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Abstract—In recent years, there has been significant interest in fault-localization techniques that are based on statistical analysis of

program constructs executed by passing and failing executions. This paper shows how the Tarantula, Ochiai, and Jaccard fault-

localization algorithms can be enhanced to localize faults effectively in web applications written in PHP by using an extended domain

for conditional and function-call statements and by using a source mapping. We also propose several novel test-generation strategies

that are geared toward producing test suites that have maximal fault-localization effectiveness. We implemented various fault-

localization techniques and test-generation strategies in Apollo, and evaluated them on several open-source PHP applications. Our

results indicate that a variant of the Ochiai algorithm that includes all our enhancements localizes 87.8 percent of all faults to within

1 percent of all executed statements, compared to only 37.4 percent for the unenhanced Ochiai algorithm. We also found that all the

test-generation strategies that we considered are capable of generating test suites with maximal fault-localization effectiveness when

given an infinite time budget for test generation. However, on average, a directed strategy based on path-constraint similarity achieves

this maximal effectiveness after generating only 6.5 tests, compared to 46.8 tests for an undirected test-generation strategy.

Index Terms—Fault localization, statistical debugging, program analysis, web applications, PHP.
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1 INTRODUCTION

WEB applications are typically written in a combination
of several programming languages, such as Java-

Script on the client side, and PHP with embedded
Structured Query Language (SQL) commands on the server
side. Such applications generate structured output in the
form of dynamically generated HTML pages that may refer
to additional scripts to be executed. As with any program,
programmers make mistakes and introduce faults. In the
domain of web applications, some faults manifest them-
selves as web-application crashes and as malformed HTML
pages that are not displayed properly in a web browser.
While malformed HTML failures may seem trivial, and
indeed many of them are at worst minor annoyances, they
have on occasion been known to create serious vulnerabil-
ities, e.g., via denial-of-service attacks.1 Furthermore, such
failures in the HTML code may be difficult to localize
because HTML code is often dynamically generated by server-
side code—written, for example, in PHP or Java—and so,
when a failure is detected, there really is no HTML file or
line number to point the developer to. In this paper, we
present Apollo, the first fully automatic tool that efficiently
finds and localizes malformed HTML and execution
failures in web applications that execute PHP code on the
server side.

In previous work [8], [9], we adapted the well-
established technique of combined concrete and symbolic
execution [20], [40], [15], [21], [44] to web applications
written in PHP. With this approach, an application is first
executed on an empty input, and a path condition is
recorded that reflects the application’s control-flow pre-
dicates, dependent on that input, that have been executed.
Then, by changing one of the predicates in the path
condition and solving the resulting condition, new inputs
can be obtained, and executing the program on these inputs
will result in additional control-flow paths being exercised.
In each execution, faults that are observed during the
execution are recorded. This process is repeated until either
sufficient coverage of the statements in the application has
been achieved, a sufficient number of faults has been
detected, or the time budget is exhausted. Our previous
work addresses a number of issues specific to the domain of
PHP applications that generate HTML output. In particular,
1) it integrates an HTML validator to check for failures that
manifest themselves by the generation of malformed
HTML, 2) it automatically simulates interactive user input,
and 3) it keeps track of the interactive session state that is
shared between multiple PHP scripts.

However, our previous work focused exclusively on
finding failures by identifying inputs that cause an applica-
tion to crash or produce malformed HTML. We did not
address the problem of pinpointing the specific web-
application instructions that cause these failures, and fixing
the underlying faults can be very difficult and time
consuming if no information is available about where they
are located. This paper addresses the problem of determin-
ing where in the source code changes need to be made in order
to fix the detected failures. This task is commonly referred
to as fault localization, and has been studied extensively in
the literature. For an overview of the literature on fault
localization, the reader is referred to Section 7.
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The fault-localization algorithms explored in this paper
attempt to predict the location of a fault based on a
statistical analysis of the correlation between passing and
failing tests and the program constructs executed by these
tests. In particular, we investigate variations on three
popular statistical fault-localization algorithms, known as
Tarantula [29], [28], Ochiai [3], and Jaccard [16], [24]. These
algorithms predict the location of a fault by computing, for
each statement, the percentages of passing and failing tests
that execute that statement. From this, a suspiciousness rating
is computed for each executed statement. Programmers are
encouraged to examine the executed statements in order of
decreasing suspiciousness. The effectiveness of a fault-
localization technique can be measured by determining
how many statements need to be inspected, on average,
until the fault is found. Our work differs from most
previous research on fault localization in that it does not
assume the existence of a test suite with passing and failing
test cases. Instead, we rely on combined concrete and
symbolic execution to generate passing and failing runs.

This paper advances the state of the art in fault
localization in two ways. First, we present enhancements
to previous statistical fault-localization techniques [29], [28],
[3], [24] that make them significantly more effective at
localizing the faults responsible for execution failures, and
for the generation of malformed HTML pages in PHP web
applications. These enhancements include:

. The use of an extended domain. We apply existing
statistical fault-localization techniques on an extended
domain of (statement, runtime value) pairs, in which
the runtime value serves to differentiate occurrences
of the statement at runtime. Applying this technique
to conditional statements helps fault localization
with the identification of errors of omission such as
missing branches, and applying the technique to
function calls enables us to differentiate normal
return values from values such as null that are
often correlated with erroneous behavior (e.g.,
incorrect handling of corner cases).

. The use of a source mapping. We modified the PHP
interpreter to maintain a source mapping that records
the statement in the PHP application that produced
each fragment of output at runtime; thus, it is a map
from print statements to regions of the HTML file.
This mapping—when combined with the report of
the HTML validator, which indicates the parts of the
HTML output that are incorrect—provides an addi-
tional source of information about possible fault
locations, and is used to fine-tune the suspiciousness
ratings of existing fault-localization techniques.

A second main research topic explored in this paper has
to do with the fact that existing fault-localization ap-
proaches assume the existence of a test suite. However,
developers are often confronted with situations where a
failure occurs, but where no test suite is available that can
be used for fault localization. To address such situations, we
present an approach for generating test suites that can be
used to localize faults effectively. This approach is a
variation on combined concrete and symbolic execution
[20], [40], [15], [21], [44] that is parameterized by a similarity
criterion. Such a similarity criterion measures how similar

the execution characteristics associated with two tests are,
and is used to direct the generation of tests toward tests
whose execution characteristics are similar to those of a
given failing test. By varying the similarity criteria being
used, experiments can be conducted to determine which
test-generation strategy achieves the best tradeoff between
size and fault-localization effectiveness for the test suites
that it generates.

We implemented these techniques in Apollo, making
Apollo a fully automated tool for failure detection and fault
localization for web applications written in PHP. We then
investigated Apollo’s ability to localize 115 randomly
selected faults that were exposed by automatically gener-
ated tests in five open-source PHP applications, using
enhanced versions of the Tarantula, Ochiai, and Jaccard
techniques. In each case, we found the enhancements
improve the fault-localization effectiveness significantly.
For example, using the basic Ochiai technique, the pro-
grammer had to examine an average of 5.6 percent of an
application’s executed statements to find each of the
115 faults, when exploring the executed statements in order
of decreasing suspiciousness. Using our best technique,
which augments the domain of Ochiai for conditional and
function-call statements and which uses the source map-
ping to fine-tune Ochiai’s suspiciousness ratings, the
programmer needs to explore only 0.7 percent of the
executed statements, on average. More significantly, using
our best technique, 87.8 percent of the 115 faults under
consideration are localized to within 1 percent of all
executed statements, compared to only 37.4 percent for
the unenhanced Ochiai algorithm.

We also implemented several strategies for directed test
generation in Apollo, and we measured the fault-localization
effectiveness of test suites generated according to each
strategy, using the enhanced version of Ochiai that we
found to be the most effective fault-localization technique.
Our results show that a new, directed test-generation
technique based on path-constraint similarity (PCS) yields
the smallest test suites with the same excellent fault-
localization characteristics as test suites generated by other
techniques. In particular, when compared to test generation
based on the undirected test-generation strategy in [7],
which aims to maximize code coverage, our directed
technique reduces test-suite size by 86.1 percent and test-
suite generation time by 88.6 percent.

To summarize, the contributions of this paper are as
follows:

1. We present two mechanisms, the use of an extended
domain and the use of a source mapping, that
significantly enhance the effectiveness of existing
fault-localization techniques such as Tarantula,
Ochiai, and Jaccard.

2. To evaluate these fault-localization techniques in
Apollo, we implemented each of the fault localiza-
tion techniques, localized 115 randomly selected
faults in five PHP applications, and compared the
technique’s effectiveness. Our findings show that,
using our best technique, an enhanced version of
Ochiai, 87.8 percent of the faults are localized to
within 1 percent of all executed statements,
compared to only 37.4 percent for the unenhanced
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Ochiai algorithm. Similar improvements were ob-
tained for enhanced versions of the Jaccard and
Tarantula algorithms.

3. We present a family of directed test-generation
techniques, based on combined concrete and sym-
bolic execution, that are capable of generating small
test suites with high fault-localization effectiveness.
These techniques overcome the important limitation
of many previous fault-localization methods that a
test suite be available upfront.

4. To evaluate directed test generation, we implemen-
ted these directed test-generation techniques in
Apollo. Our evaluation shows that a directed
technique based on path-constraint similarity re-
duces test suite size by 86.1 percent and generation
time by 88.6 percent when compared to an existing
undirected test-generation technique, without com-
promising fault-localization effectiveness.

