)

At this point, the three innermost dist -expressions are reduced using
rules [Tc5] and [Tc6] , followed by an application of rule [Tc15] to the
first and second constructs. The term now looks as follows:

check(natural : 5 type-of(field r.s, T), T);

check(natural : 5 * type-of(field r.p, T), T);

check(dist(natural.n, T) : 5 natural, T)

The second subterm can be further reduced by applying rules [Tc6] and
[Tc13] , producing the final result:

check(natural : 5 type-of(field r.s, T), T);
correct;

check(dist(natural.n, T) : 5 natural, T)

In order to illustrate the generation of human-readable error messages,
we will apply the msgs function to the above term, and rewrite it according
to the specification of Figure 16(c). After distribution of the msgs function
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over the three constructs using [Er1] , and reducing the correct -subterm
using [Er2] , we have:

concat(msgs(check(natural : 5 type-of(field r.s, T), T)),
concat(no-errors,

msgs(check(dist(natural.n, T) : 5 natural, T))))

We can apply [Er5] to the first assignment, and [Er6] to the third
assignment, resulting in:

concat(msgs(type-of(field r.s, T)),

concat(no-errors, msgs(dist(natural.n, T))))

At this point, we can apply [Er36] to the first msgs-subterm, and [ER35]
to the second msgs-subterm. Applications of [Er3] and [Er4] yield the
final result:

no-field s in-record r;
not-a-record-type: natural

5.3 Subtyping

We now extend L with a simple notion of subtyping. Figure 17(a) shows
how the syntax of declarations is extended to allow declarations of the form
X extends Y to express that X is a subtype of Y. Subtype-relationships
will be modeled as follows:

Fig. 17. Extending L with subtyping. (a) Additional grammar rules. (b) Additional checking
rules.
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—We will allow assignments of the form x :5 y, where the type X of x is a
supertype of the type Y of y. Such an assignment will be assumed to copy
the X -subobject of y into x in the style of C11 [Stroustrup 1998].

—We will also allow assignments of the form x :5 y, where the type of x is
ˆ X, and the type of y is ˆ Y, and where X is a supertype of Y.

—A subtype is assumed to contain all fields of its supertype(s), and if a
field is not found in the subtype, the search process recursively continues
in its supertype.

—A field m in a subtype is assumed to hide a field with the same name, m,
in its superclass, even if the two occurrences of m have different types.

In order to keep the amount of additional specification manageable, we will
make a number of simplifying assumptions: (i) each type has at most one
supertype, and (ii) there are no cyclical subtype-relationships. The specifi-
cation we present here does not verify these assumptions. Verifying these
assumptions would involve a fairly small number of additional rewriting
rules in order to generate the appropriate error messages. Relaxing these
assumptions (e.g., by allowing multiple inheritance) would involve signifi-
cantly more work, but not pose any fundamental problems.

Figure 17(b) shows a set of additional rewriting rules for modeling
subtyping. Rules [Tc17] –[Tc21] define a function exists that deter-
mines if a declaration field Id1. Id2 occurs in a given type environment.
Since we are only interested in cases where the field does not exist, only the
false case is specified. Rule [Tc17] states that no field exists in an empty
type environment. The following four rules [Tc18] –[Tc21] are concerned
with situations where the first declaration in the type environment is not a
declaration field Id1. Id2, and rewrite the term to an exists -term with
a type environment without the first declaration. The cases are: a declara-
tion for a variable ([Tc18] ), a declaration for a different field in the same
record ([Tc19] ), a declaration for a field in a different record ([Tc20] ), and
a declaration of a subtype-relationship ([Tc21] ).

