
9

Type-Based Call Graph Construction Algorithms for Scala

KARIM ALI, Technische Universität Darmstadt
MARIANNA RAPOPORT and ONDŘEJ LHOTÁK, University of Waterloo
JULIAN DOLBY, IBM T.J. Watson Research Center
FRANK TIP, Samsung Research America

Call graphs have many applications in software engineering. For example, they serve as the basis for code
navigation features in integrated development environments and are at the foundation of static analyses
performed in verification tools. While many call graph construction algorithms have been presented
in the literature, we are not aware of any that handle Scala features such as traits and abstract type
members. Applying existing algorithms to the JVM bytecodes generated by the Scala compiler produces
very imprecise results because type information is lost during compilation. We adapt existing type-based
call graph construction algorithms to Scala and present a formalization based on Featherweight Scala. An
experimental evaluation shows that our most precise algorithm generates call graphs with 1.1–3.7 times
fewer nodes and 1.5–17.3 times fewer edges than a bytecode-based RTA analysis.

CCS Concepts: • Software and its engineering → Automated static analysis; Object oriented
languages;

Additional Key Words and Phrases: Call graphs, static analysis, Scala

ACM Reference Format:
Karim Ali, Marianna Rapoport, Ondřej Lhoták, Julian Dolby, and Frank Tip. 2015. Type-based call
graph construction algorithms for Scala. ACM Trans. Softw. Eng. Methodol. 25, 1, Article 9 (November
2015), 43 pages.
DOI: http://dx.doi.org/10.1145/2824234

1. INTRODUCTION

As Scala [Odersky et al. 2012] gains popularity, the need grows for program analysis
tools for it that automate tasks such as refactoring, bug-finding, verification, security
analysis, and whole-program optimization. Such tools typically need call graphs to
approximate the behavior of method calls. Call graph construction has been studied
extensively [Ryder 1979; Grove and Chambers 2001], and algorithms vary primarily in
how they handle indirect function calls. Several Scala features—such as traits, abstract
type members, and closures—affect method call behavior. However, to the best of our
knowledge, our research is the first to propose and evaluate call graph construction
algorithms for Scala.

In principle, one could construct call graphs of Scala programs by compiling
them to JVM bytecode and then applying existing bytecode-based program analysis

This research was supported by the Natural Sciences and Engineering Research Council of Canada and by
the Ontario Ministry of Research and Innovation.
Authors’ addresses: K. Ali (corresponding author), Secure Software Engineering Group, TU Darmstadt,
Rheinstr. 75, 64295 Darmstadt, Germany; email: karim.ali@cased.de; M. Rapoport and O. Lhoták, 200
University Avenue West, Waterloo, Ontario N2L 3G1, Canada; emails: {mrapoport, olhotak}@uwaterloo.ca;
J. Dolby, P.O. Box 704, Yorktown Heights, NY 10598; email: dolby@us.ibm.com; F. Tip, 1732 N. First Street,
San Jose, CA 95112; email: ftip@samsung.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 1049-331X/2015/11-ART9 $15.00

DOI: http://dx.doi.org/10.1145/2824234

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:2 K. Ali et al.

frameworks such as WALA [IBM 2013] or SOOT [Vallée-Rai et al. 2000] to those gener-
ated bytecodes. However, as we shall demonstrate, this approach is not viable because
significant type information is lost during the compilation of Scala programs, caus-
ing the resulting call graphs to become extremely imprecise. Furthermore, the Scala
compiler translates certain language features using hard-to-analyze reflection. While
solutions exist for analyzing programs that use reflection, such approaches tend to be
computationally expensive or they make very conservative assumptions that result in
a loss of precision.

Therefore, we explore how to adapt existing call graph construction algorithms for
Scala, and we evaluate the effectiveness of such algorithms in practice. Our focus is
on adapting low-cost algorithms to Scala, in particular Name-Based Resolution (RA)
[Srivastava 1992], Class Hierarchy Analysis (CHA) [Dean et al. 1995], and Rapid Type
Analysis (RTA) [Bacon and Sweeney 1996]. We consider how key Scala features—such
as traits, abstract type members, and closures—can be accommodated and present
a family of successively more precise Trait Composition Analysis (TCA) algorithms.
We formally define our most precise algorithm for FSalg, the “Featherweight Scala”
subset of Scala previously defined by Cremet et al. [2006], and prove its correctness by
demonstrating that for each execution of a method call in the operational semantics, a
corresponding edge exists in the constructed call graph.

Our new algorithms differ primarily in how they handle the two key challenges of
analyzing Scala: traits, which encapsulate a group of method and field definitions so
that they can be mixed into classes, and abstract type members, which provide a flexible
mechanism for declaring abstract types that are bound during trait composition. We
implement our algorithms in the Scala compiler and compare the number of nodes and
edges in call graphs computed for a collection of publicly available Scala programs.
In addition, we evaluate the effectiveness of applying the RTA algorithm to the JVM
bytecodes generated by the Scala compiler. For each comparison, we investigate which
Scala programming idioms result in differences in cost and precision of the algorithms.

Our experimental results indicate that careful handling of complex Scala features
greatly improves call graph precision. We also find that call graphs constructed from the
JVM bytecodes using the RTA algorithm are much less precise than those constructed
using our source-based algorithms, because significant type information is lost due to
the transformations and optimizations performed by the Scala compiler.

In summary, this article makes the following contributions.

(1) We present variations on the RA [Srivastava 1992] and RTA [Bacon and Sweeney
1996] algorithms for Scala. To our knowledge, these are the first call graph con-
struction algorithms designed for Scala.

(2) We evaluate these algorithms, comparing their relative cost and precision on a set
of publicly available Scala programs.

(3) We evaluate the application of the RTA algorithm to the JVM bytecodes produced
by the Scala compiler and show that such an approach is not viable because it
produces highly imprecise call graphs.

(4) We formalize our most precise algorithm and prove its correctness.

A previous version of this article appeared in Proceedings of ECOOP [Ali et al. 2014].
This article covers a complete formalization of the main algorithm along with detailed
proofs, reports on additional experiments, and additional subject programs in experi-
ments reported on previously.

The remainder of this article is organized as follows. Section 2 reviews existing call
graph construction algorithms that serve as the inspiration for our work. Section 3
presents a number of motivating examples that illustrate the challenges associated

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:3

with constructing call graphs of Scala programs. Section 4 presents our algorithms.
Section 5 presents a formalization and correctness proof using the Featherweight Scala
(FSalg) formalism. Section 6 presents the implementation in the context of the Scala
compiler. An evaluation of our algorithms is presented in Section 7. Lastly, Section 8
concludes and briefly discusses directions for future work.

2. BACKGROUND

Algorithms for call graph construction [Grove and Chambers 2001] have been studied
extensively in the context of object-oriented programming languages such as Java
[DeFouw et al. 1998; Lhoták and Hendren 2003], C++ [Bacon and Sweeney 1996],
and Self [Agesen 1994], of functional programming languages such as Scheme [Shivers
1991] and ML [Heintze 1994], and of scripting languages such as JavaScript [Sridharan
et al. 2012]. Roughly speaking, most call graph construction algorithms can be classified
as being either type-based or flow-based [Lhoták and Hendren 2003; Bravenboer and
Smaragdakis 2009; Heintze and Tardieu 2001; Lhoták and Hendren 2006; Henglein
1992]. The former class of algorithms uses only local information given by static types
to determine possible call targets, whereas the latter analyzes the program’s dataflow.

2.1. Type-Based Algorithms

In this section, we briefly review some important type-based call graph construction
algorithms for object-oriented languages upon which our work is based. In the exposi-
tion of these algorithms, we use a constraint notation that is equivalent to that of Tip
and Palsberg [2000] but that explicitly represents call graph edges using a relation ‘ �→’
between call sites and methods.

Name-Based Resolution (RA). The main challenge in constructing call graphs of
object-oriented programs is in approximating the behavior of dynamically dispatched
(virtual) method calls. Early work (see, e.g., [Srivastava 1992]) simply assumed that a
virtual call e.m(· · ·) can invoke any method with the same name m. This approach can
be captured using the following constraints:

main ∈ R
RAMAIN

c �→ M
M ∈ R

RAREACHABLE

call c : e.m(. . .) occurs in method M
method M′ has name m

M ∈ R
c �→ M′ RACALL.

Intuitively, rule RAMAIN reads “the main method is reachable” by including it in the
set R of reachable methods. Rule RACALL states that “if a method is reachable, and a
call site c : e.m(. . .) occurs in its body, then every method M′ with name m is reachable
from c.” Finally, rule RAREACHABLE states that any method M reachable from a call site c
is contained in the set R of reachable methods.

Class Hierarchy Analysis (CHA). Obviously, Name-Based Resolution can become
very imprecise if a class hierarchy contains unrelated methods that happen to have
the same name. Class Hierarchy Analysis [Dean et al. 1995] improves upon name-
based resolution by using the static type of the receiver expression of a method call
in combination with class hierarchy information to determine what methods may be
invoked from a call site. Following the notation of Tip and Palsberg [2000], we use
StaticType(e) to denote the static type of an expression e, and StaticLookup(C, m) to
denote the method definition that is invoked when method m is invoked on an object

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:4 K. Ali et al.

with runtime type C. Using these definitions, CHA is defined as follows:

main ∈ R
CHAMAIN

c �→ M
M ∈ R

CHAREACHABLE

call c : e.m(. . .) occurs in method M
C ∈ SubTypes(StaticType(e))
StaticLookup(C, m) = M′

M ∈ R
c �→ M′ CHACALL.

Rules CHAMAIN and CHAREACHABLE are the same as their counterparts for RA. Intuitively,
rule CHACALL now reads: “If a method is reachable, and a call site c : e.m(. . .) occurs in
the body of that method, then every method M′ with name m that is inherited by a
subtype of the static type of e is reachable from c.”

Rapid Type Analysis (RTA). Bacon and Sweeney [1996] and Bacon [1997] observe
that CHA produces very imprecise results when only a subset of the classes in an
application is instantiated. In such cases, CHA loses precision because, effectively, it
assumes for a method call e.m(· · ·) that all subtypes of the static type of e may arise
at runtime. In order to mitigate this loss of precision, RTA maintains a set of types �̂
that have been instantiated in reachable methods. This set is used to approximate the
types that a receiver expression may assume at runtime. The constraint formulation
of RTA is as follows:

main ∈ R
RTAMAIN

“new C()” occurs in M
M ∈ R

C ∈ �̂
RTANEW

c �→ M
M ∈ R

RTAREACHABLE

call e.m(. . .) occurs in method M
C ∈ SubTypes(StaticType(e))
StaticLookup(C, m) = M′

M ∈ R
C ∈ �̂

c �→ M′ RTACALL.

Rules RTAMAIN and RTAREACHABLE are again the same as before. Intuitively, RTACALL refines
CHACALL by requiring that C ∈ �̂, and rule RTANEW reads: “�̂ contains the classes that are
instantiated in a reachable method.”

Sallenave and Ducourneau [2012] recently present an extension of RTA for the C#
language that determines the types with which parameterized classes are instantiated
by maintaining sets of type tuples for parameterized classes and methods. They use
their analysis to generate efficient CLI code for embedded applications that avoids
expensive boxing/unboxing operations on primitive types, while permitting a space-
efficient shared representation for reference types.

2.2. Flow-Based Algorithms

The goal of flow-based program analysis is to statically overapproximate the set of
all values that a program variable or expression could have at runtime by tracing
the possible flow of data or objects through a program. In particular, for a method
invocation e.m(. . .), such an analysis can predict all possible runtime values of e and
(by looking up method m on each of these) all possible call targets. Similarly, for a
higher-order function call, the analysis can determine all possible functions that may
be invoked.

In propagation-based analyses, this is achieved by associating sets of abstract values
(each representing a set of runtime values) with program expressions, modeling run-
time dataflow as inclusion constraints between these sets, and solving the resulting

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:5

constraint system. If each expression is associated with a single set of abstract values,
the analysis is monovariant, whereas polyvariant analyses use multiple sets to capture
the possible values of an expression in different contexts to improve precision.

Flow-based analyses typically also consider static type information when it is avail-
able, but they can also function without static types. They are therefore particularly
suited for dynamically typed languages: propagation-based approaches have been
used to construct call graphs for Scheme [Shivers 1991], Self [Agesen 1994], and
JavaScript [Sridharan et al. 2012]. But of course, they can also be applied in the
context of statically typed languages like ML [Heintze 1994] or Java [DeFouw et al.
1998; Lhoták and Hendren 2003].

Propagation-based call graph construction algorithms are more precise and more
general than type-based ones, but their effectiveness seems to be very language-
dependent. State-of-the-art monomorphic flow analyses [Lhoták and Hendren 2003;
Bravenboer and Smaragdakis 2009; Heintze and Tardieu 2001] are able to build call
graphs for real-world Java or C programs within minutes; polymorphic flow analyses
do not yet scale as well, but at least for Java they do not seem to improve call graph
precision by much [Lhoták and Hendren 2006].