These findings show that automated techniques for fault

localization, which were previously primarily evaluated on

programs with artificially seeded faults, are effective at

localizing real faults in open-source PHP web applications.
The remainder of this paper is organized as follows:

Section 2 reviews the PHP language and the kinds of

failures that may arise in PHP programs. Section 3 reviews

the Tarantula, Ochiai, and Jaccard fault-localization algo-

rithms and presents our extensions to these algorithms. In

Section 4, we present algorithms for test generation that are

directed by similarity criteria toward the generation of test

suites with high fault-localization effectiveness. Section 5

presents an implementation of our work in the context of

the Apollo tool. Section 6 presents an evaluation of our fault-

localization and test-generation algorithms on a set of open-

source PHP programs. Related work is discussed in

Section 7. Finally, conclusions are presented in Section 8.

2 PHP WEB APPLICATIONS

PHP is a widely used scripting language for implementing
web applications, in part due to its rich library support for
network interaction, HTTP processing, and database
access. A typical PHP web application is a client/server
program in which data and control flow interactively
between a server, which runs PHP scripts, and a client,
which is a web browser. The PHP scripts generate HTML
code, which gets pushed to the client. Such code often
includes forms that invoke other PHP scripts and pass
them a combination of user input and constant values
taken from the generated HTML.

2.1 The PHP Scripting Language

PHP is object oriented, in the sense that it has classes,
interfaces, and dynamically dispatched methods with
syntax and semantics similar to those of Java. PHP also
has features of scripting languages, such as dynamic typing,
and an eval construct that interprets and executes a string
value that was computed at runtime as a code fragment. For
example, the following code fragment:

$code ¼ 00$x ¼ 3; 00; $x ¼ 7; evalð$codeÞ; echo $x;

prints the value 3. Other examples of the dynamic nature of
PHP are the presence of the isset() function, which
checks whether a variable has been defined, and the fact
that statements defining classes and functions may occur
anywhere.

The code in Fig. 1 illustrates the flavor of a PHP web
application and the difficulty in localizing faults. As can be
seen, the code is an ad hoc mixture of PHP statements and
HTML fragments. The PHP code is delimited by <?php and
?> tokens. The use of HTML in the middle of PHP
indicates that HTML is generated as if it occurred in a
print statement. The require statements resemble the C
#include directive by causing the inclusion of code from
another source file. However, while #include in C is a
preprocessor directive that assumes a constant argument,
require in PHP is an ordinary statement in which the
filename is computed at runtime; for example, the argu-
ments of the require statements on line 2 of the PHP
script of Fig. 1c and on line 9 of the PHP script of Fig. 1e are
dynamically computed at runtime based on the output of
the dirname function, which returns the directory compo-
nent of a filename. Similarly, switch labels in PHP need
not be constant but, unlike in other languages, can be
dynamically determined at runtime. This degree of flex-
ibility is prized by PHP developers for enabling rapid
application prototyping and development. However, the
flexibility can make the overall structure of program hard
to discern and render programs prone to code-quality
problems that are difficult to localize.

2.2 Failures in PHP Programs

Our technique targets two types of failures that may occur
during the execution of PHP web applications and that can
be automatically detected:

. Execution failures. These are caused, for example,
by missing included files and uncaught exceptions.
Such failures are easily identified since the PHP
interpreter generates an error message and halts
execution. Less serious execution failures, such as
those caused by the use of deprecated language
constructs and incorrect SQL queries, produce
obtrusive error messages but do not halt execution.

. HTML failures. These involve situations in which
generated HTML code is not syntactically correct,
causing them to be rendered incorrectly in certain
browsers. This may not only lead to portability
problems, but also decrease performance since the
resulting pages may render slower when browsers
attempt to compensate for the malformed HTML
code.

2.3 Fault Localization

Detecting failures only demonstrates that a fault exists; the
next step is to find the location of the fault that causes each
failure. There are at least two pieces of information that
might help:

1. For HTML failures, HTML validators provide the
problematic locations in the HTML code. Malformed
HTML fragments can then be correlated with the
portions of the PHP scripts that produced them.
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2. For both kinds of failures, one could look at runs that

do not exhibit the failure, and record what set of

statements such runs execute. Comparing that set of

statements with the set of statements executed by the

failing runs can then provide clues that can help

localizing the fault. The extensive literature on fault-

localization algorithms that exploit such information

is discussed in Section 7.

2.4 Motivating Example

Fig. 1 shows an example of a PHP application that is
designed to illustrate the particular complexities of finding
and localizing faults in PHP web applications.2

The code fragments shown in Fig. 1 are part of the client/
server workflow in a web application: The user first sees the
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2. This code has been tested using Safari 5.0.2, Apache 2.2.16, and PHP
5.3.3.



index.html page of Fig. 1a and enters the required
credentials. These user-input credentials are processed by
the query.php script in Fig. 1b. This script generates a
response page that allows the user to enter further input,
causing further processing by the request.php script in
Fig. 1e. Note that the permissions obtained for the user
during the execution of query.php are stored in special
locations $_SESSION[’readOK’] and $_SESSION

[’writeOK’]. This illustrates how PHP handles session
state, which are data that persist from one page to another to
keep track of the interactions with the application by a
particular user. Thus, the updates to _SESSION in Fig. 1b
will be seen by the code in Fig. 1e when the user follows the
link to request.php in the HTML page that is returned by
query.php. We now discuss some aspects of Fig. 1 in
further detail:

1. index.html. The top-level index.html script in
Fig. 1a contains static HTML and JavaScript code;
this file accepts user credentials and determines
whether to invoke query.php, shown in Fig. 1b, or
update.php (not shown) based on the radio
button selected. When the form is submitted, the
action is a call to the JavaScript function signon

(lines 6-14). This kind of computed URL is becom-
ing ever more common, and is difficult for a pure
web crawler to understand.

2. query.php. The query.php script in Fig. 1b checks
the permissions of the user and stores that informa-
tion in session state for later use (lines 11-17).
Observe that the script also contains calls to
session_start(), which is required in PHP for
scripts to use session state, and to session_

write_close(), which is an optimization to
indicate writing to the session is done. The rest of
the script is a static HTML form in which the user
enters parameters for a database query. When this
form is submitted, the data are passed to re-

quest.php, shown in Fig. 1e.
3. db.php. The db.php script is an include file that

isolates the code required to connect to the MySQL
database that holds the vehicle information that the
web application is accessing. It is used by being
included into request.php, and it depends on
settings.php to define the system configuration
for accessing the database.

4. settings.php. This file isolates the site-specific config-
uration for the web application. It is used by being
included into db.php.

5. request.php. The request.php script in Fig. 1e
carries out the database request made by the user.
This script can be called either from query.php or
update.php (not shown) that provides access to
update the data. When it receives a query para-
meter (checked at line 11), it first checks the read
permission stored in the session state (line 13). If
that check passes, it constructs an SQL query using
the kind of query requested to determine the key
field (lines 14-19). It then executes the query (line 23)
and prints out the results (lines 24-37). If the
permission check fails, it prints a permission denied
message (line 40).

2.5 Faults in the Motivating Example

Our sample program may exhibit both execution failures
and HTML failures. Specifically, there are two faults
exhibiting HTML failures and one fault exhibiting an
execution failure:

. The BODY tag opened at line 12 of Fig. 1e may not be
closed since the corresponding /BODY tag is pro-
duced at line 38 in a different control context. In
particular, a closing tag will not be generated in the
case when permission is denied (line 40). Exhibiting
this failure requires that the page be accessed in a
way that produces a “permission denied” message.
This means that a tester would have to start at
index.html and enter a set of credentials that do
not have read permission and choose the query

option on the radio buttons. After that, the tester
must fill in and submit the form on query.php.
Thus, finding the fault requires careful selection of
inputs to a series of interactive scripts, and tracking
updates to the session state during the execution of
those scripts.

. An HTML failure occurs in case the database query
line 23 of Fig. 1e returns no elements. In this case, $n
will be 0 on line 24 of Fig. 1e so that the body of the
loop will not execute. This results in an empty <UL>
list, which is a violation of the HTML specification.
Exposing this failure requires a similar process of
filling in forms as for the first one.

. An execution failure may occur in request.php if
it is called with an unexpected query parameter.
Then, the $kf variable will be left undefined by the
switch (lines 14-19), resulting in invalid SQL which
will, in turn, result in errors in statements like
mysql_numrows (line 24). Exposing this failure
requires a similar process of filling in forms as for
the previous ones.

3 FAULT LOCALIZATION

In this section, we first review the basic fault-localization
algorithms we implemented and extended: Tarantula,
Jaccard, and Ochiai. We then present an alternative
technique that is based on source mapping and positional
information obtained from an oracle. Next, a technique is
presented that combines the former with the latter. Finally,
we discuss how the use of an extended domain for
conditional and return-value expressions can help improve
the basic algorithm’s effectiveness.

3.1 Fault Localization Algorithms

Jones et al. [29], [28] presented Tarantula, a fault-localization
technique that associates with each statement a suspicious-
ness rating that indicates the likelihood for that statement to
contribute to a failure. The suspiciousness rating StarðlÞ for a
statement that occurs at line3 l is a number between 0 and 1,
calculated with the following similarity coefficient:

StarðlÞ ¼
FailedðlÞ=TotalFailed

PassedðlÞ=TotalPassedþ FailedðlÞ=TotalFailed ;
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where PassedðlÞ is the number of passing executions that
execute statement l, FailedðlÞ is the number of failing
executions that execute statement l, TotalPassed is the total
number of passing test cases, and TotalFailed is the total
number of failing test cases.

