
A Comprehensive Approach to Naming and
Accessibility in Refactoring Java Programs

Max Schäfer, Andreas Thies, Friedrich Steimann, and Frank Tip

Abstract—Automated tool support for refactoring is now widely available for mainstream programming languages such as Java.

However, current refactoring tools are still quite fragile in practice and often fail to preserve program behavior or compilability. This is

mainly because analyzing and transforming source code requires consideration of many language features that complicate program

analysis, in particular intricate name lookup and access control rules. This paper introduces JL, a lookup-free, access control-free

representation of Java programs. We present algorithms for translating Java programs into JL and vice versa, thereby making it

possible to formulate refactorings entirely at the level of JL and to rely on the translations to take care of naming and accessibility

issues. We demonstrate how complex refactorings become more robust and powerful when lifted to JL. Our approach has been

implemented using the JastAddJ compiler framework, and evaluated by systematically performing two commonly used refactorings on

an extensive suite of real-world Java applications. The evaluation shows that our tool correctly handles many cases where current

refactoring tools fail to handle the complex rules for name binding and accessibility in Java.

Index Terms—Restructuring, reverse engineering, and reengineering, object-oriented languages, Java

Ç

1 INTRODUCTION

REFACTORING is the process of restructuring a program by
means of behavior-preserving source code transforma-

tions, themselves called refactorings [1], [2]. Over the past
decade, automated tool support for refactoring has become
available in popular IDEs such as Eclipse and VisualStudio.
However, even state-of-the-art tools are still quite fragile,
and often render refactored programs uncompilable or
silently change program behavior.

An important cause for this lack of robustness is the fact

that refactoring tools analyze and transform programs

at the source level, which is significantly more challenging

than working on some convenient intermediate representa-

tion, as compilers do. Source level programs contain many

features such as nested classes, method overloading, and

access modifiers that require great care when applying

program transformations and that writers of compiler

optimizations simply do not have to worry about.
In the context of Java, two particularly vexing problems

are name lookup and access control. Java’s rules for finding

the declaration that a type or variable name refers to are

quite intricate and context dependent. The combination of

inheritance and lexical scoping, in particular, makes name

lookup highly nonmodular so that changes to declarations

can have repercussions throughout the program. Determin-
ing whether a declaration is accessible at a given position in
the program is a similarly knotty problem and, of course,
the two problems are intertwined since accessibility can
influence the result of name lookup.

Naming and accessibility are omnipresent in refactoring:
Any refactoring that introduces, moves, or deletes a
declaration runs the risk of upsetting the program’s binding
of names to declarations. Similarly, when a refactoring
moves a reference to a declaration, great care has to be taken
to ensure that it still binds to the same declaration after the
move. Failure to do so may either lead to an uncompilable
output program or, even worse, a program that still
compiles but behaves differently due to changes in name
resolution or overriding.

Examples from both categories are easy to find even with
state-of-the-art refactoring tools [3] such as the refactoring
engines of Eclipse JDT [4] and IntelliJ IDEA [5].1

In this paper, we propose a comprehensive solution to
these issues in the form of JL, a lookup-free and access
control-free representation of Java programs. In JL, declara-
tions are not identified by potentially ambiguous names but
by unique labels, and are accessed by locked bindings that
directly refer to a label without any lookup or access control
rules. Unless explicitly rebound to a new declaration,
locked bindings continue to refer to the same target
declaration even if that declaration is renamed or moved;
consequently, a transformation cannot accidentally change
name bindings or introduce unbound names.

We provide translations from Java to JL and vice versa,
allowing refactorings to be formulated directly at the level
of JL. This higher level of abstraction allows the imple-
menter to concentrate on the essence of a refactoring, with
the complexities of name binding and access control
preservation being taken care of by the (refactoring

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012 1233

. M. Schäfer is with the IBM T.J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532. E-mail: mschaefer@us.ibm.com.

. A. Thies and F. Steimann are with the Fernuniversität in Hagen,
Universitätsstraße 1, D-58097 Hagen, Germany.
E-mail: andreas.thies@fernuni-hagen.de, steimann@acm.org.

. F. Tip is with the the David R. Cheriton School of Computer Science,
University of Waterloo, 200 University Avenue West, Waterloo, ON
N2L 3G1, Canada. E-mail: ftip@uwaterloo.ca.

Manuscript received 29 July 2011; revised 10 Jan. 2012; accepted 21 Jan.
2012; published online 13 Feb. 2012.
Recommended for acceptance by M. Robillard.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2011-07-0228.
Digital Object Identifier no. 10.1109/TSE.2012.13.

1. Throughout this paper, whenever we refer to Eclipse JDT we mean
version 3.6, and version 10.5 for IntelliJ IDEA, unless stated otherwise.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

independent) translation to and from Java. Our translation

from JL to Java is based on two key techniques:

1. Reference construction. Unlocking the locked bind-
ings of JL, i.e., replacing them with normal Java
names, is easy if we have a reference construction
algorithm that, given a declaration and a location in
the program, constructs a (possibly qualified) name
which binds to this declaration. We show that such
an algorithm can be systematically derived from a
suitable specification of name lookup.

2. Accessibility constraints. Java’s access control rules
can be captured using constraint rules relating the
accessibilities of different declarations. A solution to
these constraints indicates how declared accessibil-
ities have to be adjusted to ensure that the program
adheres to the access control rules.

JL and the translations to and from Java form the basis of

the JRRT system [6], a prototype refactoring engine built on

the JastAddJ Java compiler front end [7], which supports a

growing number of popular refactorings [8]. We evaluate

this implementation both on the internal test suite of the

Eclipse refactoring engine and on a large suite of real-world

applications, demonstrating that it handles many situations

where existing state-of-the-art tools just give up.
In summary, our work makes the following main

contributions:

. We propose JL, a lookup-free and access control-
free representation of Java programs and show
how existing refactorings become simpler and
more widely applicable when expressed on that
representation.

. We show how an algorithm for constructing
potentially qualified references that refer to a given
declaration from a given program point can be
derived from a suitable specification of Java name
lookup.

. We demonstrate how the access control rules of Java
can be captured by constraint rules that can be
applied to a program. These rules yield a set of
constraints that are used to constrain possible
refactoring transformations to avoid generating
uncompilable programs.

. We combine reference construction and accessibility
constraints into an algorithm for translating from JL
to Java and report on an experimental evaluation of
a refactoring tool built on this approach.

The remainder of this paper is organized as follows:

Section 2 motivates the need for a systematic treatment of

naming and accessibility by means of some examples.

Section 3 surveys the name binding rules of Java and shows

how to derive a reference construction algorithm from a

suitable implementation of name lookup. Section 4 gives an

overview of the access control rules of Java and demon-

strates how they can be captured using constraint rules.

These two techniques are then integrated in Section 5 to

yield a translation from JL to Java. An implementation of

our approach is presented in Section 6 and evaluated in

Section 7. Finally, Section 8 puts our work into the broader

context of the literature, and Section 9 concludes.

2 MOTIVATING EXAMPLES

We start by giving some examples to show that naming and
accessibility are pervasive problems that have to be dealt
with by many refactorings. We then outline our proposed
solution, which employs a novel lookup-free, access
control-free representation of Java programs to address
these problems in a refactoring-independent way.

2.1 Basic Naming Problems

The paradigmatic example of a refactoring that needs to
deal with naming issues is the RENAME refactoring, which
changes the name of a declared entity (such as a class, field,
or method) and consistently updates all references to use
the new name while avoiding name capture.

A simple example of this refactoring is shown in Fig. 1.
In the original program, shown on the left, the constructor
of class A has a parameter newX that is used to initialize
field x. Let us assume that the programmer wants to
rename newX to have the same name as the field that it
initializes. A refactoring tool should then produce the
program on the right-hand side, where we have highlighted
changes in gray: Both the parameter declaration and its
single use have been updated to use the new name, and the
reference to field x has been qualified with this to ensure
that the reference still binds to the field after the renaming
operation and is not captured by the renamed parameter.

A plausible correctness criterion for RENAME is that it
should preserve the program’s binding structure: Names
should bind to the same declaration in the refactored
program as in the original program. Due to the complex
lookup rules of Java and the delicate interplay between
inheritance and lexical scoping this is not always easy to
ensure. Section 3 will introduce a systematic way of
constructing names that bind to a given declaration, making
binding preservation easy to guarantee.

The preservation of name bindings is also desirable in
many other refactorings. For instance, the INTRODUCE

PARAMETER refactoring turns a constant expression appear-
ing inside a constructor or method body into an additional
parameter and adjusts call sites accordingly. An example of
this refactoring is shown in Fig. 2, again with the original
program on the left and the refactored program on the right.
This refactoring has to deal with two naming issues: First, the
introduced parameter should not lead to any name capture;
this is avoided in the example by qualifying the reference to
field x on line 31 as in the previous example. Second, the
changed signature of the constructor leads to a change in
overloading resolution for the new expression on line 26:
Whereas originally constructor A(long) was the most
specific choice, the constructor A(int) would now be
selected; to avoid this unwanted change in program

1234 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 1. A simple example of RENAME.

behavior, we have inserted an upcast to long on the
argument, thus enforcing the same choice as before.

Similar precautions have to be taken for any refactoring

that introduces, moves, or deletes declarations [8]. Even in

cases where we do want name bindings to change, for

instance with the ENCAPSULATE FIELD refactoring where

field references are turned into calls to accessor methods,

we generally want them to change in a controlled manner.
This argues for a more high-level approach to name

binding in which a refactoring does not directly manipulate

raw Java names with their complex qualification and

lookup rules, but instead specifies, for each name in the

original program, which declaration it is supposed to bind

to in the refactored program. A common naming frame-

work then takes care of introducing qualifiers or upcasts

where necessary to achieve the desired binding structure.
Current industrial-strength refactoring tools fail to

handle name bindings correctly in many cases. Eclipse

correctly diagnoses the shadowing problem in Fig. 1, but

simply emits an error message and refuses to perform the

renaming, while IDEA inserts the desired qualification.

Both mishandle the example in Fig. 2: Eclipse fails to

recognize either of the naming issues, while IDEA notices

the shadowing but fails to prevent the change in over-

loading resolution.
A notoriously difficult and, in current refactoring tool

implementations, unsolved problem in binding preserva-

tion arises from Java’s reflection API, which allows

accessing classes, interfaces, fields, and methods by

computed names. We do not tackle this issue here. There

is current research on frameworks enabling sound static

analysis in the presence of reflection [9] which, together

with our approach, may help to enable reflection support

for refactoring tools in the future.

2.2 Basic Accessibility Problems

Like naming, accessibility is also handled poorly by current

tools. For instance, consider the scenario of Fig. 3, where the

MOVE CLASS refactoring is applied to move class B from

package a to package b. To remain accessible in the

declaration on line 45, B has to be made public as shown

on line 56. Eclipse fails to notice this problem and produces

an uncompilable program; IDEA emits a warning, but does

not attempt to fix the issue.
While this problem is detected by the compiler, failure to

adjust accessibility can be more detrimental in presence of

dynamic binding. For instance, moving class B in Fig. 4a to

package b leaves the code compilable, but changes the

meaning of the program because it changes the status of

A.m from being overridden to not being overridden, so that

calling m() on a receiver of static type A and dynamic type

B will no longer dispatch to the implementation in B. In

Eclipse, this change of meaning goes unnoticed; IDEA

warns that class A contains a reference to class B, but this is

not indicative of the problem. An accessibility-aware

refactoring tool could instead suggest increasing the

accessibility of A.m, and with it that of B.m (required by

[10, Section 8.4.8.1]), to protected, as shown in Fig. 4b.

2.3 Naming and Accessibility Problems in EXTRACT

INTERFACE

For a somewhat more involved example of the subtle

interactions of naming and accessibility with other language

features and each other, let us consider the EXTRACT

INTERFACE refactoring. The purpose of this refactoring is

to encourage loose coupling by creating a new interface I

that declares some of the methods defined in a given class C

and then updating declarations throughout the program to

refer to I instead of C wherever possible [1], [11], [12].

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1235

Fig. 2. A simple example of INTRODUCE PARAMETER.

Fig. 3. A simple example of MOVE CLASS.

Fig. 4. An example of MOVE CLASS involving dynamic binding.