Rules [Tc22] –[Tc24] define a function subtype , which determines if a
type is a subtype of another type. Rule [Tc22] states that any record type
is a subtype of itself. Rule [Tc23] states that if X is a subtype of Y, then ˆ
X is a subtype of ˆY. Rule [Tc24] is concerned with the more interesting
case where the first two arguments, Id1 and Id2, of subtype are different
record types. The second condition of [Tc24] introduces a number of
variables in its right-hand side that are not bound to subterms during the
matching of the rule’s left-hand side: (Decl*1, Decl*2, and Id3). Such
conditions are evaluated by normalizing the nonvariable-introducing side
of the condition, and matching the resulting normal form against the
condition’s variable-introducing side. If the match succeeds, the condition
succeeds, and the newly introduced variables are bound to the subterms
they are matched against. In the specific case of rule [Tc24] , the match is
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used to determine the supertype Id3 of Id1. If this supertype exists, the
rule is applicable, and the subtype -term can be rewritten to a new
subtype -term that involves Id3 and Id2.

Rule [Tc25] is concerned with determining the type of a field that does
not occur in a record Id1 (verified by the first condition). In this case, the
search for the field should continue in Id1’s supertype Id3, which is
determined in the second condition. Finally, [Tc26] rewrites assignments
of the form check(record X : 5 record Y, Tenv) to correct if Y is a
subtype of X.

As an example, we will study the type-checking of the following pro-
gram:

declare
x: ˆ natural;
a: record A;
b: record B;
B extends A;
field A.y: ˆ natural;
field A.z: ˆ record A

begin
b.y : 5 x;
a.z : 5 &b;
b : 5 *a.z;

end

After distributing the type-environment over the statements, the term
looks as follows (we will use U as an abbreviation for the subterm tenv(x:
ˆ natural; a:record A; b:record B; B extends A; field A.y: ˆ
natural; field A.z: ˆ record A)) :

dist(b.y : 5 x, U); dist(a.z : 5 &b, U); dist(b : 5 *a.z, U)

After several applications of previously discussed rules, the term looks as
follows:

check(type-of(field B.y, U) : 5 ˆ natural, U);

check(ˆ record A : 5 ˆ record B, U);

check(record B : 5 record A, U)

Consider the first type-of -subterm in the above term. Since there is no
field B.y , the first condition of rule [Tc25] succeeds. The second condition
of [Tc25] succeeds as well, and results in binding variable Id3 to A. After
applying [Tc25] , the term looks as follows:

check(type-of(field A.y, U) : 5 ˆ natural, U);

check(ˆ record A : 5 ˆ record B, U);

check(record B : 5 record A, U)

After applying [Tc6] to the type-of -subterm, we have:

check(ˆ natural : 5 ˆ natural, U);

check(ˆ record A : 5 ˆ record B, U);

check(record B : 5 record A, U)
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The first check -subterm can be reduced to correct using rules [Tc8]
and [Tc10] , and the second check -subterm using [Tc26] and [Tc10] ,
after determining that subtype(record B, record A, U) rewrites to
true . The third subterm is irreducible, because record B is not a
supertype of record A . Hence, the final result is:

correct; correct; check(record B : 5 record A, U)

As it turns out, no additional rewriting rules are needed in order to
produce human-readable error messages in the presence of subtyping. The
above term is reduced to an error message assignment-incompatible:
record B : 5 record A by applying several previously presented rules,
including rule [Er8] to produce the actual message. Figure 18 shows the
slice computed for this example program. Observe that the positional
information contains precisely the records and fields involved in the
creation of the error message. Note in particular that the subtype-relation-
ship B extends A is not in the slice because it is irrelevant for the given
error message, which has to do with the absence of an a subtype-relation-
ship A extends B .

5.4 Mini-ML

In order to determine how our techniques apply to languages with polymor-
phic types, we conducted an experiment with an existing ASF1SDF speci-
fication for Mini-ML [Clément et al. 1986] written by Hendriks [Bergstra et
al. 1989; Hendriks 1991]. Mini-ML is a subset of ML [Milner et al. 1990]
that contains the essential elements of ML’s type system as far as type-

Fig. 18. Slice computed for an example program that uses subtyping.
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checking is concerned, including generic type variables, function types and
cartesian product types. Hendriks’ specification is similar in spirit to
ASF1SDF specifications for imperative languages, but contains machinery
for dealing with the intricacies of the ML type system, such as instantiat-
ing type schemes, determining if two types can be unified, and updating the
type environment as a result of checking an expression. Hendriks’ type-
checker computes the most general type for a type-correct Mini-ML expres-
sion, and a list of type errors found in the expression.