For Java, an important remaining obstacle is the fact that most propagation-based
analyses require that the entire program is available and hence have to analyze
the massive standard libraries. Recent work on application-only call graph construc-
tion [Ali and Lhoták 2012, 2013] has shown how to generate a call graph for the
application part of a program without analyzing library code.

The scalability of propagation-based call graph construction algorithms can also be
improved by coarsening the propagation: instead of computing per-expression informa-
tion, propagation can be done per-variable [Sundaresan et al. 2000] or per-method [Tip
and Palsberg 2000].

A cheaper alternative to propagation-based approaches is unification-based analyses,
where dataflow edges are undirected [Henglein 1992], yielding less precise analysis
results.

3. MOTIVATING EXAMPLES

Before presenting our algorithms in Section 4, we briefly review the Scala features that
pose the most significant challenges for call graph construction.

3.1. Traits

Traits are one of the cornerstone features of Scala. They provide a flexible mechanism
for distributing the functionality of an object over multiple reusable components. Traits
are similar to Java’s abstract classes in the sense that they may provide definitions
of methods and in that they cannot be instantiated by themselves. However, they
resemble Java interfaces in the sense that a class or trait may extend (i.e., “mix-in”)
multiple super-traits.

Figure 1 shows an example program that declares a trait A in which a concrete
method foo and an abstract method bar are defined. The program also declares a trait
B that defines a concrete method bar and an abstract method foo. Lastly, trait C defines
a concrete method foo. The program contains a main method that creates an object by
composing A and B, and then calls bar on that object. The allocation expression new A
with B is equivalent to a declaration and instantiation of a new empty class with parents
A with B.

Before turning our attention to call graph construction, we need to consider how
method calls are resolved in Scala. In Scala, the behavior of method calls depends on
the class linearization order of the receiver object [Odersky 2011, Section 5.1.2]. The

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:6 K. Ali et al.

Fig. 1. A Scala program illustrating the use of traits.

linearization of a class C with parents C1 with · · · with Cn is defined as

L(C) = C,L(Cn)→+ · · · →+L(C1)

where →+ denotes concatenation where elements of the right operand replace identical
elements of the left one. Scala defines the set of members of a class in terms of its
linearization. The concrete members of a class C are all concrete members m declared
in all classes D in L(C), except for those overridden by a matching concrete member m′
declared in some class E that precedes D in the linearization order.1 Given this notion
of class membership, the resolution of method calls is straightforward: a call x.m(· · ·),
where x has type C at runtime, dispatches to the unique concrete member matching m
in C.

For the example of Figure 1, the linearization order of type new A with B on line 15 is as
follows: X, B, A (here, we use X to denote the anonymous class that is implicitly declared
by the allocation expression new A with B). Following the preceding definitions, the set
of concrete members of X is { B.bar, A.foo }. Hence, the call to bar on line 15 resolves to
B.bar. Using a similar argument, the call to foo on line 8 resolves to A.foo. Therefore,
executing the program will print “A.foo”.

Implications for Call Graph Construction. The presence of traits complicates the
construction of call graphs because method calls that occur in a trait typically cannot
be resolved by consulting the class hierarchy alone. In the example of Figure 1, B.bar
contains a call this.foo on line 8. How should a call graph construction algorithm ap-
proximate the behavior of this call, given that there is no inheritance relation between
A, B, and C?

To reason about the behavior of method calls in traits, a call graph construction
algorithm needs to make certain assumptions about how traits are combined. One
very conservative approach would be to assume that a program may combine each
trait with any set of other traits in the program in any order,2 such that the resulting
combination is syntactically correct.3 Then, for each of these combinations, one could
compute the members contained in the resulting type and approximate the behavior
of calls by determining the method that is selected in each case. For the program of
Figure 1, this approach would assume that B is composed with either A or with C. In
the former case, the call on line 8 is assumed to be invoked on an object of type A with B
(or B with A) and would dispatch to A.foo. In the latter, the call is assumed to be invoked

1Roughly speaking, two members are considered as matching when they have the same name and signature.
The matching relation is defined fully in Odersky [2011, Section 5.1.3].
2Note that an X with Y object may behave differently from a Y with X object in certain situations because
these objects have different linearization orders.
3If multiple traits that provide concrete definitions of the same method are composed, all but the last of
these definitions in the linearization order must have the override modifier in order for the composition to
be syntactically correct [Odersky 2011, Section 5.1.4].

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:7

Fig. 2. A Scala program illustrating the use of abstract type members.

on an object of type C with B (or B with C) and would dispatch to C.foo. Hence, a call graph
would result in which both A.foo and C.foo are reachable from the call on line 8.

The conservative approach discussed just is likely to be imprecise and inefficient in
cases where a program contains many traits that can be composed with each other.
For practical purposes, a better approach is to determine the set of combinations of
traits that actually occur in the program and to use that set of combinations of traits
to resolve method calls. Returning to our example program, we observe that the only
combination of traits that occurs in the program is A with B, on line 15. If the call on line 8
is dispatched on an object of this type, it will dispatch to A.foo, as previously discussed.
Hence, this approach would create a smaller call graph in which there would be only
one outgoing edge for the call on line 8.

This more precise approach requires that the set of all combinations of traits in the
program can be determined. The conservative approach could still have merit in cases
where such information is not available (e.g., libraries intended to be extended with
code that instantiates additional trait combinations).

3.2. Abstract Type Members

Scala supports a flexible mechanism for declaring abstract type members in traits and
classes. A type declaration [Odersky 2011, §4.3] defines a name for an abstract type,
along with upper and lower bounds that impose constraints on the concrete types that
it could be bound to. An abstract type is bound to a concrete type when its declaring
trait is composed with (or extended by) another trait that provides a concrete definition
in one of two ways: either it contains a class or trait with the same name as the abstract
type, or it declares a type alias [Odersky 2011, §4.3] that explicitly binds the abstract
type to some specified concrete type.

Figure 2 shows a program that declares traits X, Y, Z, and HasFoo. Traits X and Y
each declare a member class A that is a subclass of HasFoo. Trait Z declares an abstract
type member B and an abstract field o. Trait Y declares a type alias that instantiates
the type member B to A. It also instantiates the field o with the value new A. Observe
that the abstract member type B of Z has a bound HasFoo and that o is declared to be
of type B. The presence of this bound means that we can call foo on o on line 36.

On line 40, the program creates an object by composing Y with Z and calls bar on
it. Following Scala’s semantics for method calls, this call will dispatch to Z.bar. To
understand how the call o.foo on line 36 is resolved, we must understand how abstract
type members are bound to concrete types as a result of trait composition. In this case,

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:8 K. Ali et al.

Fig. 3. A Scala program illustrating the use of closures.

the composition of Y with Z means that the types Y.B and Z.B are unified. Since Y.B is
defined to be the same as Y.A, it follows that the abstract type member Z.B is bound to
the concrete type Y.A. Thus, executing the call on line 36 dispatches to Y.A.foo, so the
program prints “Y.A.foo”.

Implications for Call Graph Construction. How could a call graph construction algo-
rithm approximate the behavior of calls such as o.foo in Figure 2, where the receiver
expression’s type is abstract? A conservative solution relies on the bound of the ab-
stract type as follows: For a call o. f (· · ·) where o is of an abstract type T with bound
B, one could assume the call to dispatch to definitions of f (· · ·) in any subtype of B.
This approach is implemented in our TCAbounds algorithm and identifies both X.A.foo
and Y.A.foo as possible targets of the call on line 36.

However, this approach may be imprecise if certain subtypes of the bound are not
instantiated. Our TCAexpand algorithm implements a more precise approach that con-
siders how abstract type members are bound to concrete types in observed combinations
of traits, in the same spirit of the more precise treatment of trait composition discussed
above. In Figure 2, the program only creates an object of type Y with Z, and Z.B is bound to
Y.A in this particular combination of traits. Therefore, the call on line 36 must dispatch
to Y.A.foo.

Scala’s parameterized types [Odersky 2011, §3.2.4] resemble abstract type mem-
bers and are handled similarly. Similar issues arise in other languages with generics
[Sallenave and Ducourneau 2012].

3.3. Closures

Scala allows functions to be bound to variables and passed as arguments to other
functions. Figure 3 illustrates this feature, commonly known as “closures.” On line 49,
the program creates a function and assigns it to a variable foo1. The function’s declared
type is () => A, indicating that it takes no parameters and returns an object of type A.
Likewise, line 50 assigns to foo2 a function that takes no arguments and returns a B
object.

Next, on line 51, bar1 is called with foo1 as an argument. Method bar1 (line 43) binds
this closure to its parameter y, which has declared type () => A, and then calls the
function bound to y. Similarly, on line 52, bar2 is called with foo2 as an argument. On
line 44, this closure is bound to a parameter z and then invoked. From the simple
dataflow in this example, it is easy to see that the call y() on line 43 always calls the
function that was bound to foo1 on line 49, and that the call z() on line 44 always calls
the function that was bound to foo2 on line 50.

Implications for Call Graph Construction. In principle, one could use the declared
types of function-valued expressions and the types of closures that have been created
to determine if a given call site could invoke a given function. For example, the type of
y is () => A, and line 51 creates a closure that can be bound to a variable of this type.
Therefore, a call graph edge needs to be constructed from the call site y() to the closure

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:9

Fig. 4. Desugared version of the program of Figure 3 (slightly simplified).

Fig. 5. A Scala program illustrating a call on this.

on line 51. By the same reasoning, a call graph edge should be constructed from the
call site z() to the closure on line 52.

Our implementation takes a different approach to handling closures. Rather than
performing the analysis at the source level, we apply it after the Scala compiler has
“desugared” the code by transforming closures into anonymous classes that extend the
appropriate scala.runtime.AbstractFunctionN. Each such class has an apply() method con-
taining the closure’s original code. Figure 4 shows a desugared version of the program
of Figure 3. After this transformation, closures can be treated as ordinary parame-
terized Scala classes without loss of precision. This has the advantage of keeping our
implementation simple and uniform.

3.4. Calls on the Variable this

Figure 5 shows a program that declares a trait A with subclasses B and C. Trait A
declares an abstract method foo, which is overridden in B and C, and a concrete method
bar, which is overridden in C (but not in B). The program declares a main method that
calls bar on objects of type B and C (lines 95–96). Executing the call to bar on line 95

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:10 K. Ali et al.

dispatches to A.bar(). Executing the call this.foo() in that method will then dispatch to
B.foo(). Finally, executing the call to bar on line 96 dispatches to C.bar, so the program
prints “B.foo”, then “C.bar.”

Consider how a call graph construction algorithm would approximate the behavior
of the call this.foo() at line 83. The receiver expression’s type is A, so CHA concludes that
either B.foo or C.foo could be invoked, since B and C are subtypes of A. However, note
that this cannot have type C in A.bar because C provides an overriding definition of bar.
Stated informally, this cannot have type C inside A.bar because then execution would
not have arrived in A.bar in the first place. The TCAexpand-this algorithm, presented in
Section 4, exploits such knowledge. Care must be taken in the presence of super-calls,
as we will discuss.

3.5. Bytecode-Based Analysis

The preceding examples show that Scala’s traits and abstract type members pose new
challenges for call graph construction. Several other Scala features, such as path-
dependent types and structural types, introduce further complications and will be
discussed in Section 6. At this point, the reader may wonder if all these complica-
tions could be avoided by simply analyzing the JVM bytecodes produced by the Scala
compiler.

We experimentally determine that such an approach is not viable for two reasons.
First, the translation of Scala source code to JVM bytecode involves significant code
transformations that result in the loss of type information, causing the computed call
graphs to become imprecise. Second, the Scala compiler generates code containing
hard-to-analyze reflection for certain Scala idioms.

Loss of Precision. Consider Figure 6, which shows JVM bytecode produced by
the Scala compiler for the program of Figure 3. As can be seen in the figure, the
closures that are defined on lines 49 and 50 in Figure 3 have been translated
into classes Closures$$anonfun$1 (lines 121–131 in Figure 6) and Closures$$anonfun$2
(lines 133–143). These classes extend scala.runtime.AbstractFunction0<T>, which is used
for representing closures with no parameters at the bytecode level. Addition-
ally, these classes provide overriding definitions for the apply method inherited by
scala.runtime.AbstractFunction0<T> from its super-class scala.Function0<T>. This apply
method returns an object of type T. The issue to note here is that Closures$$anonfun$1
and Closures$$anonfun$2 each instantiate the type parameter T with different types,
Closures$A and Closures$B, respectively. Therefore, their apply methods return objects of
type Closures$A and Closures$B. However, at the bytecode level, all type parameters are
erased so that we have the following situation.

—scala.Function0.apply has return type Object.
—Closures$$anonfun$1.apply and Closures$$anonfun$2.apply each override scala.Function0.

apply and also have return type Object.
—There are two calls to scala.Function0.apply on lines 111 and 116.