In the field of data clustering, other similarity coefficients
have been proposed that can also be used to calculate
suspiciousness ratings. These include the Jaccard [24]
coefficient used in the pinpoint program [16]:

SjacðlÞ ¼
FailedðlÞ

TotalFailedþ PassedðlÞ ;

and the Ochiai [3] coefficient used in the molecular biology
domain:

SochðlÞ ¼
FailedðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FailedðlÞ�ðPassedðlÞ þ FailedðlÞÞ
p :

After suspiciousness ratings have been computed, each of
the executed statements is assigned a rank, in the order of
decreasing suspiciousness. Ranks need not be unique: The
rank of each statement is the number of statements with
greater than or equal suspiciousness:

rankðlÞ ¼ jl0 : Sðl0Þ >¼ SðlÞj:

The rank of l reflects the maximum number of statements
that would have to be examined if statements are examined
in order of decreasing suspiciousness, and if l were the last
statement of that particular suspiciousness level chosen for
examination.

Abreu et al. [1] conducted a detailed empirical evalua-
tion in which they applied the Tarantula, Ochiai, and Jaccard
algorithms to faulty versions of the Siemens suite [23], and
compare their effectiveness (see Section 7). The Siemens
suite consists of several versions of small C programs into
which faults have been seeded artificially, and a very
extensive test suite exposing them. Since the location of
those faults is given, one can evaluate the effectiveness of a
fault-localization technique by measuring its ability to
identify those faults. In the fault-localization literature, this
is customarily done by reporting the percentage of the
program that needs to be examined by the programmer,
assuming that statements are inspected in decreasing order
of suspiciousness [18], [3], [38], [28].

In a similar experiment, Jones and Harrold [28]
computed for each failing test run a score (in the range of
0-100 percent) that indicates the percentage of the applica-
tion’s executable statements that the programmer need not
examine in order to find the fault. This score is computed
by determining a set of examined statements that initially
contains only the statement(s) at rank 1. Then, iteratively,
statements at the next higher rank are added to this set until
at least one of the faulty statements is included. The score is
now computed by dividing the number of statements in the
set by the total number of executed statements. Using this
approach, Jones and Harrold found that 13.9 percent of the
failing test runs were scored in the 99-100 percent range,
meaning that for this percentage of the failing tests, the
programmer needs to examine less than 1 percent of the
program’s executed statements to find the fault. They also
report that for an additional 41.8 percent of the failing tests,
the programmer needs to inspect less than 10 percent of the
executed statements.

3.2 Fault Localization Using Source Mapping

An oracle that determines whether or not a failure occurs
in the output can often provide precise information about
the parts of the output that are associated with that failure.
For instance, given an HTML page, an HTML validator
will typically report the locations in the corresponding
HTML file where the HTML is syntactically incorrect. Such
information can be used as a heuristic to localize faults in
the program, provided that it is possible to determine
which portions of the program produced the faulty
portions of the output. The basic idea is that the code that
produced the erroneous output is a good place to start
looking for the causative fault. This is formalized as
follows: Assume we have the following two functions:

. OðfÞ returns output line numbers reported by oracle
O for failure f , and

. PðoÞ returns the set of program fragments of the
source program directly responsible for generating
output line o.

Given these two functions, we define a suspiciousness rating
SmapðlÞ of the statement at line l for failure f as follows:

SmapðlÞ ¼
1; if l 2

S
o2OðfÞ PðoÞ;

0; otherwise:

�

Note that this is a binary rating: Program parts are either
highly suspicious, or not suspicious at all.

The effectiveness of using the source mapping for fault
localization may vary depending on the types of failures and
applications. In our experience, while the HTML validator
often produces good positional information, this is not
always the case. Therefore, it makes sense to combine the use
of the source mapping with the use of statistical fault-
localization methods such as those discussed previously.

3.3 Enhancing Statistical Fault Localization with
Source Mapping

The algorithms presented in Section 3.1 localize failures
based on how often statements are executed in failing and
passing executions. However, in the web-application
domain, a significant number of lines are executed in both
cases, or only in failing executions. The fault-localization
technique presented in Section 3.2 can be used to enhance
the effectiveness of statistical algorithms by giving a higher
rank to statements that are blamed by both the statistical
method and the source-mapping technique. More formally,
we define a new suspiciousness rating ScombðlÞ for the
statement at line l as follows:

ScombðlÞ ¼
1:1; if SmapðlÞ ¼ 1 ^ SalgðlÞ > 0:5;
SalgðSÞ; otherwise:

�

Informally, we give the suspiciousness rating 1.1 to any
statement that is identified as highly suspicious according
to the source mapping, and for which the original algorithm
indicates that the given line is positively correlated with the
fault (indicated by a suspiciousness rating greater than 0.5).

3.4 Example

As an example, suppose we have two runs of the script in
Fig. 1e, one of which exposes the HTML of the empty hULi
tag previously discussed in Section 2.5, and one which does
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not. Furthermore, assume that these executions have the
following characteristics:

. Both the passing and the failing executions have
readOK set to true by thequery.php script of Fig. 1b.

. Both the passing and the failing executions have the
query parameter set to Model by the query.php

script of Fig. 1b.
. In the passing run, some value is used for the key

form field that matches some item in the database
of vehicles.

. In the failing run, the key form field has a garbage
value because the user did not enter a specific value.

In this case, the failing run will produce an empty list of
matches, which results in the previously discussed HTML
failure, whereas the passing run will not. Hence, the first is
a failing run and the second a passing run with respect to
the failure in Fig. 2.

Fig. 3 presents the suspiciousness rating given by the
three techniques. To understand how the Tarantula ratings
are computed, consider statements that are only executed in
the passing run. Such statements obtain a suspiciousness
rating of 0=ð1þ 0Þ ¼ 0:0. By similar reasoning, statements
that are only executed in the failing run obtain a
suspiciousness rating of 1=ð0þ 1Þ ¼ 1:0, and statements
that are executed in both the passing and the failing runs
obtain a suspiciousness rating of 1=ð1þ 1Þ ¼ 0:5.

The suspiciousness ratings computed by the mapping-
based technique can be understood by examining the
output of the validator in Fig. 2c, along with the HTML in
Fig. 2a and the mapping from lines of HTML to the lines of
PHP that produced them in Fig. 2b. The validator says the
error is in line 7 of the output, and those output fragments
were produced by line 37 in the script of Fig. 1e.
Consequently, the suspiciousness rating for line 37 is 1.0,
and all other lines are rated 0.0 by the mapping-based

technique. The suspiciousness ratings for the combined
technique follow directly from its definition in Section 3.3.

As can be seen from the table, the Tarantula technique
identifies many lines as the most suspicious ones, and the
source-mapping-based technique only identifies line 37 as
such. In this particular example, the use of the source
mapping does not result in greater fault-localization
effectiveness. However, Section 3.5 will introduce another
enhancement that will help with the localization of this
particular fault, as we shall see in Section 3.6.

3.5 Fault Localization Using an Extended Domain

As we observed in Section 3.1, fault-localization algorithms
work by associating a suspiciousness rating with each
statement present in the program under analysis. Some-
times, however, it is the absence of a statement that causes a
failure, for example, a switch statement in which the
default case is omitted can cause a failure if the missing
default case was supposed to close certain HTML tags.
Similarly, an if statement for which the matching else

branch is missing can cause the resulting HTML file to be
malformed if the boolean predicate in the if statement is
false. For instance, in Section 2.5, we observed a failure
caused by a missing default case when discussing the
switch statement in lines 14-19 in Fig. 1e. Traditional
fault-localization techniques, as previously applied to
statements, cannot rank a missing statement that will
never be executed.

We enhance the effectiveness of fault localization by
employing a new condition-modeling technique. This new
technique uses an augmented domain for modeling condi-
tional statements: Instead of assigning a suspiciousness
rating and rank to a conditional statement itself, it assigns a
rating and rank to pairs of the form (statement, index of first
true case).

The number of pairs associated with a switch statement
is equal to the number of cases in the statement plus 1. For
example, if a switch statement s has three case

predicates, then the pairs considered by the condition-
modeling technique are as follows:

1. ðs; 0Þ. Modeling the fact that all case predicates
evaluate to false, causing the default branch—if
it exists—to be executed.

2. ðs; 3Þ. Modeling the fact that both the first and
second case predicates evaluate to false, and the
third one to true.

3. ðs; 2Þ. Modeling the fact that the first case predicate
evaluates to false and the second one to true.
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Fig. 2. (a) HTML produced by the script of Fig. 1e. (b) Output mapping constructed during execution. (c) Part of output of WDG validator on the
HTML of Fig. 2a.

Fig. 3. Suspiciousness ratings for lines in the PHP script of Fig. 1e,
according to three techniques. The columns of the table show, for each
line l, when it is executed (in the passing run, in the failing run, or in both
runs), and the suspiciousness ratings StarðlÞ, SmapðlÞ, and ScombðlÞ.



4. ðs; 1Þ. Modeling the fact that the first case predicate
evaluates to true.

If s is an if statement, there are two pairs associated with s:

1. ðs; 0Þ. Modeling the fact that the predicate evaluates
to false.

2. ðs; 1Þ. Modeling the fact that the predicate evaluates
to true.

After computing suspiciousness ratings for all pairs ðs; . . .Þ,
the conditional statement s is assigned the maximum of
these ratings, from which its rank is computed in the
normal manner.4 This technique allows us to rank a
switch statement with a missing default case and an
if statement with a missing else branch, as explained in
the example below.