Figure 19 shows a snapshot of the generated Mini-ML environment in
which a small Mini-ML program is checked. The example program contains
a type error because the parameter f of a lambda expression is applied to
arguments of different types: a boolean constant true , and a number 3.
Invoking the type-checker on this program yields a type error: “incorrect
application (f 3) ” which appears in a separate window. Pressing the
Slice button results in the appearance of another window that contains
the slice associated with this error message. Observe that several subterms
that did not contribute to the error message do not occur in the slice, in

Fig. 19. View of the generated Mini-ML environment.
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particular, the name of the identifier declared in the outer let expression,
and the entire inner let expression do not occur in the slice.

Hendriks’ Mini-ML specification is not written in the abstract interpre-
tation style that we advocate, but in a more traditional style that relies on
explicitly traversing syntactic constructs. We conducted the above experi-
ment without making any changes to the specification. While in the case of
the above example and many other examples, dependence tracking com-
putes an acceptable slice, in some cases slices are computed that seem
larger than necessary. It is our strong conjecture that slice quality can be
improved by applying the techniques of Section 4.7.

6. RELATED WORK

6.1 Using Origin Tracking for Computing Positional Information

The work presented in this paper is closely related to earlier work by the
same authors. The CLaX type-checker [Dinesh and Tip 1992] was devel-
oped in the context of the COMPARE (compiler generation for parallel
machines) project, which was part of the European Union’s ESPRIT-II
program. We originally used origin tracking [van Deursen et al. 1993] to
associate source locations with type errors. Origin tracking is similar in
spirit to dependence tracking in the sense that it establishes relationships
between subterms of terms that occur in a rewriting process. At an
informal level, the difference between the two techniques can be summa-
rized as follows: origin tracking determines relationships that reflect how
parts of the original term recur in the final term, whereas dependence
tracking determines which parts of the original term are responsible for the
appearance of parts of the final term. Both techniques have their strengths
and weaknesses. Origin relations are more precise, but not every term has
an origin. Dependence tracking relates each symbol in the final term to a
subcontext of the original term, but these relationships may be less precise
than origins in cases where many function symbols contribute to the
occurrence of a symbol. We discuss these trade-offs in some more detail
below.

Similar to dependence tracking, origin tracking relies on the notion of
residuation, which captures how subterms are moved around, copied, or
erased due to the application of rewriting rules. However, unlike depen-
dence tracking, origin tracking does not track the creation of function
symbols. Instead, relationships are established between subterms that
correspond to syntactically equal subterms that occur in both the left-hand
side and the right-hand side of a rewriting rule, as well as relationships
between the root of the redex (the subterm that is being rewritten) and the
root of the reduct (the subterm that replaces the redex).

The use of origin tracking for associating positional information with
type errors was explored in Dinesh [1994; 1996]. Although the results were
encouraging (in terms of accuracy of positional information), origin track-
ing was found to impose restrictions on the style in which the type-checker
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specification was written. Since origin tracking only establishes relation-
ships between equal terms, the error messages generated by the type-
checker must contain fragments that literally occur in the program source;
otherwise, positional information is unavailable. In Dinesh [1994; 1996],
this problem was circumvented by tokenization, i.e., using an applicative
syntax structure and rewriting the specification in such a way that error
messages always contain literal fragments of program source, which guar-
antees the nonemptiness of origins. Modification of the specification re-
sulted in adequate positional information for type errors.

By contrast, the approach taken in this paper does not require any
modification to specifications in principle. In practice, certain specification
styles produce more accurate results than others, and we found that
avoiding a small number of common idioms in specifications can signifi-
cantly improve the results. In Section 4.7, we discussed several of these
techniques, including avoiding overspecification and explicit list traversals.
It should be emphasized, however, that application of these techniques is
completely optional.