While the essence of this refactoring is concerned with

types, naming and accessibility issues also have to be

handled. Consider, for instance, the example program of

Fig. 5a. For the purposes of this example, we will assume

that the programmer wants to extract from class C an

interface I that declares the method m.
Fig. 5b shows the program after applying the refactoring.

The new interface I appears on lines 117-119 of Fig. 5b, and,

on line 121, type C was made to implement this new

interface. We now explain the other changes.
Types. The goal is to use the new interface wherever

possible. However, some declarations that refer to type C

cannot be changed to I.
For example, c2’s type on line 131 cannot be changed

because then the call to n on line 132 would not be type-

correct as interface I does not declare a method n. On the

other hand, o’s type on line 131 and c1’s type on line 130

can both be updated safely.
Accessibility. Class C.B is declared private, meaning

that it is not accessible outside class C. In particular, it is not

accessible in the newly created interface I unless its

accessibility is increased to at least package accessibility,

as shown on line 122.

The newly created method I.m is implicitly public,
hence method C.m, which overrides it, must be made
public as well (line 123).

Names. References to nested classes such as C.B must be
qualified outside of their declaring class. Hence, the signature
of method I.m must use a qualified name (line 118).

A similar issue arises on line 135 where the type B of
field f has become ambiguous as a result of increasing the
accessibility of class C.B. This is resolved by using the
qualified type name J.B.

Overloading. Changing c1’s type on line 130 to I renders
the call to D’s constructor on line 133 ambiguous because
neither constructor is now more specific than the other. This
ambiguity is resolved by inserting an upcast2 on line 133.

While this example is arguably quite contrived, it shows
that a complex interplay exists between typing, access
control, and naming (including overloading resolution) that
refactoring tools must be aware of. Neither Eclipse nor
IDEA can carry out the example refactoring since they
require the extracted methods to be public already. If we
change the example, making m public to begin with, both
tools still fail to carry out some necessary adjustments,
producing uncompilable output without a warning.

1236 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 5. Example application of the EXTRACT INTERFACE refactoring. (a) The original program; (b) the program after the programmer has extracted
from class C an interface I that declares method m(C.B).

Fig. 6. Example application of the PULL UP METHOD refactoring: pulling up method C.foo(A) into B.

2. This cast always succeeds at runtime and only serves to ensure that the
call is resolved to the correct declaration at compile time.

2.4 Naming and Accessibility Problems in PULL UP

METHOD

Of course, EXTRACT INTERFACE is not the only refactoring

that potentially faces such complications. Consider, for

instance, the example program in Fig. 6a, and assume the

programmer wants to pull up method C.foo(A) into class B

using the PULL UP METHOD refactoring. We observe the

following about the refactored code in Fig. 6b.
Accessibility. Method foo(A) calls C.baz, a private

method that is not accessible in B. This issue is resolved by

increasing baz’s accessibility to package on line 158.
Names. Accessing the static method baz outside of its

declaring class requires explicit qualification of the method

call on line 154.
Overloading. Moving method foo(A) into class B

makes the call foo(null) on line 163 ambiguous because

neither of the methods B.foo(A) and E.foo(String) is

more specific than the other. This is resolved by adding an

upcast on line 163.
In general, the PULL UP METHOD refactoring also needs

to preserve certain subtype relationships. For example,

consider a scenario where a programmer attempts to pull

up method foo(A) into class A. In this scenario, the

refactoring cannot be applied because the type of the

argument this in the method call baz(this) on line 143.

would become A, causing the call to become type-incorrect.
In summary, PULL UP METHOD requires careful analysis

to respect subtyping, accessibility constraints, name, and

overloading resolution. Again, the example exceeds the

capabilities of Eclipse and IDEA, which reject it.

2.5 Our Solution

The examples in this section suggest that naming and

accessibility issues are pervasive in refactoring. More

evidence of this can be found at the JRRT website [3],

where we maintain a list of bugs found in refactorings as

implemented by several industrial-strength refactoring

engines, many of which concern naming and accessibility.
However, the treatment of these issues is largely

orthogonal to the purpose of a specific refactoring. Ideally,

refactorings should work on a language where name

bindings are always preserved except when they are

explicitly rebound, and where access modifiers are auto-

matically adjusted as necessary. This is the goal of the JL
representation we introduce in this paper. In JL, normal

Java names are abolished in favor of locked references of the

form " l, where l is a label uniquely identifying a

declaration, that directly bind to their declaration without

regard to normal lookup and access control rules.
Of course, JL is only to be used as an intermediate

representation that simplifies the specification and imple-

mentation of refactorings, so we need translations from Java

to JL and back. The following two sections develop the

technical machinery needed for these translations; Section 5

will then show how to upgrade a Java-based refactoring

specification to work on JL, revisiting some of the examples

in this section.

3 REFERENCE CONSTRUCTION

In this section, we consider the problem of how to construct
a (possibly qualified) reference that binds to a given
declaration from a given program point.

More precisely, assume name lookup is given as a partial
function,

lookup : ProgramPoint� Reference * Declaration;

that determines the declaration d ¼ lookupðp; rÞ a reference r
at point p binds to, if any.

We want to define a complementary reference construction
function,

access : ProgramPoint�Declaration * Reference;

that constructs a reference r ¼ accessðp; dÞ under which
declaration d can be accessed from point p. The correctness
of this function with respect to lookup is expressed by the
condition

8p; d : lookupðp; accessðp; dÞÞ ¼ d: ð1Þ

In other words, if function access produces a reference r
under which to access declaration d from point p, then that
reference really does bind to d at p: accessðp;�Þ is a (partial)
right inverse to lookupðp;�Þ.

Given access, we can eliminate locked bindings from a
program by simply replacing every locked binding "l
occurring at some program point p with the reference
accessðp; lÞ. If accessðp; lÞ is undefined, indicating that an
appropriate reference cannot be constructed, the refactoring
is aborted.

A trivial implementation of access that is undefined
everywhere vacuously satisfies (1), but is not useful for
eliminating locked bindings. We show in this section how a
suitable specification of name lookup can be systematically
inverted to yield a practical implementation of access.

3.1 Name Lookup in Java

The Java Language Specification (JLS) introduces eight
kinds of declared entities [10, Section 6.1]: packages, class
types (including enum types), interface types (including
annotation types), type parameters, methods, fields, para-
meters, and local variables. An entity is introduced by a
declaration and can be referred to using a simple or
qualified name.

Like the JLS, we will use the term reference type to mean
“class type, interface type or array type” and variable to
mean “field, parameter, or local variable.”

Every declared entity e has a scope [10, Section 6.3],
which encompasses all program points at which e can be
referred to using a simple name, as long as it is visible. If,
however, the scope of another entity e0 of the same name is
nested inside the scope of e, then e0 is said to shadow e [10,
Section 6.3.1]. Inside the scope of e0, entity e is no longer
visible, and it is not possible to refer to e by its simple name;
a qualified name has to be used instead.

Shadowing is distinct from hiding [10, Section 8.3]: A
field declaration in a reference type T hides any declaration
of a field with the same name in superclasses or super-
interfaces of T , subject to accessibility restrictions detailed
in Section 4. Similarly, static method declarations hide

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1237

methods with the same signature in superclasses or super-
interfaces [10, Section 8.4.8.2].

Shadowing and hiding are both distinct from obscuring

[10, Section 6.3.2]: In some syntactic contexts, it is not
a priori clear whether a name refers to a package, a type, or
a variable. In this case, variables are given priority over
types, and types over packages. This means that there may
be program points p where it is impossible to refer to a type
or package e1 by its simple name, even though it is visible,
because p belongs to the scope of a variable or type e2 of
the same name; e2 is then said to obscure e1 at p.

We illustrate these concepts by means of an example in
Fig. 7. This example program consists of a single compila-
tion unit belonging to package p. The compilation unit
declares five classes: Super, Outer, Inner, and two
classes named A. In addition, it uses the primitive type
int. The classes Super and Outer are top level classes,
while Inner is a member class of Outer.

ClassSuperdeclares an instance fieldf, a member classA,
an instance method m, and a static field length; these are
referred to as its local members. Likewise, Outer declares
fields f and x, and two classes A and Inner. The latter
class itself declares two fields f and y, as well as a
method m. In addition to its local members, Inner also
inherits the member class A from Super; thus, the scope
of the class A declared on line 169 includes the bodies of
both Super and Inner.

Class Inner does not inherit field Super.f since the
locally declared field Inner.f hides it, and it does not

inherit method Super.m, since the locally declared method
Inner.m overrides it. Also note that the field f of class
Outer is shadowed, and hence not visible, inside the body
of Inner, even though that body is part of its scope.

Method m has a parameter f that shadows the field f of
its host type Inner. The declarations of the local variables
a1, a2, and a3 in method m demonstrate different kinds of
type names. A type name can be a simple name, as in the
declaration of a1, which refers to class A from Inner, not
its shadowed namesake from Outer. To refer to the latter
type, we have to qualify it with the name of its enclosing
type (line 183), which may itself be qualified by the name of
its package (line 184).

Lines 186-194 show examples of qualified variable and
method references. Line 186 refers to variables x and y by
their simple names, which is possible since they are visible.
This would still work if y were declared in class Super or x
in a superclass of Outer, but not if y were declared in an
enclosing class of Super. Parameter f of m is also visible,
and can thus be accessed by its simple name at line 187, as
indicated by the comment.

The following lines show different forms of qualified
field access expressions. Field f of class Inner, which is
shadowed by the parameter f, can be referred to by
qualifying with this (line 188). The field f from Super,
although hidden by the field f in Inner, is accessible
through a qualification with super (line 189). We can
access the same two fields through qualification with
Inner.this (line 190) and Inner.super (line 191),
although such qualified this accesses are more usually
employed to access shadowed fields of enclosing classes, as
with the reference Outer.this.f (line 192). Note that for
fields, the access super.f is equivalent to ((Super)

this).f (line 193), except that it has slightly more relaxed
accessibility rules [10, Section 6.6.2].

Line 194 shows an example of obscuring: In the expression
Super.length, name Super could either refer to a type or
to a variable (though not to a package). Since this expression
occurs within the scope of the local variable Super declared
on line 185, the latter interpretation is chosen; at runtime, this
expression evaluates to the length of the array referenced by
Super, which is 0, and not to the value stored in the static
field length of class Super. To refer to the latter field, we
would have to use p.Super.length instead.

One feature of Java name lookup that we have not
illustrated in this example is method overloading [10,
Section 8.4.9]: At any given program point, several
different candidate methods with the same name but
different signatures may be in scope; to determine which
method declaration an invocation refers to, the number and
types of actual arguments are matched against the
signatures of the candidate methods, and the closest match
is chosen. If a unique closest match does not exist, the
program is rejected with a compile-time error. The same
process is also used to determine which constructor a class
instance creation expression (i.e., a new expression) or
explicit constructor invocation [10, Section 8.8.7.1] refers to.

In the following, we will use the (nonstandard) term
reference to cover package names, type names, field access
expressions, expression names (i.e., names referring to
variables), method invocations, class instance creation
expressions, and explicit constructor invocations. It will

1238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 7. Example for name lookup in Java.

also be convenient to consider constructors as declared

entities, although the JLS does not do so.

3.2 Modular Specification of Name Lookup

Although the JLS defines name lookup in a global, static
manner in terms of declaration scopes and their nesting, it is
possible to give a more local, modular specification of name
lookup that determines to what declaration a reference
binds by considering its location within the program. For
the purposes of inverting lookup to obtain a reference
construction algorithm, this algorithmic style is more
convenient. We will hence briefly outline its implementa-
tion in the JastAddJ Java compiler [7], [13].

JastAddJ is implemented in JastAdd [14], an extension of
Java with attribute grammar features. Programs are
represented by their abstract syntax trees (ASTs), and
analyses are implemented as parameterized attributes on
the nodes of the AST. Name lookup is mostly handled by a
trio of attributes for looking up types, variables, and
methods by their simple name, which are declared in
JastAdd as follows:

inh TypeDecl ASTNode.lookupType(String n);

inh Variable ASTNode.lookupVar(String n);

inh Set<MethodDecl>

ASTNode.lookupMeth(String n);

The first declaration declares an attribute lookupType that
is defined on every AST node, as indicated by the receiver
type ASTNode, and is parameterized by the name of the
type to look up, which is a (Java) string. When evaluated on
a node p with a name n as its argument, the attribute yields
a TypeDecl, which is itself a node representing the
declaration that type name n binds to at p.