Given this situation, the RTA algorithm creates edges to Closures$$anonfun$1.apply
and Closures$$anonfun$2.apply from each of the calls on lines 111 and 116. In other
words, a bytecode-based RTA analysis creates four call graph edges for the closure-
related calls, whereas the analysis of Section 3.3 only creates two edges. In Section 7,
we show that this scenario commonly arises in practice, causing bytecode-based call
graphs to become extremely imprecise.

Reflection in Generated Code. We detected several cases where the Scala compiler
generates code that invokes methods using java.lang.reflect.Method.invoke(). In particu-
lar, the Scala compiler uses reflection to call methods of structural types. Reflection is

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:11

Fig. 6. JVM bytecode produced by the Scala compiler for the program of Figure 3.

necessary so that existing Java objects (whose code the Scala compiler does not change)
can be considered instances of structural types [Dubochet and Odersky 2009]. Struc-
tural types are common in Scala programs because the Scala compiler infers a struc-
tural type whenever a new expression instantiates an anonymous class.

One such example (taken from the ENSIME program, see Section 7) is shown in Fig-
ure 7. Figure 8 shows some of the relevant fragments of the JVM bytecodes produced
for the program of Figure 7. Here, the reader may observe that reflective calls to
Class.getMethod() and Method.invoke() appear on lines 163, 174 and 182, 187, respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:12 K. Ali et al.

Fig. 7. A Scala program for which the compiler generates code containing reflective method calls (taken
from the ensime program, see Section 7).

Fig. 8. JVM bytecode produced by the Scala compiler for the program of Figure 7.

In general, the use of reflection creates significant problems for static analysis because
it must either make very conservative assumptions that have a detrimental effect
on precision (e.g., assuming that calls to java.lang.reflect.Method.invoke() may invoke any
method in the application) or the analysis will become unsound.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:13

Fig. 9. A Scala program illustrating the varying precision of the analyses.

4. ALGORITHMS

We present a family of Trait Composition Analysis (TCA) call graph construction al-
gorithms using generic inference rules, in the same style that we used in Section 2.
The algorithms presented here are as follows: TCAnames, a variant of RA that considers
only types instantiated in reachable code; TCAbounds, a variant of RTA adapted to deal
with Scala’s trait composition and abstract type members; TCAexpand, which handles
abstract type members more precisely; and TCAexpand-this, which is more precise for call
sites where the receiver is this.

We will use the example program shown in Figure 9 to illustrate differences between
the algorithms. When executed, the call site on line 201 calls method B.foo. As we shall
see, our different algorithms resolve this call site to various subsets of the foo methods
in classes A, B, C, and D.

4.1. TCAnames

The RA algorithm of Section 2 is sound for Scala because it resolves calls based only on
method names and makes no use of types. However, it is imprecise because it considers
as possible call targets all methods that have the appropriate name, even those in
unreachable code. For Figure 9, RA resolves the call site as possibly calling all four foo
methods, even though D is never instantiated in code reachable from main. Since RA
already computes a set R of reachable methods, we extend it to consider only classes
and traits instantiated in reachable methods.

To this end, we add rule RTANEW from RTA, which computes a set �̂ of types in-
stantiated in reachable methods. The CALL rule is adapted as follows to make use
of �̂:

call c : e.m(. . .) occurs in method M
method M′ has name m

method M′ is a member of type C

M ∈ R C ∈ �̂

c �→ M′ TCAnames
CALL .

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:14 K. Ali et al.

We use shading to highlight which parts of the rule are modified relative to the
preceding rule RTACALL.

The resulting TCAnames analysis consists of the rule RTANEW and the rules of RA,
except that RACALL is replaced with TCAnames

CALL . In TCAnames
CALL , a method is considered as a

possible call target only if it is a member of some type C that has been instantiated in
a reachable method in R. Calls on super require special handling, as will be discussed
in Section 6.

For the program of Figure 9, TCAnames resolves the call site to A.foo, B.foo, and C.foo,
but not D.foo because D is never instantiated in reachable code.

4.2. TCAbounds

To improve precision, analyses such as RTA and CHA use the static type of the receiver
e to restrict its possible runtime types. Specifically, the runtime type C of the receiver
of the call must be a subtype of the static type of e.

A key difficulty when analyzing a language with traits is enumerating all subtypes
of a type, as both CHA and RTA do in the condition C ∈ SubTypes(StaticType(e)) in rules
CHACALL and RTACALL of Section 2. Given a trait T , any composition of traits containing T
is a subtype of T . Therefore, enumerating possible subtypes of T requires enumerating
all compositions of traits. Since a trait composition is an ordered list of traits, the
number of possible compositions is exponential in the number of traits.4

In principle, an analysis could make the conservative assumption that all composi-
tions of traits are possible and therefore that any method defined in any trait could
override any other method of the same name and signature in any other trait (a con-
crete method overrides another method with the same name and signature occurring
later in the linearization of a trait composition). The resulting analysis would have
the same precision as the TCAnames algorithm, though it obviously would be much less
efficient.

Therefore, we consider only combinations of traits occurring in reachable methods of
the program. This set of combinations is used to approximate the behavior of method
calls. In essence, this is similar to the closed-world assumption of RTA. Specifically, the
TCAbounds analysis includes the rule RTANEW to collect the set �̂ of trait combinations
occurring at reachable allocation sites. The resulting set is used in the following call
resolution rule:

call e.m(. . .) occurs in method M
C ∈ SubTypes(StaticType(e))

method M′ has name m
method M′ is a member of type C

M ∈ R C ∈ �̂

c �→ M′ TCAbounds
CALL .

The added check C ∈ SubTypes(StaticType(e)) relies on the subtyping relation defined
in the Scala language specification, which correctly handles complexities of the Scala
type system such as path-dependent types.

According to Scala’s definition of subtyping, abstract types do not have subtypes, so
TCAbounds

CALL does not apply. Such a definition of subtyping is necessary because it cannot
be determined locally (just from the abstract type) which actual types will be bound

4Although some trait compositions violate the well-formedness rules of Scala, such violations are unlikely to
substantially reduce the exponential number of possible compositions. Moreover, the well-formedness rules
are defined in terms of the members of a specific composition, so it would be difficult to enumerate only
well-formed compositions without first examining all of them.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:15

to it elsewhere in the program. However, every abstract type in Scala has an upper
bound (if it is not specified explicitly, scala.Any is assumed), so an abstract type T can
be approximated using its upper bound B:

call e.m(. . .) occurs in method M
StaticType(e) is an abstract type with upper bound B

C ∈ SubTypes(B)
method M′ has name m

method M′ is a member of type C
M ∈ R C ∈ �̂

c �→ M′ TCAbounds
ABSTRACT-CALL.

For the program of Figure 9, TCAbounds resolves the call site to A.foo and B.foo, but
not D.foo because D is never instantiated, and not C.foo because C is not a subtype of A,
the upper bound of the static type T of the receiver.

4.3. TCAexpand

The TCAbounds analysis is particularly imprecise for abstract types that do not have
a declared upper bound, since using the default upper bound of scala.Any makes the
bound-based analysis as imprecise as the name-based analysis.

It is more precise to consider only concrete types with which each abstract type is
instantiated, similar to the approach of Sallenave and Ducourneau [2012]. To this end,
we introduce a mapping expand(), which maps each abstract type T to those concrete
types with which it has been instantiated:

C ∈ �̂
“type A = B” is a member of C

D is a supertype of C
“type A” is a member of D

B ∈ expand(D.A) TCA
expand
EXPAND-TYPE

C ∈ �̂
“trait A { . . . }” is a member of C

D is a supertype of C
“type A” is a member of D

C.A ∈ expand(D.A) TCA
expand
EXPAND-TRAIT

R ∈ expand(S)
S ∈ expand(T)

R ∈ expand(T) TCA
expand
EXPAND-TRANS.

Similar rules (not shown) are needed to handle the type parameters of generic types
and type-parametric methods. Our implementation fully supports these cases.

The TCAbounds
CALL rule is then updated to use the expand() mapping to determine the

concrete types bound to the abstract type of a receiver:

call e.m(. . .) occurs in method M
StaticType(e) is an abstract type T with upper bound B

C ∈ SubTypes(expand(T) ∩ SubTypes(B))
method M′ has name m

method M′ is a member of type C
M ∈ R C ∈ �̂

c �→ M′ TCA
expand
ABSTRACT-CALL.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:16 K. Ali et al.

Rule TCA
expand
EXPAND-TYPE handles situations such as the one where a type alias type A = B is a

member of some instantiated trait composition C. Now, if a supertype D of C declares an
abstract type A, then B is a possible concrete instantiation of the abstract type D.A, and
this fact is recorded in the expand() mapping by TCA

expand
EXPAND-TYPE. Rule TCA

expand
EXPAND-TRAIT handles

a similar case, where an abstract type is instantiated by defining a member trait with
the same name. The right-hand side of a type alias might be abstract, so it is necessary
to compute the transitive closure of the expand() mapping (rule TCA

expand
EXPAND-TRANS).

Cycles among type aliases may exist. In Scala, cyclic references between type mem-
bers are a compile-time error. However, recursion in generic types is allowed. For
example, the parameter B in a generic type A[B] could be instantiated with A[B] itself,
leading to B representing an unbounded sequence of types A[B], A[A[B]], This kind of
recursion can be detected either by limiting the size of expand(T) for each abstract type
to some fixed bound or by checking for occurrences of T in the expansion expand(T).
The current version of our implementation limits the size of expand(T) to 1,000 types.
This bound is never exceeded in our experimental evaluation, implying that recursive
types do not occur in the benchmark programs. The same issue also occurs in Java and
C# and has been previously noted by Sallenave and Ducourneau [2012]. Their imple-
mentation issues a warning when it detects the situation. Our algorithm resolves the
issue soundly: when a recursive type T is detected, the algorithm falls back to using
the upper bound of T to resolve calls on receivers of type T .

4.4. TCAexpand-this

In both Java and Scala, calls on the this reference are common. In some cases, it is
possible to resolve such calls more precisely by exploiting the knowledge that the caller
and the callee must be members of the same object. Care must be taken in the presence
of super-calls, as will be discussed in Section 6.1.

For example, at the call this.foo() on line 83 of Figure 5, the static type of the receiver
this is A, which has both B and C as subtypes. Since B and C are both instantiated, all
of the analyses described so far would resolve the call to both B.foo (line 87) and C.foo
(line 90). However, any object that has C.foo as a member also has C.bar as a member,
which overrides the method A.bar containing the call site. Therefore, the call site at
line 83 can never resolve to method C.foo.

This pattern is handled precisely by the following rule:

call D.this.m(. . .) occurs in method M
D is the declaring trait of M

C ∈ SubTypes(D)
method M′ has name m

method M′ is a member of type C
method M is a member of type C

M ∈ R C ∈ �̂

c �→ M′ TCA
expand-this
THIS-CALL .

The rule requires not only the callee M′ but also the caller M to be members of
the same instantiated type C. The rule applies only when the receiver is the special
variable this. Because nested classes and traits are common in Scala, it is possible that
a particular occurrence of the special variable this is qualified to refer to the enclosing
object of some outer trait. Since it would be unsound to apply TCA

expand-this
THIS-CALL in this case,

we require that the receiver be the special variable this of the innermost trait D that
declares the caller method M.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:17

After adding rule TCA
expand-this
THIS-CALL , we adapt rule TCAbounds

CALL by adding a precondition so
that it does not apply when TCA

expand-this
THIS-CALL should, that is, when the receiver is the special

variable this of the declaring trait D of the caller method M. We designate the adapted
rule TCA

expand-this
CALL :

call e.m(. . .) occurs in method M
e is not D.this, where D is the declaring trait of M

C ∈ SubTypes(StaticType(e))
method M′ has name m

method M′ is a member of type C
M ∈ R C ∈ �̂

c �→ M′ TCA
expand-this
CALL .

5. FORMALIZATION

In this section, we provide a formalization of the inference rules for TCAexpand-this based
on the FSalg (Featherweight Scala) representation of Cremet et al. [2006]. We also

prove the TCAexpand-this analysis correct with respect to the operational semantics of
FSalg by demonstrating the following.

(1) For any FSalg program P, the set of methods called in an execution trace of P is a

subset of the set R of reachable methods computed for P by TCAexpand-this.
(2) For any FSalg program P, if the execution trace of P contains a call from call site

c to a target method M, then TCAexpand-this applied to P derives c �→ M.

5.1. Extensions to Featherweight Scala

Cremet et al. [2006] present an operational semantics and type system for a core Scala
subset FSalg, which is commonly referred to as “Featherweight Scala.” FSalg includes
traits, abstract type members, singleton types, path-dependent types, and dynamic
dispatch.