Another fault-localization enhancement is our return-
value modeling technique, which consists of dynamically
storing, for each procedure call, the line number of the caller
along with an abstract model of the value. This allows the
underlying fault-localization technique to distinguish, for
example, null values from non-null values, zero int,
and double values from nonzero ones, true Boolean
values from false Boolean values, and empty arrays,
strings, and resources from nonempty ones. These distinc-
tions are useful for the purpose of fault localization because
faults often arise in situations where, for example, a
program mistakenly attempts to dereference a null value,
divide by 0, or extract values from empty collections. Liblit
et al. [31] sampled a simpler model of return values
(targeted at functions returning scalars) for bug isolation.

3.6 Example Revisited

We will now consider the example of Section 3.4 again, to
study the effects of conditional and return-value modeling.
Fig. 4 shows the suspiciousness ratings of lines in the script
in Fig. 1e with the addition of conditional outcome and
return-value modeling. For simplicity, only the return value

of line 24 is shown since that is the only one where there are
multiple abstract return values. Observe that now there are
lines that only occur in the failing run, and they get given the
maximum blame. In particular, the blame falls on the call to
numrows when it returns 0, that is line 24 with result 0. And
these are really the appropriate lines to blame since the
empty list can be returned only when there are no results.

4 DIRECTED TEST GENERATION

The fault-localization techniques presented in the previous
section require a collection of tests, some passing and some
failing. However, if a failure occurs and no test suite is
available, such techniques are powerless. To address such
situations, this section presents a variation on combined
concrete and symbolic execution [9] for generating test
suites that can be used to localize faults effectively. When
generating tests, it is desirable to keep the size of the
generated test suites small in order to keep the cost of
running these tests manageable. This is not of immediate
concern for the subject programs used in Section 6, for
which the tests have running times in the order of up to a
few minutes. However, for industrial-sized applications,
running the tests may require many hours, or require other
resources or human involvement. For these reasons, our
objective is to generate small test suites with excellent fault-
localization characteristics.

4.1 Combined Concrete and Symbolic Execution

Our technique for generating test suites is a variation on
combined concrete and symbolic execution [20], [40], [15],
[21], [44], a well-established test-generation technique. The
basic idea behind this technique is to execute an application
on some initial (e.g., empty or randomly chosen) input, and
then on additional inputs obtained by solving constraints
derived from exercised control-flow paths. Failures that
occur during these executions are reported to the user.

In a previous paper [8], we described how this technique
can be adapted to the domain of dynamic web applications
written in PHP. Our Apollo tool takes into account language
constructs that are specific to PHP, uses an oracle to
validate the output, and supports database interaction. In
[9], we extended the work to address interactive user input:
PHP applications typically generate HTML pages that
contain user-interface features, such as buttons that—when
selected by the user—result in the execution of additional
PHP scripts. Modeling such user input is important because
coverage of the application will typically remain very low
otherwise. Apollo tracks the state of the environment, and
automatically discovers additional scripts that the user may
invoke based on an analysis of available user options.
Furthermore, a script is much more likely to perform
complex behavior when executed in the correct context or
environment. For example, if a web application does not
record in the environment that a user is logged in, most
scripts will present only vanilla information and terminate
without executing much of the program logic (e.g., when
the condition on line 13 of Fig. 1e is false; note that this
condition is derived indirectly from user information on
lines 11-17 of Fig. 1b).
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Fig. 4. Suspiciousness ratings for lines in the PHP script of Fig. 1(3) with
conditional and return-value modeling, according to three techniques.
The columns of the table show, for each line l, when it is executed (in the
passing run, in the failing run, or in both runs), and the suspiciousness
ratings StarðlÞ, SmapðlÞ, and ScombðlÞ.

4. Alternatively, the programmer may choose to compute separate
suspiciousness ratings for all pairs ðs; . . .Þ, which has the advantage of
providing context information from the extended domain. For instance, a
ranking may denote a particular conditional statement and that its outcome
was false, which may give the programmer a better notion of why this
particular statement is causing a failure.



The inputs to Apollo’s algorithm are: a program P
composed of any number of executable components (PHP
scripts), the initial state of the environment before executing
any component (e.g., database), a set of executable
components that can be executed from the initial state C,
and an output oracle O. The output of the algorithm is a set
of bug reports B for the program P, according to O. Each
bug report contains the identification information of the
failure (message, and generating program part), and the set
of tests exposing the failure.

The algorithm uses a queue of tests.5 Each test is
comprised of three components: 1) the program component
to execute, 2) a path constraint which is a conjunction of
conditions on the program’s input parameters, and 3) the
environment state before the execution. The queue is
initialized with one test for each of the components
executable from the initial state, and the empty path
constraint. The algorithm then processes each element of
this queue as follows:

1. Using a constraint solver to find a concrete input that
satisfies a path constraint from the selected test.

2. Restoring the environment state, then executing the
program component on the input and checking for
failures. Detected failures are merged into the
corresponding bug reports. The program is also
executed symbolically on the same input. The result
of symbolic execution is a path constraint,

Vn
i¼1 ci,

which is satisfied if the given path is executed
(here, the path constraint reflects the path that was
just executed).

3. Creating new test inputs by solving modified versions
of the path constraint as follows: For each prefix of the
path constraint, the algorithm negates the last
conjunct. A solution—if it exists—to such an alter-
native path constraint corresponds to an input that
will execute the program along a prefix of the original
execution path, and then take the opposite branch.

4. Analyzing the output to find new transitions (refer-
enced scripts and parameter values) from the new
environment state. Each transition is expressed as a
pair of path constraints and an executable component.

5. Adding new tests for each transition not previously
explored.

For instance, an execution of query.php, shown in
Fig. 1b, that did not provide user as an input parameter
would generate a path constraint noting that $user is not
set, i.e.,!isset($user), after attempting to read $user

when executing line 8. A subsequent execution could be
constructed by negating this constraint to isset($user).
An execution satisfying this new constraint will define
$user to some value.

4.2 Similarity Criteria

Given a failing execution, the general intuition behind our
test-generation technique is that localizing the correspond-
ing fault can be done more effectively if a passing test is
generated whose characteristics are “similar” to those of the
failing execution because that maximizes the chances that

the fault is correlated with the difference between the path
constraints of the generated passing test and those of the
faulty execution; the smaller the difference, the higher the
precision with which the fault can be localized.

To make this more precise, we need to formalize the
concept of “similarity” between two tests. This leads us to
introducing a similarity criterion, which is a function that
takes as an input two tests and produces a fraction that
indicates how similar the two tests are; more formally, if
E is an element in the queue of tests, a similarity criterion
is a function � : E � E ! ½0; 1�. Note that there can be
multiple similarity criteria, each based on what character-
istics are considered.

In order to guide our test-generation technique toward
generating similar executions, a similarity function is used as
the selection methodology. The selection methodology is
responsible for selecting the next input to explore, thus
directing the test-generation process to explore similar
executions. In this paper, we consider two different similarity
metrics, one based on path constraints and one based on
inputs, which are described in the following sections.

4.3 Path-Constraint Similarity

One element of each test in our queue is the path constraint
used to generate its input. Accordingly, one of our
similarity criteria measures the amount of similarity
between the path constraints associated with two execu-
tions. We have implemented two techniques for path-
constraint similarity: subset comparison and subsequence
comparison. With subset comparison, execution similarity
is computed based on the cardinality of the largest subset of
identically evaluating conditional statements that are
traversed in the two executions; with subsequence compar-
ison, execution similarity is computed based on the length
of the largest contiguous subsequence of conditions that
evaluate to the same value in both executions.

To better understand the difference between these two
metrics, consider, for example, two program executions
e1; e2 2 E that evaluate conditions hC1; C2; C3; C4; C5; C6i,
and assume that condition C3 evaluates to true in e1 and
false in e2, but C1; C2; C4; C5; C6 evaluate to the same
Boolean value in both executions. In this case, �ðe1; e2Þ ¼ 5

6 if
the similarity criterion is based on subset comparison, and
�ðe1; e2Þ ¼ 3

6 if the similarity criterion is based on subse-
quence comparison. In practice, we observed that these two
similarity metrics lead to very similar results. Therefore, in
the remainder of this paper, we concentrate only on path-
constraint similarity based on subset comparison.

4.4 Input Similarity (IS)

With this approach, we compare the inputs to different

tests. The path constraints of each test are solved to provide

the actual inputs to be used, and these inputs are compared.

Input similarity is based on subset comparison: The similarity

between two executions is computed based on the number

of inputs that are identical for both executions. For

example, consider two executions e1 and e2 with inputs

hS1; S2; S3; S4; S5; S6i and hT1; T2; T3; T4; T5; T6i, respectively,

such that S3 6¼ T3, but Si ¼ Ti; 8i 6¼ 3. In this case,

��ðe1; e2Þ ¼ 5
6 .
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5. The criteria of selecting tests from the queue give preference to tests
that will cover additional code. More details can be found in [9].



4.5 Example

Fig. 5 illustrates the input-based and path-constraint-based
test-generation strategies using the example program of
Fig. 1e. Each row in the table corresponds to an execution.
Let us assume that the first row in the table shows an
execution that leads to the failure resulting from the invalid
SQL created when $kf is not set and that the remaining
rows correspond to passing executions generated by our
test-generation strategies. Observe that the latter three rows
in the table correspond to executions that can be derived
from the first by our test-generation strategies since each is
derived from the path constraint for the failing execution by
removing a number of conjuncts at the end and negating the
last conjunct in the sequence that remains.

The first two columns of the table show, respectively, the
path constraint for each execution, and an example input
that satisfies that path constraint. The last two columns in the
table show the similarity of each of the passing executions to
the failing execution, according to the path-constraint
similarity and input similarity criteria. For example, the
second row has a PCS of 3 since only the last element of the
constraint is different and the other three are the same. For
input similarity, we compare the number of inputs that are
the same among the example inputs; for instance, the third
row has one element that is the same, key.