Similarly, lookupVar is an attribute computing the
variable declaration (which may declare either a field, a
local variable or a parameter) that a given name refers to if
interpreted as an expression name. Attribute lookupMeth

returns not a single method, but a whole set of candidate
methods that a method name may refer to, from which one
is selected by overloading resolution.

The keyword inh appearing in all three declarations

indicates that these are inherited attributes, meaning that they

are defined by equations matching on the syntactic context

of the node on which they are defined.
A typical example of an equation for lookupVar, slightly

simplified for presentational purposes, is given in Fig. 8.
The equation is of the form

eq TypeDecl.getBodyDecl (int i).

lookupVar(String name) {. . . }

indicating that it defines the value of attribute lookupVar
on any BodyDecl node that is the ith child of a TypeDecl
node: Such a node represents a declaration or initializer
block appearing in the body of a class or interface type
declaration.3

The attribute computation itself is given as a regular Java
method body, which is executed with this bound to the
parent node, in this case the type declaration, and not the
child node (i.e., the body declaration).

To determine the variable declaration that a simple
expression name n refers to at the program point given by a
body declaration node inside a type t, the following
computation is performed (see Fig. 8):

. AttributememberField is invoked on line 204 to look
up n as a member field of t; if a member field named n
is found, its declaration is returned (line 206).

. Otherwise, lookupVar is recursively invoked on t
itself in line 207 to search enclosing scopes. This
conforms to a lexical scoping discipline where inner
classes can see member fields of enclosing classes. The
test in line 205 prevents recursion if a member field of
the same name exists, implementing shadowing.

. Finally, the result of the recursive invocation is
filtered in line 209: If t is itself declared as static or
occurs in a static context, instance variables cannot
be accessed inside t [10, Section 6.5.6.1] .

Other equations for lookupVar implement lookup of
local variables and parameters inside methods, and of
statically imported fields in a similar manner.

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1239

Fig. 8. Variable lookup from inside a type declaration.

Fig. 9. Member field lookup.

3. We refer to the literature for a more detailed discussion of the syntax
of JastAdd attribute definitions [7].

The most important auxiliary attribute used in the
definition of lookupVar is memberField, whose imple-
mentation we show in Fig. 9. In contrast to lookupVar,
memberField is a synthesized attribute, as indicated by the
JastAdd keyword syn, meaning that the attribute is
computed on the node itself as opposed to its parent node.

We show the definition of memberField for class types
only; the definition for interface types is very similar: First,
the given name is looked up among the locally declared
fields using attribute localField (line 218), which simply
iterates over all body declarations of the class looking for a
field declaration with the appropriate name. If such a field
is found, it is returned as the result of the lookup (line 220).
Otherwise, memberField is invoked recursively on the
superclass, if there is one,4 (line 222) and on all super-
interfaces (omitted from the figure). This implements
inheritance, with line 225 filtering out members that lack
sufficient accessibility. Hiding is implemented by aborting
the search for inherited fields when a local field of the same
name is found.

The defining equations for lookupType and lookup

Meth are similar to what we have shown for lookupVar,
using the same recursion patterns to implement lexical
scoping with shadowing and inheritance with hiding, and
additional filtering steps to account for accessibility rules
and static members.

To resolve an arbitrary (possibly qualified) reference at
a certain program point, one first has to determine
whether the reference refers to a package, a type, a
method, or a variable, and then dispatch to one of the
more specialized attributes lookupType, lookupMeth, or
lookupVariable to perform the actual lookup. In
JastAddJ, there is no single attribute implementing this
functionality. Instead, a solution based on AST rewriting is
adopted, which is somewhat subtle and not well suited for
our purposes since the algorithm is distributed over
several attributes and rewrite rules; for details, see [13].

For presentational purposes and in order to be able to
reason at least informally about the correctness of the
reference construction algorithm to be derived in the
remainder of the section, we distill a composite algorithm
for looking up arbitrary references that incorporates
syntactic classification and disambiguation to handle
obscuring.

A somewhat simplified version of this algorithm for
resolving package, type, and variable references (but not
method or constructor invocations) is shown in Fig. 10. We
assume that simple names are represented by AST nodes of
type SimpleName, and qualified names (including field
access expressions) by nodes of type Dot, and that both
types implement interface Reference. The attributes
SimpleName.lookupAt and Dot.lookupAt look up,
respectively, a simple name and a qualified name at a
program point represented by a node nd.

Crucial to both is the attribute nameKind, which
determines what kind of name is expected at a given AST
node. This can be PACKAGE_NAME (indicating that this node
must be a package name), TYPE_NAME (for type names),
EXPRESSION_NAME (for a name referring to a variable), or

one of the ambiguous kinds PACKAGE_OR_TYPE_NAME and

AMBIGUOUS_NAME, the latter indicating that nothing at all

can be said about the expected kind of name. We do not

detail the implementation of this attribute as it is provided

by JastAddJ and follows closely the rules described in the

JLS [10, Section 6.5.1].
To resolve a simple name, we compute the name kind of

the node at which it is looked up, and then dispatch to the
appropriate simple lookup attribute; we only show the code
for kind EXPR_NAME and for AMBIGUOUS_NAME, which is
the most complicated case. For instance, the simple name
Superon line 194 in Fig. 7 has name kindAMBIGUOUS_NAME;
hence it is first looked up as a variable; since this lookup
yields a result, no type or package lookup is attempted.

To resolve a qualified name, we first extract the

qualifying expression l, which may either be another name

1240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 10. Lookup of general references (simplified).

4. Note that only class java.lang.Object has no superclass.

or a more general expression such as a qualified this or
super,5 and the name n to the right of the dot.

Again the name kind is consulted to determine what
kind of lookup to perform. If it is an expression name, the
name is looked up as a field of the type of the left-hand side
expression. For simplicity, we have elided the definition of
attribute type. If the name is ambiguous, the expression on
the left-hand side must itself be a name, so we look it up
recursively. If the result is a package declaration, we first try
to look up n as a type within that package; failing this, it
must refer to a subpackage. If, on the other hand, l refers to
a type, n is looked up as a member field of that type, or as a
member type if there is no such field.

The full version oflookupAt also checks that accessibility
rules are respected (see Section 4) and that nonstatic members
are not accessed inside a static context, and performs
overloading resolution for methods and constructors.

3.3 Inverting Variable Lookup

To obtain an implementation of reference construction, it
would be tempting to try and invert every lookup attribute in
isolation, for instance, defining an attribute accessVar that
is right inverse to lookupVar in the sense of (1). But since
lookupVar cannot resolve qualified names, accessVar
could never produce qualified names either, leading to a
rather simplistic reference construction algorithm.

Another possibility would be for accessVar to directly
construct a Reference, possibly including qualifications.
However, its correctness would then have to be argued for
with respect to the general lookup function lookup, not
only lookupVar, destroying the symmetry between look-
up and reference construction.

Instead, we opt for a middle way: Reference construction
attributes such as accessVar construct an abstract reference,
which contains enough information to build an actual
reference, and we carefully formulate individual correct-
ness properties relating these attributes to their correspond-
ing lookup attributes. In a second step, the abstract
references are converted into actual references, with the
individual correctness properties ensuring that the con-
structed reference satisfies (1).

To motivate the concept of an abstract reference, consider
the lookup algorithm for fields presented in Fig. 9. In

general, this lookup proceeds in an “outward and upward”
motion, as illustrated in Fig. 11: Starting from inside some
class A1, memberField first traverses A1 and its super-
classes A2, A3, and so on. If the field is not found anywhere,
lookupVar is evaluated recursively on the class B1

enclosing A1, searching through the superclasses of B1 in
turn. The field is ultimately found in a type C2, which is a
supertype of a type C1 enclosing A1.

The path from the point of reference to the declaration
can be visualized as an outward motion through enclosing
classes until reaching a “bend” at C1, and then proceeding
upward on the inheritance hierarchy until reaching the
“source” C2. Consequently, we will refer to C1 as the bend
type and to C2 as the source type of this field lookup. We do
not require the target field to be a local member of C2; it
may just as well be inherited from its supertype C3.

If the field is visible in A1, i.e., there are no shadowing or
hiding fields in A1; A2; A3; . . . ; B1; B2; C1, it can be referred
to by its simple name, say x. However, even if it is not
directly visible, it can still be referred to using the qualified
field access ((C2)C1.this).x. As discussed below, this
access can be simplified depending on the inheritance and
nesting relationship of C1, C2, and A1.

This suggests that in order to construct a qualified
reference to a target field f from some program point p, it
suffices to know the source class, the bend class, the name of
f , and whether it is visible at p. These pieces of information
are encapsulated into a class AbstractVarRef, as shown
in Fig. 12.

We will now show that the name lookup equations of the
previous section can be systematically inverted to compute
such abstract references.

We start by considering the counterpart to the lookup
function localField, accLocalField, which is shown
at the bottom of Fig. 13. Instead of iterating over the body
declarations of a class looking for a field of a given name, it
looks for the given field itself, and returns an abstract
reference, recording the name of the field; both source and
bend are equal to the declaring class, and the field is
directly visible.

The correctness of this function with respect to
localField can be expressed by the following property,
which is easily seen to hold (remembering that in Java a
class cannot declare two fields of the same name):

Property 1. For any class c and field declaration f, if
c.accLocalField(f) evaluates to a reference r, then
r.bend = r.source = c, r.visible is true and
c.localField(r.name) = f.

Attribute accMemberField shown in the same figure
corresponds to memberField. Paralleling the control
structure of the latter, it first invokes accLocalField to

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1241

5. Note that JastAddJ considers super an expression; this is a
simplification, but deviates from the JLS.

Fig. 11. Schematic illustration of field lookup.

Fig. 12. Abstract references.

try and construct a reference to the target variable v as a
locally declared field. If this fails, it recursively invokes
itself on the superclass (and superinterfaces). Abstract
references returned from these recursive invocations have
to be adjusted to update information about visibility and the
source and bend types as shown in lines 326-331.

These adjustments ensure that the following property
holds (taking Property 1 above into account):

Property 2. For any class c and field declaration f, if
c.accMemberField(f) evaluates to reference r, then

1. c = r.bend is a subclass of r.source; if
r.visible, then r.bend = r.source;

2. r.source.memberField(r.name) = f.

Finally, attribute accessVar, of which one equation is
shown at the top of Fig. 13, iterates over enclosing classes in

the same way as localVar, and is inverse to it in the
following sense:

Property 3. For any node n and variable declaration v, if
n.accessVar(v) evaluates to a reference r, then

1. r.bend encloses n; it is a subclass of r.source;
2. if r.visible, then r.bend = r.source and

n.lookupVar(r.name) = v.

The other equations of lookupVar can all be inverted in a
similar fashion to yield corresponding reference construction
attributes. It remains to discuss the algorithm for converting
an abstract reference to an actual reference node, which is
outlined in Fig. 14. The name kind of the node at which the
reference node will eventually be inserted needs to be
checked to ensure that a variable reference is allowed at this
place. If this is the case and the abstract reference indicates
that the variable is visible, a simple SimpleName node
suffices: From Fig. 10 and Property 3 above it is easy to see
that this reference will be resolved as intended.

Otherwise, a qualified field access has to be constructed.
We only show two cases. In the simplest case, both source
and bend are equal to the enclosing class T, i.e., the variable
to refer to is a field of T; in this case, a this-qualified access
suffices. Otherwise, we construct a fully qualified access
explicitly referring to both source and bend using locked
type bindings "S and "B. Hence, eliminating one locked
binding may introduce new locked bindings that have to be
eliminated in turn.

There are several other opportunities for constructing
simpler qualified accesses, which we have elided for
simplicity. We have also omitted additional checks for
accessibility and references to static members; these tests
are precisely the same as those performed during lookup,
and can hence be taken over directly from JastAddJ.

3.4 Inverting Type and Method Lookup

Since the lookup rules for types and methods are broadly
similar to the variable lookup rules, corresponding refer-
ence construction rules can be obtained in the same way.

When constructing an actual type reference from an
abstract type reference, care has to be taken to avoid
obscuring: Even if the abstract reference indicates that the
type is visible, it must additionally be checked if an

1242 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 13. Reference construction.