We make one minor extension to FSalg. In FSalg, a program that calls a method on
a receiver whose static type is an abstract type member is never well-formed, because
abstract type members do not themselves have any members and therefore no methods.
However, we feel that disallowing such calls would be unrealistic because they are quite
common in full Scala and because resolving them requires reasoning about the way
in which traits are composed, as we discussed in Section 3.2. Fortunately, such calls
can be supported in a straightforward manner, by requiring abstract type members
to have upper bounds, just like in full Scala. In full Scala, abstract type members
must also have lower bounds, which we do not add here because they are not used
by TCAexpand-this. In particular, in full Scala, each abstract type member has an upper
bound with scala.Any as the default if none is explicitly specified. If e is an expression
whose declared type is an abstract type member T , then calling methods on e that are
declared in the upper bound of T is legal. This allows us to model situations such as
the one in Figure 2, where type Z.B is declared to have a bound of HasFoo on line 34,
thus permitting the call o.foo on line 36.

In the remainder of this section, we review the syntax, operational semantics, and
typing rules of FSalg. In the process, we also formalize the small extension that we

have just described. The extension to FSalg is identified by shading .

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:18 K. Ali et al.

Fig. 10. Featherweight Scala syntax.

Figure 10 shows the syntax of FSalg. An FSalg program is a term which is usually
of the form

val z = new
{
ϕ | M

}
; t.

Here, z is a universe object consisting of a list of member declarations M, t is some
term to be evaluated in the context of z, and ϕ is the name of the self-reference. The
only change to the original definition by Cremet et al. [2006] is the addition of an upper
bound U to abstract type member declarations in order to allow calls on variables
whose type is an abstract type member, as illustrated in Figure 2.

Figure 11 presents an operational semantics for FSalg in the form of a relation →.
Here, �; t → �′; t′ means that a term t in the context of an evaluation environment
� can be rewritten to a term t′ in the context of an environment �′. These rules are
unchanged from Cremet et al. [2006].

Figure 12 presents a set of lookup judgments that defines the set of members of a
given object based on the type signature that it is instantiated with. These judgments
take the form � � T ≺ϕ M, indicating that in the context of a runtime environment
�, the type T contains a set of members M. Here, we added a judgment to handle the
case for a type of the form y.A, where A is a type with a bound T . In this case, the set
of members in y.A is the same as the set of members present in T .

The 	 operator used in Figure 12 deserves some additional discussion. In
FSalg [Cremet et al. 2006], the 	 operator is defined as concatenation with rewriting

of common members: M 	 N = M|dom(M)\dom(N), N, where dom(M) is the set of labels

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:19

Fig. 11. Reduction.

Fig. 12. Lookup.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:20 K. Ali et al.

Fig. 13. Path typing.

Fig. 14. Type assignment.

defined in M and M|L consists of all declarations in M that define a label in L. This def-
inition does not distinguish between abstract and concrete members and, in particular,
specifies that an abstract member in N can override a concrete member in M. Here, a
member declaration is concrete if it is a Field decl or Method decl with the optional = t,
or if it is a Type decl or Class decl, and abstract otherwise. In particular, a Bounded
type decl is considered abstract. In contrast, the Scala specification [Odersky 2011, Sec-
tion 5.1] specifies that a concrete member always hides an abstract member regardless
of their relative order. To be consistent with Scala, we therefore redefine the 	 operator
as follows: M 	 N = M|(cdom(M)\cdom(N))∪(adom(M)\dom(N)), N|cdom(N)∪(adom(N)\cdom(M)), where
cdom(M) is the set of labels defined in concrete declarations in M and adom(M) is the
set of labels defined in abstract declarations in M.

Figures 13 and 14 define the type assignment relations that determine a static type
T for each form of term t. The rules are parameterized with a set of bindings � and
a set of locked declarations S used to prevent infinite recursion in types and in type
checking. When t is a path, two types are defined: the path-specific type assignment
relation S, � �path · : · identifies the general declared type T specified for t by the
current environment, whereas the general type assignment relation S, � � · : · assigns
t the specific singleton type t.type.

Figures 15 and 16 define the membership relations that define the set of members
of a static type T . The expansion judgment S, � � · ≺ϕ · is the static analogue of the
runtime lookup judgment: using a static type environment �, it looks up the members
of each form of type T . In the original FSalg, an abstract type has no members because

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:21

Fig. 15. Expansion.

Fig. 16. Membership.

the expansion judgment is not defined for abstract type members of the form typenA.5
Therefore, in the original FSalg, it was impossible to call a method on a receiver
whose type is abstract, since such a type has no member methods. In our extension, we
add rule ≺-BOUNDED-TYPE that gives bounded abstract types of the form typenA <: U
the members of their bound U . This makes a method call on a (bounded) abstract
type possible, as shown in Figure 2. The membership judgment S, � � · � · adjusts
the members found by the expansion judgment to account for singleton types. When
the type of a member involves the self-reference this, represented as ϕ in FSalg, ϕ

is replaced by the actual path p when it occurs in a singleton type p.type, and the
member is removed completely when it occurs in a non-singleton type in which no
specific value for the self-reference ϕ is available.

Figure 17 defines the subtyping relation <: between types. TCAexpand-this relies on
this relation to decide when a term of a given type S can reduce to an object of some
other given type T . The subtyping relation relies on alias expansion relations for types
and paths, shown in Figures 18 and 19. The type alias expansion expands type aliases
of the form typenA = T so that subtypes of T can also be considered subtypes of A

5In every member declaration such as typenA, the subscript n is a unique label that is used in FSalg to give
an identity to that particular declaration.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:22 K. Ali et al.

Fig. 17. Algorithmic subtyping.

Fig. 18. Type alias expansion.

Fig. 19. Path alias expansion.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:23

Fig. 20. Member subtyping.

within the context of the object that defines the type alias typenA = T . The path alias
expansion unifies the singleton types p.type and q.type when the type of p is q.type.
The subtyping relation also uses the member subtyping relation, shown in Figure 20,
to enforce that a type is allowed to extend another type only when their respective
members have compatible types.

5.2. Formalization of TCAexpand-this for FSalg

In this section, we present a formalization of the TCAexpand-this algorithm on FSalg. The

full TCAexpand-this algorithm formalized for FSalg is presented in Figure 21.

In our formalization of TCAexpand-this, we drop the �,S for brevity because it is
uniquely determined by the identity of the particular term t and its position within the
overall term representing the whole program.

FSalg defines paths as a subset of terms that consist of a variable followed by zero or
more field dereferences. The type of a path p is defined to be the singleton type p.type
containing only the object designated by p. A separate typing judgment of the form
�,S �path p : T assigns p the wider type T determined by the declared types of the
variable and fields referenced in p. In our definition of TCAexpand-this, it is this latter
type that we need, because it determines the possible methods that could be members
of objects pointed to by p. Therefore, in the formalization of TCAexpand-this, whenever
we write t : T , we mean �,S �path t : T when t is a path, and �,S � t : T when t is not
a path.

Rules TCA
expand-this
MAIN and TCA

expand-this
REACHABLE assert that the main method is reachable and

that if any method M is called from some call site c, then that M is reachable.
Rule TCA

expand-this
NEW accumulates the allocation sites that occur in reachable methods

into a set �̂. In FSalg, an allocation site is a term of the form val x = new T ; u . The
subterm u is evaluated in a context in which the variable x is bound to the newly-
allocated object of type T . It is at allocation sites that traits are finally composed into
the types of actual runtime objects. Therefore, the set �̂ contains all compositions of
traits that occur in reachable parts of the program. In addition to the composed type T ,
�̂ also collects the corresponding variable x that holds the instantiated object because
it will be required by the rule TCA

expand-this
EXPAND-TRAIT.

The informal rules TCA
expand-this
CALL and TCA

expand-this
CALL-THIS from Section 4 are merged into

a single rule TCA
expand-this
CALL in the formalization on FSalg. To determine the possible

subtypes of the receiver type S, the rule first considers all types T that occur in
the set of reachable compositions �̂, then selects only those that are subtypes of the
receiver type (T <: S), and subsequently selects the method M′ that is a member of

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:24 K. Ali et al.

Fig. 21. TCAexpand-this formalized for FSalg.

T with a name and signature that are consistent with the call site c. The precondition
(S � M ∧ s ≡ ϕ) ⇒ (T � M) implements the special handling of calls on the special
variable this. In words, the condition states that if the receiver s of a call is the special
variable this (which is denoted ϕ in FSalg), then the runtime type T of the receiver must
contain the caller M as a member. Because it is common in Scala to nest traits within
other traits, it is a nontrivial detail to recognize whether the receiver is the particular
variable this on which the caller method was called; in general, the variable this could
refer to any of the outer objects that encloses the current trait. The precondition (S �
M ∧ s ≡ ϕ) ⇒ (T � M) applies only if the static type of the receiver this contains the
caller method (S � M). If it does not (i.e., the receiver is a different variable this than
the receiver of the caller), then the left-hand side of the implication is false, so the
precondition is trivially true.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:25

Fig. 22. Ancestor membership.

In rule TCA
expand-this
CALL-ABSTRACT, the static type of the receiver is a path-dependent type (s : p.A),

and the member A of the object p is an abstract type member (p.type � typenA). Here,
the difficulty is that the subtyping rules in Scala and FSalg do not define any subtypes
for an abstract type member, so there is no direct way to determine which types of ob-
jects may be assigned to the receiver. Therefore, in order to determine which types T of
objects may be bound to the receiver s, the analysis must first determine which concrete
types may be bound to the abstract type member p.A. This is accomplished using rules
TCA

expand-this
EXPAND-TYPE , TCA

expand-this
EXPAND-TRAIT, and TCA

expand-this
EXPAND-TRANS, which generate the set expand(typenA) of

all concrete types that are possibly assigned to the abstract type member A. The key
complication here is that the call site s.a(t) may occur in one trait, and the actual static
type of s may be assigned to p.A in a different trait, so the actual static type of s is not
known until the traits are composed at an allocation site of the enclosing object.

In rule TCA
expand-this
EXPAND-TYPE , we examine the set of all reachable trait compositions �̂ for

the possible type T of the enclosing object. If some supertype of T declares an ab-
stract type member typenA <: U , and T contains a member typen′ A = T ′, then the
abstract type member A represents the actual type T ′ in T , so we want to include T ′
in expand(typenA) as one of the possible actual types represented by the abstract type
typenA. In order to determine whether some supertype of T declares an abstract type
member typenA <: U , we define a new relation T �∪ typenA <: U to hold whenever
there exists a supertype S of T such that S � typenA <: U . This ancestor membership
relation is formally defined in Figure 22. The definition follows the form of the FSalg
membership relation from Figure 16 but extends the members of a type to also include
members of all of its supertypes.

In addition to an explicit type alias declaration typen′ A = T ′, it is also possible
in full Scala (but not FSalg) to define the actual type assigned to an abstract type
typenA <: U implicitly, by mixing in the trait that defines typenA <: U with another
trait that contains a member trait traitn′ A of the same name A. This case is handled

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:26 K. Ali et al.

by rule TCA
expand-this
EXPAND-TRAIT. Although this rule is not necessary for FSalg, which does not

support this mechanism for binding abstract types, we present it here for completeness
to show how it appears in our implementation for full Scala.

Finally, the type that is assigned to an abstract type member may itself be abstract.
Therefore, to determine the actual types represented by an abstract type member,
the expand() relation must be transitively closed. The transitive closure of expand() is
ensured by the inference rule TCA

expand-this
EXPAND-TRANS.

5.3. Correctness Proof

The definition of FSalg [Cremet et al. 2006] defines both an operational semantics and
a type system, but it does not state or prove a theorem of type soundness relating the
two, although soundness is clearly intended. Although the correctness of TCAexpand-this

relies on the soundness of the FSalg type system, we consider it outside the scope of

this article to prove type soundness for FSalg. Instead, we prove that TCAexpand-this is
correct for all executions that respect the FSalg type system. If the FSalg type system
is indeed sound, then this covers all possible executions.

The correctness of TCAexpand-this depends on the type soundness of FSalg in two
places. The obvious dependence is in the computation of the possible target methods
of a call site. The targets depend on the runtime types of the possible receivers, and
TCAexpand-this approximates those using the declared type of the receiver. For correct-
ness, it is necessary that the runtime types of the receiver truly are subtypes of the
declared type. This requirement is exhibited as a dependence of Lemma 5.4 on Assump-
tion 1. A second, more subtle dependence on type soundness is in the computation of
the expand(·) sets. Since types in Scala are path-dependent, to determine the possible
concrete types of an abstract type p.T with path p, it is necessary to correctly deter-
mine the possible objects that p could be instantiated to. The TCAexpand-this analysis
does this using the declared type of p, and its correctness therefore depends on the
declared type of p soundly abstracting the actual objects that p could be instantiated
to. This requirement is exhibited as a dependence of Lemma 5.3 on Assumption 1.