Another approach to providing positional information for type errors is
pursued by van Deursen [1994a; 1994b]. Van Deursen investigates a
restricted class of algebraic specifications called Primitive Recursive
Schemes (PRSes). In a PRS, there is an explicit distinction between
constructor functions that represent language constructs, and other func-
tions that process these constructs. Van Deursen extends the origin track-
ing notion of van Deursen et al. [1993] by taking this additional structure
into account, which enables the computation of more precise origins.

Fraer [1996] uses a variation on origin tracking [Bertot 1991a; 1991b;
1992] to trace the origins of assertions in a program verification system. In
cases where an assertion cannot be proved, origin tracking enables one to
determine the assertions and program components that contributed to the
failure of the verification condition.

6.2 Other Applications of Dependence Tracking

The dependence tracking relation we use for obtaining positional informa-
tion was developed by Field and Tip [1994; 1998] for the purpose of
computing program slices. A program slice [Weiser 1979; 1984; Tip 1995b]
is usually defined as the set of statements in a program P that may affect
the values computed at the slicing criterion, a designated point of interest
in P. Two kinds of program slices are usually distinguished. Static program
slices are computed using compile-time dependence information, i.e., with-
out making assumptions about a program’s inputs. In contrast, dynamic
program slices are computed for a specific execution of a program. An
overview of program slicing techniques can be found in Tip [1995b].

By applying dependence tracking to different rewriting systems, various
types of slices can be obtained. In Field et al. [1995] programs are
translated to an intermediate graph representation named PIM [Field
1992; Bergstra et al. 1996]. An equational logic defines the optimization/
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simplification and (symbolic) execution of PIM-graphs. Both the translation
to PIM and the equational logic for simplification of PIM-graphs are
implemented as rewriting systems, and dependence tracking is used to
obtain program slices for selected program values. By selecting different
PIM-subsystems, different kinds of slices can be computed, allowing for
various cost/accuracy trade-offs to be made. In Tip [1995a], dynamic
program slices are obtained by applying dependence tracking to a previ-
ously written specification for a CLaX-interpreter.

6.3 Relationship to Inference-Based Type-Checking Approaches

There are some interesting connections between rewriting-based static
semantics specifications, and more traditional static semantics specifica-
tions based on inference rules (e.g., see Kahn’s natural semantics [Kahn
1987]). Both approaches rely on the notion of a type-environment, which
maps each identifier to its type, and construct an initial type environment
by scanning the program’s declarations. An important difference between
the two frameworks is the fact that rewriting-based approaches encode the
type-environment directly into the term structure, whereas inference rule
based approaches represent the environment as a separate entity. Another
difference is that while conditional rewriting rules and conditional infer-
ence rules seem similar, proving conditions of inference rules generally
involves an exhaustive search that may involve backtracking, whereas
conditional rewriting rules only involve normalization followed by a check
for syntactic (in)equality without backtracking.

In terms of expressive power, there appears to be little difference
between the two approaches. Although significantly more work has been
done on type-checking complex type systems such as that of ML in the
inference-based setting (e.g., see Damas and Milner [1982], Kahn [1987],
and Cardelli [1987]), Hendriks [Bergstra et al. 1989; Hendriks 1991]
created an ASF1SDF specification of the static semantics of Mini-ML
[Clément et al. 1986], an ML subset that contains the essential elements of
ML’s type system as far as type-checking is concerned, including generic
type variables, function types and cartesian product types.

In Section 5.4, we presented some experiments with an existing type-
checker for an ML subset. Providing accurate positional information for
inference errors in ML has long been known to be a difficult problem.
Several proposals that rely on adapting or extending the underlying type
system or inference algorithm have been presented (e.g., see Bernstein and
Stark [1995], Wand [1986], and Johnson and Walz [1986]). Duggan and
Bent [1996] presented an approach for explaining the types inferred by a
type inference algorithm (in the context of ML and Haskell) that relies on
an adaptation of the unification algorithm to keep track of the individual
reasoning steps that are applied. While the work by Duggan and Bent is
similar in spirit to ours in the sense that information is inferred from the
applied reasoning steps, it is different in the sense that the problem of
finding source locations of type errors is not addressed directly. Moreover,
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our approach is to present error locations by highlighting areas in the
program’s source text, whereas Duggan and Bent only provide explanations
why a particular type is inferred for a designated variable.