Fig. 14. Skeleton of an algorithm for constructing an actual reference
from an abstract one.

obscuring variable is in scope; if so, the type name must be
qualified by either its package (for top level types) or its
enclosing type (for member types). These checks can be
carried out using the lookupVar and nameKind attributes
of JastAddJ.

Abstract method references additionally track informa-
tion about other methods with the same name as the target
method. When constructing an actual reference, the over-
loading resolution machinery of JastAddJ is used to check
whether any of these methods would take precedence over
the target method; if so, additional type casts are inserted
on the method arguments to ensure the desired method is
selected.

Note that locked bindings do not by themselves prevent
changes in dynamic dispatch behavior. For instance, Fig. 15
shows two programs that have the same (static) binding
structure, yet different dynamic dispatch behavior: While in
the program of Fig. 15a method B.m does not override
method A.n, the renamed method B.n of Fig. 15b does.
Hence, the method invocation on line 368 returns 42, while
its counterpart on line 384 returns 23, although both of
them bind to method A.n.

In JL, we treat method overriding by the mechanism of
explicit overriding (see Section 5): Every method is
annotated with the set of methods it (directly) overrides;
just as for locked names, this annotation does not change
unless the refactoring explicitly alters it. When translating
back to Java, we use accessibility adjustments (discussed
in Section 4.5) to ensure that every method overrides those
(and only those) methods mentioned in the overriding
annotation, and abort the refactoring if this cannot be
done. In the example of Fig. 15, we could, for instance,
avoid the change in overriding by making method A.n

private.

3.5 Summary

To unlock locked bindings, it is necessary to construct a
possibly qualified reference that binds to a given variable,
type, or method from a particular program point. We have
shown that it is possible to derive an implementation of
such a reference construction algorithm from a name lookup
algorithm. The two algorithms exhibit a very fine-grained

correspondence, with every lookup rule paralleled by a
reference construction rule, ensuring that no corner case of
the lookup rules is overlooked when implementing refer-
ence construction. While we have only shown a handful of
representative rules, the construction scales to the full Java
language. In Section 6 below, we will report on an
implementation of reference construction that handles all
name lookup features of Java 5.

Since lookup rules take access control into account, so
does reference construction: If a declaration is not accessible
at a program point, the algorithm will detect this and fail to
produce a reference. In the next section, we will take a
closer look at how to adjust accessibilities to ensure
references are accessible wherever needed.

4 ACCESSIBILITY CONSTRAINTS

In this section, we consider the role of access modifiers in
refactoring. In particular, we observe that access modifiers
not only serve to control access to declared entities, but also
have an effect on inheritance, overriding, hiding, and
subtyping. Because all these effects depend not only on
access modifiers but also on the relative locations of the
involved declared entities and references, any refactoring
that changes locations must consider access modifiers. As
we will see, the locking of bindings as introduced in the
previous section is insufficient to control the many forces on
access modification; instead, a constraint-based approach
will be needed.

4.1 Access Modifiers and Accessibility in Java

Access modifiers such as private or public let the
programmer exert control over accessibility6 of types and
their members from different parts of a program. To
determine which access modifier is sufficient to access an
entity depends on the location of the declaration of the
accessed entity in the source code and on the location of the
accessing reference. For instance, public accessibility is
required to access a top level type, unless the type and the
accessing reference reside in the same package, in which
case package accessibility suffices.7 The example of Fig. 3
showcased how this rule affects refactoring: Moving a class
with package accessibility from one package to another
renders it inaccessible for references from its former
package, thereby necessitating an increase of declared
accessibility to public.

For the access of type members the situation is slightly
more differentiated:

. If the accessed member and the accessing reference
reside in the same top level type, private is
sufficient.

. Else, if the accessed entity and the reference reside in
the same package, at least package accessibility is
required.

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1243

Fig. 15. Example of a change in dynamic dispatch in spite of same
binding structure.

6. Accessibility is not to be confused with visibility, introduced in the
previous section.

7. Note that Java has no keyword for package accessibility; instead, top
level types and all members and constructors of classes are package

accessible unless an explicit access modifier is specified. For this reason,
package accessibility is often referred to as default accessibility, but this
is misleading: Interface members, for instance, are public by default, and
enumeration constructors are private.

. Else, if the accessing reference resides in a subclass
of the class in which the accessed entity is declared,
at least protected accessibility is required.

. Else, public accessibility is required.

Fig. 16 illustrates some of these accessibility rules. For

instance, the private method A.n can be accessed from

inside an inner class of A at line 404, while the package

accessible method A.p cannot be accessed from a different

package on line 417. However, protected accessibility

suffices to access method A.q from within the body of B,

which is a subtype of A, at line 421, even though this

reference is in a different package and appears not in B itself

but in an inner class.
The above rules are merely a short summary; the full

rules are considerably more involved and will be presented

in detail in Section 4.5.

4.2 Other Effects of Access Modifiers in Java

Accessibility and inheritance. In Java, access modifiers not

only govern access, they also contribute to inheritance:

. If a member is to be inherited at all, its accessibility
must be greater than private.

. If a member is to be inherited by a subclass declared
in a different package, its accessibility must be
greater than package.

Note that, in Java, members can only be inherited from
immediate supertypes; if they are, they become members of
the inheriting type and can then be further inherited by
immediate subtypes of that type and so on [10, Section 8.2].
This means that if type B is a subtype of type A in a
different package and type C is in turn a subtype of type B,
then C does not inherit a package accessible member from
A, even if C and A are in the same package.

Fig. 16 has examples of this: The package accessible
method A.p is not inherited by subtypes in different
packages (line 416) and also not by subtypes in the same
package (line 429) if there is an intervening type (here B)
from a different package. The private method A.n is not
inherited at all, not even by an inner type of its declaring
type (line 403).

Accessibility and overriding. Although one might
expect the two notions to be closely connected, the rules
for overriding in Java differ from those of inheritance in that
it is possible for a type to override a method it would not
inherit otherwise.

For instance, as shown in Fig. 16, the method A.o

declared with package accessibility can be overridden in
the same package (line 428) even though it would not be
inherited otherwise (just as A.p is not inherited; cf. above).
On the other hand, just like for inheritance, A.o is not
overridden in line 415, which is located in a different
package, and the private method A.m cannot be overridden
anywhere, not even in the scope of the same type (line 402).

Thus, the requirements for overriding are as follows:

. For a method to be overridden by another method in
the same package, package accessibility suffices.

. For a method to be overridden by another method in a
different package, protected accessibility suffices.

. Overriding is transitive, i.e., a method overriding
another method also overrides all methods the other
method overrides [10, Section 8.4.8.1].

The first two points mean that a method can override two
instance methods, none of which overrides the other. The
last point means that a method m1 can indirectly override a
package accessible method m2 in a different package,
namely, if an interjacent subtype in that package overrides
it with protected accessibility.

Note that whether one method overrides another has
semantic implications since overriding is a prerequisite for
dynamic binding. For this reason, the return type of an
overriding method must be substitutable with that of the
overridden method [10, Section 8.4.5]. For reference types
that means that both types must conform with the rules for
implicit type conversion, allowing covariant return types but
limiting their type parameters to remain unaltered. It is also
not permitted to override a static method with an instance
method [10, Section 8.4.8.1], and the throws clauses of both
methods must be compatible [10, Section 8.4.8.3]

Accessibility and hiding. Method hiding is primarily a
problem of name resolution and therefore can be dealt with
by locking bindings as shown in Section 3. However, as with
overriding it is an error for a static method to hide an

1244 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 16. Meaning of access modifiers (“accessibility”) for member
access, inheritance, and overriding.

instance method [10, Section 8.4.8.2]. Since the definition of
hiding hinges on accessibility (the hidden member must be
accessible from where the hiding occurs [10, Section 8.4.8.2]),
care must be taken that an increase of accessibility of an
instance method necessitated by some other condition does
not lead to illegal hiding by a static method. For instance, in
the simple program

class A { private void m() {} }

class B extends A { static void m() {} }

accessibility of A.m must not be increased since otherwise
the declaration of B.m causes a compile error.

Accessibility and subtyping. Last but not least, acces-
sibility interacts with typing: Because subtyping demands
that instances of a subtype have accessible what is declared
accessible by the supertype, accessibility of instance
methods overridden in subtypes must not decrease.8 For
instance, in the example of Fig. 4, the increase in the
accessibility of A.m required to preserve the overriding of
B.m had to be complemented by an increase of accessibility
of B.m, not to maintain overriding, but to respect subtyping.

Interestingly, Java extends this rule to static methods
(i.e., accessibility of static methods hidden in subtypes must
not decrease), but not to fields.

4.3 Accessibility and Refactoring

It is obvious that due to its dependence on location,
accessibility plays a central role in all refactorings that
move program elements, including MOVE CLASS, MOVE

MEMBER, PULL UP MEMBER, and PUSH DOWN MEMBER

[1]. Accessibility also needs to be considered for type-
related refactorings: Type generalization refactorings such
as GENERALIZE DECLARED TYPE and EXTRACT INTER-

FACE [11] require that the supertypes and their members
are accessible to the clients of the generalized type; type
hierarchy refactorings such as INFER TYPE [15] and
REPLACE INHERITANCE WITH DELEGATION change sub-
class relationships and thus may render protected entities
inaccessible from the former subclass [16].

The unlocking algorithm of Section 3 also has to deal
with accessibility in order to avoid constructing a qualified
reference that violates accessibility rules. Last but not least,
changing accessibility may be the immediate purpose of a
refactoring, for instance to achieve data encapsulation by
making fields private (as is done by the ENCAPSULATE

FIELD refactoring [1]). In all these refactorings, failure to
adjust access modifiers, or incorrect adjustment of access
modifiers, may lead to noncompiling programs or, worse
still, to silent change of behavior. Like with the naming
problems dealt with in the previous section, the solution is
to record all relationships before the refactoring, and to
compute additional changes required to make sure that
they still hold afterwards. The difference is that for
accessibility, the additional changes pertain to declarations
(adaptation of access modifiers) rather than references.

As it turns out, this difference necessitates a wholly
different approach. While adjusting references cannot
interfere with any other part of the program, accessibilities
are necessarily adjusted at the declaration site, and thus

may cause new problems with other references and
declarations. In particular, since access modifiers also
influence inheritance and overriding and are further
constrained by subtyping and hiding, as outlined above,
finding an access modifier that preserves all relationships
involved in compilability and the bindings of a program
(both static and dynamic) is basically a search problem.

4.4 Computation of Required Accessibility as a
Constraint Satisfaction Problem

From a refactoring perspective, changing the accessibility of
a declared entity is somewhat analogous to changing its
type: Like the new type, the new accessibility must not only
suit all references to the entity, but must also harmonize
with the accessibilities of other entities it is related to, which
in turn must suit all of their references and so on. This
analogy suggests viewing accessibility refactoring as a
constraint satisfaction problem, as has been done before
for type refactoring [11]. The main difference is that the
variables in the constraint system represent access modi-
fiers, rather than type annotations, of declared entities.

The constraints required for a constraint-based refactor-
ing are usually generated by applying so-called constraint
rules to the program to be refactored (see, e.g., [11], [17],
[18]). Such a constraint rule is generally of the form

program query

constraints
ðRULENAMEÞ;

where program query stands for an expression selecting
those elements of the program to which the rule is to apply,
while constraints represents a set of constraints expressing
relationships between those properties of the selected
program elements that are to be constrained by the rule.

For instance, the rule

interface-memberðmÞ
hmi ¼ public

ðIMEMBERÞ;

expresses that the accessibility of an interface member m,
represented by the constraint variable hmi, must be
public. When applied to the program

interface I { void m() ; }

class C implements I{ public void m() {} }

it generates the constraint hI:mi ¼ public, preventing any
changes to the accessibility of I.m. Applying the subtyping
rule

overridesðm2;m1Þ _ hidesðm2;m1Þ
hm2i �A hm1i

ðSUBÞ

to the same program generates the additional constraint
hC:mi �A hI:mi, expressing that the declared accessibility of
C.m must be greater than or equal to (�A) that of I.m;
together, the two constraints prevent any lowering of the
accessibility of C.m.