It is typical for a definition of type soundness to assert that if a term s has type S and
reduces to value x with type T , then T <: S (preservation). Such a definition fails for
FSalg when S is an abstract type p.A. In such cases, the concrete type of S is unknown
until execution time when the trait declaring abstract type member A is instantiated
with a type alias that binds A to a concrete type. The FSalg subtype relation therefore
defines an abstract type to have no subtypes. Thus, under the common definition of
type soundness, terms whose type is abstract could not be reduced, and abstract types
would become useless. To get around this extreme restriction, we define an extended
subtype relation <<: that considers abstract types. We can then define an analogue
of type preservation as follows: if term s with type S reduces to value x with type T ,
then T <<: S. However, unlike the normal subtype relation <:, our extended subtype
relation <<: must depend on some specific execution trace that specifies how the
abstract type member A has been instantiated.

Definition 5.1. In the context of a given dynamic execution trace τ , T <<:τ S if
either

(1) T <: S, or
(2) (a) the type S has the form p.A,

(b) A is an abstract type declaration in p,
(c) in the execution trace τ , p reduces to some variable x,

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:27

(d) there exist types S′ and T ′ such that p : S′ and x : T ′,
(e) if S′ � typenA <: U , then T ′ �∪ typenA <: U and T ′ � typen′ A = S′′, for some

type S′′, and
(f) T <<:τ S′′.

In addition, we extend <<:τ to be reflexively and transitively closed. We omit the
subscript τ when it is clear from the context.

We now make precise the notion of type soundness that our correctness proof of
TCAexpand-this depends on. Informally stated, we assume that executions preserve types
consistently with the extended subtype relation <<:, and that an execution does
not get stuck because a method call invokes a method that is not a member of the
receiver.

Assumption 1. Our soundness proof applies to FSalg programs whose execution is
type-sound in the following specific ways.

(1) If a term s : S reduces to a variable x : T in an execution τ , then T <<:τ S.
(2) If reduction of a valid FSalg program reaches a method call term �; x.a(y), then

the set �(x) of members of x contains a method M with name a, and if x : T , then
this same method is also a member of the type T (that is, T � M).

Our proof also depends on some syntactic restrictions on the types that can be instan-
tiated. Full Scala has these same restrictions. Although FSalg does not make these
restrictions syntactically, it is not obvious what it would mean in FSalg to instantiate
the types that we prohibit, and any FSalg program instantiating them would imme-
diately get stuck, because the lookup relation is not defined for them. The restrictions
are specified by the following assumption:

Assumption 2. We assume that in every term that instantiates an object, which is
of the form val x = new T ; t, that the type T cannot be a singleton type of the form
p.type or an abstract type of the form p.A, where the member named A in p is a type
declaration and the type member A is not an alias for some concrete type.

Definition 5.2. Let τ be a trace �, t →∗ �′, t′ of the execution of an FSalg program
according to the operational semantics of Figure 11. We define calls(τ) and allocs(τ)
to be the sets of methods called and types instantiated in the trace τ , respectively.
Precisely, each use of the reduction rule RED-METHOD refers to a method label n in the
precondition of the rule; calls(τ) is defined to be the set of all such method labels defined
by all uses of the RED-METHOD reduction rule in the trace τ . Similarly, each use of the
reduction rule RED-NEW refers to a type T in the conclusion of the rule, and the new
object of this type is assigned to some variable x. The set allocs(τ) is defined to be
the set of all such pairs x, T defined by all uses of the RED-NEW reduction rule in the
trace τ .

With these definitions and assumptions, we can now proceed with the soundness
proof of TCAexpand-this. We begin with a lemma that states, informally, that the expand(·)
set soundly overapproximates the set of concrete types that any abstract type member
p.A can be instantiated with at runtime.

LEMMA 5.3. Suppose that when TCAexpand-this is applied to some initial term t, it
computes the set of reachable methods R, the set of possibly instantiated types �̂, and
the expand relation expand(·). Let τ be an execution trace starting with the initial term
t. Further suppose that s is a subterm of t that is reduced to x in the trace τ . If

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:28 K. Ali et al.

(1) calls(τ) ⊆ R,
(2) allocs(τ) ⊆ �̂,
(3) s : p.A, where A is an abstract type member in p,
(4) x : T , and
(5) p.type � typenA <: U,

there exists a type S such that T <: S and S ∈ expand(typenA).

PROOF. By Assumption 1, if p reduces to some variable y and if y : T ′ and p : U ′,
then T ′ <<: U ′. We first show that this reduction from p to y must actually occur
within the execution trace τ : The reduction rule RED-METHOD looks up the members of
x in the environment �, so the variable x must have been added to the environment
in the trace τ by an application of RED-NEW. This rule looks up the members of the
type of the variable being inserted, so the lookup relation must be applicable to p.A.
In all of the types of the form p.A appearing in the conclusions of the lookup relation
in Figure 12, the type is of the form y.A. Therefore, a reduction from p to y must have
occurred within the execution trace τ .

The lookup relations that apply to y.A require y to be in the environment, so the
instantiation of val y = newT ′; u must also occur in the trace τ . Therefore, by the
assumptions of the lemma, (y, T ′) ∈ �̂. By Definition 5.1, T ′ �∪ typenA, and T ′ �
typen′ A = S for some S such that T <<: S. Therefore, by analysis rule TCA

expand-this
EXPAND-TYPE ,

S ∈ expand(typenA). If S is a concrete type, then T <<: S implies that T <: S due to
Definition 5.1, and we are done proving the lemma. If S is an abstract type p′.A′, then
we can repeat the same argument as previously to show that a reduction of p′ to some
y′ occurs in τ , that y′ contains a type alias typen′′ A′ = S′, that S′ ∈ expand(typen′′′ A′),
where typen′′′ A′ is the declaration of A′ in p′, and that T <<: S′. Rule TCA

expand-this
EXPAND-TRANS can

then be applied since

(1) p′.A′ ∈ expand(typenA),
(2) p′.A′ � typen′′′ A′ <: U ′, and
(3) S′ ∈ expand(typen′′′ A′),

it follows that S′ ∈ expand(typenA). If S′ is a concrete type, then T <<: S′ implies
that T <: S′, and we are done proving the lemma. Otherwise, the same argument can
be repeated to find additional types in the sequence S, S′, S′′, . . . until one of them is
concrete. For each such type S∗, S∗ ∈ expand(typenA), and T <<: S∗, so when S∗ is
concrete, then T <: S∗, and we are done proving the lemma. The type checking rules
of FSalg use a lock set S to explicitly check for and reject loops in type declarations, so
they guarantee that for a valid FSalg program, a concrete type S∗ will eventually be
encountered.

Having shown the soundness of the expand(·) relation, we now prove a step lemma
that states, informally, that if TCAexpand-this soundly overapproximates a partial execu-
tion trace τ ′, then τ ′ can be extended with an additional execution step and TCAexpand-this

will still soundly overapproximate it.

LEMMA 5.4. Suppose that when TCAexpand-this is applied to some initial term t, it
computes the set of reachable methods R and the set of possibly instantiated types �̂.
Let τ ′ be an execution trace from �, t to �′, t′, where � is the empty environment, and
let τ ′′ be the extension of τ ′ with one additional execution step from �′, t′ to �′′, t′′. If

(1) calls(τ ′) ⊆ R, and
(2) allocs(τ ′) ⊆ �̂,

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:29

then

(1) calls(τ ′′) ⊆ R, and
(2) allocs(τ ′′) ⊆ �̂.

PROOF. Assume that calls(τ ′) ⊆ R and allocs(τ ′) ⊆ �̂. There are three cases to con-
sider depending on the reduction rule used in the transition �′, t′ → �′′, t′′.

(1) The reduction rule may be RED-NEW. In this case, t′ is of the form val x = new T ; t′′′,
and allocs(τ ′′) = allocs(τ ′) ∪ {T }. We must therefore prove that (x, T) ∈ �̂. The
conclusion of analysis rule TCA

expand-this
NEW is (M ∈ R) ⇒ ((x, T) ∈ �̂), where M is

the method containing the allocation site, that is, our term t′. M is in R because it
is in calls(�, t →∗ �′, t′). Therefore, by the conclusion of rule TCA

expand-this
NEW , the pair

(x, T) is in �̂ as required.
(2) The reduction rule may be RED-METHOD. In this case, t′ is a call site of the form

x.a(y) and calls(τ ′′) = calls(τ ′) ∪ {M′}, where M′ is the method that is invoked in
the transition from �′, t′ to �′′, t′′. We must therefore prove that M′ ∈ R. Since t′ is
of the form x.a(y), the original program t must have contained a call site c of the
form s.a(t) such that s reduced to x and t reduced to y in the trace τ ′. The overall
plan is to show that either rule TCA

expand-this
CALL or TCA

expand-this
CALL-ABSTRACT applies to assert that

c �→ M′ , and then rule TCA
expand-this
REACHABLE concludes that M′ ∈ R. We examine each of the

preconditions of rules TCA
expand-this
CALL and TCA

expand-this
CALL-ABSTRACT in turn.

(a) M ∈ R, where M is the method containing call site c.
The execution trace τ ′ must contain a call to M, or else the execution would
not be reducing the call site c, which is contained in M. By the premise of the
lemma, M ∈ R.

(b) (x, T) ∈ �̂.
In the rule RED-METHOD, x is looked up in the current runtime environment �′.
Since the only reduction rule that adds bindings to the runtime environment is
RED-NEW, such a reduction reducing an instantiation val x = new T ; t′′′, for some
T and t′′′, must have occurred in the trace τ ′. By the premise of the lemma, the
pair (x, T) is therefore present in �̂.

(c) T � M′, M′ ≡ defna(y : S′) : T ′(= t′)?.
This is given by Assumption 1.

(d) (for TCA
expand-this
CALL) T <: S, where s : S.

When the type S of s is a concrete type, this is given by Assumption 1. Otherwise,
see case (f).

(e) (for TCA
expand-this
CALL) (S � M ∧ s ≡ ϕ) ⇒ (T � M).

The left-hand side of the implication ensures that this condition is relevant only
when the receiver s of the call is the “this” variable ϕ, and in the case of nested
traits, only when it is the ϕ of the innermost trait containing the method M that
contains the call site. The latter is guaranteed by the predicate S � M, since
only the innermost enclosing trait contains M as a member. In this case, the
receiver ϕ has the same value that the receiver had when M itself was invoked.
This value must contain M as a member because M was the method invoked.
Therefore, the type T of the actual receiver x at the current call site c contains
M as a member.

(f) (for TCA
expand-this
ABSTRACT-CALL) T <: S, S ∈ expand(typenA), p.type � typenA <: U , s : p.A.

We need to ensure that these conditions are satisfied when the type p.A of s
is an abstract type. Lemma 5.3 applies to trace τ ′ and shows that the analysis
infers a type S ∈ expand(typenA), where typenA <: U is the declaration of A
that is a member of p.type, such that T <: S.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:30 K. Ali et al.

Since all of the premises of either analysis rule TCA
expand-this
CALL or TCA

expand-this
CALL-ABSTRACT are

satisfied, its conclusion must hold, so c �→ M′. By analysis rule TCA
expand-this
REACHABLE , M′ ∈ R,

so the conclusion of the lemma is satisfied.
(3) The reduction rule may be a rule other than RED-NEW and RED-METHOD. In this case,

calls(τ ′) = calls(τ ′′) and allocs(τ ′) = allocs(τ ′′), so the conclusion of the lemma is
satisfied.

Finally, we apply induction to the step lemma to prove that TCAexpand-this soundly
overapproximates all execution traces.

THEOREM 5.5. Let t be any initial FSalg program, and let τ = �, t →∗ �′, t′ be its

execution trace, where � is the empty environment. If TCAexpand-this computes the set of
reachable methods R when applied to t, then calls(τ) ⊆ R.

PROOF. The proof is by induction on the length of the trace τ . The induction hypoth-
esis is defined as follows: for a given trace τ , (1) calls(τ) ⊆ R, and (2) allocs(τ) ⊆ �̂.

When τ is an empty trace, then the sets calls(τ) and allocs(τ) are empty, and therefore
the conclusion is immediate. When τ is nonempty, let τ ′ be the subtrace of τ consisting
of all except the last reduction step. If the induction hypothesis holds for τ ′, then by
Lemma 5.4, the induction hypothesis also holds for τ . Therefore, by induction, the
theorem holds for every execution trace τ .

As a corollary, we also show that in addition to the sets R and �̂, the computed call
relation · �→ · also soundly overapproximates runtime behaviour.

COROLLARY 5.6. Let t be any initial FSalg program, and let τ = �, t →∗ �′, t′ be its

execution trace, where � is the empty environment. If TCAexpand-this computes the set of
calls · �→ · when applied to t, then each pair of call site c and method target n that occurs
in a use of the reduction rule RED-METHOD in τ also occurs as a pair c �→ n in the analysis
result.

PROOF. The corollary follows from the soundness of �̂ and R (shown by Theorem 5.5)
and following the same reasoning as in Case 2 (for rule RED-METHOD) of the proof of
Lemma 5.4.