We can see from the example that in this case, the input
similarity heuristic is selecting the second possible input. In
this case, that input will result in a nonbuggy but very
similar execution that will allow fault localization to
determine the cause of the fault precisely.

5 IMPLEMENTATION

In Apollo , we implemented a shadow interpreter based on the
Zend PHP interpreter 5.2.26 that simultaneously performs
concrete program execution using concrete values, and a
symbolic execution that uses symbolic values that are
associated with variables. Furthermore, Apollo uses the
choco

7 constraint solver to solve path constraints during
the combined concrete and symbolic test generation. This
process is orchestrated by a standard Apache8 webserver
that uses the instrumented PHP interpreter.

We implemented the following extensions to the shadow
interpreter to support fault localization:

. Statement coverage. All fault-localization techni-
ques use the percentage of failing and passing tests
executing a given statement to calculate the state-
ment’s suspiciousness score. To this end, our

shadow interpreter records the set of executed
statements for each execution by hooking into the
zend_execute and compile_file methods.

. HTML validator. Apollo has been configured to use
one of the following HTML validators as an oracle
for checking HTML output: the Web Design Group
(WDG) HTML validator9 and the CSE HTML
Validator V9.0.10

. Source mapping. The source-mapping technique,
described in Section 3.2, correlates a fault found in
the HTML output with the statements producing the
erroneous output fragments. Our shadow interpreter
creates the mapping by recording the line number of
the originating PHP statement whenever output is
produced by echo and print statements.

. Condition modeling. Our shadow interpreter re-
cords the results of all comparisons in the executed
PHP script for the conditional modeling technique,
as described in Section 3.5. For each comparison, it
records a pair consisting of the statement’s line
number and the relevant Boolean result. For each
execution of a switch statement, it records a pair
consisting of the switch’s line number and a set of
all executed case blocks during that execution.

. Return-value modeling. For this feature, the sha-
dow interpreter stores the line number of the call
and an abstract model of the value. The model
allows the fault localization technique to distinguish
between null and non-null values, zero and
nonzero int and double values, true and false

Boolean values, as well as empty and nonempty
arrays, strings, and resources.11

6 EVALUATION

This section presents an evaluation of the fault-localization

techniques that we presented in the previous sections.

6.1 Research Questions

With respect to the enhancements to the basic fault-

localization techniques described in Section 3, we are

interested in answering the following research questions:

. RQ1. How effective are the basic fault-localization
algorithms Tarantula [28], Jaccard [24], and Ochiai [3]
in the domain of PHP web applications?

. RQ2. How much more effective do these basic fault-
localization algorithms become when combined
with the use of a source mapping and/or with the
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Fig. 5. Example path constraints for similarity metrics.

6. http://www.php.net/.
7. http://www.emn.fr/z-info/choco-solver/choco-publications.html.
8. http://www.apache.org/.

9. http://htmlhelp.com/tools/validator/.
10. http://www.htmlvalidator.com/.
11. A PHP resource is a special type holding a reference to an external

resource, such as a stream, socket, or the result of an SQL query.



use of an extended domain for conditional state-
ments and function-call statements, as presented in
Sections 3.3 and 3.5?

Test cases do not always exist. To enable fault localiza-
tion in the cases where they do not, this paper has described
an efficient way to generate test suites that can be used for
fault localization. In such cases, it is reasonable to expect
that a limited amount of time will be available for test
generation. Therefore, we are interested in determining
how quickly each of the test-generation strategies under
consideration converges toward its maximal effectiveness.
This leads us to formulate two more research questions:

. RQ3. What is the maximal fault-localization effec-
tiveness of test suites, measured as the percentage of
well-localized faults, generated by each of the test-
generation strategies?

. RQ4. How many tests need to be generated by each
test-generation strategy in order to reach its maximal
fault-localization effectiveness?

We will answer these research questions in the reminder
of this section based on a concrete evaluation of our tool on
a number of production-level PHP applications.

6.2 Subject Programs

In order to determine the effectiveness of automated fault-
localization algorithms such as the ones studied in this
paper, it is customary to apply the algorithms to programs
that contain faults at known locations. To this end, we
selected the following five open-source PHP programs from
http://sourceforge.net, with which we were already famil-
iar from our prior work on test generation [9]:

. faqforge. A tool for creating and managing docu-
ments.

. webchess. An online chess game.

. schoolmate. A PHP/MySQL solution for adminis-
tering elementary, middle, and high schools.

. timeclock. A web-based timeclock system.

. phpsysinfo. A utility for displaying system informa-
tion, such as uptime, CPU, memory, etc.

Table 1 presents some characteristics of these subject
programs.

6.3 Methodology

In order to answer questions RQ1 and RQ2 about the
effectiveness of different fault-localization techniques, a set
of localized faults, and a test suite exposing them are
needed for each subject program. Since neither a test suite
nor a set of known faults existed for our subject programs,

we generated a test suite using the combined concrete and
symbolic execution technique of Apollo [9] (see Section 4.1).
For this initial experiment, we gave the test generator a time
budget of 20 minutes, and during this time, hundreds of
tests were generated and many failures were found for each
subject program.

In order to investigate the effectiveness of an automatic

fault localization technique, it is necessary to know where

faults are located. Unlike most previous research on

automated fault-localization techniques [29], [28], [39],

where the location of faults was known (e.g., because faults

were seeded), we did not know where the faults were

located, and therefore needed to localize them manually. For

each fault, we devised a patch and ensured that applying

this patch fixed the problem. This was done by running the

tests again and making sure that the associated failures12 did

not recur. The patch altered some statements in the code,

which we will call the faulty statements later. For cases such as

a missing else or switch clause, the faulty statement was

deemed to be the corresponding if or switch with the

appropriate value in the extended domain.
Table 2 summarizes the details of the generated test suites,

and the localized faults that we will use in the remainder of

this section. For phpsysinfo, timeclock, and webchess, we

took all the faults we found. For faqforge, we took all the

execution faults we found, and a random set of HTML faults.

For schoolmate, we took a random set of faults. Finally, we

used the following fault-localization techniques to assign

suspiciousness ratings to all executed statements:

. Alg ¼ Tar; Jac;Och. The “basic” fault-localization
algorithms: Tarantula, Jaccard, and Ochiai presented
in Section 3.1.

. SM. The technique of Section 3.2 based on using a
source mapping in combination with positional
information obtained from an oracle (HTML
validator).

. AlgþSM. The combined technique described in
Section 3.3 that combines a basic fault-localization
algorithm with the use of the source mapping.

. AlgþMod. The variation on a basic fault-localization
algorithm presented in Section 3.5 in which condi-
tional expressions are modeled as (condition, value)
pairs, and return-value expressions are modeled as
(expression, abstract value).
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TABLE 1
Characteristics of Subject Programs

The #files column lists the number of .php and .inc files in the
program. The PHP LOC column lists the number of lines that contain
executable PHP code. The #downloads column lists the number of
downloads from http://sourceforge.net.

TABLE 2
Characteristics of the Test Suites

and Localized Faults in the Subject Programs

The columns of the table indicate: (1) the subject program, (2) the
number of tests in the test suite generated for that program, and (3) the
number of faults manually localized for that program (three columns:
HTML faults, execution faults, and total).

12. In general, a single fault may be responsible for multiple failures.



. AlgþModþSM. The variation on the basic fault-
localization algorithm presented in Section 3.5, in
which conditional expressions are modeled as (con-
dition, value) pairs, and return-value expressions are
modeled as (expression, abstract value) pairs, and
combined with the use of the source mapping.

. AlgþMod or SM. A combined fault-localization
technique that uses AlgþMod for execution failures,
and SM for HTML failures.

We computed suspiciousness ratings separately for each
localized fault by applying each of these fault-localization
techniques to a test suite that was comprised of the set of
failing tests associated with the fault under consideration
and the set of all passing tests.

Similarly to previous fault-localization studies [29], [18],
[28], [39], we measured the effectiveness of a fault-
localization algorithm as the minimal number of statements
that needs to be inspected until the first faulty line is
detected, assuming that statements are examined in order of
decreasing suspiciousness.

In order to answer questions RQ3 and RQ4, we restricted
our attention to execution failures for which the location of
the fault is not immediately obvious from an error
message.13 We concentrated on execution failures because
most HTML failures were already localized very effectively
using the source mapping. In particular, we found that 60 of
the 69 HTML failures that we reported in Table 2 were
already well localized to <1% of executed statements using
the source mapping. In these cases, the quality of the test
suite has negligible impact. Execution failures, however, are
localized exclusively using a statistical technique and are
therefore highly suitable for evaluating the effectiveness of
directed test-generation techniques.

We used the following four test-generation strategies to
generate test suites used for fault localization:

. Base. Test generation using the combined concrete
and symbolic execution algorithm in [9], which starts
from an empty input, and aims to maximize branch
coverage. We call this algorithm Base because we will
use it as the baseline for comparison with the new
similarity-based directed generation algorithms.

. Coverage. Test generation using the combined con-
crete and symbolic execution algorithm in [9], but
starting test generation from the failing test.

. PCS. Test generation using the subset-based path-
constraint similarity metric that was described in
Section 4.3.

. IS. Test generation using the input similarity metric
that was described in Section 4.4.

For each strategy and for each fault, we used Apollo to
generate test suites. Then, for each test suite and each
localized fault, we computed suspiciousness ratings for all
executed statements using our “best” version of the Ochiai
algorithm (OchþModþSM).14 Finally, we computed the
percentage of faults that are “well localized.”