Since both queries and constraints are relations, they can
be exchanged for each other to a certain extent. In fact, as
has been noted elsewhere [18], [19], the main difference
between a query and a constraint is when it is evaluated:
While queries are evaluated during constraint generation
(and hence entirely based on the old program), constraints

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1245

8. Note that this rule allows redefinition of a package accessible
instance method as private in a subtype, if that subtype belongs to a
different package.

are evaluated during constraint solving, when some of the

constraint variables have been given new values to reflect

the intended changes, and when new values are being

computed for others. Therefore, the (hypothetical) rule

hmi ¼ public

hmi ¼ public

is neither circular nor tautological: It just expresses that

what was declared public before the refactoring must be

declared public after (for instance to preserve the API of a

program).

4.5 The Constraint Rules of Accessibility

As elaborated above, to determine which access modifier

a declaration requires is not only constrained by

references to the declaration present in the program, but

also by the existing (and nonexisting) inheritance, over-

riding, hiding, and subtyping relationships. However, the

impact of access modifiers on compilability and meaning

is seldom spelled out explicitly, but mostly scattered

throughout the JLS.
In this section, we will discuss some representative

constraint rules in detail; a full listing of all rules is given in

the Appendix.

To formulate queries and constraints, we make use of
several basic relations and functions defined in Fig. 17:
Relations �T and �N model the program’s inheritance
hierarchy and type nesting structure, respectively, while
functions �, � , and �top determine the package, immediately
enclosing type and top level type in which a declaration or
reference is located. Both � and �top are undefined for top
level types, which by definition do not have enclosing
types, and for references that occur outside the body of a
top level type declaration, for instance in an extends or
implements clause.

The functions � (for accessibility), � (for inheritance), and !

(for overriding) determine minimum accessibilities needed
for access, inheritance, and overriding, respectively. For a
reference r and a declaration d, �ðr; dÞ is the minimum
accessibility needed for d to be accessible for r; its definition
is basically a transcription of Section 6.6.1 in the JLS [10].
The first argument of � can also be a member m, in which
case �ðm; dÞ gives the minimum accessibility necessary for d
to be accessible from where m is declared; this is needed to
correctly model the definition of hiding.

For two types ti and td, �ðti; tdÞ is the minimum accessi-
bility a member of td needs to have in order to be inherited by
ti: As discussed above, this is package if all types between td
and ti in the subtype hierarchy are in the same package, and

1246 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 17. Auxiliary functions �, �, and ! determining minimum required accessibility for access, inheritance, and overriding.

protected otherwise. Finally, !ðm2;m1Þ is the minimum
accessibility a method m1 needs to have to be directly
overridden by method m2, which is package if m1 and m2

belong to the same package, and protected otherwise.
Strictly speaking, this predicate should only be defined if the
enclosing type of m2 is a subtype of the one of m1, but for
convenience we define it for all methods.

To streamline the formulation of program queries, we
will use additional query predicates, such as predicates
overrides and hides introduced above. For now, we infor-
mally explain the predicates when we use them; full
definitions are given in the Appendix.

The first, and most fundamental, accessibility constraint
rule for Java is the (ACC-1) rule:

bindsðr; dÞ
hdi �A �ðr; dÞ

ðACC� 1Þ:

Using the binds predicate to query the binding structure of
the program, it states that whenever a reference r binds to a
declared entity d, the accessibility of d must be no less than
the minimum accessibility needed for d to be accessible at
the position of r. As an illustration of this rule, consider the
example of Fig. 3. On the original program, taking d to be
the declaration of class B and r the reference in line 45,
we see that �ðr; dÞ ¼ package, so the constraint hdi �A
package is generated. On the refactored program, we have
�ðr; dÞ ¼ public, so the constraint is now hdi �A public,
indicating that B must be declared public. Constraints
generated by this rule also explain the compile error on line
417 of Fig. 16, whereas the constraints for lines 404, 408,
421, and 430 are satisfied.

A second, related rule concerns inherited members:

bindsðr;mÞ recv-typeðr; tÞ t <T �ðmÞ
hmi �A �ðt; �ðmÞÞ

ðINHACCÞ:

The program query matches any reference r binding to a
member m such that m is not locally declared in the receiver
type t of r: Such a member must be inherited, so its declared
accessibility must be no less than the minimum accessibility
required for t to actually inherit m, as computed by �. This
rule explains the accesses on lines 403, 407, 416, and 429 in
Fig. 16.

A third constraint rule, preventing the loss of overriding
exemplified in Fig. 4, is (OVRPRES):

overridesðm2;m1Þ
hm1i �A !ðm2;m1Þ

ðOVRPRESÞ:

Here, we use the predicate overrides to find all pairs of
methods ðm2;m1Þ such that m2 directly overrides m1. The
generated constraint requires that m1 has at least the
minimum accessibility needed for the overriding to
take place as computed by !. While this rule only applies
to direct overriding relationships, its comprehensive appli-
cation to all methods in the program ensures that indirect
(transitive) overriding is preserved as well.

Preserving override relationships plays a key role in
maintaining program behavior when dynamic dispatch
arises. In Java, dynamic binding only occurs in case of
overriding methods, where the virtual machine selects the
method to invoke according to the runtime type of the
receiver object. If both (static) name bindings and overriding

relationships are preserved, dynamic dispatch behavior is
also preserved.

As shown in the example at the end of Section 4.2, a static
method m2 may not hide an instance method m1. Similarly,
the return type of m2 must be a subtype of the return type of
m1, and their throws clauses must be compatible [10,
Section 8.4.8.3]. We define a predicate may-hide to check
these conditions (see the Appendix), and use it to define a
constraint rule (HID) that lowers the accessibility of m1 if
necessary to prevent invalid hiding:

�ðm2Þ <T �ðm1Þ staticðm2Þ
overr-eqvðm2;m1Þ :may-hideðm2;m1Þ

hm1i <A �ðm2;m1Þ
ðHIDÞ:

Note that although this rule is about hiding, it does not use
the query predicate hides. This is necessary since we are
looking for a pair ðm2;m1Þ of methods such that m2 would
hide m1 were it not for the low accessibility of m1. Using
:hidesðm2;m1Þ as a query instead would produce all pairs
of methods ðm2;m1Þ such that m2 does not hide m1: This is
true for many pairs of completely unrelated methods, for
which this accessibility constraint would be unjustified. We
will see this pattern frequently in the full listing of all
constraint rules, as given in the Appendix.

Also note that the definition of hiding, although relying
on accessibility as expressed by �, is independent of any
concrete reference, and thus uses the hiding method in
place of a reference as argument; to cover this, the domain
of the first argument of � in Fig. 17 is extended to include
M, allowing it to address hypothetical accessibility as
required by the definition of hiding [10, Section 8.4.8.2].

The constraint rule (SUB) ensuring the conditions of
subtyping as required by the extension of the example of
Fig. 4 in Section 2.2 has already been given in Section 4.4; for
the case of hiding (rather than overriding) members, it is
implicitly restricted to (static) methods, i.e., the rule does
not apply to fields.

4.6 Summary

We have shown how the rules for accessibility in Java can
be encoded as constraint rules. Based on the syntactic
structure, type hierarchy, name bindings, and overriding
relationships of a program, these rules generate a set of
constraints on the accessibilities of declarations that have to
be satisfied in order to avoid compile errors and maintain
dynamic dispatch behavior.

In the next section, we show how these constraints can be
integrated with the binding unlocking algorithm of the
previous section, yielding a comprehensive framework for
maintaining and updating bindings.

5 JL AND JAVA

In this section, we give a more detailed presentation of JL,
our lookup-free, access control-free representation of Java
programs, and present algorithms for converting between
Java programs and their JL representations.

5.1 Lookup-Free, Access Control-Free
Representation of Java Programs

A JL program is, syntactically speaking, almost a Java
program, except for three differences:

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1247

1. Every declaration is annotated with a globally
unique label. In example JL code, we write the label
as a superscript on the declaration.

2. There are no simple names. Instead there are locked
bindings that directly refer to a declared entity by its
label. In example JL code, we write " l to denote a
locked binding referring to a declaration labeled l.
While simple names are replaced by locked bind-
ings, JL programs can still contain qualified names
as well as field access expressions and method
invocation expressions, but instead of simple names
they are composed of locked bindings.

3. Every instance method declaration in the program
has an explicit overriding annotation of the form

overrides m1; . . . ;mn

where themi are locked bindings enumerating all the

methods this method directly overrides. For methods

that do not override other methods, the list is empty.

We say that a JL program P 0 represents a valid Java

program P if the following three conditions are met:

1. P and P 0 are syntactically the same, except that
overriding annotations are removed in P , declared
accessibility levels of declarations may differ, locked
bindings in P 0 are replaced with normal references
in P , and method invocations in P may have
additional upcasts.

2. P and P 0 have the same name binding structure, i.e.,
for every locked binding " l in P 0 the corresponding
reference in P resolves to the declaration labeled l in
P 0 by the lookup rules of Java.

3. P and P 0 have the same overriding structure, i.e.,
method m1 directly overrides method m2 in P iff the
overrides clause of m1 in P 0 contains "m2.

As an example, Fig. 18 shows the JL version of the
program in Fig. 5a. We omit the overrides clauses since
they are all empty. Although the names and declared
accessibilities of declarations are unimportant in JL, we
retain them to allow reconstructing a Java program from its
JL encoding.

We will now present algorithms for translating Java
programs to corresponding JL programs and back.

5.2 Translating from Java to JL and Back

Finding a JL program to represent a given valid Java
program is easy: Assign unique labels to every declaration,
resolve simple names by the standard lookup rules and
replace them with locked bindings, and finally determine
which methods every instance method (directly) overrides
and add an overrides clause to its declaration.

Translating in the other direction is not quite as easy, but
still fairly straightforward given the techniques presented in
the previous sections: Accessibilities are adjusted to make
declarations accessible anywhere they are referenced and to
enforce or prevent overriding, and locked bindings are
replaced by (possibly qualified) references. The explicit
overriding declarations can then simply be removed.

As an example, consider the program of Fig. 19b, which
arises as an intermediate result while performing the
EXTRACT INTERFACE refactoring of Fig. 5 at the JL level.
We start by computing accessibility constraints for this

1248 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 18. The JL version of the program in Fig. 5a.

Fig. 19. An application of EXTRACT INTERFACE on a JL program.

program, and find two unsatisfied constraints. First, since
the member type t2 is referenced in line 475 outside its
declaring type, rule (ACC-1) generates the constraint
ht2i � package, requiring t2 to have at least package
accessibility. With t2 being private, this constraint is
not fulfilled. Second, rule (SUB) generates the constraint
hm1i � hm3i, requiring method m1 to have at least the same
level of accessibility as m3, the method it overrides, which
is not the case.

We can solve both constraints by removing the private
qualifier from t2’s declaration, and making m1 public.
This change provides a solution to the whole system of
accessibility constraints (not just the two shown here), and
makes it possible to eliminate locked bindings. The name
unlocking algorithm takes care of inserting necessary
qualifications and casts, yielding the program previously
shown in Fig. 5b.

Note that the constraints on t2 could also be solved by
making it public. Generally, it seems preferable to choose
new modifiers as close to the old ones as possible, so raising
the accessibility of t2 all the way to public would be
considered worse than making it package. In some cases,
however, there may be no optimal solution; see, for
example, rule (INH-1) in the Appendix, which might
require either lowering or raising a method’s accessibility.

While this simple example does not show it, unlocking of
binding and solving of accessibility constraints can in
general influence each other, and hence the two have to
be interleaved instead of being performed in sequence. This
is because our algorithm for unlocking bindings can create
new locked bindings used in type casts or qualified this

expressions (see, for instance, line 358 in Fig. 14), which can
potentially refer to inaccessible types.

Therefore, an iterative approach is required: First, we
generate and solve accessibility constraints to make sure
that, at every locked binding " l, the declaration labeled by l
is indeed accessible. Then, we unlock all locked bindings,
which may generate new locked bindings, for which
we again generate and solve accessibility constraints before
unlocking them in turn, until all locked bindings are gone.

This means, however, that during the translation the
program may contain both locked bindings and normal
references. Care must be taken when changing the acces-
sibility of a declaration d in such a program since this
change might change the binding of already unlocked
bindings. Clearly, such binding changes can only occur for

references to a declaration with the same name as d. To
avoid this issue, it is hence enough to additionally lock all
bindings to declarations with the same name as d anywhere
in the program before changing its accessibility.