6. IMPLEMENTATION

We implemented RA, TCAnames, TCAbounds, TCAexpand, and TCAexpand-this as a plugin
for version 2.10.2 of the Scala compiler and tested the implementation on a suite of
programs exhibiting a wide range of Scala features. To the best of our knowledge,
our analyses soundly handle the entire Scala language under the assumption that all
code to be analyzed is available and that reflection and dynamic code generation can be
ignored. We also used the implementation of RTA in the WALA framework to construct
call graphs from JVM bytecode. The implementation of all our analyses and scripts
required to replicate our experiments are available at http://karimali.ca/scalacg/.

The analysis runs after the uncurry phase, which is the 12th of 30 phases in the Scala
compiler. At this stage, most of the convenience features in Scala that are specified as
syntactic sugar have been desugared. However, the compiler has not yet transformed
the program to be closer to JVM bytecode and has not yet erased any significant type
information. In particular, closures have been turned into function objects with apply
methods, pattern matching has been desugared into explicit tests and comparisons,
and implicit calls and parameters have been made explicit, so our analysis does not
have to deal with these features explicitly.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:31

Some Scala idioms (e.g., path-dependent types, structural types, singletons, and
generics) make the subtype testing in Scala complicated [Odersky 2011, §3.5]. Fortu-
nately, we can rely on the Scala compiler infrastructure to answer subtype queries.
Two issues, however, require special handling in the implementation: super calls and
incomplete programs.

6.1. Super Calls

Normally, when a method is called on some receiver object, the method is a member of
that object. Super calls violate this general rule: a call on super invokes a method in a
supertype of the receiver’s type. This method is typically not a member of the receiver
object because some other method overrides it.

At a call on super, the analysis must determine the method actually invoked. When
the call site is in a class (not a trait), the call is resolved statically as in Java. When the
call site is in a trait, however, the target method is selected using a dynamic dispatch
mechanism depending on the runtime type of the receiver [Odersky 2011, §6.5]. Our
analysis resolves such calls using a similar procedure as for ordinary dynamically
dispatched calls. For each possible runtime type of the receiver, the specified procedure
is followed to find the actual call target.

The TCAexpand-this analysis requires that within any method M, the this variable refers
to an object of which M is a member. This premise is violated when M is invoked using
a super call. To restore soundness, we blacklist the signatures of the targets of all
reachable super calls. Within a method whose signature is blacklisted, we fall back to
the TCAexpand analysis instead of TCAexpand-this.

6.2. Incomplete Programs

Our analyses are defined for complete programs, but a practical implementation must
deal with incomplete programs. A typical example of an incomplete program is a situ-
ation where user code calls unanalyzed libraries.

Our implementation analyzes Scala source files presented to the compiler, but not
referenced classes provided only as bytecode such as the Scala and Java standard
libraries. The analysis soundly analyzes call sites occurring in the provided Scala
source files using a Scala analogue of the Separate Compilation Assumption [Ali and
Lhoták 2012, 2013; Ali 2014], which asserts that unanalyzed “library” classes do not
directly reference analyzed “application” classes. If application code passes the name
of one of its classes to the library and the library instantiates it by reflection, then our
analysis faces the same challenges as any Java analysis, and the same solutions would
apply.

If the declaring class of the static target of a call site is available for analysis, then
so are all its subtypes. In such cases, the analysis can soundly determine all possible
actual call targets. On the other hand, if the declaring class of the static target of a
call is in an unanalyzed class, it is impossible to determine all possible actual target
methods, because some targets may be in unanalyzed code or in trait compositions that
are only created in unanalyzed code. The implementation records the existence of such
call sites but does not attempt to resolve them soundly. However, the methods invoked
by such call sites, as well as those that occur in unanalyzed code, may call methods
in analyzed code via call-backs. For soundness, the analysis must treat such target
methods as reachable. This is achieved by considering a method reachable if it occurs
in an instantiated type and if it overrides a method declared in unanalyzed code. This
is sound because in both cases (a call whose static target is in unanalyzed code, or a
call in unanalyzed code), the actual runtime target method must override the static
target of the call.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:32 K. Ali et al.

Determining the method overriding relationship is more difficult than in Java. Two
methods declared in two independent traits do not override each other unless these
traits are composed in the instantiation of some object. Therefore, the overriding rela-
tion must be updated as new trait compositions are discovered.

7. EVALUATION

We evaluated our implementation on publicly available Scala programs covering a
range of different application areas and programming styles.6 Table I shows, for each
program, the number of lines of Scala source code (excluding library code), classes, ob-
jects, traits, trait compositions, methods, closures, call sites, call sites on abstract types,
and call sites on the variable this. ARGOT is a command-line argument parser for Scala.
CASBAH is a Scala toolkit for the MongoDB7 document database. ENSIME is an Emacs
plugin that provides an enhanced Scala interactive mode, including a read-eval-print
loop (REPL) and many features commonly found in IDEs, such as live error-checking,
package/type browsing, and basic refactorings. FACTORIE is a toolkit for probabilistic
modeling. It provides its users with a language for creating relational factor graphs,
estimating parameters, and performing inference. FIMPP is an interpreter for an imper-
ative, dynamically-typed language that supports integer arithmetic, console output,
dynamically growing arrays, and subroutines. KIAMA is a library for language process-
ing used to compile and execute several small languages. PHANTM is a tool that uses a
flow-sensitive static analysis to detect type errors in PHP code [Kneuss et al. 2010].
SCALAP is Scala class-file decoder. SCALARIFORM is a code formatter written in Scala.
SCALAXB is an XML data-binding tool for Scala. SCALISP is a LISP interpreter written in
Scala. SEE is a simple engine for evaluating arithmetic expressions. SQUERYL is a Scala
library that provides object-relational mapping for SQL databases. TICTACTOE is an im-
plementation of the classic “tic-tac-toe” game with a text-based user interface. The
programs SCALAP, SCALARIFORM, KIAMA, and SCALAXB are part of the DaCapo Scala Bench-
marking project [Sewe et al. 2011]. We did not use the other DaCapo Scala benchmarks
as they are not compatible with the version of Scala that we used for our experiments.

We ran all of our experiments on a machine with eight dual-core AMD Opteron
1.4 GHz CPUs (running in 64-bit mode) and capped the available memory for the
experiments to 16GB of RAM.

Assumptions. For all our experiments, we consider main methods and constructors
of Scala modules to be entry points of the call graph. For benchmarks that represent
libraries (e.g., CASBAH, KIAMA, and SQUERYL), we also include the test suites that are
offered by the library designers as part of the analyzed program. This allows us to
properly evaluate those benchmarks that represent libraries, as they normally do not
have main methods.

7.1. Research Questions

Our evaluation aims to answer the following research questions.

—RQ1. How precise are call graphs constructed from JVM bytecode produced by the
Scala compiler compared to call graphs constructed from Scala source code using our
new algorithms?

6The benchmark source code is available from http://github.com/bmc/argot, http://github.com/
mongodb/casbah, http://github.com/aemoncannon/ensime, http://github.com/factorie/factorie, http:/ /
github.com/KarolS/fimpp, http://code.google.com/p/kiama, http://github.com/colder/phantm, http://
scala-lang.org/, http://github.com/mdr/scalariform, http://github.com/eed3si9n/scalaxb, http://
github.com/Mononofu/Scalisp, http://scee.sourceforge.net, http://github.com/max-l/Squeryl, and
http://github.com/nickknw/arbitrarily-sized-tic-tac-toe.
7http://www.mongodb.org.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:33

Table I. Various Characteristics of Our Benchmark Programs

L
O

C

#
cl

as
se

s

#
ob

je
ct

s

#
tr

ai
ts

#
tr

ai
t

co
m

po
si

ti
on

s

#
m

et
h

od
s

#
cl

os
u

re
s

#
ca

ll
si

te
s

#
ca

ll
si

te
s

on
ab

st
ra

ct
ty

pe
s

#
ca

ll
si

te
s

on
th

is

ARGOT 1,074 18 4 6 185 485 168 2,543 2 276
CASBAH 1,944 39 47 11 152 1,309 130 4,864 8 912
ENSIME 7,832 223 172 36 1,051 4,878 532 19,555 23 3,195
FACTORIE 35,428 1,173 816 420 5,652 22,292 3,892 99,933 1,380 16,876
FIMPP 1,089 42 53 5 673 2,060 549 5,880 4 1,159
KIAMA 17,914 801 664 162 5,340 19,172 3,963 69,352 401 16,256
PHANTM 9,319 317 358 13 1,491 7,208 561 36,276 15 6,643
SCALAP 2,348 91 83 35 661 2,746 519 7,888 24 2,059
SCALARIFORM 7,750 147 191 46 1,362 5,776 966 23,142 26 7,012
SCALAXB 10,290 324 259 222 3,047 10,503 2,204 47,382 35 7,305
SCALISP 795 20 14 0 125 428 115 2,313 23 293
SEE 4,311 130 151 17 415 2,280 262 9,566 11 1,449
SQUERYL 7,432 255 55 110 1,043 3,793 826 13,585 173 2,540
TICTACTOE 247 2 7 0 32 112 24 603 0 41

—RQ2. What is the impact on call graph precision of adopting subtype-based call
resolution instead of name-based call resolution?

—RQ3. What is the impact on call graph precision of determining the set of concrete
types that may be bound to abstract type members instead of using a bounds-based
approximation?

—RQ4. What is the impact of the special treatment of calls on this?
—RQ5. How does the running time of the analyses compare?
—RQ6. For how many call sites can the algorithms find a single outgoing edge?

7.2. Results

Table II summarizes the precision of the call graphs computed by our analyses. For
each benchmark and analysis combination, the table shows the number of reachable
methods and call edges in the call graph. All call graphs presented in this section
include only the analyzed code of the benchmark itself, excluding any library code. For
RTAwala, such “summarized call graphs” were obtained by collapsing the parts of the
call graph in the library into a single node.

RQ1. To answer this question, we compare the call graphs from the TCAbounds and
RTAwala analyses. The call graphs constructed from bytecode have on average 1.7x as
many reachable methods and 4.5x as many call edges as the call graphs constructed
by analyzing Scala source. In other words, analyzing generated bytecode incurs a very
large loss in precision.

Investigating further, we found that the most significant cause of precision loss is due
to apply methods, which are generated from closures. These account for, on average, 25%
of the spurious call edges computed by RTAwala but not by TCAbounds. The second-most
significant cause of precision loss are toString methods, which account for, on average,
13% of the spurious call edges.

The ENSIME program is an interesting special case because it uses Scala constructs
that are translated into code that uses reflection (see Section 3.5). As a result, the
RTAwala analysis makes conservative approximations that cause the call graph to be-
come extremely large and imprecise. The summarized call graph computed by RTAwala

shown in Table II has 4,525 nodes and 61,803 edges. However, the size of the call graph
originally computed by RTAwala (before summarizing the library code) has 78,901 nodes

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:34 K. Ali et al.

Table II. Number of Nodes and Edges in the Summarized Version of Call Graphs Computed using the RA,
TCAnames, TCAbounds, TCAexpand, TCAexpand-this, and RTAwala

R
A

T
C

A
n

am
es

T
C

A
bo

u
n

d
s

T
C

A
ex

pa
n

d

T
C

A
ex

pa
n

d
-t

h
is

R
T

A
w

al
a

ARGOT
nodes 265 184 161 161 161 236
edges 3,516 1,538 442 442 440 648

CASBAH
nodes 772 592 398 398 398 581
edges 15,159 10,540 1,271 1,271 1,269 2,275

ENSIME
nodes 3,491 3,018 2,967 2,966 2,965 4,525
edges 191,435 150,974 8,025 8,023 8,017 61,803

FACTORIE
nodes 16,373 11,589 9,656 9,530 9,493 19,889
edges 6,187,646 3,835,924 63,768 45,790 45,414 370,668

FIMPP
nodes 870 773 771 771 771 1,381
edges 12,716 10,900 2,404 2,404 2,404 8,327

KIAMA
nodes 11,959 8,684 7,609 7,600 7,200 13,597
edges 1,555,533 845,120 35,288 34,041 32,475 609,255

PHANTM
nodes 5,945 5,207 4,798 4,587 4,587 5,157
edges 376,065 296,252 14,727 13,899 13,870 213,264

SCALAP
nodes 1,650 1,449 1,314 1,306 1,306 1,856
edges 48,089 33,744 3,563 3,551 3,551 19,016

SCALARIFORM
nodes 4,277 3,548 2,852 2,852 2,852 4,629
edges 210,352 157,589 9,117 9,042 9,042 81,512

SCALAXB
nodes 6,795 2,263 1,196 1,196 1,196 3,866
edges 1,832,473 322,499 5,819 5,819 5,818 48,966

SCALISP
nodes 283 196 186 186 186 307
edges 3,807 2,380 526 526 526 908

SEE
nodes 1,869 1,711 1,645 1,572 1,572 2,016
edges 77,303 63,706 8,349 7,466 7,418 14,520

SQUERYL
nodes 2,484 1,488 408 408 408 1,507
edges 91,342 46,160 1,677 1,677 1,676 8,669

TICTACTOE
nodes 79 78 78 78 78 112
edges 524 523 170 170 170 327

and 7,835,170 edges. We experimentally confirmed that nearly half of these edges are
in parts of the libraries related to the reflection API. This further reaffirms that a
bytecode-based approach to call graph construction is highly problematic.