Our results were obtained on a MacBook Pro with a
2.4 GHz Intel Core i5 processor, 3 GB of Random Access
Memory (RAM), and the Mac OS 10.6.5 (Snow Leopard)
operating system. Apollo was run on a Sun Microsystems
Java Standard Edition (SE) V1.6.1 Runtime Environment.

6.4 RQ1 and RQ2—Fault Localization Effectiveness

Tables 3, 4, and 5 show experimental results for each of the
three underlying fault localization algorithms (Tarantula,
Ochiai, and Jaccard), and variations on each algorithm (Alg
SM, AlgþSM, TarþMod, AlgþModþSM, and AlgþMod or

SM) as discussed above. Each table shows, for each subject
program (and for the subject programs in aggregate), a group
of six rows of data, one for each technique. Each row shows,
from left to right, the average number (percentage) of
statements that needs to be explored to find each fault,
followed by 11 columns of data that show how many of the
faults were localized by exploring up to 1 percent of all
statements, up to 10 percent of all statements, up to 20 percent
of all statements, and so on. Consider, for example, the case
where the TarþModþSM technique is used to localize faults
in faqforge (Table 3). If a programmer inspects the statements
reported by this technique in decreasing order of suspicious-
ness, then on average, he will need to inspect 4.1 statements
until he has found the first faulty statement, and this
corresponds to 0.6 percent of the executed statements.
Furthermore, we can see that for 93.3 percent of the faults
in faqforge, less than 1 percent of the executed statements
needs to be inspected, and for the remaining 6.7 percent of the
faults, between 1 and 10 percent of the executed statements
need to be inspected. If the underlying algorithm is Ochiai
(Table 5), a programmer would only need to inspect
3.0 statements on average for faqforge, which constitutes
0.4 percent of all executed statements.

In order to ease the discussion of the relative effective-
ness of the techniques, we will say that a fault is well
localized by a fault-localization technique if inspecting the
statements in decreasing order of suspiciousness according
to that technique implies that all faulty statements are found
after inspecting fewer than 1 percent of all executed
statements. Using this terminology, we can see that:

. Using the basic Tarantula algorithm, only 27.0 percent
of all faults are well localized, on average (see the
first row of data in the set of rows labeled
aggregated). The basic Jaccard and Ochiai algorithms
fare slightly better, with 37.4 percent of faults being
well localized in each case.

. Using the source-mapping technique SM, 57.4 per-
cent of all faults are well localized, on average over all
subjects.

. Combining any fault-localization algorithm with the
oracle (TarþSM; JacþSM;OchþSM) yields a tech-
nique that outperforms either of its constituents,
with 71.3 percent of all faults being well localized on
average, for each of the three techniques.

. Adapting Tarantula to use the modeling techniques
(return value, conditionals) (TarþMod) is helpful by
well localizing 47.0 percent of all faults versus the
previously mentioned 27.0 percent for the statement-
based Tarantula algorithm. Similar effects can be
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13. This error message includes some information about where the error
occurred, and we are focused on crashes in which this information did not
make the bug apparent.

14. We only report results for the Ochiai-based algorithm Och+Mod+SM
because we found that algorithm to be superior, but results obtained using
Tar+Mod+SM and Jac+Mod+SM are similar.



observed when modeling techniques are combined
with the Jaccard algorithm (37:4%! 53:9%) and the
Ochiai algorithm (37:4%! 54:8%).

. For the combined technique that uses the TarþMod
technique for execution failures and the SM techni-
que for HTML failures, between 82.6 percent
(Tarantula ) and 83.5 percent (Jaccard, Ochiai ) of all
faults are well localized.

. The most effective fault-localization technique is
obtained by using the variant of each algorithm
that combined modeling and the source-mapping
techniques (AlgþModþSM). Using this technique,
87.0 percent of all faults are well localized for
Tarantula, and 87.8 percent for Jaccard and Ochiai,
on average over all subjects.

While we have discussed only aggregated data so far, the

results appear to be consistent across the five subject

applications. It is interesting to note that the effectiveness of

the more precise modeling of conditionals and return value

depends on whether the subject program contains any

faults that consist of missing branches in conditions, or

incorrect handling of return values. For one subject

(webchess), this accounts for an almost 30 percent

improvement in the number of well-localized faults over

the basic Tarantula algorithm (16:7%! 45:8%), whereas for

another (timeclock), it makes a smaller difference of slightly

more than 10 percent. In summary, we found that the

TarþModþSM fault localization technique yields a more

than threefold increase in the percentage of well-localized
faults, when compared with the unenhanced Tarantula

algorithm, and that the JacþModþSM and OchþModþSM
techniques yield a more than twofold increase over the
unenhanced Jaccard and Ochiai algorithms. Most of this
improvement is due to the use of the source mapping. This
is undoubtedly due to the fact that many of the localized
faults manifest themselves via malformed HTML output.
Our treatment of conditional and return-value expressions
accounts for a smaller part of the gains in precision, but is
still helpful in the cases where the fault consists of a missing
branch in a conditional statement, or a return value is
incorrectly handled.

It is interesting to note that, since the source-mapping
technique provides a binary suspiciousness rating, it tends
to either be very helpful or not helpful at all. This argues
strongly for a fault-localization method that combines a
statistical method such as Tarantula, Jaccard, or Ochiai, with
one based on source mapping. One could consider using
different techniques for different kinds of faults (e.g., use
Tarantula for execution failures, and the oracle-based
technique for HTML failures). However, the example that
we discussed previously in Section 2.4 shows that the two
techniques can reinforce each other in useful ways. This is
confirmed by our experimental results. For example, the
combined technique TarþMod or SM is less effective
(82.6 percent of all statements being well localized) than
the combined technique TarþModþSM (87.0 percent), and
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TABLE 3
Results of Fault Localization Using the Different Fault Localization Techniques Using the Tarantula Algorithm

The columns of the table indicate 1) the subject program, 2) the fault localization technique used, 3) the average number of statements to inspect,
and average percentage of statements to inspect, and 4)-14) indicate the percentage of faults in each range of percentage of statements to inspect.



the results for the corresponding variations of Jaccard and
Ochiai look similar.

Figs. 6, 7, and 8 show graphs depicting the aggregated
data of the corresponding tables. The X-axis represents the
percentage of statements that need to be examined in
decreasing order of suspiciousness until the first fault has
been found, and the Y -axis the number of faults localized.
A line is drawn for each of the six fault-localization
techniques under consideration. From these lines, it is clear
that the AlgþModþSM technique outperforms all other
techniques (for each of the basic algorithms). In particular,
note that, for any percentage n between 0 and 100 percent,
AlgþModþSM localizes more faults than any of the other
algorithms when up to n percent of all statements are
examined in decreasing order of suspiciousness.

6.5 RQ3—Test-Generation Effectiveness

In the remainder of the evaluation section, we will only
report results based on the OchþModþ SM algorithm
because we found this algorithm to be the most effective
one in Section 6.4, and because the results for the other
algorithms are similar. We first discuss the “maximal” fault-
localization effectiveness of the test suites generated by the
four test-generation strategies above, as measured by the
percentage of well-localized faults, assuming each strategy
is given an infinite amount of time to construct a test suite.
In practice, we found that it sufficed to have each strategy
generate 100 tests for each fault, with the exception of
schoolmate, which required 252 tests to reach a plateau.
Generating more tests beyond this point resulted in larger

test suites, but not in an increased number of well-localized
faults.15 Table 6 shows three columns for each subject
program and each technique. These columns show, from
left to right: 1) on average, for each subject program, the
percentage of faults that is well localized, 2) on average, the
absolute number of statements that need to be inspected to
localize each fault, and 3) on average, the percentage of
executed statements that need to be inspected to localize
each fault. For example, for faqforge, both the Base and PCS
techniques eventually localize 100 percent of the faults to
within 1 percent of all executed statements. Furthermore, on
average, each of these faults is localized by these techniques
to 4.6 statements, which corresponds to 0.6 percent of all
executed statements. The Coverage and IS generation
techniques also reach 100 percent well-localized faults on
faqforge eventually, albeit a slightly higher plateau of 5 and
5.1 statements, respectively, that need to be inspected,
which corresponds to 0.7 percent of all executed statements.

In summary, the test-generation strategies are capable
of generating test suites with nearly identical maximal
fault-localization effectiveness when given an infinite
amount of time. In particular, for faqforge, schoolmate,
and phpsysinfo, 100 percent of all faults were eventually
well localized by each technique. However, for webchess,
only 77 percent of all faults were eventually well localized
by each technique.
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15. It is theoretically possible that further gains in fault-localization
effectiveness could be achieved by generating additional tests, but we
consider this to be very unlikely.

TABLE 4
Results of Fault Localization Using the Different Fault Localization Techniques Using the Jaccard Algorithm

The columns of the table indicate 1) the subject program, 2) the fault localization technique used, 3) the average number of statements to inspect,
and average percentage of statements to inspect, and 4)-14) indicate the percentage of faults in each range of percentage of statements to inspect.
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TABLE 5
Results of Fault Localization Using the Different Fault Localization Techniques Using the Ochiai Algorithm

The columns of the table indicate 1) the subject program, 2) the fault localization technique used, 3) the average number of statements to inspect,
and average percentage of statements to inspect, and 4)-14) indicate the percentage of faults in each range of percentage of statements to inspect.

Fig. 6. Effectiveness comparison of different fault-localization techni-
ques, using the Tarantula algorithm. X-axis: Percentage of statements
that need to be inspected. Y-axis: Percentage of faults.