Fig. 20 shows our algorithm for translating from JL to
Java. The algorithm collects accessibility constraints and
solves them, aborting if this is not possible. A solution
consists of a set of pairs ðd; aÞ, where d is a declaration and a
an accessibility, indicating that the declared accessibility of
d has to be changed to a in order to satisfy the constraint
system. When changing the accessibility, we lock poten-
tially endangered names, and then unlock all names in the
program. If this unlocking creates more locked bindings,
the process is repeated.

The example in Fig. 5 has shown that accessibility
constraints make name unlocking more powerful. Adjusting
accessibilities also allows us to enforce or prevent over-
riding: If, in the JL version of the program, some method m
is supposed to override another method m0, rule (OVRPRES)
will create a constraint ensuring that m0 is overridable by m.
Conversely, if m is not supposed to override m0 but would
override it according to Java’s overriding rules, rule
(OVRPREV), shown in the Appendix, will constrain the
accessibility of m0 to prevent the overriding.

On the other hand, locked bindings also enable more
flexible accessibility constraints: In the original formulation
of accessibility constraints given by Steimann and Thies
[17], there is a constraint rule that would bar us from raising
the accessibility of t2 in Fig. 19. The rationale for this rule is
to prevent a class like D from inheriting two types of the
same name from both a superclass and an interface since
these types can then not be accessed by their simple names.
We can dispense with this rule since name unlocking will
insert qualifiers if necessary. Two other rules for preventing
name capture due to hiding and changed overloading
resolution are likewise rendered obsolete.

5.3 Refactoring on JL
Many refactorings become simpler and more powerful if
they are formulated at the level of JL rather than on plain
Java. The most striking illustration of the benefits of JL is
provided by type-related refactorings such as EXTRACT

INTERFACE, which was briefly introduced in Section 2.
The work by Tip et al. on type-related refactorings [11]

presents 38 type constraint rules for Java 1.4 in detail and
gives an algorithm for determining updatable declarations
for EXTRACT INTERFACE based on the generated constraint
system. Apart from these genuinely type correctness-related
constraints, the authors also briefly sketch some additional
constraints that are not needed for type correctness, but
rather to prevent inadvertent changes to name binding and
overloading resolution.

These additional constraints are not discussed in great
detail, and in particular the correctness proof presented for
EXTRACT INTERFACE does not consider them at all and
simply assumes that such binding changes cannot happen.
It is furthermore tacitly assumed that the necessary type
changes do not fail due to insufficient accessibilities.

If we reformulate refactorings such as EXTRACT INTER-

FACE at the level of JL, these assumptions are automatically
satisfied. We can concentrate on the type-related issues

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1249

Fig. 20. Algorithm for translating from JL to Java.

germane to the refactoring and leave it to the translation
from JL to Java to address naming and access control by
making the necessary changes. This not only simplifies the
specification of refactorings, but also makes them more
powerful: Inadvertent binding changes can often be fixed
by adapting names and access modifiers, while a purely
type constraint-based approach would have to reject the
refactoring out of hand.

5.4 An Example of a JL Refactoring

Let us take another look at the example from Section 2, and see
how this application of EXTRACT INTERFACE plays out in JL.
The JL version of the input program of Fig. 5a was shown in
Fig. 18. Recall that we want to extract from class C, or t1 in JL,
an interface I with a method m(C.B) for method m1 to
implement.

The first step of this refactoring is easy: Create the new
interface (we assign it the fresh label t6), insert a declaration
of the method we want to extract (labeled m3), and have t1
implement t6, as shown in Fig. 19a. In Java, even such a
simple transformation is fraught with peril: Introducing the
new interface might upset existing name bindings, refer-
ences to types in the parameter lists of the extracted
methods may need to be adjusted, and sometimes, as in this
case, one of these types may not even be accessible. By
formulating the refactoring on JL instead, we can rely on
the translation to Java to take care of all these issues.

Since the new interface is not yet mentioned anywhere in
the program (except in the implements clause of t1), this
step does not change the program’s external behavior. It
does, however, change overriding slightly, since m1 now
overrides its extracted counterpart m3. In JL, this has to be
made explicit by inserting an overrides declaration as
shown. More generally, for every method m to which
EXTRACT INTERFACE creates a counterpart m0 in the new
interface, m0 has to be added to m’s overrides clause.

The more interesting part of the refactoring is the second
part of the transformation: Now that we have the new
interface t6, we want to take advantage of it, and change as
many variables as possible from type t1 to t6. For this, we
rely on the algorithm for computing updatable declarations
that was presented in [11]. We note that all constraint rules
presented for Java make sense for JL as well, except for the
ones aiming at preventing changes in name binding or
overloading resolution, which become unnecessary.

For the above example program, the algorithm deter-
mines that the types of the parameters v2 and v5 can be
updated from " t1 to " t6. We also have to update the call to
m1 on line 467 to bind to m3 instead, as shown in Fig. 19b.
This will, of course, not affect dynamic dispatch at runtime.

In general, to determine which calls have to be updated
we need to know the set E of expressions whose type is
updated, and the type they are updated to (here always I);
the algorithm in [11], for example, already computes this
set. For a virtual call e: "mð. . .Þ with e 2 E, we determine
the method m0 in I that m overrides, and replace it with
e: "m0ð. . .Þ. This step, like the updating of overriding
relationships above, is left implicit in formulations of
EXTRACT INTERFACE for Java, where the binding will
change silently, but is made explicit in JL.

5.5 Porting Type-Related Refactorings to JL
The informal description of EXTRACT INTERFACE for JL in
the previous section is easily turned into a pseudocode
algorithm, shown in Fig. 21. Note that every step of the
refactoring except for line 7, which updates overriding
declarations, and line 13, which adjusts virtual calls, would
also occur in a Java-level specification.

To save space, we have not elaborated on the precondi-
tions the refactoring needs to check in line 2: An actual
implementation should check, among others, that C is not a
library class and that none of the methods to be extracted is
static. Crucially, however, these preconditions can all be
taken directly from a Java-based specification of the
refactoring. We can, of course, omit any preconditions
designed to prevent name binding changes or accessibility
problems since these issues are handled instead in the
translation from JL to Java.

Porting other type-related Java refactoring to JL is
analogous: Take the Java specification, remove unnecessary
preconditions, and make changes to overriding and call
targets explicit. PULL UP METHOD, for instance, needs to
update the overrides clauses of any methods that should
override the pulled-up method after the refactoring.9

The procedure Adjust Virtual Calls can be reused
by other refactorings: When using PULL UP METHOD to pull
up a method m from a class A to a class B, all (unqualified)
this accesses within m change their type from A to B, so
virtual method calls on these accesses have to be adjusted.

In this way, existing refactorings can easily be lifted from
Java to JL by making changes in overriding explicit and
using Adjust Virtual Calls to rectify the targets of
virtual calls.

1250 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 21. EXTRACT INTERFACE on JL.

9. Just as for a Java-level implementation, additional analysis is needed
to ensure that the changed overriding does not affect dynamic dispatch.

6 IMPLEMENTATION

We have implemented our approach in the JRRT refactoring
tool [6]. JRRT is based on the JastAddJ front end, which it
uses for parsing and to provide syntax trees. We have
worked out specifications and implementations of many
commonly used refactorings, which have been evaluated
and compared to other implementations in previous work
[8]. In this section, we will briefly highlight some of the
salient points of our implementation of JL and the
transformations from and to Java.

We implement locked bindings by introducing new node
types in the AST together with special lookup rules that
implement direct binding. Similarly, nodes corresponding
to method declarations are extended with an additional
field to record explicit overriding.

To speed up translation to and from JL, our implementa-
tion does not usually lock all bindings in the entire
program; instead, it is up to individual refactorings to
determine which names are in danger of changing their
binding and to replace them with locked bindings.

For the common case of refactorings that do not alter the
type hierarchy, a conservative overapproximation of the set
of endangered names can be determined as follows:

. We consider a method or constructor affected by the
refactoring if its signature or location changes;
similarly, a class, interface, field, or other variable
is affected if its name or location changes.

. A constructor or method is considered potentially
affected if it has the same name and arity as an
affected method/constructor, and likewise for types
and variables.

. A reference is potentially affected if it either refers to a
potentially affected declaration, it is itself moved by
the refactoring, or the type of its qualifying expres-
sion or one of its arguments (for method invocation
expressions) changes.

. A refactoring then only needs to lock potentially
affected names, and only needs to introduce explicit
overriding for potentially affected methods.

Refactorings like EXTRACT INTERFACE that do change
the hierarchy have to perform additional locking.

To implement name unlocking, we have implemented
the algorithm introduced in Section 3, taking all lookup
rules of Java 5 into account. Due to the concise syntax and
well-developed infrastructure of JastAddJ this can be
achieved in about 1,400 lines of code, which is roughly
the same as the corresponding lookup rules.10

For accessibility handling, we have implemented a
module to collect and solve accessibility constraints.
Because most queries contained in the constraint rule’s
preconditions (such as binds, overrides, and recv-type) are
directly provided by the JastAddJ front end, the imple-
mentation of the accessibility constraint generator takes less
than 650 lines of code. The accessibility constraints are then
translated into constraints over integers and solved using
the Cream constraint solving library [21].

JastAdd’s declarative attribute features lend themselves
well to implementing lookup and reference construction in
a concise and modular fashion, but the same functionality
could just as well have been implemented in any other
metaprogramming system. Our main reason for choosing
JastAdd was the easy integration with JastAddJ, which
offers a complete frontend for Java 5.

JastAddJ does not yet support Java 6 or Java 7, and
neither does JRRT. Supporting Java 6 would likely not
require a major effort since there are few language-level
changes from Java 5. Java 7 would not be as straightfor-
ward, but at least the reference construction framework
could be extended in tandem with the JastAddJ front end.

7 EVALUATION

We will now present an evaluation of our approach and its
implementation with respect to correctness and scalability.

7.1 Correctness of Reference Construction

Ideally, we would like to formally verify that our naming
framework always constructs references that bind to the
intended declaration, and that the accessibility constraints
faithfully capture Java’s access control rules. However,
while there has been some work on the formalization of
access control for a subset of Java [22], the name binding
rules have, to our knowledge, never been formally specified.

For this reason, we have chosen a more empirical
approach to convince ourselves of the correctness of our
naming framework. We have implemented the RENAME

refactoring for packages, types, methods, and variables and
tested them on the official test suite for the refactoring
engine of Eclipse JDT 3.6.11 All test cases consist of an input
program, a description of the renaming to perform, and an
expected output program (none in the case of tests where
the refactoring is expected to be rejected). We adapted the
test suite to use JRRT for performing the refactoring instead
of the JDT.

The results of evaluating our implementation of the
RENAME refactorings in this way are shown in Table 1. It
lists the four considered refactorings in the first column. For
every refactoring, the column labeled “Total” indicates how
many test cases are provided by Eclipse. The remaining four
columns classify these test cases into four disjoint categories.

Category “Inapplicable” comprises those test cases that
we could not run through our implementation, most of
them because the input program does not compile: A side
effect of basing our implementation on a compiler front end
is that it cannot handle uncompilable programs for which

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1251

TABLE 1
Evaluation of RENAME on Eclipse’s Test Suite

10. These and all following code size measurements were generated
using David A. Wheeler’s “SLOCCount” [20].

11. Available from the public Eclipse CVS repository in project
org.eclipse.jdt.ui.tests.refactoring.

no consistent syntax trees are generated by the front end.
While it would be nice to support refactoring of invalid
code from a usability perspective, this is not a well-defined
problem since the input program has no behavior that the
refactoring could preserve. Also included in the category of
inapplicable tests are some test cases which exercise details
of Eclipse’s precondition checking algorithm that have no
counterpart in our approach.

Test cases in category “Missing Feature” test minor
features we have not implemented yet; notably, Eclipse can
rename similarly named elements along with the main
element being renamed, or update what looks like names
contained in string literals. Again, these are heuristic
features that are not amenable to rigorous comparison.

Category “Additional Passing Tests” encompasses test
cases that Eclipse cannot handle (and which are hence
supposed to be rejected), but which JRRT can refactor
successfully. This includes test cases where names have to
be qualified to avoid capture, which Eclipse does not
attempt to do. We inspected all these tests to make sure that
the refactoring performed by JRRT preserves behavior.