RQ2. To answer this question, we compare TCAnames and TCAbounds and find that
name-based analysis incurs a very significant precision loss: The call graphs gener-
ated by TCAnames have, on average, 12.34x as many call edges as those generated by
TCAbounds. Investigating further, we find that, on average, 66% of the spurious call
edges computed by the name-based analysis were to apply methods, which are used to
implement closures.

RQ3. To answer this question, we compare TCAbounds and TCAexpand. On the smaller
benchmark programs that make little use of abstract types, the two produce identical
results. Since FACTORIE, KIAMA, PHANTM, and SEE contain some call sites on receivers with
abstract types, TCAexpand computes more precise call graphs for them. For SCALAXB,

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:35

Fig. 23. A Scala program for which TCAexpand finds new instantiated types in methods found unreachable
by TCAexpand-this (taken from the KIAMA program).

SCALISP, and SQUERYL, call graph precision is not improved despite the presence of ab-
stract types because the call sites on abstract receivers occur in unreachable code.

RQ4. To answer the fourth research question, we compare the TCAexpand and
TCAexpand-this analyses. In general, we found that the precision benefit of the special
handling of this calls is small and limited to specific programs. In particular, we found
that the number of call edges is reduced by 5% on KIAMA and by 1% on SEE but that
there is no significant difference on the other benchmarks. The situation for KIAMA is
interesting in that TCAexpand finds 3.7% more instantiated types than TCAexpand-this.
Those types are instantiated in methods identified as unreachable by TCAexpand-this.

Figure 23 shows an excerpt from KIAMA that illustrates why TCAexpand-this finds fewer
instantiated types. The figure shows a trait org.kiama.output.ParenPrettyPrinter that de-
fines a method toParenDoc, which contains a call this.bracket. This method, in turn,
calls another method that instantiates type PostFix. org.kiama.output.ParenPrettyPrinter
also defines a method bracket(), so the TCAexpand analysis would create an edge from
the call on line 212 to method org.kiama.output.ParenPrettyPrinter.bracket(), thus causing
type PostFix to be instantiated. The figure also shows two objects, A4 and A2b, that
mix in traits L0.source.PrettyPrinter and L1.source.PrettyPrinter, respectively, which in-
herit from org.kiama.output.ParenPrettyPrinter. Since A4 inherits a definition of toParen-
Doc() from L0.source.PrettyPrinter, the TCAexpand-this analysis concludes that the type
of this on line 212 cannot be A4. The TCAexpand-this analysis also rules out type A2b
as the type of this on line 212 because it inherits a different definition of bracket
from L1.source.PrettyPrinter. Consequently, the TCAexpand-this analysis finds that method
org.kiama.output.ParenPrettyPrinter.bracket() is unreachable and that type PostFix is not
instantiated.

The two most common reasons why the more precise rule TCA
expand-this
THIS-CALL may fail to

rule out a given call graph edge are that the caller M is inherited into the runtime
receiver type C, so the call can occur, or that the caller M can be called through super, so
using the rule would be unsound, as explained in Section 6.1. Across all the benchmark
programs, the rule failed to eliminate a call edge at 81% of call sites on this due to the
caller M being inherited into C, and at 17% of call sites on this due to the caller M being
called through super.

RQ5. The running times of the analyses are presented in Table III. For comparison,
the last column of the table also shows the time required to compile each benchmark

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:36 K. Ali et al.

Table III. Time (in Seconds) Taken by RA, TCAnames, TCAbounds, TCAexpand, TCAexpand-this, and RTAwala

to Compute the Call Graphs

R
A

T
C

A
n

am
es

T
C

A
bo

u
n

d
s

T
C

A
ex

pa
n

d

T
C

A
ex

pa
n

d
-t

h
is

R
T

A
w

al
a

sc
al

ac

ARGOT 3.8 3.4 3.5 3.7 4 11.7 25.7
CASBAH 3.8 3.4 3.9 4.4 4.2 16.4 35.3
ENSIME 31.5 25.2 28.9 29 28.3 528.3 61.5
FACTORIE 873.9 523.8 317.2 419.2 405.2 594.8 126.7
FIMPP 5.2 4.8 7.8 8.1 8.1 14.3 37
KIAMA 279.7 88 133 138.2 123 65.9 107.6
PHANTM 55.1 42.9 56.1 57 58.7 27.8 70.2
SCALAP 8.2 7.1 7.2 7.9 8.1 15.3 42.2
SCALARIFORM 25.8 19.4 17.6 20.2 17.4 21.6 61.4
SCALAXB 110.3 16.4 12.1 12.6 12.7 21.9 87.1
SCALISP 3.1 3 3.1 3.4 3.4 12.8 26.1
SEE 7.2 6.4 8.6 9 9.3 13.8 40.4
SQUERYL 20.6 11.6 6.4 6.9 7 20 59.4
TICTACTOE 1.6 1.8 1.8 2 2 10 16.4

using the unmodified Scala compiler. Although our implementation has not been heav-
ily tuned for performance, across all the benchmarks, the analysis times of TCAexpand-this

are an average 28% of the compilation time taken by scalac. The high imprecision of the
RA analysis generally makes it significantly slower than the other, more complicated
but more precise analyses. The TCAnames analysis is sometimes significantly faster and
sometimes significantly slower than the TCAbounds analysis, since it avoids many ex-
pensive subtype tests, but is significantly less precise. The TCAexpand and TCAexpand-this

analyses have generally similar execution times as the TCAbounds analysis because ab-
stract types and this calls are a relatively small fraction of all call sites in the benchmark
programs.

The long running time of nearly 500 seconds of RTAwala on ENSIME is because the
computed call graph becomes extremely large (see discussion of RQ1).

RQ6. Certain applications of call graphs require call sites to have a unique outgoing
edge. For example, whole-program optimization tools [Tip et al. 2002] may inline such
“monomorphic” call sites. It is therefore useful to measure the ability of the different al-
gorithms to resolve call sites to a unique target method. In principle, the RA, TCAnames,
TCAbounds, TCAexpand, and TCAexpand-this algorithms are progressively more precise, so
we could see fewer nodes and edges as we move to the next algorithm in this sequence.
Therefore, it is particularly interesting to determine if an increase in precision occurs
in practice.

Tables IV–VII show, for each benchmark program, the number of monomorphic
and polymorphic call sites, as determined by the analyses RA, TCAnames, TCAbounds,
TCAexpand, and TCAexpand-this, respectively. For each pair of algorithms (X, Y), where
X is the less precise algorithm and Y is the more precise algorithm, these tables
show:

—for call sites that are identified as monomorphic by X, whether they are (i) identified
as unreachable by Y , or (ii) identified as monomorphic by Y , and

—for call sites that are identified as polymorphic by X, whether they are (i) identi-
fied as unreachable by Y , (ii) identified as monomorphic by Y , or (iii) identified as
polymorphic by Y .

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:37

Table IV. Number of Monomorphic and Polymorphic Reachable Call Sites in the Summarized
Version of Call Graphs Computed using RA and How Many of Them Became Unreachable,

Monomorphic, or Polymorphic in TCAnames

TCAnames

RA Unreachable Mono Poly

ARGOT
Mono 1,200 425 775 −
Poly 1,296 536 4 756

CASBAH
Mono 1,898 193 1,705 −
Poly 2,228 279 48 1,901

ENSIME
Mono 10,901 362 10,539 −
Poly 8,433 368 53 8,012

FACTORIE
Mono 35,980 5,301 30,679 −
Poly 61,737 8,689 683 52,365

FIMPP
Mono 4,058 56 4,002 −
Poly 1,636 7 11 1,618

KIAMA
Mono 40,974 13,460 27,514 −
Poly 27,869 9,833 1,244 16,792

PHANTM
Mono 17,500 606 16,894 −
Poly 18,611 554 98 17,959

SCALAP
Mono 4,198 335 3,863 −
Poly 3,218 207 12 2,999

SCALARIFORM
Mono 12,001 767 11,234 −
Poly 10,727 2,098 859 7,770

SCALAXB
Mono 22,170 9,320 12,850 −
Poly 24,809 11,891 86 12,832

SCALISP
Mono 1,163 126 1,037 −
Poly 1,106 99 165 842

SEE
Mono 5,327 97 5,230 −
Poly 4,126 114 124 3,888

SQUERYL
Mono 6,453 1,709 4,744 −
Poly 6,369 1,912 174 4,283

TICTACTOE
Mono 330 1 329 −
Poly 204 0 0 204

Given this classification, the results can be summarized as follows.

—Table IV compares how calls are resolved by the RA and the TCAnames analy-
ses. From the results shown in the table, it is clear that the TCAnames algorithm
can be considerably more precise. For example, for the KIAMA program, we observe
that of the 40,974 call sites classified as monomorphic by RA, 13,460 are deter-
mined to be unreachable by the more precise TCAnames analysis. Moreover, of the
27,689 polymorphic call sites that RA finds in KIAMA, 9,833 are found to be un-
reachable by TCAnames and 1,244 are classified as monomorphic by TCAnames, thus
reducing the number of polymorphic call sites to 16,792. From these results, it
is clear that taking trait compositions into consideration results in significantly
more precise call graphs than what can be achieved using RA’s naive name-based
resolution.

—Table V compares how calls are resolved by the TCAnames and the TCAbounds analyses.
These results show that the use of the static types of receivers makes a significant
difference in precision. For example, for FACTORIE, the TCAnames algorithm constructs

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:38 K. Ali et al.

Table V. Number of Monomorphic and Polymorphic Reachable Call Sites in the Summarized Version
of Call Graphs Computed using TCAnames and How Many of Them Became Unreachable,

Monomorphic, or Polymorphic in TCAbounds

TCAbounds

TCAnames Unreachable Mono Poly

ARGOT
Mono 779 34 745 −
Poly 756 39 682 35

CASBAH
Mono 1,753 157 1,596 −
Poly 1,901 291 1,592 18

ENSIME
Mono 10,592 36 10,556 −
Poly 8,012 58 7,495 459

FACTORIE
Mono 31,362 1,321 30,041 −
Poly 52,365 3,498 41,941 6,926

FIMPP
Mono 4,013 0 4,013 −
Poly 1,618 0 1,467 151

KIAMA
Mono 28,758 787 27,971 −
Poly 16,792 762 14,970 1,060

PHANTM
Mono 16,992 89 16,903 −
Poly 17,959 77 16,153 1,729

SCALAP
Mono 3,875 425 3,450 −
Poly 2,999 327 2,471 201

SCALARIFORM
Mono 12,093 1,641 10,452 −
Poly 7,770 1,592 5,985 193

SCALAXB
Mono 12,936 2,903 10,033 −
Poly 12,832 5,273 7,014 545

SCALISP
Mono 1,202 42 1,160 −
Poly 842 30 750 62

SEE
Mono 5,354 34 5,320 −
Poly 3,888 56 2,933 899

SQUERYL
Mono 4,922 2,505 2,417 −
Poly 4,283 2,763 1,443 77

TICTACTOE
Mono 329 0 329 −
Poly 204 0 187 17

a call graph with 31,362 monomorphic call sites and 52,365 polymorphic call sites.
The TCAbounds algorithm classifies 1,321 of the 31,362 monomorphic call sites as
unreachable, and of the 52,365 call sites reported as polymorphic by TCAnames, it
finds that 3,498 are unreachable, 41,941 are monomorphic, and that only 6,926
polymorphic call sites remain. Clearly, using the static type of the receiver can make
a significant precision difference in practice.

—Table VI compares how calls are resolved by the TCAbounds and the TCAexpand

analyses. From these results, it is clear that on several smaller programs that
do not make significant use of abstract types (ARGOT, CASBAH, SCALARIFORM, SCALAXB,
SCALISP, SQUERYL, TICTACTOE), the two algorithms compute exactly the same result.
However, on larger programs that feature complex use of abstract type members,
TCAexpand’s more precise analysis of how such types are instantiated makes a dif-
ference. For example, on FACTORIE, TCAbounds computes a call graph with 71,892
monomorphic call sites and 6,926 polymorphic call sites. Of these 71,892 monomor-
phic call sites, the more precise TCAexpand algorithm finds 414 to be unreachable.
Furthermore, of the 6,926 found to be polymorphic by TCAbounds, 197 are classified as

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:39

Table VI. Number of Monomorphic and Polymorphic Reachable Call Sites in the Summarized Version
of Call Graphs Computed using TCAbounds and How Many of Them Became Unreachable,

Monomorphic, or Polymorphic in TCAexpand

TCAexpand

TCAbounds Unreachable Mono Poly

ARGOT
Mono 1,427 0 1,427 −
Poly 35 0 0 35

CASBAH
Mono 3,188 0 3,188 −
Poly 18 0 0 18

ENSIME
Mono 18,051 4 18,047 −
Poly 459 0 0 459

FACTORIE
Mono 71,982 414 71,568 −
Poly 6,926 197 101 6,628

FIMPP
Mono 5,480 0 5,480 −
Poly 151 0 0 151

KIAMA
Mono 42,941 118 42,823 −
Poly 1,060 3 13 1,044

PHANTM
Mono 33,056 328 32,728 −
Poly 1,729 0 0 1,729

SCALAP
Mono 5,921 31 5,890 −
Poly 201 0 0 201

SCALARIFORM
Mono 16,437 0 16,437 −
Poly 193 0 1 192

SCALAXB
Mono 17,047 0 17,047 −
Poly 545 0 0 545

SCALISP
Mono 1,910 0 1,910 −
Poly 62 0 0 62

SEE
Mono 8,253 189 8,064 −
Poly 899 89 3 807

SQUERYL
Mono 3,860 0 3,860 −
Poly 77 0 0 77

TICTACTOE
Mono 516 0 516 −
Poly 17 0 0 17

unreachable by TCAexpand, and 101 are classified as monomorphic. In summary, the
more precise treatment of abstract type members by TCAexpand has limited impact
on precision, on larger programs that feature more complex usage of abstract type
members.