Fig. 7. Effectiveness comparison of different fault-localization techni-
ques, using the Jaccard algorithm. X-axis: Percentage of statements
that need to be inspected. Y-axis: Percentage of faults.



6.6 RQ4—Test-Suite Size

As we have seen, the different test-generation techniques

eventually achieve very similar effectiveness. However, the

question remains to what extent the test-generation techni-

ques require a different number of tests to reach this

plateau. Table 7 shows two columns for each subject

program and each test-generation technique. These columns

show, from left to right: 1) the number of tests that is needed

to reach the maximal percentage of well-localized faults as

reported in Table 6, and 2) the time required to generate

these tests. Here it should be noted that the time reported in

point 2 is an average over all faults for the Coverage, PCS,

and IS techniques. For the Base technique, there is just one

test suite that is used for all faults, and the time reported is

the time needed to generate that test suite.
As can be seen in Table 7, there is significant difference

in how quickly the different test-generation techniques

converge on the optimal result. For faqforge, the Base test-

generation technique that we used in [7] requires 60 tests to

reach the maximal percentage of well-localized faults,

whereas the PCS technique requires only five tests. The

amount of time required to generate a test suite differs

similarly, with 63.6 seconds for the Base technique and only

7.3 seconds for the PCS technique. The graphs in Fig. 9

provide some more detail on how quickly the test-

generation strategies converge toward their maximal effec-

tiveness. Each graph shows the percentage of well-localized

faults plotted against the number of generated tests, for

each of the generation techniques. By examining the graphs,

we can observe that the directed strategies (IS and PCS)

converge much faster than the undirected strategies (Cover-

age and Base). In three of the four subject programs

(webchess, faqforge, and phpsysinfo), the PCS strategy is

superior. In the case of schoolmate, however, the IS strategy

(seven tests) is slightly better than PCS (11 tests).
On the whole, we conclude that the PCS strategy is the

preferred technique. On average, PCS requires only 6.5 tests

to achieve the optimal number of well-localized faults, versus

46.8 tests for the Base strategy. This can be viewed as an

improvement of ðð46:8� 6:5Þ � 100Þ=46:8 ¼ 86:1%. Similarly,

we notice that, on average, the Base strategy takes 131.2 sec-

onds for test generation, compared to only 14.9 seconds

required by PCS, for an improvement of 88.6 percent.
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TABLE 7
Summary, for Each Test-Generation Technique and Subject Program, of the Time

(Time(s) for Base and Avg Time(s) for Coverage, PCS, and IS) and Number of Tests (# Tests)
Required to Achieve the Maximal Percentage of Well-Localized Faults as Reported in Table 6

Fig. 8. Effectiveness comparison of different fault-localization techni-
ques using the Ochiai algorithm. X-axis: Percentage of statements that
need to be inspected. Y-axis: Percentage of faults.

TABLE 6
Summary, for Each Test-Generation Technique and Subject Program, of the Percentage of Faults That Is Well

Localized and the Absolute Number (# stmts) and Percentage (Percent stmts) of Executed Statements
That Need to Be Inspected on Average Until the Fault Is Localized



6.7 Threats to Validity

There are several objections a critical reviewer might raise
to the evaluation presented in this section. First, one might
argue that the benchmarks are not representative of real-
world PHP programs and are relatively small. While this
may be the case, we selected open-source PHP applications
that are widely used, as is evidenced by the number of
downloads reported in Table 1. The relatively small size of
the programs allows us to understand them enough to be
able to fix the bugs that we found, and our technique does
not rely on small size per se, in that nothing in them scales
with program size. Furthermore, the same subject programs
were also used as subject programs by Minamide [34].
Second, it could be the case that the faults we exposed and
localized are not representative. We do not consider this to

be a serious risk because we were previously unfamiliar with
the faults in these subject programs, and all of them were
exposed by automatic and systematic means. A potentially
more serious issue is that any given fault may be fixed in
multiple different ways. The fixes we devised were mostly
one-line code changes, for which we attempted to produce
the simplest possible solution. The most serious criticism to
our evaluation, in our own opinion, is the assumption that
programmers would inspect the statements strictly in
decreasing order of suspiciousness. In practice, it is very
likely that programmers who try to follow this discipline
would automatically look at adjacent statements, so the
assumption is probably not completely realistic. Our rebuttal
to this argument is that we evaluate all techniques in exactly
the same way, and that this approach to measuring the
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Fig. 9. Average number of statements to inspect for all the execution failure found in each subject program. (a) faqforge, (b) schoolmate, (c) phpsysinfo,
(d) webchess, and (e) aggregated.



effectiveness of fault-localization methods has been used in
previous research in the area (e.g., [29], [28], [39]).

Renieris and Reiss [38] describe an evaluation approach
in which goodness of a report is based on the distance in a
program dependence graph (PDG) from a report to an
actual fault. The idea is that a programmer would follow
program logic from a report, so distance in the program
logic is a good metric. It seems clear that programmers
would indeed follow their notion of the program logic, but
it is not so clear that a formal PDG captures the intuitive
notion of the programmer. Thus, while our assumption that
the programmer would follow a linear order is perhaps
oversimplified, it is a simple metric and it is not clear how
to improve it.

7 RELATED WORK

This section reviews the literature on fault localization,
focusing primarily on fault localization techniques that
predict the location of faults based on the analysis of data
from multiple tests or executions. In addition, we discuss
research that explores the impact of test-suite composition
on fault-localization effectiveness.

7.1 Fault Localization

7.1.1 Early Work

Early work on fault localization relied on the use of
program slicing [42]. Lyle and Weiser [33] introduce
program dicing, a method for combining the information of
different program slices. The basic idea is that, when a
program computes a correct value for variable x and an
incorrect value for variable y, the fault is likely to be found
in statements that are in the slice w.r.t. y, but not in the slice
w.r.t. x. Variations on this idea were later explored by Pan
and Spafford [35] and Agrawal et al. [4].

7.1.2 Trace Comparisons

Renieris and Reiss [38] use set-union, set-intersection, and
nearest neighbor methods for fault localization; these all work
by comparing execution traces of passing and failing
program runs.

. set-union. It computes the union of all statements
executed by passing test cases and subtracts these
from the set of statements executed by a failing test
case. The resulting set contains the suspicious
statements that the programmer should explore first.
In the event that this report does not contain the
faulty statement, Renieris and Reiss propose a
ranking technique in which additional statements
are considered based on their distance to previously
reported statements along edges in the System
Dependence Graph (SDG) [22].

. set-intersection. It identifies statements that are
executed by all passing test cases, but not by the
failing test case, and attempts to address errors of
omission, where the failing test case neglects to
execute a statement.

. nearest neighbors. It selects the passing test case
whose execution spectrum most closely resembles
that of the failing test case according to one of two

distance criteria,16 and reports the set of statements
that are executed by the failing test case but not by
the selected passing test case. In the event that the
report does not contain the faulty statement, Renieris
and Reiss use a ranking technique in which addi-
tional statements are considered based on their
distance to previously reported statements along
edges in the System Dependence Graph [22].

Nearest Neighbor was evaluated on the Siemens suite [23],
and was found to be superior to the set-union and set-
intersection techniques.

7.1.3 Tarantula, Ochiai, and Jaccard

Tarantula [29], Ochiai [3], and Jaccard [16], [24] are different
similarity coefficients that have been used for fault
localization, by computing for each program construct a
suspiciousness rating that reflects the likelihood for that
construct to contribute to a failure. This suspiciousness
rating of a program construct is computed as a function of
the ratio of passing and failing executions that exercise it. In
this paper, we apply the Tarantula, Ochiai, and Jaccard fault-
localization algorithms in a new domain: fault-localization
for web applications written in PHP. Previous evaluations
of these algorithms have primarily focused on the Siemens
suite, a collection of small C programs into which artificial
faults have been seeded and for which a large number of
test cases is available. By contrast, we study real faults in
open-source PHP web applications. Moreover, unlike
previous work on fault localization, we do not assume the
availability of a test suite but rely on combined concrete and
symbolic execution to generate a large number of (passing
and failing) test cases instead.

7.1.4 Empirical Evaluations

Jones and Harrold [28] conducted a detailed empirical
evaluation in which they apply Tarantula to faulty versions
of the Siemens suite [23], and compare its effectiveness to
that of several other fault-localization techniques. In the
fault-localization literature, the effectiveness of a fault-
localization technique is customarily measured by reporting
the percentage of the program that needs to be examined by
the programmer, assuming that statements are inspected in
decreasing order of suspiciousness [18], [3], [38], [28].
Santelices et al. [39] investigate the tradeoffs of applying
the Tarantula algorithm to different types of program
entities: statements, branches, and def-use pairs. The results
for the branch-based and def-use-based variants are mapped
to statements so that their effectiveness can be compared.
The outcome of their comparison is that the branch-based
algorithm is more precise than the statement-based one, and
that def-use-based variant is more precise still. Santelices
et al. also present algorithms that combine the variants by
computing an overall suspiciousness rating for each state-
ment that is derived from the underlying suspiciousness
ratings, and report that one of these combined algorithms is
even more precise than the def-use-based algorithm. We also
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16. One similarity measure defines the distance between two test cases as
the cardinality of the symmetric set difference between the statements that
they cover. The other measure considers the differences in the relative
execution frequencies.



explore special treatment of branches, but with a rather
different goal. Santelices et al. use branch information to
impute suspiciousness to specific statements; we are using
branches combined with branch outcomes to impute blame
to specific control-flow paths to approximate where missing
code ought to be.