The final category, “Same Result,” is those test cases on
which both implementations produce the same result.

In summary, our implementation does quite well: While
we do not implement all the additional features that Eclipse
provides, our naming framework handles all test cases
correctly and can indeed be used to perform renamings on
which Eclipse has to give up.

7.2 Scalability and Performance

To investigate issues of scalability, we performed an
experiment in which we systematically applied the two
refactorings EXTRACT INTERFACE and PULL UP METHOD

on a large collection of real-world Java applications, shown
in Table 2. We were particularly interested in determining
how often adjustment of accessibilities and name qualifica-
tion arises on real code, as these are situations that current

refactoring tools are ill equipped to handle. The subject
programs are publicly available and include frequently
used frameworks such as JUnit and Tomcat, comprising
more than one million lines of source code in total.

PULL UP METHOD. We used our tool to move each
method in each class, along with all fields, methods, and
member types of the same class used by that method, to the
immediate superclass, except in cases where the superclass
is a library class.

Table 2 shows, under the heading PULL UP METHOD,
the total number of methods to be moved for each subject
program (column “total”), next to the number of methods
for which the tool detected a potential problem that could
render the output program uncompilable or change its
semantics and hence rejected the refactoring (column
“rejected”).

The following three columns list the total number of
successful refactoring applications (subcolumn “total” of
column “successful”), the number of cases that required at
least one accessibility adjustment (subcolumn “acc.”), and
the number of cases where a name adjustment was made
(subcolumn “names”).12

Given the large number of refactoring applications,
we cannot give a detailed analysis of the situations where
the refactoring was rejected. To take the most extreme
example, of the 4,398 possible refactoring applications on
Tomcat, 4,396 were rejected, the most common reasons being
changes in the evaluation order of field initializers (2,360
cases) and possible changes in dynamic method resolution
(1,602 cases). In other cases the numbers are not quite so
drastic, leading to such a large number of successful
refactorings that it was impractical to manually check
preservation of program behavior in each case. Instead, we
only checked that the output program still compiled.

1252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

TABLE 2
Quantitative Evaluation; Sizes in Thousands of Lines of Source Code

12. This category includes insertion of upcasts to rectify overloading
resolution and of qualifiers to avoid name capture; we do not count the
fairly trivial case of qualifying types with their package name.

Averaging over all programs, accessibilities were adjusted
in about 50.2 percent of all successful applications, names in
23.7 percent. The need for accessibility adjustment arose often
when moving methods between packages, with declarations
referenced in the moved members becoming inaccessible.
Naming issues occurred frequently when moved methods
held references to static members or member types which
needed further qualifications afterward.

EXTRACT INTERFACE. The final column group of Table 2
shows the result of using EXTRACT INTERFACE to extract an
interface from each (non-anonymous) class in each subject
program, containing all the public nonstatic methods of the
class, to a new package where it was to serve as a published
interface [23]. Accessibility adjustments were needed in
27.8 percent and name adjustments in 3.6 percent of all
successful applications.

Given its prototype nature, our current implementation is
not ready for a full-fledged performance evaluation. Perfor-
mance measurements taken during the experiments show
that a single application (whether successful or not) of any of
the refactorings completes, on average, within 46 seconds or
fewer, even on the largest of our benchmarks, and 90 percent
of all applications complete within 53 seconds.13

The strategy for approximating the set of names to be
locked during translation outlined in above is very effective
in practice: We found that PULL UP METHOD, e.g., never
locks more than 7 percent of all names and usually much
less than that, which never becomes a bottleneck. These
numbers show that while there is room for improvement,
our approach is practically feasible.

7.3 Comparison with Other Refactoring Tools

To see how our implementation compares with other
refactoring tools we chose 100 cases where our PULL UP

METHOD had adjusted both accessibility and naming, and
manually performed these refactorings in Eclipse and
IntelliJ IDEA, with the results shown in Table 3.

The first column corresponds to the one in Table 2, the
second column gives the number of PULL UP METHOD

refactorings involving naming and accessibility issues.
While our tool succeeded (i.e., performed the refactoring
and produced compilable output) in all cases, Eclipse and
IDEA showed a rather different picture. Eclipse could only
successfully refactor in three cases; IDEA did somewhat
better and succeeded in 22 cases. In the majority of
cases—91 for Eclipse and 76 for IDEA—both tools rejected
the refactoring with an error message. In six and two cases,

respectively, the tools performed changes leading to
uncompilable code. We could not perform a similar
comparison for EXTRACT INTERFACE as Eclipse does not
directly support extraction into a different package.

7.4 Discussion

Since our evaluation of correctness in Section 7.1 uses the
Eclipse test suite, it does not show examples where Eclipse
performs an incorrect refactoring that changes program
behavior. Such examples are not hard to find: We have
compiled a list of problematic cases concerning a range of
different refactorings and made it available online [3]; JRRT
handles all of them correctly.

The quantitative evaluation in Section 7.2 does not
evaluate the correctness of the performed refactoring, except
for checking that the refactored program still compiles: The
large number of refactoring applications made it impractical
to manually assess their correctness. Recent work by Soares
et al. [24], [25] employs automated unit test generation to
check behavior preservation of refactorings; they use their
approach to compare Eclipse and JRRT, and find the latter to
produce far fewer incorrect refactorings.

In our quantitative evaluation, we applied the refactor-
ings indiscriminately all over every subject program. The
fraction of cases where it would make sense to apply the
refactoring in order to improve a program’s design is, of
course, likely to be very small, but as our results show, our
tool is robust enough to handle a wide variety of situations,
including those where other tools fail.

Since we treat accessibility adjustment as a global
constraint problem, our approach may sometimes end up
suggesting a large number of changes to many different
parts of the program. It may be doubtful whether a
refactoring that requires such extensive changes in order
to go through is actually worth performing. However, we
believe that this is not for the refactoring tool to decide.
Instead, this issue is probably best handled in the user
interface by providing a preview of the proposed changes to
the programmer, who can still choose to abort the
refactoring if it is too invasive.

Even with such a preview, it may still be unclear to the
user why a certain change is necessary. We leave it to future
work to provide explanations for proposed changes.

8 RELATED WORK

Almost two decades after inception of the discipline as
marked by the theses of Griswold [26] and Opdyke [27],
refactoring is still a hard problem. This is evidenced by a
steadily growing body of literature on the subject, still
dealing with the same basic problem as the inaugural
works: how to construct refactoring tools that are as reliable
as other programming tools like compilers and debuggers.

Starting with the work by Opdyke [27] and Roberts [28],
most previous refactoring research has relied on pre and
postconditions to ensure that program behavior is pre-
served. However, informally justifying that a given set of
conditions is sufficient to ensure behavior preservation is
very difficult. Hence, many authors have worked on giving
a precise semantics of the object language in which
programs to be refactored are written and then formally
proving that a given refactoring always preserves program
semantics. For example, Borba et al. [29] use an axiomatic

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1253

TABLE 3
100 PULL UP METHOD Refactorings with Accessibility and

Naming Issues in Eclipse 3.6.0 and IntelliJ IDEA 9.0.4

13. Timings obtained on a 2 GHz Intel Centrino Duo running a Sun
HotSpot JVM version 1.6.0_21 on a 1.2 GB heap under Microsoft Windows 7
[6.1.7600].

semantics based on weakest preconditions, whereas Garrido
and Meseguer [30] base their work on rewriting logic. While
the proofs of behavior preservation are usually performed
by hand, Sultana and Thompson [31] explore the use of a
proof assistant in mechanically verifying the correctness of
refactorings based on a reduction semantics. To keep the
formal development manageable, these works all restrict
themselves to very simple object languages.

Others have proposed to formulate refactorings on more
high-level program representations to make it easier to both
describe refactorings and reason about their correctness.
Griswold [26] employs program dependence graphs (PDGs),
which incorporate information about control and data flow
dependencies, and introduces meaning-preserving graph
transformation rules to reason about behavior preservation.
The main difficulty with such an approach is mediating
between the transformation of the program’s AST and the
corresponding transformation of the PDG; in Griswold’s
case this is relatively easy since he bases his work on (a first-
order subset of) Scheme, where this correspondence is more
straightforward than in most languages.

Similarly, Mens et al. [32] formulate refactorings as graph
transformations and formalize certain aspects of a pro-
gram’s behavior as properties of the graph representing it.
They do not aim to capture the full semantics in this way,
however, but only specific properties such as preservation
of method call targets. In a similar vein, Schäfer et al.
formulate refactorings in terms of their effect on static
program dependencies, of which name bindings are one
example [8], [33], [34]. JunGL [35], a domain-specific
language for implementing refactorings, also provides a
graph-based view of the program to refactor, but its focus is
mostly on enabling succinct implementation of new
refactorings, rather than reasoning about their correctness.

Several authors have considered composition of refactor-
ings, where small, general-purpose refactorings are com-
posed to yield larger, more special-purpose refactorings
[33], [36], [37]. A central question here is how to compose the
preconditions of constituent refactorings to obtain precondi-
tions for the composite refactoring, and how to reuse
analysis results between different stages of the refactoring.
While this issue is mostly orthogonal to the problems of
naming and accessibility considered in this work, using a
representation like JL could still help since it decreases the
number of explicit preconditions to consider and even
allows intermediate programs that do not conform to the
object language’s naming or accessibility discipline as long
as the final program can be translated back to the object
language, thus avoiding spurious rejections.

Other work considered various programming language
features such as class hierarchies [11], [16], generics [38],
[39], [40], and design patterns [41], [42]. Most of these works
focus on a single language feature in isolation, and do not
consider interactions between different features.

A more pragmatic way of enhancing the reliability of
refactoring tools is automated testing. ASTGen [43] is a
combinator-based program generation tool that has been
used to find bugs in the refactoring tools of Eclipse and
NetBeans. ASTGen is used to generate input programs to
the tool, and different kinds of oracles are used to determine
whether the refactoring performed by the tool is behavior
preserving. In particular, one oracle checks for compilability

of the output program as a coarse indicator of correctness,

like we did in our quantitative evaluation.
More recently, Soares et al. [24], [25] have suggested

techniques for automated behavioral testing of refactoring

tools. They also employ a program generator to generate

input programs to refactor, but instead of using special-

purpose oracles, they automatically create unit tests to find

behavioral differences between the original and the

refactored program. One subtle issue here is that they do

not refactor the unit tests together with the program, which

1254 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 22. Program queries used in the rules of Fig. 23.

may lead to false positives since refactoring tools generally
assume the whole program to be given. Nevertheless, they
were able to find genuine bugs in Eclipse, NetBeans, and an
earlier version of JRRT, the latter being due to a mistake in
the implementation of the reference construction algorithm
of Section 3. Overall, they found significantly fewer bugs in
JRRT than in Eclipse and NetBeans, suggesting that our
techniques increase robustness.

In recent work, Steimann et al. [18] explore the use of
conditional, quantified constraints as a unifying framework
for specifying and implementing refactorings and show
promising first results. An advantage of their purely
constraint-based framework over a combined approach like
ours is that there is no need to explicitly schedule different
adjustments as we do with binding unlocking and accessi-
bility constraint solving. However, a constraint-based

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1255

Fig. 23. The accessibility constraint rules.

specification is in general less well suited to describe
refactorings that introduce or delete program elements (as
opposed to just moving them or manipulating their
attributes) since constraint solvers generally presuppose a
fixed domain of elements to work on.

9 CONCLUSIONS AND FUTURE WORK

Implementing behavior-preserving program transforma-
tions is difficult, particularly at the source level. Modern
mainstream programming languages such as Java provide
many convenient idioms and syntactic sugar that make it
very hard to ensure that the transformed program has the
same behavior as the input program, or even that it
compiles in the first place. One particularly complex, yet
very fundamental problem is how to deal with name
binding, which is governed by a sophisticated set of lookup
and access control rules.

In this paper, we have introduced JL, a representation of
Java programs that abstracts away from the details of name
lookup and access control, instead providing a view of the
program in which references to declared entities appear
locked: They only change when explicitly rebound by the
refactoring, and otherwise keep their original binding. We
have shown that refactorings become much more robust
and powerful when formulated at the level of JL.