—Table VII compares how calls are resolved by the TCAexpand and the TCAexpand-this

analyses. From these results, it is clear that the special handling of calls on this makes
no difference on small programs that do not have complex inheritance hierarchies.
However, it is interesting to see that on our two largest subject programs, there is
a noticable effect. For example, the TCAexpand algorithm found 42,836 monomorphic
call sites on KIAMA of which 1,709 were classified as unreachable by the more precise
TCAexpand-this algorith. Furthermore, of the 1,044 call sites found to be polymorphic by
TCAexpand, 47 were classified as unreachable by TCAexpand-this, whereas an additional
51 were classified as polymorphic. From these results, we conclude that although
the impact of the special handling of this is limited, it can have a noticable effect as
programs become larger and more complex.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:40 K. Ali et al.

Table VII. Number of Monomorphic and Polymorphic Reachable Call Sites in the Summarized
Version of Call Graphs Computed using TCAexpand and How Many of Them Became Unreachable,

Monomorphic, or Polymorphic in TCAexpand-this

TCAexpand-this

TCAexpand Unreachable Mono Poly

ARGOT
Mono 1,427 0 1,427 −
Poly 35 0 1 34

CASBAH
Mono 3,188 2 3,186 −
Poly 18 0 0 18

ENSIME
Mono 18,047 0 18,047 −
Poly 459 0 1 458

FACTORIE
Mono 71,669 162 71,507 −
Poly 6,628 4 43 6,581

FIMPP
Mono 5,480 0 5,480 −
Poly 151 0 0 151

KIAMA
Mono 42,836 1,709 41,127 −
Poly 1,044 47 51 946

PHANTM
Mono 32,728 0 32,728 −
Poly 1,729 0 136 1,593

SCALAP
Mono 5,890 0 5,890 −
Poly 201 0 0 201

SCALARIFORM
Mono 16,438 0 16,438 −
Poly 192 0 0 192

SCALAXB
Mono 17,047 0 17,047 −
Poly 545 0 0 545

SCALISP
Mono 1,910 0 1,910 −
Poly 62 0 0 62

SEE
Mono 8,067 0 8,067 −
Poly 807 0 0 807

SQUERYL
Mono 3,860 1 3,859 −
Poly 77 0 0 77

TICTACTOE
Mono 516 0 516 −
Poly 17 0 0 17

In summary, we conclude that for finding monomorphic call sites, the use of trait
compositions in TCAnames is vastly superior to the naive name-based resolution in RA.
Similarly, the use of bounds to approximate the behavior of calls on abstract receivers
in TCAbounds is a significant improvement over the naive way in which TCAnames re-
solves such calls. The impact of the more precise modeling of abstract receiver types
in TCAexpand and of calls on this in TCAexpand-this has more limited impact. However, it
is encouraging to see that the impact of these optimizations appears to become more
pronounced as applications become larger and more complex.

7.3. Discussion

The subject programs that we used for the evaluation of our work cover a range of
different programming styles. This includes the use of traditional object-oriented con-
structs as well as some programs that rely heavily on closures as is promoted by the
functional programming style that Scala encourages. There are some additional Scala
features that are not exercised by our subject programs such as actors and concurrency,
but these features do not pose soundness problems for our type-based algorithms since

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:41

our algorithms are flow-insensitive and do not track the interleaving of threads. That
said, given that programs that use actors tend to make heavy use of closures, it would
be advisable to use one of our more precise algorithms (at least TCAbounds) in such cases
in order to avoid a detrimental loss of precision while resolving calls to apply methods
discussed previously.

The algorithms presented in this article are all type-based. The design and evalu-
ation of flow-based and context-sensitive algorithms is a topic for future work. In the
context of Java, it has been shown that it is crucial for the precision of flow-based
algorithms to also enforce statically declared types [Lhoták and Hendren 2003]. A
flow-based algorithm for Scala could do this by building on the techniques that we
have proposed here. It will be particularly interesting to see whether such algorithms
provide greater benefits for Scala than they do for Java, given the pervasive use of
functional programming idioms in Scala.

8. CONCLUSIONS

We presented a family of low-cost algorithms for constructing call graphs of Scala
programs in the spirit of Name-Based Resolution (RA) [Srivastava 1992], Class Hier-
archy Analysis (CHA) [Dean et al. 1995], and Rapid Type Analysis (RTA) [Bacon and
Sweeney 1996]. Our algorithms consider how traits are combined in a Scala program
to improve precision and handle the full Scala language, including features such as
abstract type members, closures, and path-dependent types. Furthermore, we propose
a mechanism for resolving calls on the this reference more precisely, by considering
overriding definitions of the method containing the call site.

We implemented the algorithms in the context of the Scala compiler and compared
their precision and cost on a collection of Scala programs. We found that TCAnames

is significantly more precise than RA, indicating that maintaining a set of instan-
tiated trait combinations greatly improves precision. Furthermore, TCAbounds is sig-
nificantly more precise than TCAnames, indicating that subtyping-based call resolu-
tion is superior to name-based call resolution. The improvements of TCAexpand over
TCAbounds occur on a few larger subjects that make nontrivial use of abstract type
members and type parameters. Similarly, TCAexpand-this only did significantly bet-
ter than TCAexpand on programs that make nontrivial use of subtyping and method
overriding.

Prior to our work, if one needed a call graph for a Scala program, the only avail-
able method was to analyze the JVM bytecodes produced by the Scala compiler. Since
significant type information is lost during the compilation process, RTA call graphs
constructed from the JVM bytecodes can be expected to be much less precise than the
call graphs constructed using our new algorithms, as confirmed by our experimental
results.

While our research has focused on Scala, several aspects of the work are broadly
applicable to other statically typed object-oriented languages. In particular, the special
handling of calls on this can be integrated with existing algorithms such as CHA and
RTA for languages such as Java, C#, and C++.

ACKNOWLEDGMENTS

We are grateful to Max Schäfer and the reviewers of previous versions of this article for many invaluable
comments and suggestions, and to Rob Schluntz for assistance with testing.

REFERENCES

Ole Agesen. 1994. Constraint-based type inference and parametric polymorphism. In Proceedings of the 1st
International Static Analysis Symposium (SAS). 78–100.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

9:42 K. Ali et al.

Karim Ali. 2014. The Separate Compilation Assumption. Ph.D. Dissertation. University of Waterloo, Canada.
Karim Ali and Ondřej Lhoták. 2012. Application-only call graph construction. In Proceedings of the European

Conference on Object-Oriented Programming (ECOOP). 688–712.
Karim Ali and Ondrej Lhoták. 2013. Averroes: Whole-program analysis without the whole program. In

Proceedings of the European Conference on Object-Oriented Programming (ECOOP). 378–400.
Karim Ali, Marianna Rapoport, Ondrej Lhoták, Julian Dolby, and Frank Tip. 2014. Constructing call graphs

of Scala programs. In Proceedings of the 28th European Conference Object-Oriented Programming. 54–
79. DOI:http://dx.doi.org/10.1007/978-3-662-44202-9 3

David Francis Bacon. 1997. Fast and Effective Optimization of Statically Typed Object-Oriented Languages.
Ph.D. Dissertation. University of California, Berkeley.

David F. Bacon and Peter F. Sweeney. 1996. Fast static analysis of C++ virtual function calls. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). 324–341.

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-
to analyses. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 243–262.

Vincent Cremet, François Garillot Sergueı̈ Lenglet, and Martin Odersky. 2006. A core calculus for Scala type
checking. In Proceedings of the International Symposium on Mathematical Foundations of Computer
Science (MFCS). 1–23.

Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-oriented programs using static
class hierarchy analysis. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP). 77–101.

Greg DeFouw, David Grove, and Craig Chambers. 1998. Fast interprocedural class analysis. In Proceedings
of the ACM SIGPLAN SIGACT Symposium on Principles of Programming Languages (POPL). 222–236.

Gilles Dubochet and Martin Odersky. 2009. Compiling structural types on the JVM: A comparison of re-
flective and generative techniques from Scala’s perspective. In Proceedings of the 4th Workshop on the
Implementation, Compilation, Optimization of Object-Oriented Languages and Programming Systems
(ICOOOLPS’09). ACM, New York, NY, 34–41. DOI:http://dx.doi.org/10.1145/1565824.1565829

David Grove and Craig Chambers. 2001. A framework for call graph construction algorithms. ACM Trans.
Program. Lang. Syst. 23, 6 (2001), 685–746.

Nevin Heintze. 1994. Set-based analysis of ML programs. In Proceedings of the ACM Conference on LISP
and Functional Programming. 306–317.

Nevin Heintze and Olivier Tardieu. 2001. Ultra-fast aliasing analysis using CLA: A million lines of C code
in a second. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 254–263.

Fritz Henglein. 1992. Dynamic typing. In Proceedings of the 4th European Symposium on Programming
(ESOP). 233–253.

IBM. 2013. T.J. Watson Libraries for analysis WALA. http://wala.sourceforge.net/. (Last accessed April 2013).
Etienne Kneuss, Philippe Suter, and Viktor Kuncak. 2010. Phantm: PHP analyzer for type mismatch. In Pro-

ceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(SIGSOFT FSE). 373–374.

Ondřej Lhoták and Laurie J. Hendren. 2003. Scaling Java points-to analysis using SPARK. In Proceedings
of the International Conference on Compiler Construction (CC). 153–169.

Ondřej Lhoták and Laurie J. Hendren. 2006. Context-sensitive points-to analysis: Is it worth it?. In Proceed-
ings of the International Conference on Compiler Construction (CC). 47–64.

Martin Odersky. 2011. The Scala Language Specification Version 2.9. Technical Report. EPFL.
Martin Odersky, Lex Spoon, and Bill Venners. 2012. Programming in Scala (2nd ed.). Artima Press.
B. G. Ryder. 1979. Constructing the call graph of a program. IEEE Trans. Softw. Eng. 5, 3 (1979), 216–226.

DOI:http://dx.doi.org/10.1109/TSE.1979.234183
Olivier Sallenave and Roland Ducourneau. 2012. Lightweight generics in embedded systems through static

analysis. In Proceedings of the SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES). 11–20.

Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da capo con scala: Design and
analysis of a Scala benchmark suite for the Java virtual machine. In Proceedings of the ACM Interna-
tional Conference on Object-Oriented Programming Systems Languages and Applications (OOPSLA).
657–676.

Olin Shivers. 1991. Control-Flow Analysis of Higher-Order Languages. Ph.D. Dissertation. CMU.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

Type-Based Call Graph Construction Algorithms for Scala 9:43

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. 2012. Correlation tracking
for points-to analysis of JavaScript. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP). 435–458.

A. Srivastava. 1992. Unreachable procedures in object oriented programming. ACM Lett. Program. Lang.
Syst. 1, 4 (December 1992), 355–364.

Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam, Etienne
Gagnon, and Charles Godin. 2000. Practical virtual method call resolution for Java. In Proceedings
of the ACM International Conference on Object-Oriented Programming Systems Languages and Appli-
cations (OOPSLA). 264–280.

Frank Tip and Jens Palsberg. 2000. Scalable propagation-based call graph construction algorithms. In
Proceedings of the ACM International Conference on Object-Oriented Programming Systems Languages
and Applications (OOPSLA). 281–293.

Frank Tip, Peter F. Sweeney, Chris Laffra, Aldo Eisma, and David Streeter. 2002. Practical extraction
techniques for Java. ACM Trans. Program. Lang. Syst. 24, 6 (2002), 625–666.

Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pominville, and Vijay
Sundaresan. 2000. Optimizing Java bytecode using the Soot framework: Is it feasible?. In Proceedings of
the International Conference on Compiler Construction (CC). 18–34. http://portal.acm.org/citation.cfm?
id=647476.727758.

Received March 2015; revised July 2015; accepted September 2015

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 1, Article 9, Pub. date: November 2015.