Recent papers by Jones and Harrold [28] and Abreu et al.
[3] present empirical evaluations of fault localization
techniques, including several of the techniques discussed
above, using the Siemens suite. The emerging consensus
appears to be that the Ochiai similarity metric advocated by
Abreu et al. [3] is more effective than Tarantula [39], [2] and
Jaccard [16], [24]. Our experiments appear to confirm this.

7.1.5 Statistical Debugging

Liblit et al. [30] present a fault-localization technique that
analyzes the correlation between executed branches with
failures using regularized logistic regression. As the focus
of Liblit et al.’s work is on fault localization in deployed
software, where runtime overhead needs to be kept at a
minimum, the approach is sampling based. Liblit et al.
show that effective bug isolation can even be done with
low sampling frequencies such as 1/1,000. In later work,
Liblit et al. extended sampling-based statistical debugging
to: 1) handle scenarios with multiple faults [31], 2) cover
complex Boolean formulas rather than the simple success/
failure of predicates [10], and 3) isolate concurrency-related
bugs [27]. Recently, Arumuga Nainar and Liblit [11]
showed how the runtime overhead of sampling-based
statistical debugging can be reduced by adaptive reinstru-
mentation of deployed code.

7.1.6 Other Techniques

Dallmeier et al. [19] present a technique in which differences
between method-call sequences that occur in passing and
failing executions are used to identify suspicious statements.
They evaluate the technique on buggy versions of the
NanoXML Java application. Cleve and Zeller [18], [48],
Zhang et al. [49], and Jeffrey et al. [25] present fault-
localization techniques that attempt to localize faults by
modifying the program state at selected points in a failing
run, and observing whether or not the failure reoccurs.
Other fault localization techniques analyze statistical corre-
lations between control-flow predicates [31], [32] or path
profiles [17] and failures, time spectra [45], and correlations
between changes made by programmers and test failures
[41], [37]. In recent work by Zhang et al. [50], suspiciousness
scores are associated with basic blocks and control-flow
edges, and computed by solving a set of equations (using,
e.g., Gaussian elimination) that reflect control flow between
basic blocks. Park et al. [36] recently described an approach
for fault localization in concurrent Java programs in which
occurrences of nonserializable access patterns are correlated
with failures using the Jaccard formula.

Baah et al. [12] recently applied causal-inference techni-
ques to the problem of fault localization in order to control
the confounding bias caused by unknown variables. They
propose variations on a number of fault-localization
algorithms, including Tarantula and Ochiai, that correct for
this bias, and show that this can improve fault localization.

7.2 The Impact of Test-Suite Composition on
Fault-Localization Effectiveness

Our work on directed test generation is primarily aimed at
scenarios where a failure occurs but where no test suite is
available to apply statistical fault localization techniques. To
address this scenario, we use a variation on combined
concrete and symbolic execution [20], [40], [15], [21], [44]
that is guided by various similarity metrics to generate test
suites composed of tests with execution characteristics that
are similar to those of the failing test. This is the same spirit
as the Nearest Neighbors algorithm [38], but instead of
selecting tests that are similar to a given failing test, we are
generating such tests. Below, we discuss several categories of
related research.

7.2.1 Generating Passing Tests That Are Similar to

Failing Tests

Wang and Roychoudhury [43] present a fault localization
technique that generates a similar successful run given a
failing run when that is possible. Here, the basic idea is to
find a program execution by attempting to invert specific
conditionals. They start at the end of the execution to get the
most similar successful execution. Their mechanism is
similar to ours at the level of inverting conditions and using
a constraint solver to derive inputs that yield that outcome.
However, they focus on generating a specific successful run
similar to a specific failing run, and do not employ statistical
techniques that might help generalize across multiple
successes and failures. Also, in general, their technique
requires that “checking whether [a given similar run] was
successful has to be done manually.” This contrasts with our
use of an oracle to determine success or failure.

Zeller introduced Delta Debugging [47] which minimizes
some aspect of a test that induces failure. For instance, given
a large source file that causes a compiler to crash, this
technique may be able to isolate the particular problematic
portion of the file. This technique isolates the important
differences between a succeeding and failing execution by
systematically reexecuting the program on inputs “in
between” these executions. Unlike our work on directed test
generation, Zeller’s work is primarily focused on minimizing
a failing input rather than systematically generating inputs to
look for failures. Also, as with Wang and Roychoudhury, this
work focuses on changing specific tests rather than applying
statistical analysis to a collection of tests.

7.2.2 The Impact of Test-Suite Composition on Fault

Localization

Several other projects have explored the relationship
between the composition of a test suite and its effectiveness
for fault localization. Baudry et al. [13] study how the fault-
localization effectiveness of a test suite can be improved by
adding tests. They propose the notion of a dynamic basic
block, which is a set of statements that is covered by the
same tests, and a related testing criterion that aims to
maximize the number of dynamic basic blocks. Baudry et al.
use a genetic algorithm for deriving new tests from existing
ones by a series of mutation operations. Our research also
aims to improve fault localization effectiveness by creating
tests, but our starting point is a situation where no test suite
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is available. In such cases, it is not clear how mutation-
based approaches, which generate new tests from existing
ones, could be applied.

Other researchers have focused on the opposite problem:
determining how reducing the size of a test suite impacts
fault localization effectiveness. Yu et al. [46] study the
impact of several test-suite reduction strategies on fault
localization. They conclude that statement-based reduction
approaches negatively affect fault localization effectiveness,
but that vector-based reduction approaches, which aim to
preserve the set of statement vectors exercised by a test
suite, have negligible effects on effectiveness. Jiang et al.
[26] also study the impact of test-suite reduction strategies
on fault-localization effectiveness. One of the strategies they
consider (AS) prefers those test cases that maximally
increase the number of additional statements covered. They
report that reducing a test suite to half its original size
according to this strategy only has minimal impact on fault-
localization effectiveness.

7.2.3 Other Directed Symbolic Execution

In [14], the authors investigate three strategies to direct
combined concrete and symbolic execution to improve
coverage. Heuristics based on the Control-Flow Graphs
(CFGs) of functions are evaluated in the context of real C
programs. The most effective CFG-based heuristic is able to
improve branch coverage substantially (by more than a
factor of 2) for their largest program. The mechanism of
using some explicit metric to direct the search resembles
ours, but the goal is very different since they are trying to
increase coverage by generating new different inputs
whereas we are trying to improve fault-localization effec-
tiveness by generating new similar inputs.

8 CONCLUSIONS

Until now, statistical fault-localization techniques that
analyze execution data from multiple tests [29], [30], [31],
[3], [39] have been applied primarily in the context of
traditional imperative programming languages such as C
and Java. In this paper, we have shown how such fault-
localization techniques can be made effective in the
domain of PHP web applications. We have presented
two enhancements to the existing Tarantula, Jaccard, and
Ochiai fault-localization techniques that greatly increase
their effectiveness:

. The use of an extended domain of (statement,
runtime value) pairs for conditional statements and
function calls.

. The use of source mapping that correlates statements
in the PHP application with the fragments of output
that they produce at runtime.

The former helps with the localization of certain common
kinds of failures such as missing branches in conditional
statements and the return of unexpected values by func-
tions due to corner cases that are not handled properly. The
latter increases the precision of fault localization by
leveraging the fact that PHP applications are expected to
produce syntactically valid HTML output, and that the

location of errors in these generated pages can often be
determined quite precisely.

A key limitation of traditional fault-localization techni-
ques has been that they require the existence of a suite of
passing and failing tests. This renders these techniques
powerless in the all-too-common scenario where a program-
mer is confronted with a failure, but where no test suite is
available. To address this case, we have presented an
approach for directed test generation, based on combined
concrete and symbolic execution, that can be used to generate
test suites with excellent fault-localization characteristics.
This approach involves parameterizing the symbolic execu-
tion framework with a similarity criterion, which measures
the similarity between two executions and directs the
generation of tests to give preference to the creation of tests
with maximal similarity to a given failing test.

We implemented these techniques in Apollo, and eval-
uated the techniques on several open-source PHP applica-
tions for which we had previously detected many failures
[9]. We determined experimentally that a variant of the
Ochiai algorithm that includes all our enhancements was the
most effective, by localizing faults to within 0.7 percent of all
executed statements, on average, over all faults in all subject
programs, which is a significant improvement from the
5.6 percent for the unenhanced Ochiai algorithm. Moreover,
our enhanced version of Ochiai localized 87.8 percent of all
faults to within 1 percent of all executed statements,
compared to only 37.4 percent for the unenhanced Ochiai
algorithm. We obtained similar, though slightly worse
results for the Tarantula and Jaccard algorithms.

We also implemented the directed test-generation
strategies in Apollo as variations of the combined concrete
and symbolic execution framework in [9]. We experimen-
tally determined that all test-generation strategies that we
considered are capable of generating test suites with
maximal fault-localization effectiveness, when given an
infinite time budget for test generation. However, on
average, with a directed strategy based on path-constraint
similarity, this maximal effectiveness was achieved after
generating only 6.5 tests, compared to 46.8 tests for an
undirected test-generation strategy. Accordingly, our direc-
ted technique reduces test-suite size by 86.1 percent and
test-suite generation time by 88.6 percent when compared
to a traditional undirected test-generation strategy.

As part of future work, we plan to experiment with
additional similarity metrics that can be used for directed
test generation, and evaluate how their effectiveness
compares to the path-constraint and input similarity metrics
presented in this paper. In addition, we plan to develop
techniques for synthesizing fixes for the HTML errors
detected by Apollo. We are also interested in developing
test generation and fault-localization techniques for client-
side JavaScript code that is executed in a browser. A recent
paper [5] presents a first step in this direction.
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