In order for JL to be usable, we need translations from
Java to JL and vice versa. We have shown how such a
translation can be achieved with the help of a reference
construction function and accessibility constraints: The
former constructs references that bind to a target declara-
tion, and the latter determine how declared accessibilities
have to be adjusted to satisfy access control rules. We have
implemented these translations and put them to work by
implementing several refactorings on top of them. To
evaluate our implementation, we have systematically
applied two of these refactorings to a large body of real-
world Java applications, showing that our tool is able to
perform transformations that are beyond the scope of
popular refactoring engines.

As our work shows, the name binding and accessibility
rules of Java are highly complex and full of sometimes
surprising quirks. On the one hand, this complexity gives the
programmer a lot of flexibility in reusing names and
omitting qualifiers such as this wherever possible. On the
other hand, this flexibility strikes back as a degraded
capability of statically detecting logical programming errors,
and makes it easy to introduce errors when changing the
program, for instance by a refactoring. A language designed
for ease of refactoring would have much simpler binding
rules at the price of reduced freedom in choosing names.

There are, of course, many other problems besides
naming and accessibility that refactoring engines have to
handle and which JL does not solve. Examples include
control and data flow properties that have to be preserved
during method extraction [33] or synchronization of shared
data in concurrent programs [34]. In our experience,
however, these issues are largely orthogonal to naming
and can be dealt with separately.

While our current work specifically addresses Java, we
believe that the basic approach applies to other languages as
well. Languages such as C#, Scala, or Eiffel have similar name

binding and access control concepts as Java, although details
differ between languages. Refactorings for these languages
would almost certainly also benefit from a lookup-free and
access control-free program representation such as JL.

APPENDIX

ACCESSIBILITY CONSTRAINT RULES

The constraint rules governing access modifiers are defined
as shown in Fig. 23; they rely on the program queries listed
in Figs. 17 and 22.

We briefly explain the most important rules:

. (ACC-1): This is the basic rule for type and member
access [10, Section 6.6.1].

. (ACC-2), (CTORACC): If a member or constructor of
an object is accessed from outside the package in
which it is declared by code that is not responsible
for the implementation of that object, its accessibility
must be public [10, Section 6.2.2].

. (ACC-3): For a type member to be accessible, its
owning type must also be accessible, even if it is not
explicitly referenced [10, Section 6.6.1].

. (INHACC): This rule makes sure that members
accessed through a type that inherits them are still
accessible in the refactored program.

. (OVRPRES), (OVRPREV): These two rules make sure
that existing overriding relationships between meth-
ods are preserved and no new ones are introduced.

. (HID): This rule prevents erroneous hiding.

. (SUB): Method hiding or overriding cannot decrease
accessibility, which is ensured by this rule.

. (INH-1), (INH-2), (INH-3): These rules cover several
subtle cases arising from multiple inheritance of a
method from both a superclass and a superinter-
face, also known as interface inheritance [10,
Section 8.4.8.4].

. The remaining rules ensure various other accessibility
requirements found in the language specification.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[2] T. Mens and T. Tourwé, “A Survey of Software Refactoring,” IEEE
Trans. Software Eng., vol. 30, no. 2, pp. 126-139, Feb. 2004.

[3] M. Schäfer, T. Ekman, R. Ettinger, and M. Verbaere, “Refactoring
Bugs,” http://code.google.com/p/jrrt/wiki/RefactoringBugs,
2011.

[4] E. Foundation, “Eclipse 3.6 JDT,” http://www.eclipse.org/jdt,
2011.

[5] JetBrains, “IntelliJ IDEA 10.5,” http://www.jetbrains.com/idea,
2011.

[6] M. Schäfer, T. Ekman, and A. Thies, “JRRT—JastAdd Refactoring
Tools,” http://code.google.com/p/jrrt, 2011.

[7] T. Ekman and G. Hedin, “The JastAdd Extensible Java Compiler,”
Proc. 22nd Ann. ACM SIGPLAN Conf. Object-Oriented Programming
Systems and Applications, pp. 1-18, 2007.

[8] M. Schäfer and O. de Moor, “Specifying and Implementing
Refactorings,” Proc. ACM Int’l Conf. Object-Oriented Programming
Systems and Applications, M. Rinard, ed., 2010.

[9] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini,
“Taming Reflection: Aiding Static Analysis in the Presence of
Reflection and Custom Class Loaders,” Proc. Int’l Conf. Software
Eng., pp. 241-250, May 2011.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification, third ed. Addison Wesley, 2005.

1256 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

[11] F. Tip, A. Kie _zun, and D. Bäumer, “Refactoring for Generalization
Using Type Constraints,” Proc. 18th Ann. ACM SIGPLAN Conf.
Object-Oriented Programming Systems and Applications, pp. 13-26,
2003.

[12] F. Tip, R.M. Fuhrer, A. Kie _zun, M.D. Ernst, I. Balaban, and B. De
Sutter, “Refactoring Using Type Constraints,” ACM Trans.
Programming Languages and Systems, vol. 33, no. 3, p. 9, 2011.

[13] T. Ekman and G. Hedin, “Modular Name Analysis for Java Using
JastAdd,” Proc. Int’l Conf. Generative and Transformational Techni-
ques in Software Eng.. pp. 422-436, 2006.

[14] T. Ekman and G. Hedin, “The JastAdd System—Modular
Extensible Compiler Construction,” Science of Computer Program-
ming, vol. 69, nos. 1-3, pp. 14-26, 2007.

[15] F. Steimann, “The Infer Type Refactoring and Its Use for Interface-
Based Programming,” J. Object Technology, vol. 6, no. 2, pp. 99-120,
2007.

[16] H. Kegel and F. Steimann, “Systematically Refactoring Inheritance
to Delegation in Java,” Proc. ACM/IEEE 30th Int’l Conf. Software
Eng., pp. 431-440, 2008.

[17] F. Steimann and A. Thies, “From Public to Private to Absent:
Refactoring Java Programs under Constrained Accessibility,” Proc.
European Conf. Object-Oriented Programming, S. Drossopoulou, ed.,
pp. 419-443, 2009.

[18] F. Steimann, C. Kollee, and J.von Pilgrim, “A Refactoring
Constraint Language and Its Application,” Proc. European Conf.
Object-Oriented Programming, 2011.

[19] F. Steimann, “Constraint-Based Model Refactoring,” Proc. 14th
Int’l Conf. Model Driven Eng. Languages and Systems, J. Whittle,
Clark, and T. Kühne, eds., 2011.

[20] D.A. Wheeler, “SLOCCount,” http://www.dwheeler.com/
sloccount/, 2006.

[21] N. Tamura, “Cream: Class Library for Constraint Programming in
Java,” http://bach.istc.kobe-u.ac.jp/cream. 2009.

[22] N. Schirmer, “Analysing the Java Package/Access Concepts in
Isabelle/HOL,” Concurrency—Practice and Experience, vol. 16, no. 7,
pp. 689-706, 2004.

[23] M. Fowler, “Public versus Published Interfaces,” IEEE Software,
vol. 19, no. 2, pp. 18-19, Mar./Apr. 2002.

[24] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making Program
Refactoring Safer,” IEEE Software, vol. 27, no. 4,, pp. 52-57, July/
Aug. 2010.

[25] G. Soares, R. Gheyi, and T. Massoni, “Automated Behavioral
Testing of Refactoring Engines,” IEEE Trans. Software Eng., doi:
10.1109/TSE.2012.19, 2012.

[26] W.G. Griswold, “Program Restructuring as an Aid to Software
Maintenance,” PhD thesis, Univ. Washington, 1991.

[27] W.F. Opdyke, “Refactoring Object-Oriented Frameworks,” PhD
thesis, Univ. Illinois at Urbana-Champaign, 1992.

[28] D.B. Roberts, “Practical Analysis for Refactoring,” PhD thesis,
Univ. Illinois at Urbana-Champaign, 1999.

[29] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornélio, “Algebraic
Reasoning for Object-Oriented Programming,” Science of Computer
Programming, vol. 52, pp. 53-100, 2004.

[30] A. Garrido and J. Meseguer, “Formal Specification and Verifica-
tion of Java Refactorings,” Proc. IEEE Sixth Int’l Workshop Source
Code Analysis and Manipulation, pp. 165-174, 2006.

[31] N. Sultana and S. Thompson, “Mechanical Verification of
Refactorings,” Proc. ACM SIGPLAN Symp. Partial Evaluation and
Semantics-Based Program Manipulation, pp. 51-60, 2008.

[32] T. Mens, N.V. Eetvelde, S. Demeyer, and D. Janssens, “Formaliz-
ing Refactorings with Graph Transformations,” J. Software Main-
tenance, vol. 17, no. 4, pp. 247-276, 2005.

[33] M. Schäfer, M. Verbaere, T. Ekman, and O. deMoor, “Stepping
Stones over the Refactoring Rubicon—Lightweight Language
Extensions to Easily Realise Refactorings,” Proc. European Conf.
Object-Oriented Programming, S. Drossopoulou, ed., pp. 369-393,
2009.

[34] M. Schäfer, J. Dolby, M. Sridharan, F. Tip, and E. Torlak, “Correct
Refactoring of Concurrent Java Code,” Proc. European Conf. Object-
Oriented Programming, T. D ’Hondt, ed., 2010.

[35] M. Verbaere, R. Ettinger, and O. de Moor, “JunGL: A Scripting
Language for Refactoring,” Proc. Int’l Conf. Software Eng.,
D. Rombach and M.L. Soffa, eds., pp. 172-181, 2006.

[36] M.O. Cinnéide, “Automated Application of Design Patterns: A
Refactoring Approach,” PhD thesis, Univ. of Dublin, Trinity
College, 2000.

[37] G. Kniesel and H. Koch, “Static Composition of Refactorings,”
Science of Computer Programming, vol. 52, no. 1-3, pp. 9-51, 2004.

[38] A. Donovan, A. Kie _zun, M. Tschantz, and M.D. Ernst, “Convert-
ing Java Programs to Use Generic Libraries,” Proc. 19th ACM
SIGPLAN Conf. Object-Oriented Programming Systems and Applica-
tions, pp. 15-34, 2004.

[39] D. von Dincklage and A. Diwan, “Converting Java Classes to Use
Generics,” Proc. 19th ACM SIGPLAN Conf. Object-Oriented Pro-
gramming Systems and Applications, pp. 1-14, 2004.

[40] R.M. Fuhrer, F. Tip, A. Kie _zun, J. Dolby, and M. Keller,
“Efficiently Refactoring Java Applications to Use Generic Li-
braries” Proc. European Conf. Object-Oriented Programming, 2005.

[41] L. Tokuda and D. Batory, “Evolving Object-Oriented Designs with
Refactorings,” Automated Software Eng., vol. 8, no. 1, pp. 89-120,
Jan. 2001.

[42] J. Kerievsky, Refactoring to Patterns. Addison Wesley, 2005.
[43] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated Testing

of Refactoring Engines,” Proc. Joint Meeting of the European Software
Eng. Conf. and Symp. Foundations of Software Eng.. pp. 185-194, 2007.

Max Schäfer received the doctorate in computer
science from the University of Oxford in 2010. He
is currently a postdoctoral researcher at the IBM
T.J. Watson Research Center in Hawthorne,
New York. His research interests include speci-
fication and implementation of automated refac-
torings, automated program repair, and program
analysis for dynamic programming languages.

Andreas Thies is working toward the PhD
degree at the Fernuniversität in Hagen,
Germany. His research interests focus on
constraint-based program analysis, mainly for
automated refactoring and testing.

Friedrich Steimann is head of Programming
Systems at the Fernuniversität in Hagen, Ger-
many. His group conducts research on software
modeling, programmers’ productivity, and ob-
ject-oriented development tools.

Frank Tip received the PhD degree from the
University of Amsterdam in 1995. After spending
about 17 years at IBM Research, he recently
joined the David R. Cheriton School of Computer
Science at the University of Waterloo, Canada,
as a David R. Cheriton Chair in Software
Systems. His current research interests include:
refactoring, test generation, fault localization and
repair, analysis of web applications, and data-
centric synchronization.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SCHÄFER ET AL.: A COMPREHENSIVE APPROACH TO NAMING AND ACCESSIBILITY IN REFACTORING JAVA PROGRAMS 1257

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