Fraer [1997] adapted dependence tracking to natural semantics. Fraer’s
definitions mirror those of Field and Tip [1994; 1998], but his implementa-
tion approach is quite different. Instead of implementing dependence
tracking directly in the inference engine, inference rules are instrumented
with additional arguments that store dependence information. This instru-
mentation is performed according to instrumentation schemas that analyze
the syntactic structure of the inference rule to determine how dependence
information should be combined and propagated. An important advantage
of a transformational approach is that it does not require a specialized
inference engine, and that the implementation of dependence tracking
benefits directly from any improvements to the underlying engine. While
Fraer’s work is mostly concerned with program verification and determin-
ing the origin of verification errors, his dependence tracking implementa-
tion is completely application-independent, and can in principle be applied
to type-checking problems such as the ones we consider.

6.4 Miscellaneous

The slice notion presented in the current paper differs from the traditional
program slices [Weiser 1979; Tip 1995b] in the following way. In program
slicing, the objective is to find a projection of a program that preserves part
of its execution behavior. By contrast, the notion of a slice in the present
paper is a projection of the program for which part of another program
property—type-checker behavior—is preserved. It would be interesting to
investigate whether there are other abstract program properties for which
a sensible slice notion exists.

Heering [1996] has experimented with higher-order algebraic specifica-
tions to specify static semantics. We believe that the approach of this paper
would work very well with higher-order specifications, since these allow
one to avoid explicit traversal of syntactic structures, which adversely
affects slice accuracy. However, this would require the extension of depen-
dence tracking to higher-order rewriting systems.

Flanagan et al. [1996] developed MrSpidey, an interactive debugger for
Scheme that performs a static analysis of the program to determine
operations that may lead to run-time errors. In this analysis, a set of
abstract values is determined for each program construct, which represents
the set of run-times values that may be generated at that point. These
abstract values are obtained by deriving a set of constraints from the
program in a syntax-directed fashion, which approximate the data flow in
the program. In addition, a value flow graph is constructed, which models
the flow of values between program points. MrSpidey has an interactive
user-interface that allows one to visually inspect values as well as flow-
relationships.
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7. CONCLUSIONS

We have presented a slicing-based approach for determining locations of
type errors. Our work assumes a framework in which type-checkers are
specified algebraically, and executed by way of term rewriting [Klop 1992].
In this model, a type-check function rewrites a program’s abstract syntax
tree to a list of type errors. Dependence tracking [Field and Tip 1994; 1998]
is used to associate a slice [Weiser 1979; Tip 1995b] of the program with
each error message. Unlike previous approaches for automatic determina-
tion of error locations [Dinesh 1994; 1996; Dinesh and Tip 1992; van
Deursen 1994a; 1994b; Bertot 1991a; 1991b; 1992], ours does not rely on a
specific specification style, nor does it require additional specification-level
information for tracking locations. The computed slices have the interest-
ing semantic property that the slice Pe associated with error message e is a
projection of the original program P that, when type-checked, is guaranteed
to produce the same type error e.

We have implemented this work in the context of the ASF1SDF Meta-
environment [Klint 1993; van Deursen et al. 1996], and conducted experi-
ments with a significant subset of Pascal, with features of object-oriented
type systems such as subtyping, and with an existing type-checker specifi-
cation for a subset of ML. The positional information conveyed by the
computed slices is generally quite good, but depends on the style in which
the specification is written. We have explored the effect of different
specification styles in depth, and identified a number of specification
idioms that result in a loss of slice accuracy. For each of these idioms, we
have identified alternative specification approaches that yield more accu-
rate slices. Interestingly, these changes often result in more declarative
specifications that are more concise and easier to read.

There are a number of directions in which our work can be extended. It
would be interesting to rewrite the Mini-ML type-checker discussed in
Section 5.4 in an abstract interpretation style, and to conduct experiments
to see how slice quality is affected. We would also like to apply our
techniques to a complete object-oriented language such as Java [Gosling et
al. 1996].
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